[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3650943B2 - Laser annealing equipment - Google Patents

Laser annealing equipment Download PDF

Info

Publication number
JP3650943B2
JP3650943B2 JP25885395A JP25885395A JP3650943B2 JP 3650943 B2 JP3650943 B2 JP 3650943B2 JP 25885395 A JP25885395 A JP 25885395A JP 25885395 A JP25885395 A JP 25885395A JP 3650943 B2 JP3650943 B2 JP 3650943B2
Authority
JP
Japan
Prior art keywords
laser
processed
laser beam
annealing
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25885395A
Other languages
Japanese (ja)
Other versions
JPH09102468A (en
Inventor
美喜 澤井
進一 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP25885395A priority Critical patent/JP3650943B2/en
Publication of JPH09102468A publication Critical patent/JPH09102468A/en
Application granted granted Critical
Publication of JP3650943B2 publication Critical patent/JP3650943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザーアニール処理装置に関し、更に詳しくは、被処理体にばらつきがあっても,常に過不足のない適切なアニールを行うことができるレーザーアニール処理装置に関するものである。本発明のレーザーアニール処理装置は、特に大面積大粒径多結晶シリコン薄膜の形成に有用である。
【0002】
【従来の技術】
図5は、従来のレーザーアニール処理装置の一例の要部縦断面図である。
このレーザーアニール処理装置500は、アルミニウム製の真空チャンバ1と、この真空チャンバ1内に設置された基台B上を移動すると共にその上面に被処理体Mが載置される移動載置台2と、この移動載置台2の上面に埋設され前記被処理体Mを予熱する抵抗線3と、前記真空チャンバ1の天井部1aに設けられ且つ石英ガラス板の両面に紫外線反射防止膜(ARコート)を形成したレーザー導入用窓5と、このレーザー導入用窓5を通して略垂直下方へレーザー光Rを照射するエキシマレーザー照射装置6と、前記真空チャンバ1に被処理体Mを導入するためのゲートバルブS2と、前記真空チャンバ1から被処理体Mを導出するためのゲートバルブS3とを具備している。1bは、真空引き用の排気口である。前記被処理体Mは、絶縁基板M2上に非晶質半導体薄膜M1を形成したものである。
【0003】
レーザーアニール処理は次の手順で行う。
▲1▼ゲートバルブS2を開けて、未処理の被処理体Mを移動載置台2の上に載置し、ゲートバルブS2を閉じる。
▲2▼真空チャンバ1の排気口1bから排気し、真空チャンバ1内を10-2〜10-6Torrの高真空とする(あるいは窒素ガスを充填する)。次に、前記抵抗線3に通電し、被処理体Mを400℃程度に予熱する。また、レーザー照射部分Pが被処理体Mの照射スタート点に位置するように移動載置台2を移動させる。そして、エキシマレーザー照射装置6からレーザー光Rを発生させる。レーザー光Rは、レーザー導入用窓5を通って真空チャンバ1内に導入され、被処理体Mの表面に略垂直に照射される。この状態で移動載置台2を移動し、小面積(例えば0.4mm×150mm)のレーザー照射部分Pで前記被処理体Mの非晶質半導体薄膜M1の全面(例えば300mm×300mm)を走査する。これにより、非晶質半導体薄膜M1の結晶化を行うことが出来る。
▲3▼ゲートバルブS3を開けて、処理済の被処理体Mを移動載置台2の上から取り出し、ゲートバルブS3を閉じる。
【0004】
【発明が解決しようとする課題】
上記従来のレーザーアニール処理装置500では、被処理体Mを真空チャンバ1から取り出して分析しなければ、アニールが適切か否かが判らないという問題点がある。
また、非晶質半導体薄膜M1の膜厚や性質には、ばらつきがある。このため、上記従来のレーザーアニール処理装置500において、レーザー光Rの照射強度,照射タイミングや、移動載置台2の移動速度,移動タイミングを一定にしておくと、被処理体Mによっては、アニールに過不足を生じてしまうという問題点がある。
そこで、本発明の第1の目的は、アニールが適切か否かをアニール中に知ることができるレーザーアニール処理装置を提供することにある。
また、本発明の第2の目的は、被処理体にばらつきがあっても常に過不足のない適切なアニールを行うことができるレーザーアニール処理装置を提供することにある。
【0005】
【課題を解決するための手段】
第1の観点では、本発明は、密閉容器(1)内に置かれた被処理体(M)に外部からレーザー導入用窓(5)を通してレーザーアニール処理用のレーザー光(R)を照射するレーザー照射手段(6)と、小面積のレーザー照射部分(P)で前記被処理体(M)の大面積の領域を走査するように前記被処理体(M)を乗せて移動する移動載置台(2)とを備えたレーザーアニール処理装置において、前記移動載置台(2)はその上面に被処理体(M)が載置されるものであり、前記レーザー導入用窓(5)は前記密閉容器(1)の天井部(1a)に傾斜して設けられ、前記レーザー導入用窓(5)を通して前記レーザーアニール処理用のレーザー光(R)を被処理体(M)に上方から斜めに照射すると共に、被処理体(M)で正反射された反射レーザー光(L)の強度を測定する光強度測定手段(9)を前記密閉容器(1)内に設置し、その光強度測定手段(9)で測定した反射レーザー光(L)の強度に基づいて前記レーザーアニール処理の進行状況を判別することを特徴とするレーザーアニール処理装置(100)を提供する。
上記第1の観点によるレーザーアニール処理装置(100)では、被処理体(M)に斜め方向からレーザーアニール処理用のレーザー光(R)を照射し、逆斜め方向に正反射された反射レーザー光(L)の強度を光強度測定手段(9)により測定する。ここで、被処理体(M)の反射率はレーザーアニール処理の進行状況により変化するので、光強度測定手段(9)により測定した反射レーザー光(L)の強度によりレーザーアニール処理の進行状況が判る。例えば、非晶質半導体薄膜(M1)の反射率は比較的小さいが、結晶化すると反射率が比較的大きくなるので、光強度測定手段(9)により測定した反射レーザー光(L)の強度は結晶化の進行に伴って大きくなり、結晶化が終了すると変化しなくなる。従って、測定した反射レーザー光(L)の強度に基づいてレーザーアニール処理の進行状況を判別することにより、レーザーアニール処理が適切か否かをレーザーアニール処理中に知ることができる。そして、被処理体(M)を密閉容器(1)から取り出さずに適切なレーザーアニール処理を完了することが可能となり、高スループットが得られる。
【0006】
なお、斜め方向からレーザー光(R)を被処理体(M)に照射するため、密閉容器(1)の天井部(1a)であって且つレーザー照射部分(P)の垂直上方から外れた位置にレーザー導入用窓(5)を設ける。このため、アニール時に被処理体(M)から蒸散物質が発生し、これが密閉容器(1)の天井部(1a)であって且つレーザー照射部分(P)の垂直上方の壁面に付着しても、レーザー導入用窓(5)は汚れない。従って、レーザー導入用窓(5)から導入されるレーザー光(R)のエネルギーが被処理体(M)からの蒸散物質によって減衰することを防止できる。
【0007】
また、斜め方向からレーザー光(R)を被処理体(M)に照射するため、被処理体(M)で反射した反射レーザー光(L)が密閉容器(1)の天井部(1a)で反射されて再び被処理体(M)に入射し、アニールに悪影響を与えることも防止できる。
【0008】
【発明の実施の形態】
以下、図を参照して本発明の実施の形態について説明する。なお、これによりこの発明が限定されるものではない。
【0009】
−第1の実施形態−
図1は、本発明の第1の実施形態にかかるレーザーアニール処理装置の要部断面図である。
このレーザーアニール処理装置100は、アルミニウム製の真空チャンバ1と、この真空チャンバ1内に設置された基台B上を移動すると共にその上面に被処理体Mが載置される移動載置台2と、この移動載置台2の上面に埋設され前記被処理体Mを予熱する抵抗線3と、前記真空チャンバ1の天井部1aに傾斜して設けられ且つ石英ガラス板の両面に紫外線反射防止膜(ARコート)を形成したレーザー導入用窓5と、このレーザー導入用窓5を通して斜め下方向にレーザー光Rを照射するエキシマレーザー照射装置6と、前記真空チャンバ1に被処理体Mを導入するためのゲートバルブS2と、前記真空チャンバ1から被処理体Mを導出するためのゲートバルブS3と、被処理体Mで正反射した反射レーザー光Lの強度を測定する光強度測定装置9と、その光強度測定装置9により測定した反射レーザー光Lの強度に基づいて前記レーザー照射手段6または前記移動載置台2の制御を行う制御装置10とを具備している。1bは、真空引き用の排気口である。
前記被処理体Mは、絶縁基板M2上に非晶質半導体薄膜M1を形成したものである。
【0010】
レーザーアニール処理は次の手順で行う。
▲1▼ゲートバルブS2を開けて、未処理の被処理体Mを移動載置台2の上に載置し、ゲートバルブS2を閉じる。
▲2▼真空チャンバ1の排気口1bから排気し、真空チャンバ1内を10-2〜10-6Torrの高真空とする(あるいは窒素ガスを充填する)。次に、前記抵抗線3に通電し、被処理体Mを400℃程度に予熱する。また、レーザー照射部分Pが被処理体Mの照射スタート点に位置するように移動載置台2を移動させる。そして、エキシマレーザー照射装置6からレーザー光Rを発生させる。レーザー光Rは、レーザー導入用窓5を通って真空チャンバ1内に導入され、被処理体Mの表面に斜め方向から照射される。この状態で移動載置台2を移動し、小面積(例えば0.4mm×150mm)のレーザー照射部分Pで前記被処理体Mの非晶質半導体薄膜M1の全面(例えば300mm×300mm)を走査する。このとき、反射レーザー光Lの強度に基づき、エキシマレーザー照射装置6を制御してレーザー光Rの照射強度,照射タイミングを調整すると共に、移動載置台2を制御して移動速度,移動タイミングを調整する。これにより、非晶質半導体薄膜M1の膜厚や性質にばらつきがあっても、非晶質半導体薄膜M1の結晶化を適切に行うことが出来る。
