JP3651790B2 - 高密度チップ実装用装置 - Google Patents
高密度チップ実装用装置 Download PDFInfo
- Publication number
- JP3651790B2 JP3651790B2 JP2001352989A JP2001352989A JP3651790B2 JP 3651790 B2 JP3651790 B2 JP 3651790B2 JP 2001352989 A JP2001352989 A JP 2001352989A JP 2001352989 A JP2001352989 A JP 2001352989A JP 3651790 B2 JP3651790 B2 JP 3651790B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- capillary
- heat
- transport fluid
- vaporizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012530 fluid Substances 0.000 claims description 88
- 239000006200 vaporizer Substances 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 34
- 238000004519 manufacturing process Methods 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 11
- 238000005530 etching Methods 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- 238000000206 photolithography Methods 0.000 claims description 5
- 230000032258 transport Effects 0.000 description 56
- 238000010586 diagram Methods 0.000 description 13
- 239000007788 liquid Substances 0.000 description 9
- 239000012809 cooling fluid Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/38—Cooling arrangements using the Peltier effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B23/00—Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
- F25B23/006—Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
- F25D19/006—Thermal coupling structure or interface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2210/00—Heat exchange conduits
- F28F2210/02—Heat exchange conduits with particular branching, e.g. fractal conduit arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Sustainable Development (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Description
【発明の属する技術分野】
本発明は、ヒート・パイプと熱電冷却器を用いた、高密度チップ実装用の装置に関する。
【0002】
【従来の技術】
電子回路中で消費される電力が増大すると、当該電子回路から熱を放散させるシステムを改良する必要が生じる。集積度と動作速度のレベルが増大するのにつれて、電力密度が増大する。したがって、電子回路の集積度が高まり、動作速度が増大すると、当該電子回路から熱を放散させる必要性がますます重要になる。
【0003】
ヒート・パイプは、集積回路装置の放熱を改良するのに役立てることができる。マイクロ・ヒート・パイプは、作業流体を充填(じゅうてん)した小さな導管を用いて高温のデバイスから熱を伝導させている。導管とは、通常、表面に突き出した直線状の通路のことである。作業流体を気化させたり凝縮させたりすると、熱が導管を通って伝導する。作業流体は、導管の加熱されている領域で気化する。気化した流体(蒸気)は、導管の冷やされている部分に移動し、そこで凝縮する。凝縮した流体は、導管の隅に集まったのち、毛細管力によって気化器領域に戻される。作業流体は飽和状態にあるので、導管の内部は、ほぼ一定の温度である。
【0004】
米国特許第5769154号と第5947183号には、ヒート・パイプ・システム内に流体を分布させる芯(しん)構造が開示されている。芯構造にするすることにより、流体を複数の方向に流したのちに発熱領域に戻すことが可能になる。しかし、これら芯構造は、芯構造が任意の構成をとることができることに起因してその流体抵抗が大きく、熱を流体に伝達する点で効率が悪く、そして、柔軟性に乏しい。したがって、このような芯構造を厳密な用途に使うのは、限られる。それ故、改良された毛細管構造と蒸気室を備えたヒート・パイプ装置を備えてヒート・パイプの動作を改良するのが有益である。さらに、柔軟なヒート・パイプ装置を備えて様々な実装形態のうちの複数のもので使用できるようにするのが有益である。
【0005】
【課題を解決するための手段】
ヒート・パイプと熱電冷却器を使った高密度チップ実装用の装置を提供する。この装置は、気化器領域、凝縮器領域、および毛細管領域を備えている。気化器領域は、熱源から輸送流体に熱を伝達させるのに使う少なくとも1つのホット・ポイント要素を備えている。輸送流体は、加熱すると、状態変化して蒸気になる。この蒸気は、蒸気通路を通って凝縮器領域に移動し、ヒート・シンクに熱を放散させて再び液体(凝縮された輸送流体)に戻る。次いで、凝縮された輸送流体は、毛細管力と、毛細管構造体に形成された毛細管によって気化器領域に戻る。毛細管構造体に形成された毛細管は、樹状形状あるいはフラクタル形状をしている。この装置は、さらに、柔軟性領域を備えることができる。この柔軟性領域によって、装置は、角や端の周りに折り曲げることができるようになる。
【0006】
【発明の実施の形態】
図1は、ヒート・パイプの基本動作を示す典型的なブロック図である。図1に示すように、ヒート・パイプは、熱源110が出す熱をヒート・シンク120へ伝達するように動作する。熱源110が出す熱は、冷却流体130へ伝達される。冷却流体130は、当該熱によって蒸気に状態を変える。この蒸気は、ヒート・パイプ140中を蒸気室150から凝縮器室160へ移動する。凝縮器室160で、当該蒸気は、状態を変えて元の液体になる。
【0007】
凝縮器室160中の凝縮された流体は、ヒート・パイプ構造体を構成している材料中の毛細管力によって蒸気室150に戻される。例えば、ヒート・パイプは、多孔質のガラス材料で構成することができる(図中、丸い小孔を有する壁部として示してある)。ガラス材料中の小孔によって、冷却流体を蒸気室150に戻すのを可能にする通路が形成されている。圧力差が存在するのに加え、冷却流体は表面張力によって他の部分の冷却流体に引っ張られることにより、毛細管力によって、冷却流体は、ガラス材料中の小孔を通じて蒸気室150に戻る。
【0008】
本発明は、集積回路チップ用の改良されたヒート・パイプを提供するものである。本発明では、気化器における効率的な相変化と蒸気による効率的な熱放散を実現する構成要素を使用する。さらに、本発明では、最小の流抵抗で最大の毛細管力を実現するフラクタルと構造上の幾何形状に基づいた毛細管構造体を利用する(フラクタルとは、全体の一部を拡大したものが元の全体と同じ形を有する形のことである)。さらに、本発明は、角や端で容易に折り曲げることのできる柔軟な構造を有する。
【0009】
図2は、本発明に係るヒート・パイプ構造体の上面と断面を示すブロック図である。図2に示すように、本発明のヒート・パイプ構造体は、3つの主領域、すなわち気化器領域210、毛細管領域220、凝縮器領域225を備えている。図2では、これらの領域は、同心円状に形成されている。すなわち、気化器領域210が中心に配置されており、気化器領域210の周りに毛細管領域220が形成されており、毛細管領域220の周りに凝縮器領域225が形成されている。
【0010】
気化器領域210は、熱源が出す熱をヒート・シンクに輸送する輸送流体に伝達するように機能する。熱源には、熱を発生させることのできる任意の型のデバイスを用いることができる。本発明の好適な実施形態の場合、熱源は、熱い集積回路チップである。熱源は、熱源が出す熱が熱源から気化器領域210の構成要素に伝達されるように、気化器領域210の背面に配置する。気化器領域210の構成要素は、この熱を輸送流体に伝達する。
【0011】
輸送流体としては、加熱されたときに液体から気体に状態を変化させることのできる任意の型の流体を用いることができる。特定の(すなわち実際に使用する)輸送流体は、熱源の動作温度と輸送流体の沸点とから決めることができる。例えば、熱源が25℃〜50℃の温度範囲で動作する場合、輸送流体として、沸点が約50℃のメタノールなどのアルコールを用いることができる。温度範囲が50℃よりも高い場合には、例えば水を用いることができる。温度範囲が25℃よりも低い場合には、例えばフレオンを用いることができる。以上の例に限らず、本発明の本旨と範囲の内で他の輸送流体を用いることができる。
【0012】
熱が気化器領域210の輸送流体に伝達されると、当該輸送流体は、気化して蒸気になる。この蒸気は、毛細管領域220の蒸気通路を通って凝縮器領域225に移動する。凝縮器領域225に結合されたヒート・シンクがこの蒸気から熱を吸収して元の液体(凝縮された流体)に戻す。凝縮された輸送流体は、毛細管領域220の毛細管を介して気化器領域210に戻される。
【0013】
輸送流体の毛細管力によって、輸送流体は、ヒート・パイプ構造体の中心部、すなわち気化器領域210に向かって移動する。毛細管領域220の毛細管は、樹状構造をなすように形成されている。樹状構造とすることにより、最小の表面抵抗で大きな毛細管力を実現できる。このような樹状構造は、アドリアン・ベジャン著『高等工業熱力学』(Adrian Bejan's Advanced Engineering Thermodynamics, chapter 13, John Wiley and Sons, copyright 1997)に一般的に記載されている。
【0014】
樹状構造は毛細管領域220に形成するのが最も容易であるけれども、本発明の本旨と範囲の内で他の構造を用いることもできる。例えば、好適な実施形態では、フラクタル形状を使って毛細管構造体を画定している。フラクタル形状を使うと、フラクタル形状の面積を同一に保ったまま、フラクタル形状の周囲を理論的には無限に増大させることができる。フラクタル形状は、毛細管領域を平面的に画定したのち、この画定した領域をコーン(Kohn)のアルゴリズムなどのフラクタル・アルゴリズムを使って満たすことにより、形成することができる。次いで、結果として得られる形状を毛細管領域基板に彫り込む。
【0015】
図2には、領域210〜230の断面図も示してある。
図2に示す構成要素は実際の寸法を反映しておらず、相対的な寸法は説明を容易にするために誇張してある。したがって、図2は、説明目的だけのものであり、本発明のヒート・パイプ構造体を構築するための「青写真」を提供するものではない。
【0016】
図2に示すように、ヒート・パイプ構造体の上面と下面は、基板230、240から成る。これらの基板230、240には、後述する構成要素を格納できる任意の材料を用いることができる。例えば、基板230、240には、高熱伝導性材料、例えば銅、シリコン、シリコン同位元素Si−28、銅めっきシリコンなどを用いることができる。好適な実施形態では、例えば、銅は他の材料よりも熱伝導率が高く比較的コストが低いので、基板230、240は銅から成っている。