▲3▼ゲートバルブS3を開けて、処理済の被処理体Mを移動載置台2の上から取り出し、ゲートバルブS3を閉じる。
【0011】
図2は、非晶質シリコンa−Siと結晶シリコンC−Siの反射率の特性図である。
非晶質シリコンa−Siの反射率は、どのような波長でも結晶シリコンC−Siの反射率より小さくなっている。従って、光強度測定装置9により測定した反射レーザー光Lの強度は、非晶質シリコンa−Siでは小さく、結晶化が進むにつれて大きくなり、結晶化が終了すると大きい値で変化しなくなる。
そこで、エキシマレーザー照射装置6および移動載置台2の制御は、光強度測定装置9により測定した反射レーザー光Lの強度が小さい間はレーザー光Rの照射強度を強めたり,照射時間を長くするようにし、光強度測定装置9により測定した反射レーザー光Lの強度が大きくなったらレーザー光Rの照射強度を弱めたり,照射時間を短くするようにすればよい。
【0012】
図3は、レーザー光Rの照射強度を一定とし、移動載置台2の移動速度を制御したときの移動速度の収束特性図である。
移動載置台2の移動速度は、照射スタート点において“0”から徐々に速くなり、過不足なくアニールできる最適速度に収束することになる。
【0013】
以上のレーザーアニール処理装置100によれば、真空チャンバ1から被処理体Mを取り出すことなく、また、被処理体Mにばらつきがあっても、常に過不足のない適切なアニールを行うことが可能となり、品質およびスループットを向上できる。
また、レーザー照射部分Pの垂直上方から外れた位置にレーザー導入用窓8があるから、被処理体Mからの蒸散物質によってレーザー導入用窓8が汚れることが少なく、レーザー光Rのエネルギーがレーザー導入用窓8で減衰することを防止できる。
また、被処理体Mで反射した反射レーザー光Lが真空チャンバ1の天井部1aで反射されて再び被処理体Mに入射することがないから、反射レーザー光Lがアニールに悪影響を与えることも防止できる。
【0014】
参考例
図4は、参考例にかかるレーザーアニール処理装置の要部断面図である。
このレーザーアニール処理装置200は、アルミニウム製の真空チャンバ1と、この真空チャンバ1内に設置された基台B上を移動すると共にその上面に被処理体Mが載置される移動載置台2と、この移動載置台2の上面に埋設され前記被処理体Mを予熱する抵抗線3と、前記真空チャンバ1の天井部1aに設けられ且つ石英ガラス板の両面に紫外線反射防止膜(ARコート)を形成したレーザー導入用窓5と、このレーザー導入用窓5を通して略垂直下方にレーザー光Rを照射するエキシマレーザー照射装置6と、前記真空チャンバ1に被処理体Mを導入するためのゲートバルブS2と、前記真空チャンバ1から被処理体Mを導出するためのゲートバルブS3と、被処理体Mを透過した透過レーザー光の強度を測定する光強度測定装置9と、その光強度測定装置9により測定した透過レーザー光の強度に基づいて前記レーザー照射装置6または前記移動載置台2の制御を行う制御装置10とを具備している。1bは、真空引き用の排気口である。
前記被処理体Mは、絶縁基板M2上に非晶質半導体薄膜M1を形成したものである。
【0015】
レーザーアニール処理は次の手順で行う。
▲1▼ゲートバルブS2を開けて、未処理の被処理体Mを移動載置台2の上に載置し、ゲートバルブS2を閉じる。
▲2▼真空チャンバ1の排気口1bから排気し、真空チャンバ1内を10-2〜10-6Torrの高真空とする(あるいは窒素ガスを充填する)。次に、前記抵抗線3に通電し、被処理体Mを400℃程度に予熱する。また、レーザー照射部分Pが被処理体Mの照射スタート点に位置するように移動載置台2を移動させる。そして、エキシマレーザー照射装置6からレーザー光Rを発生させる。レーザー光Rは、レーザー導入用窓5を通って真空チャンバ1内に導入され、被処理体Mの表面に略垂直に照射される。この状態で移動載置台2を移動し、小面積(例えば0.4mm×150mm)のレーザー照射部分Pで前記被処理体Mの非晶質半導体薄膜M1の全面(例えば300mm×300mm)を走査する。このとき、透過レーザー光の強度に基づき、エキシマレーザー照射装置6を制御してレーザー光Rの照射強度,照射タイミングを調整すると共に、移動載置台2を制御して移動速度,移動タイミングを調整する。これにより、非晶質半導体薄膜M1の膜厚や性質にばらつきがあっても、非晶質半導体薄膜M1の結晶化を適切に行うことが出来る。
▲3▼ゲートバルブS3を開けて、処理済の被処理体Mを移動載置台2の上から取り出し、ゲートバルブS3を閉じる。
【0016】
以上のレーザーアニール処理装置200によれば、真空チャンバ1から被処理体Mを取り出すことなく、また、被処理体Mにばらつきがあっても、常に過不足のない適切なアニールを行うことが可能となり、品質およびスループットを向上できる。
但し、レーザー照射部分Pの略垂直上方にレーザー導入用窓5があるから、被処理体Mからの蒸散物質によってレーザー導入用窓5が汚れ、レーザー光Rのエネルギーがレーザー導入用窓5で減衰することがある。
【0017】
【発明の効果】
この発明のレーザーアニール処理装置によれば、密閉容器から被処理体を取り出すことなく、また、被処理体にばらつきがあっても、常に過不足のない適切なアニールを行うことが可能となり、品質およびスループットを向上できる。
また、斜め方向からレーザー光を被処理体に照射するため、密閉容器の天井部であって且つレーザー照射部分の垂直上方から外れた位置にレーザー導入用窓を設けることになる。このため、アニール時に被処理体から蒸散物質が発生し、これが密閉容器の天井部であって且つレーザー照射部分の垂直上方の壁面に付着しても、レーザー導入用窓は汚れない。従って、レーザー導入用窓から導入されるレーザー光のエネルギーが被処理体からの蒸散物質によって減衰することを防止できる。
さらに、斜め方向からレーザー光を被処理体に照射するため、被処理体で反射した反射レーザー光が密閉容器の天井部で反射されて再び被処理体に入射し、アニールに悪影響を与えることも防止できる。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態にかかるレーザーアニール処理装置の要部断面図である。
【図2】 非晶質シリコンa−Siと結晶シリコンC−Siの反射率の特性図である。
【図3】 レーザー光の照射強度を一定とし、移動載置台の移動速度を制御したときの移動速度の収束特性図である。
【図4】 参考例にかかるレーザーアニール処理装置の要部断面図である。
【図5】 従来のレーザーアニール処理装置の一例の要部断面図である。
【符号の説明】
100,200,500 レーザーアニール処理装置
1 真空チャンバ
1a 天井部
1b 排気口
2 移動載置台
3 抵抗線
5 エキシマレーザー導入用窓
6 エキシマレーザー照射装置
9 光強度測定装置
10 制御装置
B 基台
P レーザー照射部分
M 被処理体
M1 非晶質半導体薄膜
M2 絶縁基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser annealing processing apparatus, and more particularly to a laser annealing processing apparatus capable of always performing appropriate annealing without excess or deficiency even if there are variations in objects to be processed. The laser annealing apparatus of the present invention is particularly useful for forming a large area large grain polycrystalline silicon thin film.
[0002]
[Prior art]
FIG. 5 is a longitudinal sectional view of an essential part of an example of a conventional laser annealing apparatus.
This laser annealing processing apparatus 500 includes an aluminum vacuum chamber 1 and a moving mounting table 2 that moves on a base B installed in the vacuum chamber 1 and on which an object to be processed M is mounted. The resistance wire 3 embedded in the upper surface of the movable mounting table 2 for preheating the object to be processed M, and the UV reflection preventing film (AR coating) provided on the quartz glass plate on both surfaces of the ceiling portion 1a of the vacuum chamber 1 A laser introducing window 5 for forming a laser beam, an excimer laser irradiating device 6 for irradiating a laser beam R substantially vertically downward through the laser introducing window 5, and a gate valve for introducing the workpiece M into the vacuum chamber 1. S2 and a gate valve S3 for leading the workpiece M from the vacuum chamber 1 are provided. 1b is an exhaust port for evacuation. The object to be processed M is obtained by forming an amorphous semiconductor thin film M1 on an insulating substrate M2.
[0003]
Laser annealing is performed according to the following procedure.
{Circle around (1)} The gate valve S2 is opened, an unprocessed object M is placed on the movable mounting table 2, and the gate valve S2 is closed.
(2) The vacuum chamber 1 is evacuated from the exhaust port 1b, and the vacuum chamber 1 is evacuated to a high vacuum of 10 −2 to 10 −6 Torr (or filled with nitrogen gas). Next, the resistance wire 3 is energized to preheat the workpiece M to about 400 ° C. Further, the movable mounting table 2 is moved so that the laser irradiation portion P is positioned at the irradiation start point of the workpiece M. Then, the laser beam R is generated from the excimer laser irradiation device 6. The laser beam R is introduced into the vacuum chamber 1 through the laser introduction window 5 and irradiated on the surface of the workpiece M substantially perpendicularly. In this state, the movable mounting table 2 is moved, and the entire surface (for example, 300 mm × 300 mm) of the amorphous semiconductor thin film M1 of the object to be processed M is scanned with a laser irradiation portion P having a small area (for example, 0.4 mm × 150 mm). . Thereby, the amorphous semiconductor thin film M1 can be crystallized.
{Circle around (3)} The gate valve S3 is opened, the processed object M is removed from the movable mounting table 2, and the gate valve S3 is closed.
[0004]
[Problems to be solved by the invention]
The conventional laser annealing apparatus 500 has a problem in that it is impossible to determine whether or not annealing is appropriate unless the workpiece M is taken out of the vacuum chamber 1 and analyzed.
Further, the film thickness and properties of the amorphous semiconductor thin film M1 vary. For this reason, in the conventional laser annealing apparatus 500, if the irradiation intensity and irradiation timing of the laser beam R and the movement speed and movement timing of the movable mounting table 2 are kept constant, depending on the workpiece M, the annealing is performed. There is a problem that it causes excess and deficiency.
Accordingly, a first object of the present invention is to provide a laser annealing processing apparatus that can know whether annealing is appropriate or not during annealing.
A second object of the present invention is to provide a laser annealing processing apparatus capable of always performing appropriate annealing without excess or deficiency even if the objects to be processed vary.
[0005]
[Means for Solving the Problems]
In the first aspect, the present invention irradiates the laser beam (R) for laser annealing treatment from the outside through the laser introduction window (5) to the object to be processed (M) placed in the sealed container (1). Laser irradiation means (6) and a movable mounting table on which the object to be processed (M) is moved so as to scan a large area of the object to be processed (M) with a laser irradiation part (P) having a small area (2), the movable mounting table (2) has a workpiece (M) mounted on the upper surface thereof, and the laser introduction window (5) is hermetically sealed. Provided obliquely on the ceiling (1a) of the container (1), and irradiates the laser beam (R) for laser annealing treatment obliquely from above to the object to be processed (M) through the laser introduction window (5). And the reflection that is regularly reflected by the object to be processed (M). Installed Za light intensity measuring means for measuring the intensity of (L) (9) in the closed container (1) inside, based on the intensity of the reflected laser beam measured by the light intensity measuring means (9) (L) The laser annealing apparatus (100) is characterized in that the progress of the laser annealing process is discriminated.
In the laser annealing apparatus (100) according to the first aspect, the laser beam (R) for laser annealing is irradiated on the object (M) from an oblique direction, and the reflected laser light is regularly reflected in the reverse oblique direction. The intensity of (L) is measured by the light intensity measuring means (9). Here, the reflectance of the object (M) is changed by the progress of the laser annealing process, the progress of the intensity by laser annealing of the reflected laser light measured by the light intensity measuring means (9) (L) is I understand. For example, the reflectance of the amorphous semiconductor thin film (M1) is relatively small, but the reflectance becomes relatively large when crystallized, so the intensity of the reflected laser light (L) measured by the light intensity measuring means (9) is It increases with the progress of crystallization and does not change when crystallization is completed. Therefore, by determining the progress of the laser annealing process based on the measured intensity of the reflected laser beam (L), it is possible to know whether the laser annealing process is appropriate during the laser annealing process . And it becomes possible to complete an appropriate laser annealing process , without taking out a to-be-processed object (M) from an airtight container (1), and high throughput is obtained.