【0017】
気化器領域210は、熱源、例えば集積回路チップが出す熱を輸送流体に伝達する複数の構成要素250を備えている。構成要素250には、熱源が出す熱を輸送流体に伝達する任意の型の構成要素を用いることができる。本発明の好適な実施形態では、構成要素250として円錐(えんすい)形のホット・ポイントを用いている。好適な実施形態で円錐形のホット・ポイントを用いているのは、鋭利なポイントによって熱流束密度を高められるので、蒸気を生成する凝集サイトの数を多くすることができるからである。熱はホット・ポイントから輸送流体に伝達され、輸送流体は気化する。円錐形のホット・ポイントの配列の製造方法と使用方法は、例えば、次に示す名称の米国特許出願に記載されている。すなわち、「全金属のティップを備えた高度インタフェース熱電冷却器(ENHANCED INTERFACE THERMOELECTRIC COOLERS WITH ALL-METAL TIPS)」、「高度構造化インタフェースを備えた熱電冷却器(THERMOELECTRIC COOLERS WITH ENHANCED STRUCTURED INTERFACES)」、「全金属のティップを備えた高度インタフェース熱電冷却器((ENHANCED INTERFACE THERMOELECTRIC COOLERS WITH ALL-METAL TIPS)」、「効率的な熱電冷却器用のコールド・ポイントの設計(COLD POINT DESIGN FOR EFFICIENT THERMOELECTRIC COOLERS)」である。
【0018】
ここでは、好適な実施形態で使われているように、「円錐形」のホット・ポイントを開示するけれども、ホット・ポイントの本体は、円錐である必要はない。それどころか、ホット・ポイントがテーパをつけられたポイントで終端している限り、任意の形状をとりうる。したがって、円錐形のホット・ポイントではなく、例えばピラミッド形のホット・ポイントを用いることもできる。
【0019】
毛細管領域220は、蒸気通路235と毛細管構造体245を備えている。蒸気通路235は、輸送流体を気化器領域210から凝縮器領域225へ輸送するのに使用する。毛細管構造体245は、毛細管構造体245中に形成された毛細管を備えている。毛細管構造体245中に形成された毛細管は、通路を形成している。この通路を通じて、凝縮された輸送流体を気化器領域210へ戻すことができる。
【0020】
毛細管構造体245中の毛細管は、例えばフォトリソグラフィ技術と反応性イオン・エッチング(RIE)技術によって形成することができる。また、毛細管構造体245を形成するのに、電気めっきも使用することができる。さらに、レーザで基板を切削しても好適な毛細管構造体を形成することができる。一般に、本発明の本旨と範囲の内で本発明の毛細管構造体を形成するのに、マイクロマシンを製造するのに適したプロセスを使用することができる。
【0021】
凝縮器領域225は、凝縮された輸送流体260と封止部270を備えている。基板230の反対表面に、コールド・プレート、熱電冷却器、放熱フィンなどのヒート・シンク(図示せず)を取り付けることができる。封止部270は、ヒート・パイプ構造体を封止するように機能する。これにより、ヒート・パイプ構造体が周期的に動作するのが可能になると共に、ヒート・パイプ構造体中に汚染が侵入するのを防止することができる。あるいは、基板230、240は、例えばBPSG(boron-phosphorous-silicate-glass)によって機密封止することもできる。
【0022】
輸送流体は、ポート(図示せず)を通じて基板230、240と封止部270によって画定された空間に導入することができる。要すれば、輸送流体は、真空下でポートを通じてヒート・パイプ構造体中に導入することができる。次いで、例えばエポキシ充填(じゅうてん)またはレーザ融合溶接によってポートを封止する。ヒート・パイプ構造体は、当業者にとって公知の注入充填−煮沸−クリンプ(ひだ付け)封止プロセスを介して充填することもできる。ヒート・パイプ構造体に導入する輸送流体の量は、凝縮器領域225の凝縮液滴が基板240の凝縮器領域の表面と毛細管構造体245との間を架橋しうる程度であれば十分である。
【0023】
凝縮された輸送流体260は、ヒート・シンク(図示せず)が熱を吸収することに起因して凝縮器領域225で蒸気が凝縮することにより得られる。蒸気は、熱を失うと状態変化して元の液体(凝縮された流体)になる。次いで、凝縮された流体は、重力あるいは局所的な芯構造によって凝縮器領域の底に集まり、毛細管構造体245の毛細管を介して気化器領域210に戻される。
【0024】
図3は、本発明のヒート・パイプ構造体の典型的な実施形態の動作を説明する典型的なブロック図である。図3に示すように、熱源が出す熱は、ホット・ポイントを介してチップから輸送流体に伝達される。輸送流体は、加熱されると、液体から蒸気に変わる。次いで、輸送流体の蒸気は、毛細管領域の蒸気通路を通って凝縮器領域に移動する。
【0025】
凝縮器領域では、蒸気中の熱が放熱器に伝達される。蒸気は、熱を失うと元の液体(凝縮された輸送流体)に戻る。凝縮された輸送流体は、凝縮器領域の底にたまる。輸送流体の毛細管力によって、輸送流体は、毛細管領域に形成された毛細管を通って気化器領域に戻り、ホット・ポイントに到達する。このプロセスは、ヒート・パイプ構造体が動作し、熱源が存在する限り、周期的に繰り返される。
【0026】
図2と図3に示すように、好適な一実施形態のヒート・パイプ構造体は、円形をしている。円形であることにより、ヒート・パイプ構造体を大部分の半導体シリコン・ウェーハに形成できると共に、集積回路(これ自身が円形のシリコン・ウェーハに形成されている)を気化器領域に位置決めすることができる。さらに、円形であることにより、円形のヒート・パイプ構造体の外縁すなわち周辺を封止することにより、ヒート・パイプ構造体を容易に封止することができる。
【0027】
本発明に係るヒート・パイプ構造体は、用途によっては、直線形状が適している。図4は、本発明に係る直線形状のヒート・パイプ構造体のブロック図である。図4に示すように、このヒート・パイプ構造体は、基板440に直線状に形成された、気化器領域410、毛細管領域420、凝縮器領域430を備えている。これらの領域をいったん形成したら、余分の基板は、エッチング除去してもよい。
【0028】
図5は、本発明の直線形状のヒート・パイプ構造体の実施形態の断面を示す図である。図5に示すように、この直線形状のヒート・パイプ構造体は、断面に1つの毛細管領域と1つの凝縮器領域しか提示されていない点を除いて、円形の実施形態のものと実質的に同じである。
【0029】
さらに、直線形状のヒート・パイプ構造体は、柔軟性構造領域510を備えることができる。この柔軟性構造領域は、気化器領域、毛細管領域、および凝縮器領域のうちの少なくとも1つに渡って形成することができる。図5に示す例では、柔軟性構造領域510は、毛細管領域にしか渡っていない。
【0030】
柔軟性構造領域510は、エッチングによって刻み目をつけた基板520を備えている。さらに、蒸気通路と毛細管構造体が柔軟性を有する材料で形成されている。例えば、蒸気通路と毛細管構造体は、電気めっき銅、Si−28などで形成することができる。電気めっき銅は熱伝導率が高く、形成が容易であると共にコストが低いので、本発明の好適な実施形態では、蒸気通路と毛細管構造体を電気めっき銅で形成している。
【0031】
基板520の刻み目と、ヒート・パイプ構造体および毛細管構造体の柔軟な材料とによって、柔軟性構造領域510を曲げることができるので、ヒート・パイプの全体構造は、ちょうつがいのように両端を折り曲げることができる。ヒート・パイプの全体構造が柔軟性を有することにより、本発明に係るヒート・パイプ構造体は、様々な用途に用いることができる。
【0032】
例えば、図6に示すように、本発明のヒート・パイプ構造体は、ラップトップ・コンピュータで用いることができる。この場合、ラップトップ・コンピュータの通常は放熱に使用しない面に放熱器を配置することができる。既存のラップトップ・コンピュータでは、ラップトップ・コンピュータの底面や側面を通じて放熱させる必要がある既存の放熱機構を使って、放熱を行なっている。この方式には、これらラップトップ・コンピュータの底面や側面に触れるユーザを傷つけないように、これらの場所が放散しうる熱量を制限する必要がある、という問題がある。この結果、ラップトップ・コンピュータから放散しうる熱量には限りがあるので、ラップトップ・コンピュータのプロセッサの動作温度には限りがある。
【0033】
本発明は柔軟な放熱機構を実現しているので、ラップトップ・コンピュータのプロセッサが出す熱を、ラップトップ・コンピュータの上表面を通じて放散させることができる。本発明に係るヒート・パイプ構造体は柔軟性があるので、ヒート・パイプ構造体をラップトップ・コンピュータのちょうつがい部の両端で折り曲げることができる。したがって、気化器領域をプロセッサの近傍に配置することができる。毛細管領域は、ラップトップ・コンピュータの底部を横切り、ラップトップ・コンピュータのちょうつがい部をまたぎ、ラップトップ・コンピュータの上面を横切って配置することができる。凝縮器領域はラップトップ・コンピュータの上面に配置することができるので、プロセッサから放熱器に伝達される熱は、ラップトップ・コンピュータの上面を通じて放散させることができる。通常はユーザの膝(ひざ)の上などユーザの近傍に置かれることのない面を通じて放熱しているので放熱量を大きくとれから、プロセッサの動作温度を高めることができる。
【0034】
図6に示した用途の他に、本発明のヒート・パイプ構造体には、本発明の本旨と範囲の内で、多くの他の用途がありうる。例えば、本発明のヒート・パイプ構造体は、図7(a)や図7(b)に示すような集積回路チップ積層体で使用することができる。
【0035】
図7(a)と図7(b)は、本発明の2つの実現方法を示す図である。図7(a)に示すように、第1のチップ積層体は、プリント回路基板(PCB)バックプレーン710、PCBバックプレーン710に接続された入出力(I/O)モジュール720、互いの上に積層しI/Oモジュール720に接続された複数のチップ730を備えている。チップ積層体は、さらに、熱電冷却器(TEC)740と、熱電冷却器740の間に位置するヒート・パイプ構造体体750を備えている。
【0036】
熱電冷却器(TEC)740の近傍にあるヒート・パイプ構造体750の部分は、気化器領域である。熱電冷却器(TEC)740が放散する熱は、ヒート・パイプ構造体750の気化器領域にある構成要素が吸収する。その結果、気化器領域の輸送流体は、状態を変えて蒸気になる。この蒸気は、ヒート・パイプ構造体750の蒸気通路を通ってヒート・シンク760に結合された凝縮器領域に到達する。そこで、熱は、ヒート・シンク760に伝達される。ヒート・シンク760は、この熱を外部雰囲気中に放散する。その結果、蒸気は凝縮した液体になる。この凝縮した液体は、ヒート・パイプ構造体750の毛細管力と毛細管構造体によって気化器領域に戻される。
【0037】
図7(b)は、熱い集積回路チップ積層体の別の構成を示す図である。図7(b)では、チップは、第1のヒート・パイプ構造体770によって直接に冷却されている。熱は、熱電冷却器(TEC)に伝達される。熱電冷却器(TEC)は、この熱を第2のヒート・パイプ構造体780に放散する。次いで、第2のヒート・パイプ構造体780は、ヒート・シンク760に放熱する。ヒート・パイプ770と780は、熱電冷却器(TEC)の動作温度範囲によって定義されるように、異なった温度で動作している。また、本発明の本旨と範囲の内で、熱い集積回路チップ積層体をさらに別の構成とすることができる。
【0038】
以上のように、本発明は、熱源から輸送流体へ効率的に熱を伝達するように、気化器領域の構成要素を使う改良されたヒート・パイプ構造体を提供するものである。また、本発明では、最小の流抵抗で最大の毛細管力を実現するフラクタルかつ構造的な形状に基づく毛細管構造体を使用している。さらに、本発明は、角や端で容易に折り曲げることができる柔軟構造を備えている。
【0039】