[0006]
In addition, in order to irradiate laser beam (R) to a to-be-processed object (M) from the diagonal direction, it is the ceiling part (1a) of airtight container (1), and the position remove | deviated from the perpendicular | vertical upper direction of a laser irradiation part (P) Is provided with a laser introduction window (5). For this reason, a transpiration substance is generated from the object to be processed (M) during annealing, and it adheres to the wall of the ceiling (1a) of the hermetic container (1) and vertically above the laser irradiation part (P). The laser introduction window (5) is not dirty. Accordingly, it is possible to prevent the energy of the laser beam (R) introduced from the laser introduction window (5) from being attenuated by the transpiration substance from the object to be processed (M).
[0007]
In addition, since the laser beam (R) is irradiated to the object (M) from an oblique direction, the reflected laser beam (L) reflected by the object (M) is reflected from the ceiling (1a) of the sealed container (1). It is also possible to prevent reflection from being incident on the object to be processed (M) again and adversely affecting the annealing.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited thereby.
[0009]
-First embodiment-
FIG. 1 is a cross-sectional view of an essential part of a laser annealing apparatus according to a first embodiment of the present invention.
The laser annealing apparatus 100 includes an aluminum vacuum chamber 1 and a movable mounting table 2 that moves on a base B installed in the vacuum chamber 1 and on which an object to be processed M is mounted. The resistance wire 3 embedded in the upper surface of the movable mounting table 2 for preheating the object to be processed M, and provided on the ceiling portion 1a of the vacuum chamber 1 at an inclination and on both sides of the quartz glass plate with an ultraviolet antireflection film ( In order to introduce the object M to be introduced into the vacuum chamber 1, the laser introduction window 5 formed with the AR coating), the excimer laser irradiation device 6 that irradiates the laser light R obliquely downward through the laser introduction window 5. A gate valve S2, a gate valve S3 for deriving the workpiece M from the vacuum chamber 1, and a light intensity for measuring the intensity of the reflected laser beam L specularly reflected by the workpiece M A constant unit 9, and a control unit 10 for controlling the laser irradiation means 6 or the moving table 2 based on the intensity of the light intensity measuring device the reflected laser beam L as measured by 9. 1b is an exhaust port for evacuation.
The object to be processed M is obtained by forming an amorphous semiconductor thin film M1 on an insulating substrate M2.
[0010]
Laser annealing is performed according to the following procedure.
{Circle around (1)} The gate valve S2 is opened, an unprocessed object M is placed on the movable mounting table 2, and the gate valve S2 is closed.
(2) The vacuum chamber 1 is evacuated from the exhaust port 1b, and the vacuum chamber 1 is evacuated to a high vacuum of 10 −2 to 10 −6 Torr (or filled with nitrogen gas). Next, the resistance wire 3 is energized to preheat the workpiece M to about 400 ° C. Further, the movable mounting table 2 is moved so that the laser irradiation portion P is positioned at the irradiation start point of the workpiece M. Then, the laser beam R is generated from the excimer laser irradiation device 6. The laser light R is introduced into the vacuum chamber 1 through the laser introduction window 5 and is irradiated on the surface of the workpiece M from an oblique direction. In this state, the movable mounting table 2 is moved, and the entire surface (for example, 300 mm × 300 mm) of the amorphous semiconductor thin film M1 of the object to be processed M is scanned with a laser irradiation portion P having a small area (for example, 0.4 mm × 150 mm). . At this time, based on the intensity of the reflected laser beam L, the excimer laser irradiation device 6 is controlled to adjust the irradiation intensity and irradiation timing of the laser beam R, and the moving stage 2 is controlled to adjust the moving speed and moving timing. To do. Thereby, even if the film thickness and properties of the amorphous semiconductor thin film M1 vary, the amorphous semiconductor thin film M1 can be appropriately crystallized.
{Circle around (3)} The gate valve S3 is opened, the processed object M is removed from the movable mounting table 2, and the gate valve S3 is closed.
[0011]
FIG. 2 is a characteristic diagram of the reflectance of amorphous silicon a-Si and crystalline silicon C-Si.
The reflectance of amorphous silicon a-Si is smaller than that of crystalline silicon C-Si at any wavelength. Therefore, the intensity of the reflected laser beam L measured by the light intensity measuring device 9 is small for amorphous silicon a-Si, increases as crystallization progresses, and does not change at a large value when crystallization is completed.
Therefore, the control of the excimer laser irradiation device 6 and the movable mounting table 2 is performed so that the irradiation intensity of the laser beam R is increased or the irradiation time is lengthened while the intensity of the reflected laser beam L measured by the light intensity measuring device 9 is small. When the intensity of the reflected laser light L measured by the light intensity measuring device 9 increases, the irradiation intensity of the laser light R may be reduced or the irradiation time may be shortened.
[0012]
FIG. 3 is a convergence characteristic diagram of the movement speed when the irradiation intensity of the laser beam R is constant and the movement speed of the movable mounting table 2 is controlled.
The moving speed of the moving table 2 gradually increases from “0” at the irradiation start point, and converges to an optimum speed at which annealing can be performed without excess or deficiency.
[0013]
According to the laser annealing apparatus 100 described above, it is possible to always perform appropriate annealing without excess or deficiency without taking out the object M from the vacuum chamber 1 and even if the object M varies. Thus, quality and throughput can be improved.
Further, since the laser introducing window 8 is located at a position off the vertical upper side of the laser irradiation portion P, the laser introducing window 8 is hardly contaminated by the transpiration substance from the object M, and the energy of the laser beam R is reduced by the laser. Attenuation at the introduction window 8 can be prevented.
Further, since the reflected laser light L reflected by the object to be processed M is reflected by the ceiling portion 1a of the vacuum chamber 1 and does not enter the object to be processed M again, the reflected laser light L may adversely affect the annealing. Can be prevented.
[0014]
-Reference example-
FIG. 4 is a cross-sectional view of a main part of a laser annealing apparatus according to a reference example .
The laser annealing apparatus 200 includes an aluminum vacuum chamber 1 and a movable mounting table 2 that moves on a base B installed in the vacuum chamber 1 and on which an object to be processed M is mounted. The resistance wire 3 embedded in the upper surface of the movable mounting table 2 for preheating the object to be processed M, and the UV reflection preventing film (AR coating) provided on the quartz glass plate on both surfaces of the ceiling portion 1a of the vacuum chamber 1 A laser introducing window 5 for forming a laser beam, an excimer laser irradiating device 6 for irradiating a laser beam R substantially vertically downward through the laser introducing window 5, and a gate valve for introducing the workpiece M into the vacuum chamber 1. S2, a gate valve S3 for deriving the workpiece M from the vacuum chamber 1, and a light intensity measuring device 9 for measuring the intensity of the transmitted laser light transmitted through the workpiece M, And a control unit 10 for controlling the laser irradiation device 6 or the moving table 2 based on the intensity of the light intensity measuring device transmitting the laser beam measured by 9. 1b is an exhaust port for evacuation.
The object to be processed M is obtained by forming an amorphous semiconductor thin film M1 on an insulating substrate M2.
[0015]
Laser annealing is performed according to the following procedure.
{Circle around (1)} The gate valve S2 is opened, an unprocessed object M is placed on the movable mounting table 2, and the gate valve S2 is closed.