以上、本発明を説明と記述を目的に説明したが、本発明は、ここに開示した形態で尽きるものではなく、また、それらに限定されるものでもない。多くの変更と変形があることは、当業者にとって明らかである。実施形態は、本発明の原理とその実際的な応用を最もよく説明しうるように、そして、考えうる特定の用途に適するように様々に変更した様々な実施形態を通して当業者が本発明を理解しうるように選んで説明した。
【0040】
まとめとして以下の事項を開示する。
(1)熱源を冷却する装置であって、
熱源から輸送流体に熱を伝達させる少なくとも1つのホット・ポイント要素を備えた気化器領域と、
ヒート・シンクに結合された凝縮器領域と
を備えた装置。
(2)前記熱源が出す熱を前記輸送流体に印加すると、当該輸送流体が状態を変えて蒸気になる、
上記(1)に記載の装置。
(3)前記蒸気から前記ヒート・シンクに熱を伝達させることにより、前記蒸気を凝縮させて凝縮された輸送流体にする、
上記(1)に記載の装置。
(4)さらに、前記凝縮された輸送流体を前記気化器領域に戻す毛細管を備えた毛細管領域を備えた、
上記(3)に記載の装置。
(5)前記毛細管領域の前記毛細管が、少なくとも1つの樹状であり、フラクタルかつ構造的な形状を使って形成されている、
上記(4)に記載の装置。
(6)前記装置が柔軟である、
上記(1)に記載の装置。
(7)前記熱源が熱い集積回路チップである、
上記(1)に記載の装置。
(8)前記輸送流体が、アルコール、水、およびフレオンのうちの1つから成る、
上記(1)に記載の装置。
(9)前記毛細管領域の前記毛細管が、
前記毛細管領域中に1つの領域を画定し、
フラクタル・アルゴリズムを使って、前記毛細管領域の前記領域を満たすことにより形成されている、
上記(4)に記載の装置。
(10)前記装置が、高熱伝導性材料を使って形成されている、
上記(1)に記載の装置。
(11)前記少なくとも1つのホット・ポイント要素が、円錐形をしたホット・ポイント要素から成る、
上記(1)に記載の装置。
(12)前記少なくとも1つのホット・ポイント要素が、テーパをつけられたポイントで終端している、
上記(1)に記載の装置。
(13)前記毛細管領域が、さらに、前記気化器領域から前記凝縮器領域に蒸気を輸送する蒸気通路を備えている、
上記(4)に記載の装置。
(14)前記毛細管が、フォトリソグラフィ技術を使ったマスク工程とエッチング工程によって、前記毛細管領域に形成されている、
上記(4)に記載の装置。
(15)前記ヒート・シンクが、
コールド・プレート、熱電冷却器、および放熱フィン
のうちの1つから成る、
上記(1)に記載の装置。
(16)前記気化器領域と前記凝縮器領域が、同心円状に配置されている、
上記(1)に記載の装置。
(17)前記装置が直線形状をしている、
上記(1)に記載の装置。
(18)前記気化器領域、前記毛細管領域、および前記凝縮器領域のうちの少なくとも1つが、柔軟構造体である、
上記(4)に記載の装置。
(19)前記柔軟構造体は、
前記柔軟構造体の基板をエッチングして形成した刻み目を有し、
それにより、前記柔軟構造体自身が柔軟にされている、
上記(18)に記載の装置。
(20)前記熱源がラップトップ・コンピュータのプロセッサであり、
前記ヒート・シンクが前記ラップトップ・コンピュータの上面に設けられた放熱器から成る、
上記(1)に記載の装置。
(21)前記熱源が、チップ積層体中の集積回路チップである、
上記(1)に記載の装置。
(22)熱源を冷却する方法であって、
熱源から輸送流体に熱を伝達させて当該輸送流体を蒸気に変換する少なくとも1つのホット・ポイント要素を備えた気化器領域を使用するステップと、
ヒート・シンクに結合された凝縮器領域を使って前記蒸気が出す熱を前記ヒート・シンクに伝達させ、当該蒸気を凝縮された輸送流体に変換するステップと
を備えた方法。
(23)さらに、前記凝縮された輸送流体を毛細管領域の毛細管を通じて前記気化器領域に戻すステップ
を備えた、上記(22)に記載の方法。
(24)前記毛細管領域の前記毛細管が、少なくとも1つの樹状であり、フラクタルかつ構造的な形状を使って形成されている、
上記(23)に記載の方法。
(25)前記熱源が熱い集積回路チップである、
上記(22)に記載の方法。
(26)前記輸送流体が、アルコール、水、およびフレオンのうちの1つから成る、
上記(22)に記載の方法。
(27)前記少なくとも1つのホット・ポイント要素が、円錐形をしたホット・ポイント要素から成る、
上記(22)に記載の方法。
(28)前記熱源がラップトップ・コンピュータのプロセッサであり、
前記ヒート・シンクが前記ラップトップ・コンピュータの上面に設けられた放熱器から成る、
上記(22)に記載の方法。
(29)前記熱源が、チップ積層体中の集積回路チップから成る、
上記(22)に記載の方法。
(30)熱源を冷却する装置の製造方法であって、
熱源から輸送流体に熱を伝達させる少なくとも1つのホット・ポイント要素を備え、前記ホット・ポイント要素から前記輸送流体に熱が伝達されると、前記輸送流体を蒸気に変換する気化器領域を形成するステップと、
ヒート・シンクに結合された凝縮器領域であって、熱が前記蒸気から前記ヒート・シンクに伝達されると、当該蒸気を凝縮された輸送流体に凝縮させる凝縮器領域を形成するステップと
を備えた製造方法。
(31)さらに、前記凝縮された輸送流体を前記気化器領域に戻す毛細管を備えた毛細管領域を形成するステップ
を備えた、
上記(30)に記載の製造方法。
(32)前記毛細管領域の前記毛細管を、少なくとも1つの樹状であり、フラクタルかつ構造的な形状を使って形成する、
上記(31)に記載の製造方法。
(33)さらに、前記輸送流体を準備するステップであって、前記輸送流体が、アルコール、水、およびフレオンのうちの1つから成るステップ
を備えた、
上記(30)に記載の製造方法。
(34)前記毛細管領域の前記毛細管を、
前記毛細管領域中に1つの領域を画定し、
フラクタル・アルゴリズムを使って、前記毛細管領域の前記領域を満たすことにより形成する、
上記(31)に記載の製造方法。
(35)前記装置を、高熱伝導性材料を使って形成する、
上記(30)に記載の製造方法。
(36)前記少なくとも1つのホット・ポイント要素が、円錐形をしたホット・ポイント要素から成る、
上記(30)に記載の製造方法。
(37)さらに、前記気化器領域から前記凝縮器領域に蒸気を輸送する蒸気通路を前記毛細管領域に形成するステップ
を備えた、
上記(31)に記載の製造方法。
(38)前記毛細管を、フォトリソグラフィ技術を使ったマスク工程とエッチング工程によって、前記毛細管領域に形成する、
上記(31)に記載の製造方法。
(39)前記気化器領域と前記凝縮器領域が、同心円状に配置されている、
上記(30)に記載の製造方法。
(40)前記装置が直線形状をしている、
上記(30)に記載の製造方法。
(41)前記気化器領域、前記毛細管領域、および前記凝縮器領域のうちの少なくとも1つが、柔軟構造体である、
上記(31)に記載の製造方法。
(42)前記柔軟構造体は、
前記柔軟構造体の基板をエッチングして形成した刻み目を有し、
それにより、前記柔軟構造体自身が柔軟にされている、
上記(41)に記載の製造方法。
【図面の簡単な説明】
【図1】 ヒート・パイプの基本動作を説明する典型的なブロック図である。
【図2】 本発明に係るヒート・パイプ構造体の上面と断面を説明する典型的なブロック図である。
【図3】 図2のヒート・パイプ構造体の動作を説明する典型的なブロック図である。
【図4】 本発明の直線形状のヒート・パイプ構造体の実施形態を説明する典型的な図である。
【図5】 本発明の直線形状のヒート・パイプ構造体の実施形態の断面を説明する典型的なブロック図である。
【図6】 本発明の直線形状のヒート・パイプ構造体の実施形態の実現例を説明する典型的なブロック図である。
【図7】 本発明のヒート・パイプを使用したチップ容器の2つの構成例を説明する典型的なブロック図である。
【符号の説明】
110 熱源
120 ヒート・シンク
130 冷却流体
140 ヒート・パイプ
150 蒸気室
160 凝縮器室
210 気化器領域
220 毛細管領域
225 凝縮器領域
230 基板
235 蒸気通路
240 基板
245 毛細管構造体
250 構成要素
260 輸送流体
270 封止部
410 気化器領域
420 毛細管領域
430 凝縮器領域
440 基板
510 柔軟性構造領域
520 基板
710 プリント回路基板(PCB)バックプレーン
720 入出力(I/O)モジュール
730 チップ
740 熱電冷却器(TEC)
750 ヒート・パイプ構造体体
760 ヒート・シンク
770 第1のヒート・パイプ構造体
780 第2のヒート・パイプ構造体
Claims (36)
- 熱源を冷却する装置であって、
熱源から輸送流体に熱を伝達させる少なくとも1つのホット・ポイント要素を備えた気化器領域、
ヒート・シンクに結合された凝縮器領域及び、
凝縮された前記輸送流体を前記気化器領域に戻す毛細管を備えた毛細管領域を備え、
前記毛細管領域の少なくとも1つの前記毛細管が、樹状形状又はフラクタル形状であることを特徴とする
装置。 - 前記熱源が出す熱を前記輸送流体に印加すると、当該輸送流体が状態を変えて蒸気になる、
請求項1に記載の装置。 - 前記蒸気から前記ヒート・シンクに熱を伝達させることにより、前記蒸気を凝縮させて凝縮された輸送流体にする、
請求項2に記載の装置。 - 前記装置が柔軟である、
請求項1に記載の装置。 - 前記熱源が熱い集積回路チップである、
請求項1に記載の装置。 - 前記輸送流体が、アルコール、水、およびフレオンのうちの1つから成る、
請求項1に記載の装置。 - 前記毛細管領域の前記毛細管が、
前記毛細管領域中に1つの領域を画定し、
フラクタル・アルゴリズムを使って、前記毛細管領域の前記領域を満たすことにより形成されている、
請求項1に記載の装置。 - 前記装置が、高熱伝導性材料を使って形成されている、
請求項1に記載の装置。 - 前記少なくとも1つのホット・ポイント要素が、円錐形をしたホット・ポイント要素から成る、
請求項1に記載の装置。 - 前記少なくとも1つのホット・ポイント要素が、テーパをつけられたポイントで終端している、
請求項1に記載の装置。 - 前記毛細管領域が、さらに、
前記気化器領域から前記凝縮器領域に蒸気を輸送する蒸気通路を備えている、
請求項1に記載の装置。 - 前記毛細管が、フォトリソグラフィ技術を使ったマスク工程とエッチング工程によって、前記毛細管領域に形成されている、
請求項1に記載の装置。 - 前記ヒート・シンクが、
コールド・プレート、熱電冷却器、および放熱フィン
のうちの1つから成る、
請求項1に記載の装置。 - 前記気化器領域と前記凝縮器領域が、同心円状に配置されている、
請求項1に記載の装置。 - 前記装置が直線形状をしている、
請求項1に記載の装置。 - 前記気化器領域、前記毛細管領域、および前記凝縮器領域のうちの少なくとも1つが、柔軟構造体である、
請求項1に記載の装置。 - 前記柔軟構造体は、
前記柔軟構造体の基板をエッチングして形成した刻み目を有し、
それにより、前記柔軟構造体自身が柔軟にされている、
請求項16に記載の装置。 - 前記熱源がラップトップ・コンピュータのプロセッサであり、
前記ヒート・シンクが前記ラップトップ・コンピュータの上面に設けられた放熱器から成る、
請求項1に記載の装置。 - 前記熱源が、チップ積層体中の集積回路チップである、
請求項1に記載の装置。 - 熱源を冷却する方法であって、
熱源から輸送流体に熱を伝達させて当該輸送流体を蒸気に変換する少なくとも1つのホット・ポイント要素を備えた気化器領域を使用するステップ、
ヒート・シンクに結合された凝縮器領域を使って前記蒸気が出す熱を前記ヒート・シンクに伝達させ、当該蒸気を凝縮された輸送流体に変換するステップ及び、
前記凝縮された輸送流体を毛細管領域の毛細管を通じて前記気化器領域に戻すステップを備え、
前記毛細管領域の少なくとも1つの前記毛細管が、樹状形状又はフラクタル形状であることを特徴とする
方法。 - 前記熱源が熱い集積回路チップである、
請求項20に記載の方法。 - 前記輸送流体が、アルコール、水、およびフレオンのうちの1つから成る、
請求項20に記載の方法。 - 前記少なくとも1つのホット・ポイント要素が、円錐形をしたホット・ポイント要素から成る、
請求項20に記載の方法。 - 前記熱源がラップトップ・コンピュータのプロセッサであり、
前記ヒート・シンクが前記ラップトップ・コンピュータの上面に設けられた放熱器から成る、
請求項20に記載の方法。 - 前記熱源が、チップ積層体中の集積回路チップから成る、
請求項20に記載の方法。 - 熱源を冷却する装置の製造方法であって、
熱源から輸送流体に熱を伝達させる少なくとも1つのホット・ポイント要素を備え、前記ホット・ポイント要素から前記輸送流体に熱が伝達されると、前記輸送流体を蒸気に変換する気化器領域を形成するステップ、
ヒート・シンクに結合された凝縮器領域であって、熱が前記蒸気から前記ヒート・シンクに伝達されると、当該蒸気を凝縮された輸送流体に凝縮させる凝縮器領域を形成するステップ及び、
前記凝縮された輸送流体を前記気化器領域に戻す毛細管を備えた毛細管領域を形成するステップを備え、
前記毛細管領域の少なくとも1つの前記毛細管が、樹状形状又はフラクタル形状であることを特徴とする
製造方法。 - さらに、
前記輸送流体を準備するステップであって、前記輸送流体が、アルコール、水、およびフレオンのうちの1つから成るステップ
を備えた、
請求項26に記載の製造方法。 - 前記毛細管領域の前記毛細管を、
前記毛細管領域中に1つの領域を画定し、
フラクタル・アルゴリズムを使って、前記毛細管領域の前記領域を満たすことにより形成する、
請求項26に記載の製造方法。 - 前記装置を、高熱伝導性材料を使って形成する、
請求項26に記載の製造方法。 - 前記少なくとも1つのホット・ポイント要素が、円錐形をしたホット・ポイント要素から成る、
請求項26に記載の製造方法。 - さらに、
前記気化器領域から前記凝縮器領域に蒸気を輸送する蒸気通路を前記毛細管領域に形成するステップ
を備えた、
請求項26に記載の製造方法。 - 前記毛細管を、フォトリソグラフィ技術を使ったマスク工程とエッチング工程によって、前記毛細管領域に形成する、
請求項26に記載の製造方法。 - 前記気化器領域と前記凝縮器領域が、同心円状に配置されている、
請求項26に記載の製造方法。 - 前記装置が直線形状をしている、
請求項26に記載の製造方法。 - 前記気化器領域、前記毛細管領域、および前記凝縮器領域のうちの少なくとも1つが、柔軟構造体である、
請求項26に記載の製造方法。 - 前記柔軟構造体は、
前記柔軟構造体の基板をエッチングして形成した刻み目を有し、
それにより、前記柔軟構造体自身が柔軟にされている、
請求項35に記載の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/726,291 US6474074B2 (en) | 2000-11-30 | 2000-11-30 | Apparatus for dense chip packaging using heat pipes and thermoelectric coolers |
US09/726291 | 2000-11-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002231868A JP2002231868A (ja) | 2002-08-16 |
JP3651790B2 true JP3651790B2 (ja) | 2005-05-25 |
Family
ID=24917990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001352989A Expired - Fee Related JP3651790B2 (ja) | 2000-11-30 | 2001-11-19 | 高密度チップ実装用装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6474074B2 (ja) |
JP (1) | JP3651790B2 (ja) |
KR (1) | KR100442888B1 (ja) |
CN (1) | CN1185458C (ja) |
TW (1) | TW512507B (ja) |
Families Citing this family (164)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6808015B2 (en) * | 2000-03-24 | 2004-10-26 | Denso Corporation | Boiling cooler for cooling heating element by heat transfer with boiling |
US7549461B2 (en) * | 2000-06-30 | 2009-06-23 | Alliant Techsystems Inc. | Thermal management system |
US7931072B1 (en) | 2002-10-02 | 2011-04-26 | Alliant Techsystems Inc. | High heat flux evaporator, heat transfer systems |
US8136580B2 (en) * | 2000-06-30 | 2012-03-20 | Alliant Techsystems Inc. | Evaporator for a heat transfer system |
US8047268B1 (en) | 2002-10-02 | 2011-11-01 | Alliant Techsystems Inc. | Two-phase heat transfer system and evaporators and condensers for use in heat transfer systems |
US8109325B2 (en) | 2000-06-30 | 2012-02-07 | Alliant Techsystems Inc. | Heat transfer system |
JP2002141449A (ja) * | 2000-10-31 | 2002-05-17 | Denso Corp | 沸騰冷却器 |
JP4608763B2 (ja) * | 2000-11-09 | 2011-01-12 | 日本電気株式会社 | 半導体装置 |
US7556086B2 (en) * | 2001-04-06 | 2009-07-07 | University Of Maryland, College Park | Orientation-independent thermosyphon heat spreader |
KR100455290B1 (ko) * | 2001-04-27 | 2004-11-06 | 삼성전자주식회사 | 평판형 기화기 |
KR100455291B1 (ko) * | 2001-04-28 | 2004-11-06 | 삼성전자주식회사 | 평판형 기화기 |
US6976527B2 (en) * | 2001-07-17 | 2005-12-20 | The Regents Of The University Of California | MEMS microcapillary pumped loop for chip-level temperature control |
KR100423235B1 (ko) * | 2001-10-11 | 2004-03-18 | 엘지전선 주식회사 | 전자장비 냉각용 열확산기 |
US6712258B2 (en) * | 2001-12-13 | 2004-03-30 | International Business Machines Corporation | Integrated quantum cold point coolers |
US20040011509A1 (en) * | 2002-05-15 | 2004-01-22 | Wing Ming Siu | Vapor augmented heatsink with multi-wick structure |
SG118138A1 (en) * | 2002-05-29 | 2006-01-27 | Inst Of Microelectronics | A heat transfer apparatus |
US20040035558A1 (en) * | 2002-06-14 | 2004-02-26 | Todd John J. | Heat dissipation tower for circuit devices |
US6830098B1 (en) | 2002-06-14 | 2004-12-14 | Thermal Corp. | Heat pipe fin stack with extruded base |
US7117930B2 (en) | 2002-06-14 | 2006-10-10 | Thermal Corp. | Heat pipe fin stack with extruded base |
WO2005061972A1 (en) * | 2002-12-06 | 2005-07-07 | Nanocoolers, Inc. | Cooling of electronics by electrically conducting fluids |
JP2004190976A (ja) * | 2002-12-12 | 2004-07-08 | Sony Corp | 熱輸送装置及び電子デバイス |
JP2004190977A (ja) * | 2002-12-12 | 2004-07-08 | Sony Corp | 熱輸送装置、熱輸送装置の製造方法及び電子デバイス |
JP4304576B2 (ja) * | 2002-12-12 | 2009-07-29 | ソニー株式会社 | 熱輸送装置及び電子機器 |
US20040160742A1 (en) * | 2003-02-14 | 2004-08-19 | Weiss Roger E. | Three-dimensional electrical device packaging employing low profile elastomeric interconnection |
TW557124U (en) * | 2003-02-20 | 2003-10-01 | Delta Electronics Inc | Circulative cooler apparatus |
TWI235906B (en) * | 2003-02-27 | 2005-07-11 | Shwin-Chung Wong | Microchannel heat pipe spreaders and microchannel loop heat pipes housed in a metal case and embodiments of the same |
CN100359999C (zh) * | 2003-04-11 | 2008-01-02 | 乐金电子(天津)电器有限公司 | 芯片冷却装置 |
US6992892B2 (en) * | 2003-09-26 | 2006-01-31 | Tokyo Electron Limited | Method and apparatus for efficient temperature control using a contact volume |
KR101013889B1 (ko) * | 2003-10-01 | 2011-02-14 | 트랜스퍼시픽 소닉, 엘엘씨 | 히트 파이프를 이용한 컴팩트 열전기 냉각 방식의 열교환장치 |
US7508671B2 (en) * | 2003-10-10 | 2009-03-24 | Intel Corporation | Computer system having controlled cooling |
US6926072B2 (en) * | 2003-10-22 | 2005-08-09 | Thermal Corp. | Hybrid loop heat pipe |
CN100457379C (zh) * | 2003-10-28 | 2009-02-04 | 斯沃勒斯联合公司 | 传热系统的制造 |
EP1542516B1 (en) * | 2003-12-08 | 2005-12-14 | Asia Vital Component Co., Ltd., | Heat dissipating microdevice and method of making the same |