{Circle around (2)} The vacuum chamber 1 is evacuated from the exhaust port 1b, and the vacuum chamber 1 is evacuated to a high vacuum of 10 −2 to 10 −6 Torr (or filled with nitrogen gas). Next, the resistance wire 3 is energized to preheat the workpiece M to about 400 ° C. Further, the movable mounting table 2 is moved so that the laser irradiation portion P is positioned at the irradiation start point of the workpiece M. Then, the laser beam R is generated from the excimer laser irradiation device 6. The laser beam R is introduced into the vacuum chamber 1 through the laser introduction window 5 and irradiated on the surface of the workpiece M substantially perpendicularly. In this state, the movable mounting table 2 is moved, and the entire surface (for example, 300 mm × 300 mm) of the amorphous semiconductor thin film M1 of the object to be processed M is scanned with a laser irradiation portion P having a small area (for example, 0.4 mm × 150 mm). . At this time, based on the intensity of the transmitted laser light, the excimer laser irradiation device 6 is controlled to adjust the irradiation intensity and irradiation timing of the laser light R, and the moving mounting table 2 is controlled to adjust the moving speed and moving timing. . Thereby, even if the film thickness and properties of the amorphous semiconductor thin film M1 vary, the amorphous semiconductor thin film M1 can be appropriately crystallized.
{Circle around (3)} The gate valve S3 is opened, the processed object M is removed from the movable mounting table 2, and the gate valve S3 is closed.
[0016]
According to the laser annealing apparatus 200 described above, it is possible to always perform appropriate annealing without excess or deficiency without removing the object M from the vacuum chamber 1 and even if the object M varies. Thus, quality and throughput can be improved.
However, since the laser introduction window 5 is located substantially vertically above the laser irradiation portion P, the laser introduction window 5 is contaminated by the vaporized material from the workpiece M, and the energy of the laser beam R is attenuated by the laser introduction window 5. There are things to do.
[0017]
【The invention's effect】
According to the laser annealing apparatus of the present invention, it is possible to always perform appropriate annealing without excess or deficiency without taking out the object to be processed from the sealed container, and even if the objects to be processed vary. And throughput can be improved.
Further, in order to irradiate the object to be processed with the laser beam from an oblique direction, a laser introduction window is provided at a position on the ceiling portion of the hermetic container and deviated from vertically above the laser irradiation portion. For this reason, a transpiration substance is generated from the object to be processed during annealing, and even if this is attached to the wall of the ceiling of the sealed container and vertically above the laser irradiation portion, the laser introduction window is not soiled. Therefore, the energy of the laser beam introduced from the laser introduction window can be prevented from being attenuated by the transpiration substance from the object to be processed.
Furthermore, since the laser beam is irradiated to the object to be processed from an oblique direction, the reflected laser beam reflected by the object to be processed is reflected by the ceiling portion of the sealed container and is incident on the object to be processed again. Can be prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a laser annealing apparatus according to a first embodiment of the present invention.
FIG. 2 is a characteristic diagram of reflectance of amorphous silicon a-Si and crystalline silicon C-Si.
FIG. 3 is a convergence characteristic diagram of movement speed when the irradiation intensity of laser light is constant and the movement speed of the movable mounting table is controlled.
FIG. 4 is a cross-sectional view of a main part of a laser annealing treatment apparatus according to a reference example .
FIG. 5 is a cross-sectional view of a main part of an example of a conventional laser annealing apparatus.
[Explanation of symbols]
100, 200, 500 Laser annealing treatment apparatus 1 Vacuum chamber 1a Ceiling part 1b Exhaust port 2 Moving mounting table 3 Resistance wire 5 Excimer laser introduction window 6 Excimer laser irradiation device 9 Light intensity measurement device 10 Control device B Base P Laser irradiation Part M Object M1 Amorphous semiconductor thin film M2 Insulating substrate