US7638705B2 (en) * | 2003-12-11 | 2009-12-29 | Nextreme Thermal Solutions, Inc. | Thermoelectric generators for solar conversion and related systems and methods |
WO2005074463A2 (en) * | 2003-12-11 | 2005-08-18 | Nextreme Thermal Solutions | Thin film thermoelectric devices for power conversion and cooling |
US20100257871A1 (en) * | 2003-12-11 | 2010-10-14 | Rama Venkatasubramanian | Thin film thermoelectric devices for power conversion and cooling |
US7448222B2 (en) * | 2003-12-15 | 2008-11-11 | Bormann Ronald M | Thermoelectric refrigeration system |
US20080142369A1 (en) * | 2003-12-31 | 2008-06-19 | Microfabrica Inc. | Integrated Circuit Packaging Using Electrochemically Fabricated Structures |
US20060134831A1 (en) * | 2003-12-31 | 2006-06-22 | Microfabrica Inc. | Integrated circuit packaging using electrochemically fabricated structures |
US20050150536A1 (en) * | 2004-01-13 | 2005-07-14 | Nanocoolers, Inc. | Method for forming a monolithic thin-film thermoelectric device including complementary thermoelectric materials |
US20050150535A1 (en) * | 2004-01-13 | 2005-07-14 | Nanocoolers, Inc. | Method for forming a thin-film thermoelectric device including a phonon-blocking thermal conductor |
US20050150537A1 (en) * | 2004-01-13 | 2005-07-14 | Nanocoolers Inc. | Thermoelectric devices |
US20050150539A1 (en) * | 2004-01-13 | 2005-07-14 | Nanocoolers, Inc. | Monolithic thin-film thermoelectric device including complementary thermoelectric materials |
US20050160752A1 (en) * | 2004-01-23 | 2005-07-28 | Nanocoolers, Inc. | Apparatus and methodology for cooling of high power density devices by electrically conducting fluids |
US20050189089A1 (en) * | 2004-02-27 | 2005-09-01 | Nanocoolers Inc. | Fluidic apparatus and method for cooling a non-uniformly heated power device |
US20050274487A1 (en) * | 2004-05-27 | 2005-12-15 | International Business Machines Corporation | Method and apparatus for reducing thermal resistance in a vertical heat sink assembly |
US7983042B2 (en) * | 2004-06-15 | 2011-07-19 | Raytheon Company | Thermal management system and method for thin membrane type antennas |
US6978828B1 (en) | 2004-06-18 | 2005-12-27 | Schlumberger Technology Corporation | Heat pipe cooling system |
US7129501B2 (en) * | 2004-06-29 | 2006-10-31 | Sii Nanotechnology Usa, Inc. | Radiation detector system having heat pipe based cooling |
US6957692B1 (en) * | 2004-08-31 | 2005-10-25 | Inventec Corporation | Heat-dissipating device |
CN100529637C (zh) * | 2004-09-01 | 2009-08-19 | 鸿富锦精密工业(深圳)有限公司 | 热管的制备方法 |
US20060076046A1 (en) * | 2004-10-08 | 2006-04-13 | Nanocoolers, Inc. | Thermoelectric device structure and apparatus incorporating same |
US7523617B2 (en) * | 2004-10-22 | 2009-04-28 | Nextreme Thermal Solutions, Inc. | Thin film thermoelectric devices for hot-spot thermal management in microprocessors and other electronics |
US20060090885A1 (en) * | 2004-10-29 | 2006-05-04 | Stephen Montgomery | Thermally conductive channel between a semiconductor chip and an external thermal interface |
US20060103016A1 (en) * | 2004-11-12 | 2006-05-18 | Advanpack Solutions Pte Ltd | Heat sinking structure |
US8024936B2 (en) * | 2004-11-16 | 2011-09-27 | Halliburton Energy Services, Inc. | Cooling apparatus, systems, and methods |
US20060196640A1 (en) * | 2004-12-01 | 2006-09-07 | Convergence Technologies Limited | Vapor chamber with boiling-enhanced multi-wick structure |
US20060191682A1 (en) | 2004-12-03 | 2006-08-31 | Storm Bruce H | Heating and cooling electrical components in a downhole operation |
US7246655B2 (en) * | 2004-12-17 | 2007-07-24 | Fujikura Ltd. | Heat transfer device |
US7293416B2 (en) * | 2004-12-23 | 2007-11-13 | Nanocoolers, Inc. | Counterflow thermoelectric configuration employing thermal transfer fluid in closed cycle |
US7296417B2 (en) * | 2004-12-23 | 2007-11-20 | Nanocoolers, Inc. | Thermoelectric configuration employing thermal transfer fluid flow(s) with recuperator |
US7475551B2 (en) | 2004-12-23 | 2009-01-13 | Nanocoolers, Inc. | System employing temporal integration of thermoelectric action |
TWI273210B (en) * | 2004-12-30 | 2007-02-11 | Delta Electronics Inc | Heat-dissipation device and fabricating method thereof |
EP1710017B1 (en) * | 2005-04-04 | 2012-12-19 | Roche Diagnostics GmbH | Thermocycling of a block comprising multiple samples |
US20060278370A1 (en) * | 2005-06-08 | 2006-12-14 | Uwe Rockenfeller | Heat spreader for cooling electronic components |
CN100491888C (zh) * | 2005-06-17 | 2009-05-27 | 富准精密工业(深圳)有限公司 | 环路式热交换装置 |
US7770633B2 (en) * | 2005-06-27 | 2010-08-10 | Nakamura Seisakusho Kabushikigaisha | Plate type heat exchanger and method of manufacturing the same |
CN100395684C (zh) * | 2005-07-02 | 2008-06-18 | 富准精密工业(深圳)有限公司 | 环路式散热模组 |
NL1029477C2 (nl) * | 2005-07-08 | 2007-04-18 | Innovy | Energie-omzetinrichting, generator en warmtepomp voorzien daarvan en werkwijze voor het vervaardigen daarvan. |
CN100383963C (zh) * | 2005-07-08 | 2008-04-23 | 富准精密工业(深圳)有限公司 | 薄型环路式散热装置 |
CN100424860C (zh) * | 2005-08-19 | 2008-10-08 | 南茂科技股份有限公司 | 散热型覆晶封装结构 |
IL171764A (en) * | 2005-11-03 | 2011-02-28 | G R T Dev Ltd | Apparatus and method for measuring a fluid flow- rate within a narrow conduit |
JP5137379B2 (ja) * | 2005-11-14 | 2013-02-06 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 衝突冷却器 |
CN100495692C (zh) * | 2005-11-18 | 2009-06-03 | 华南理工大学 | 带有微沟槽翅结构的毛细泵吸冷却装置及其制造方法 |
US20070227703A1 (en) * | 2006-03-31 | 2007-10-04 | Bhatti Mohinder S | Evaporatively cooled thermosiphon |
US20070289313A1 (en) * | 2006-06-15 | 2007-12-20 | Mohinder Singh Bhatti | Thermosiphon with thermoelectrically enhanced spreader plate |
CN101155497A (zh) * | 2006-09-29 | 2008-04-02 | 诺亚公司 | 相变散热装置与方法 |
TW200848683A (en) * | 2007-03-08 | 2008-12-16 | Convergence Technologies Ltd | Heat transfer device |
US8209989B2 (en) * | 2007-03-30 | 2012-07-03 | Intel Corporation | Microarchitecture control for thermoelectric cooling |
KR100922104B1 (ko) * | 2007-05-29 | 2009-10-16 | 한국과학기술연구원 | 발열체 냉각 장치 및 그를 구비하는 전자 장치 |
US20090008063A1 (en) * | 2007-07-03 | 2009-01-08 | Raytheon Company | System and Method for Passive Cooling Using a Non-Metallic Wick |
CN101796635B (zh) | 2007-09-07 | 2012-07-04 | 国际商业机器公司 | 冷却发热组件的方法和装置 |
TWM340042U (en) * | 2007-09-19 | 2008-09-11 | Univ Nat Yang Ming | Micro-heatpipe based cold and hot pad |
US8262263B2 (en) * | 2007-11-16 | 2012-09-11 | Khanh Dinh | High reliability cooling system for LED lamps using dual mode heat transfer loops |
WO2009070728A1 (en) | 2007-11-27 | 2009-06-04 | The Curators Of The University Of Missouri | Thermally driven heat pump for heating and cooling |
US20090294117A1 (en) * | 2008-05-28 | 2009-12-03 | Lucent Technologies, Inc. | Vapor Chamber-Thermoelectric Module Assemblies |
US20100006132A1 (en) * | 2008-07-14 | 2010-01-14 | Lucent Technologies, Inc. | Stacked Thermoelectric Modules |
WO2010036442A1 (en) * | 2008-07-21 | 2010-04-01 | The Regents Of The University Of California | Titanium-based thermal ground plane |
US8593810B2 (en) * | 2009-01-23 | 2013-11-26 | Nec Corporation | Cooling device |
BRPI1013063B1 (pt) | 2009-05-18 | 2020-11-17 | Huawei Technologies Co., Ltd. | dispositivo de propagação de calor de termossifão e método para fabricar um dispositivo de propagação de calor de termossifão |
US8059405B2 (en) * | 2009-06-25 | 2011-11-15 | International Business Machines Corporation | Condenser block structures with cavities facilitating vapor condensation cooling of coolant |
US8018720B2 (en) * | 2009-06-25 | 2011-09-13 | International Business Machines Corporation | Condenser structures with fin cavities facilitating vapor condensation cooling of coolant |
US8490679B2 (en) | 2009-06-25 | 2013-07-23 | International Business Machines Corporation | Condenser fin structures facilitating vapor condensation cooling of coolant |
US8014150B2 (en) * | 2009-06-25 | 2011-09-06 | International Business Machines Corporation | Cooled electronic module with pump-enhanced, dielectric fluid immersion-cooling |
KR101589441B1 (ko) * | 2009-08-07 | 2016-01-28 | 삼성전자주식회사 | 반도체 모듈 |
KR20110026193A (ko) * | 2009-09-07 | 2011-03-15 | 삼성전자주식회사 | 발열체 냉각 시스템 및 배터리 냉각 시스템 |
US8763408B2 (en) * | 2009-10-01 | 2014-07-01 | The Curators Of The University Of Missouri | Hybrid thermoelectric-ejector cooling system |
EP2312661A1 (en) * | 2009-10-16 | 2011-04-20 | Alcatel Lucent | Thermoelectric assembly |
US8318304B2 (en) * | 2009-11-24 | 2012-11-27 | Alva-Tech, Inc. | Intumescent rod |
US9228785B2 (en) | 2010-05-04 | 2016-01-05 | Alexander Poltorak | Fractal heat transfer device |
US10041745B2 (en) * | 2010-05-04 | 2018-08-07 | Fractal Heatsink Technologies LLC | Fractal heat transfer device |
JPWO2011145618A1 (ja) * | 2010-05-19 | 2013-07-22 | 日本電気株式会社 | 沸騰冷却器 |
TW201040485A (en) * | 2010-07-21 | 2010-11-16 | Asia Vital Components Co Ltd | Improved heat-dissipation structure |
CN102338583B (zh) * | 2010-07-23 | 2014-05-07 | 奇鋐科技股份有限公司 | 一种压力差驱动热板 |
CN102338581B (zh) * | 2010-07-23 | 2013-10-30 | 奇鋐科技股份有限公司 | 热虹吸板结构 |
CN102345992A (zh) * | 2010-07-30 | 2012-02-08 | 奇鋐科技股份有限公司 | 一种压力梯度驱动的低压环路式热虹吸装置 |
US8813515B2 (en) | 2010-11-04 | 2014-08-26 | International Business Machines Corporation | Thermoelectric-enhanced, vapor-compression refrigeration apparatus facilitating cooling of an electronic component |
US8833096B2 (en) | 2010-11-04 | 2014-09-16 | International Business Machines Corporation | Heat exchange assembly with integrated heater |
US8783052B2 (en) | 2010-11-04 | 2014-07-22 | International Business Machines Corporation | Coolant-buffered, vapor-compression refrigeration with thermal storage and compressor cycling |
US20120111038A1 (en) | 2010-11-04 | 2012-05-10 | International Business Machines Corporation | Vapor-compression refrigeration apparatus with backup air-cooled heat sink and auxiliary refrigerant heater |
US8955346B2 (en) | 2010-11-04 | 2015-02-17 | International Business Machines Corporation | Coolant-buffered, vapor-compression refrigeration apparatus and method with controlled coolant heat load |
US8899052B2 (en) | 2010-11-04 | 2014-12-02 | International Business Machines Corporation | Thermoelectric-enhanced, refrigeration cooling of an electronic component |
FR2979982B1 (fr) * | 2011-09-14 | 2016-09-09 | Euro Heat Pipes | Dispositif de transport de chaleur a pompage capillaire |
US9207002B2 (en) | 2011-10-12 | 2015-12-08 | International Business Machines Corporation | Contaminant separator for a vapor-compression refrigeration apparatus |
AU2012232967B2 (en) | 2011-10-31 | 2015-01-15 | Abb Technology Ag | Cabinet with modules having a thermosiphon cooler arrangement |
AU2012232968B2 (en) * | 2011-10-31 | 2014-11-13 | Abb Technology Ag | Thermosiphon cooler arrangement in modules with electric and/or electronic components |
CN103959926A (zh) * | 2011-12-01 | 2014-07-30 | 日本电气株式会社 | 电子基板外罩装置和电子设备 |
US20130213609A1 (en) * | 2012-02-22 | 2013-08-22 | Chun-Ming Wu | Heat pipe structure |