Claims (1)

密閉容器(1)内に置かれた被処理体(M)に外部からレーザー導入用窓(5)を通してレーザーアニール処理用のレーザー光(R)を照射するレーザー照射手段(6)と、小面積のレーザー照射部分(P)で前記被処理体(M)の大面積の領域を走査するように前記被処理体(M)を乗せて移動する移動載置台(2)とを備えたレーザーアニール処理装置において、
前記移動載置台(2)はその上面に被処理体(M)が載置されるものであり、前記レーザー導入用窓(5)は前記密閉容器(1)の天井部(1a)に傾斜して設けられ、前記レーザー導入用窓(5)を通して前記レーザーアニール処理用のレーザー光(R)を被処理体(M)に上方から斜めに照射すると共に、被処理体(M)で正反射された反射レーザー光(L)の強度を測定する光強度測定手段(9)を前記密閉容器(1)内に設置し、その光強度測定手段(9)で測定した反射レーザー光(L)の強度に基づいて前記レーザーアニール処理の進行状況を判別することを特徴とするレーザーアニール処理装置(100)。
Laser irradiation means (6) for irradiating laser beam (R) for laser annealing treatment from the outside to laser beam (R) through laser introduction window (5) to object (M) placed in hermetic container (1), and a small area Annealing process comprising a moving stage (2) on which the object to be processed (M) is moved so as to scan a large area of the object to be processed (M) with the laser irradiation part (P) of In the device
The movable mounting table (2) has a workpiece (M) mounted on the upper surface thereof, and the laser introduction window (5) is inclined to the ceiling (1a) of the sealed container (1). The laser beam (R) for laser annealing treatment is obliquely irradiated from above onto the object to be processed (M) through the laser introduction window (5 ) and is regularly reflected by the object to be processed (M). the intensity of the reflected laser light intensity measuring means for measuring the intensity of (L) (9) installed in the closed container (1) inside, the reflected laser beam measured by the light intensity measuring means (9) (L) was The laser annealing apparatus (100) characterized in that the progress of the laser annealing process is determined based on the above .
JP25885395A 1995-10-05 1995-10-05 Laser annealing equipment Expired - Lifetime JP3650943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25885395A JP3650943B2 (en) 1995-10-05 1995-10-05 Laser annealing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25885395A JP3650943B2 (en) 1995-10-05 1995-10-05 Laser annealing equipment