WO2014015188A2 (en) | 2012-07-18 | 2014-01-23 | University Of Virginia Patent Foundation | Heat transfer device for high heat flux applications and related methods thereof |
US10217692B2 (en) * | 2012-07-18 | 2019-02-26 | University Of Virginia Patent Foundation | Heat transfer device for high heat flux applications and related methods thereof |
WO2016014710A1 (en) * | 2014-07-22 | 2016-01-28 | University Of Virginia Patent Foundation | Heat transfer device for high heat flux applications and related methods thereof |
CN105683700A (zh) * | 2013-08-16 | 2016-06-15 | 汤姆逊许可公司 | 具有隔离的对流翅片的多层散热器组件 |
US20150068703A1 (en) * | 2013-09-06 | 2015-03-12 | Ge Aviation Systems Llc | Thermal management system and method of assembling the same |
US20150114606A1 (en) * | 2013-10-29 | 2015-04-30 | Louisiana Tech University Research Foundation; a Division of Louisiana Tech University Foundation, | Capillary Action Heat Exchanger |
US9714777B1 (en) * | 2014-02-18 | 2017-07-25 | Space Systems/Loral, Llc | Heat pipe and radiator system with thermoelectric cooler |
WO2015188343A1 (zh) | 2014-06-12 | 2015-12-17 | 华为技术有限公司 | 智能终端散热装置及智能终端 |
EP3172488B1 (en) | 2014-07-22 | 2019-05-22 | Signify Holding B.V. | Light source cooling body, light source assembly, a luminaire and method to manufacture a light source cooling body or a light source assembly |
EP3243366B1 (en) | 2014-12-10 | 2023-11-15 | NeoGraf Solutions, LLC | Flexible graphite sheet support structure and thermal management arrangement |
CN104617061B (zh) * | 2015-01-13 | 2017-10-03 | 哈尔滨工程大学 | 一种仿生芯片散热器 |
US9545030B2 (en) * | 2015-01-20 | 2017-01-10 | Microsoft Technology Licensing, Llc | Flexible thermal conduit for an electronic device |
US10197295B2 (en) * | 2015-07-30 | 2019-02-05 | Omar Crespo-Calero | Highly efficient and easy to service air conditioning condenser unit |
US9806003B2 (en) * | 2016-01-30 | 2017-10-31 | Intel Corporation | Single base multi-floating surface cooling solution |
US10349561B2 (en) | 2016-04-15 | 2019-07-09 | Google Llc | Cooling electronic devices in a data center |
US11306974B2 (en) | 2016-06-15 | 2022-04-19 | Delta Electronics, Inc. | Temperature plate and heat dissipation device |
US11543188B2 (en) * | 2016-06-15 | 2023-01-03 | Delta Electronics, Inc. | Temperature plate device |
US20180090415A1 (en) * | 2016-09-27 | 2018-03-29 | Hewlett Packard Enterprise Development Lp | Heat dissipating apparatuses with phase change materials |
US10619941B2 (en) * | 2016-09-29 | 2020-04-14 | Delta Electronics, Inc. | Heat pipe structure |
US20180106553A1 (en) * | 2016-10-13 | 2018-04-19 | Pimems, Inc. | Thermal module charging method |
AU2018255490B2 (en) * | 2017-04-21 | 2023-02-02 | Commonwealth Scientific And Industrial Research Organisation | Flow distribution system |
US10405463B2 (en) * | 2017-06-16 | 2019-09-03 | Qualcomm Incorporated | Multi-rotor aerial drone with vapor chamber |
WO2019018446A1 (en) | 2017-07-17 | 2019-01-24 | Fractal Heatsink Technologies, LLC | SYSTEM AND METHOD FOR MULTI-FRACTAL THERMAL DISSIPATOR |
CN111094888B (zh) * | 2017-07-28 | 2021-12-10 | 达纳加拿大公司 | 用于热管理的超薄热交换器 |
CN110891729B (zh) | 2017-07-28 | 2022-04-19 | 达纳加拿大公司 | 用于对准激光焊接用部件的设备和方法 |
US10354356B2 (en) * | 2017-11-02 | 2019-07-16 | Dell Products L.P. | Systems and methods for interconnecting and cooling multiple graphics processing unit (GPU) cards |
JP7011938B2 (ja) * | 2017-12-28 | 2022-01-27 | 新光電気工業株式会社 | ループ型ヒートパイプ及びその製造方法 |
JP7028659B2 (ja) * | 2018-01-30 | 2022-03-02 | 新光電気工業株式会社 | ループ型ヒートパイプ、ループ型ヒートパイプの製造方法 |
CN108148934B (zh) * | 2018-02-28 | 2023-06-13 | 中冶赛迪工程技术股份有限公司 | 可更换水渣蒸汽回收装置及其安装方法 |
US20190354148A1 (en) * | 2018-05-17 | 2019-11-21 | Microsoft Technology Licensing, Llc | Conducting heat through a hinge |
CN110160384B (zh) * | 2019-01-11 | 2020-04-24 | 青岛海尔空调器有限总公司 | 芯片换热器及变频空调器 |
US10980148B2 (en) * | 2019-07-08 | 2021-04-13 | Forcecon Technology Co., Ltd. | Vapor chamber with circuit unit |
TWI716932B (zh) * | 2019-07-10 | 2021-01-21 | 汎海科技股份有限公司 | 散熱板、其製造方法及具有散熱板的電子裝置 |
AT522831B1 (de) * | 2019-08-08 | 2023-05-15 | Dau Gmbh & Co Kg | Luftwärmetauscher sowie Verfahren zu dessen Herstellung und damit ausgestatteter Elektronikaufbau |
CN110854089A (zh) * | 2019-11-20 | 2020-02-28 | 张俊霞 | 一种用于手机芯片的带芯散热管 |
CN111550718B (zh) * | 2020-05-29 | 2022-06-14 | 河南林智科技股份有限公司 | 一种带有充电模块的路灯 |
CN216385225U (zh) * | 2020-12-16 | 2022-04-26 | 安徽维鸿电子科技有限公司 | 回路热管 |
CN116635686B (zh) * | 2020-12-30 | 2024-02-09 | 雷蛇(亚太)私人有限公司 | 具有贮存器的蒸气腔室 |
CN112815752B (zh) * | 2020-12-31 | 2022-09-20 | 北京航空航天大学 | 一种航天器两相流体换热回路热控系统 |
US12111114B2 (en) * | 2021-01-29 | 2024-10-08 | Advanced Semiconductor Engineering, Inc. | Heat transfer element, method for forming the same and semiconductor structure comprising the same |
US20210219459A1 (en) * | 2021-03-08 | 2021-07-15 | Intel Corporation | Two-phase manifold cold plate for liquid cooling |
CN113316355A (zh) * | 2021-04-20 | 2021-08-27 | 江西展耀微电子有限公司 | 均热结构及电子设备 |
EP4460272A2 (en) | 2022-01-04 | 2024-11-13 | Bluexthermal, Inc. | Ocular region heat transfer devices and associated systems |
DE102022107292A1 (de) | 2022-03-28 | 2023-09-28 | Yazaki Systems Technologies Gmbh | Selbsttätig gezielt wärmeabführende Einheit mit einer Funktionseinrichtung |
US20230418009A1 (en) * | 2022-06-26 | 2023-12-28 | International Business Machines Corporation | Thermal management of computer hardware modules |