Publications (2)

Publication Number Publication Date
JPH09102468A JPH09102468A (en) 1997-04-15
JP3650943B2 true JP3650943B2 (en) 2005-05-25

Family

ID=17325951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25885395A Expired - Lifetime JP3650943B2 (en) 1995-10-05 1995-10-05 Laser annealing equipment

Country Status (1)

Country Link
JP (1) JP3650943B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG113399A1 (en) 2000-12-27 2005-08-29 Semiconductor Energy Lab Laser annealing method and semiconductor device fabricating method
KR100885904B1 (en) 2001-08-10 2009-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Laser annealing apparatus and semiconductor device manufacturing method
JP5091378B2 (en) * 2001-08-17 2012-12-05 株式会社ジャパンディスプレイセントラル Laser annealing method and laser annealing condition determination apparatus
US7372630B2 (en) 2001-08-17 2008-05-13 Semiconductor Energy Laboratory Co., Ltd. Laser, irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
JP4397571B2 (en) 2001-09-25 2010-01-13 株式会社半導体エネルギー研究所 Laser irradiation method, laser irradiation apparatus, and manufacturing method of semiconductor device
US7026227B2 (en) 2001-11-16 2006-04-11 Semiconductor Energy Laboratory Co., Ltd. Method of irradiating a laser beam, and method of fabricating semiconductor devices
US7113527B2 (en) 2001-12-21 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Method and apparatus for laser irradiation and manufacturing method of semiconductor device
US7294874B2 (en) 2003-08-15 2007-11-13 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, method for manufacturing a semiconductor device, and a semiconductor device
JP4618360B2 (en) * 2008-10-10 2011-01-26 ソニー株式会社 Laser annealing method and laser annealing apparatus
JP5614768B2 (en) * 2010-03-25 2014-10-29 株式会社日本製鋼所 Laser processing apparatus and laser processing method
DE112018000643T5 (en) * 2017-02-02 2019-11-14 Mitsubishi Electric Corporation HEAT TREATMENT DEVICE, HEAT TREATMENT METHOD AND METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE
KR20220022016A (en) * 2020-08-14 2022-02-23 삼성디스플레이 주식회사 Apparatus and method for manufacturing a display device

Also Published As

Publication number Publication date
JPH09102468A (en) 1997-04-15

Similar Documents

Publication Publication Date Title
JP3650943B2 (en) Laser annealing equipment
USRE36371E (en) Method of forming polycrystalline silicon film in process of manufacturing LCD
US7297944B2 (en) Ion beam device and ion beam processing method, and holder member
JP2001230239A (en) Apparatus and method for treating
US6258173B1 (en) Film forming apparatus for forming a crystalline silicon film
JPH02181419A (en) Laser anneal method
JP3091904B2 (en) Laser annealing equipment
KR20110071591A (en) Laser processing apparatus which can control size of laser beam
KR19980042503A (en) Method and apparatus for forming polycrystalline silicon
JP3502981B2 (en) Laser annealing equipment
JP3099101B2 (en) Heat treatment equipment
JPH09139356A (en) Laser annealing treatment apparatus
JPH11135452A (en) Method and apparatus for manufacturing semiconductor device
JPH09139355A (en) Laser annealing apparatus
JPH09142999A (en) Laser annealing treatment device
JPH09162138A (en) Laser annealing method and laser annealer
EP0319021B1 (en) Apparatus for laser chemical vapour deposition
JPH09301800A (en) Laser annealing device
JPH01246828A (en) Beam annealing device
JP2000150410A (en) Laser annealing furnace and laser annealing method
JPH06291035A (en) Beam annealing apparatus
JP4094127B2 (en) Amorphous silicon production equipment
JPH01212431A (en) Manufacture of thin film semiconductor device
JPH05251342A (en) Laser annealing apparatus
JP2004146842A (en) Laser annealing treatment device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

EXPY Cancellation because of completion of term