CN117848127A (zh) * | 2023-06-01 | 2024-04-09 | 山东大学 | 一种环路热管 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4018269A (en) * | 1973-09-12 | 1977-04-19 | Suzuki Metal Industrial Co., Ltd. | Heat pipes, process and apparatus for manufacturing same |
JPH076751B2 (ja) * | 1984-12-27 | 1995-01-30 | 株式会社東芝 | ヒートパイプ |
US4962416A (en) * | 1988-04-18 | 1990-10-09 | International Business Machines Corporation | Electronic package with a device positioned above a substrate by suction force between the device and heat sink |
US5179043A (en) * | 1989-07-14 | 1993-01-12 | The Texas A&M University System | Vapor deposited micro heat pipes |
US5069274A (en) * | 1989-12-22 | 1991-12-03 | Grumman Aerospace Corporation | Spacecraft radiator system |
US5168919A (en) * | 1990-06-29 | 1992-12-08 | Digital Equipment Corporation | Air cooled heat exchanger for multi-chip assemblies |
US5111874A (en) * | 1991-03-07 | 1992-05-12 | Grumman Aerospace Corporation | Heat pipe switch |
US5205348A (en) * | 1991-05-31 | 1993-04-27 | Minnesota Mining And Manufacturing Company | Semi-rigid heat transfer devices |
EP0529837B1 (en) * | 1991-08-26 | 1996-05-29 | Sun Microsystems, Inc. | Method and apparatus for cooling multi-chip modules using integral heatpipe technology |
US5216580A (en) * | 1992-01-14 | 1993-06-01 | Sun Microsystems, Inc. | Optimized integral heat pipe and electronic circuit module arrangement |
US5283715A (en) * | 1992-09-29 | 1994-02-01 | International Business Machines, Inc. | Integrated heat pipe and circuit board structure |
DE4306943C2 (de) | 1993-03-05 | 1995-05-18 | Vaw Ver Aluminium Werke Ag | Anfahrkopf für eine Vertikal-Stranggießanlage |
JPH06266474A (ja) * | 1993-03-17 | 1994-09-22 | Hitachi Ltd | 電子機器装置及びラップトップ型電子機器装置 |
US5704416A (en) * | 1993-09-10 | 1998-01-06 | Aavid Laboratories, Inc. | Two phase component cooler |
US5383340A (en) * | 1994-03-24 | 1995-01-24 | Aavid Laboratories, Inc. | Two-phase cooling system for laptop computers |
US5646822A (en) * | 1995-08-30 | 1997-07-08 | Intel Corporation | Heat pipe exchanger system for cooling a hinged computing device |
US5769154A (en) | 1996-01-29 | 1998-06-23 | Sandia Corporation | Heat pipe with embedded wick structure |
TW346566B (en) * | 1996-08-29 | 1998-12-01 | Showa Aluminiun Co Ltd | Radiator for portable electronic apparatus |
US6167948B1 (en) * | 1996-11-18 | 2001-01-02 | Novel Concepts, Inc. | Thin, planar heat spreader |
US5899265A (en) * | 1997-04-08 | 1999-05-04 | Sundstrand Corporation | Reflux cooler coupled with heat pipes to enhance load-sharing |
TW331586B (en) * | 1997-08-22 | 1998-05-11 | Biing-Jiun Hwang | Network-type heat pipe device |
US6097597A (en) * | 1998-06-30 | 2000-08-01 | Mitsubishi Denki Kabushiki Kaisha | Thermo-siphon and manufacturing method of thermo-siphon and information processing apparatus |
KR20010004462A (ko) * | 1999-06-29 | 2001-01-15 | 정선종 | 소형 히트파이프가 내장된 고전력 전자 부품 냉각용 열 발산기 |
KR100468278B1 (ko) * | 1999-09-16 | 2005-01-27 | 현대중공업 주식회사 | 전도체 일체형 히트파이프 냉각기 |
-
2000
- 2000-11-30 US US09/726,291 patent/US6474074B2/en not_active Expired - Lifetime
-
2001
- 2001-11-12 CN CNB011384182A patent/CN1185458C/zh not_active Expired - Lifetime
- 2001-11-16 KR KR10-2001-0071207A patent/KR100442888B1/ko not_active IP Right Cessation
- 2001-11-19 JP JP2001352989A patent/JP3651790B2/ja not_active Expired - Fee Related
- 2001-11-27 TW TW090129305A patent/TW512507B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW512507B (en) | 2002-12-01 |
US20020062648A1 (en) | 2002-05-30 |
KR100442888B1 (ko) | 2004-08-02 |
US6474074B2 (en) | 2002-11-05 |
CN1185458C (zh) | 2005-01-19 |
KR20020042421A (ko) | 2002-06-05 |
CN1355415A (zh) | 2002-06-26 |
JP2002231868A (ja) | 2002-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3651790B2 (ja) | 高密度チップ実装用装置 | |
US6490160B2 (en) | Vapor chamber with integrated pin array | |
US7000686B2 (en) | Heat transport device and electronic device | |
US6533029B1 (en) | Non-inverted meniscus loop heat pipe/capillary pumped loop evaporator | |
KR100495699B1 (ko) | 판형 열전달장치 및 그 제조방법 | |
US7304842B2 (en) | Apparatuses and methods for cooling electronic devices in computer systems | |
US20030151895A1 (en) | Heat spreader with oscillating flow | |
US7843695B2 (en) | Apparatus and method for thermal management using vapor chamber | |
US20130020053A1 (en) | Low-profile heat-spreading liquid chamber using boiling | |
JPH05264182A (ja) | 一体化されたヒートパイプ・熱交換器・締め付け組立体およびそれを得る方法 | |
JPH0727999B2 (ja) | 一体形ヒートパイプモジュール | |
JP2007263427A (ja) | ループ型ヒートパイプ | |
WO2012161002A1 (ja) | 平板型冷却装置及びその使用方法 | |
US7843693B2 (en) | Method and system for removing heat | |
JP2009076622A (ja) | ヒートシンクおよびそれを用いた電子装置 | |
JP5938865B2 (ja) | ループ型ヒートパイプ及び電子装置 | |
US7597133B2 (en) | Heat dissipation device with heat pipes | |
JP5485450B1 (ja) | ヒートスプレッダ | |
JP5682409B2 (ja) | ループ型ヒートパイプ及び電子装置 | |
KR200448243Y1 (ko) | 열 확산장치 | |
WO2002011506A2 (en) | Vapor chamber with integrated pin array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041109 |
|
RD12 | Notification of acceptance of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7432 Effective date: 20041125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20041125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050210 |
|
RD14 | Notification of resignation of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7434 Effective date: 20050210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050217 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |