[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3644862B2 - Auxiliary fuel injection operation method to blast furnace - Google Patents

Auxiliary fuel injection operation method to blast furnace Download PDF

Info

Publication number
JP3644862B2
JP3644862B2 JP36434199A JP36434199A JP3644862B2 JP 3644862 B2 JP3644862 B2 JP 3644862B2 JP 36434199 A JP36434199 A JP 36434199A JP 36434199 A JP36434199 A JP 36434199A JP 3644862 B2 JP3644862 B2 JP 3644862B2
Authority
JP
Japan
Prior art keywords
tuyere
auxiliary fuel
blast furnace
laval
pulverized coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36434199A
Other languages
Japanese (ja)
Other versions
JP2000239719A (en
Inventor
健太郎 野沢
隆一 堀
哲也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP36434199A priority Critical patent/JP3644862B2/en
Publication of JP2000239719A publication Critical patent/JP2000239719A/en
Application granted granted Critical
Publication of JP3644862B2 publication Critical patent/JP3644862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉への補助燃料吹込み操業方法に関するものである。
【0002】
【従来の技術】
周知のように従来、高炉では、鉄鉱石(ペレット、焼結鉱を含む)、コークス、石灰石などを上部から装入する一方、下部の羽口から高温の空気を供給することで、コークスを燃料(熱源)及び還元剤として鉄鉱石を還元、溶解し、銑鉄の製造がなされてきたが、その後、製造コストの高いコークスの使用量を低減するため、またコークス炉の老朽化対策としてコークス炉の稼働率を軽減するため、等の理由から、コークスに代わる燃料として高炉羽口から補助燃料を吹込む高炉への補助燃料吹込み操業方法が広く実施されるようになってきた。
【0003】
補助燃料としては、当初、燃焼性に優れる重油等の液体燃料が用いられたが、先のオイルショック以降、重油価格が高騰し、近年では、石炭を粉砕した微粉炭をコークスの一部代替燃料として羽口から吹込む所謂微粉炭吹込み操業(以下PCI操業と言う)が一般的となりつつある。また更に、最近になって、環境問題への対応の一環として、廃プラスチックに代表される廃棄合成樹脂材並びに廃棄物由来の固形燃料を羽口を介して高炉内に供給し、熱源及び還元剤として供することが提案されてもいる。
【0004】
ところで、溶銑コストの低減を進めるためには、微粉炭、重油等の補助燃料の吹込み比を増量しコークスを減量することが最も効果的な方法であるが、従来よりブローパイプに接続して普通に用いられてきた羽口〔例えば第3版鉄鋼便覧第II巻製銑・製鋼(第 306頁図 5・170)、特開昭64−4410号公報、特開平 3−240908号公報参照〕(以下通常羽口と称す)では、羽口からの補助燃料吹込み比を増大した場合には、補助燃料が羽口内で燃焼ガス化するためにガス体積が増し羽口圧損が上昇すること、更には羽口先のレースウエイ内での燃焼性が悪化するためコークスとの置換率が悪化すること、等が確認され、これらが補助燃料吹込み比増量を律速すると言われている。
【0005】
そこで、上記問題を改善するために、上記通常羽口を用い補助燃料として微粉炭を吹込む場合において、例えば、微粉炭の吹込みランスの先端位置を最適位置に設定する、あるいは揮発分の高い微粉炭や粒度構成を細粒よりに移行した微粉炭を用いる、等々の改善が図られてきたが、これらの改善がなされても上記通常羽口より安定して吹き込める微粉炭の量は微粉炭吹込み比で 150kg/銑鉄t程度である。
【0006】
一方、特公昭53− 19442号公報、特公平 1− 28804号公報、特開平 2−104604号公報には溶鉱炉(高炉)の羽口として用いられるラバール(Laval) 型式の羽口(以下ラバール羽口と称す)の提案がされている。
【0007】
例えば、特公昭53− 19442号公報(特に第1頁第2コラム第8行〜第2頁第3コラム第1行)には、溶鉱炉などシャフト炉において使用されるコークス等の固体燃料の価格が高いことから、その1部を液体状の炭化水素補助燃料に代え、その補助燃料をシャフト炉に開口する送風管内に噴射して行う技術に用いる羽口としてラバール羽口が提案されている。このラバール羽口は、音速炉口を構成する先細部と末広部及び羽口内で燃料を噴射する噴射管を有する取換え可能な第1部材と、この第1部材に連なり第1部材の末広部に延長して末広部を構成する固定の第2部材とで基本的に構成されている。そして、このラバール羽口では、羽口の末広部において超音速流の状態から亜音速の状態に推移する条件すなわち、末広部において衝撃波が形成されるような条件をつくり、その衝撃波の上流に燃料を噴射することで、噴射された燃料が衝撃波帯域を通過するときに、燃焼媒体中への分散作用が効果的になり、煤を生成することなく燃料の噴射率を高くすることができる。と説明されている。なお、このラバール羽口においては、末広部内に衝撃波を生じさせるためには、そのシャフト炉の燃焼媒体の供給速度に応じた、炉口(縮流部)の設計が必要であることから、この点に着目し、燃焼媒体供給速度により、炉口の形状を変化できるように、第1部材を取換え可能としている。
【0008】
また、特公平 1− 28804号公報には、高炉に用いられる送風羽口自体を、中央部が入口径及び出口径より小径に形成された所謂ラバール羽口とすることが提案されている。そして同公報には「このラバール羽口においては、羽口の入側で亜音速の風は中央部(喉部)ではマッハ数M=1となり、羽口の出口側では超音速の流れとなるもので、この出口側の風速を超音速とするには羽口の入口と出口の風の圧力によって決定される。そして、このラバール羽口よりの超音速流は乱流圧縮性自由噴流となり、ラバール羽口の出口の速度が保持されて高炉の奥深くまでそのエネルギーが伝えられるものであり、その速度コアはマッハ数が大きい程長いのである。」と大要説明され、そして更に、このラバール羽口によれば、次の如き効果があると説明されている。▲1▼:デッドマンと称される不活性な炉芯が狭小化し、稼働内容積の増大による送風量を増加することができ出銑量が増加する。▲2▼:高炉下部の反応性が増大し、直接還元率の上昇による燃料比を低減できる。▲3▼:高炉の中心操業化ができ、炉体熱損失減少による燃料比低減と炉床銑滓流の中心流化により炉体保護及び炉底保護ができる。▲4▼:羽口前運動エネルギーの増大及びレースウエイの深化により羽口破損回数が減少する。▲5▼:劣性コークス使用下ではレースウエイが浅くなるといわれているが、レースウエイ維持が可能となる。
【0009】
また、特開平 2−104604号公報には、微粉炭を多量に吹き込む高炉の羽口構造に係わり、スロート部(喉部)を境として前部管と後部管とし、その前部管の長さを羽口長さの0.2 乃至0.6 とする所謂ラバール羽口が提案されている。そして同公報には「微粉炭が混合された熱風は後部管から前部管に入るがスロート部を通るとき流速を105m/s 以上とされ、前部管の先端から高炉内に吹き込まれる。」、また「スロート部でのガス流速は逆火限界速度である105m/s 以上としてあるので、微粉炭の燃焼は後部管より内部で生じことはない。」、更に「このラバール羽口によれば、前部管の長さを羽口長さの0.2 乃至0.6 としているので、羽口先の流速を高めて逆火現象が防止され、また前部管の摩耗を減少することができる。」と説明されている。
【0010】
ところで、上述したラバール羽口の場合、例えば、特公昭53− 19442号公報に説明されたラバール羽口では、燃焼媒体(熱風)を末広部内において衝撃波を生じる条件で供給するとともに、その衝撃波の上流に燃料(補助燃料)を噴射するので、噴射された補助燃料が衝撃波帯域を通過するときに熱風中へ分散供給されることが期待でき、更に煤を生成することなく燃料の噴射率を高めることが期待できる反面、次のような問題が懸念される。すなわち、▲1▼:第1、第2部材の2つの部材を必要とするため、従来の通常羽口に比して羽口破損等のトラブル時には、取り換え・復旧作業が煩雑化し、長時間を要する可能性から炉冷え等の危険性が増す。▲2▼:補助燃料吹込み時に、末広部内で衝撃波を形成するために、その時々で衝風条件(生産条件)に適した先細部と末広部、音速炉口径を有する第1部材に設置し直す必要がある。▲3▼:また、近年の主流である炉頂圧力を高く保つ高圧高炉操業では、第1部材入口での圧力を、末広部で衝撃波を形成させるに必要な圧力にまで、燃焼媒体を昇圧させる必要があるため、ブロワー、配管等の設備負荷が増大する。▲4▼:補助燃料の噴射孔がラバール羽口の内周面に形成されているため、補助燃料が必ずしも熱風中へ分散供給されるとは限らない。▲5▼:第1部材は、音速炉口を構成する先細部と末広部及び羽口内で燃料を噴射する噴射管を有し取換え可能に構成されているため、形状が複雑である上に末広部において衝撃波を生じる形状に構成されなければならず、実用性が懸念される。
【0011】
また、特公平 1− 28804号公報に説明されたラバール羽口では、ラバール羽口からの超音速流は乱流圧縮性自由噴流となり、ラバール羽口の出口の速度が保持されて高炉の奥深くまでそのエネルギーが伝えられるものの、このラバール羽口を用いて補助燃料を併せて吹込むことについては記載がされていない。
【0012】
また、特開平 2−104604号公報に説明された微粉炭吹込みラバール羽口では、羽口先の流速を高めて逆火現象を防止し得ることで多量の微粉炭の吹込みが期待できるものの、その微粉炭の供給は、同公報の第2頁下段左第9〜13行に「微粉炭が混合された熱風は後部管から前部管に入るが、スロート部を通るガスは流速を105m/s 以上とされ、前部管の先端から高炉内に吹き込まれる。」と大要説明されているように、微粉炭はラバール羽口の上流側で熱風に混合されてラバール羽口より供給されるため、逆火現象は防止できても、前部管内及び前部管を出たところで激しく燃焼が起こり背圧が高くなるため、良好な衝風条件(生産条件)が期待できない。
【0013】
【発明が解決しようとする課題】
そこで、本発明は、上述したように通常羽口を用いたのでは、例えば補助燃料として安価な微粉炭を用いた場合に安定して吹き込める微粉炭量が微粉炭吹込み比でせいぜい 150kg/銑鉄t程度であって、これ以上の微粉炭吹込み量の増大が難しく高価なコークスの使用量の低減(コークス比の低減)が期待できにくいこと、及び本出願人も特公平 1− 28804号公報に提案しているように、ラバール羽口を用いると衝風条件(生産条件)によっては高炉内深く熱風が供給できること、に着目してなしたものであって、その目的は、高炉への補助燃料吹込みを、例えば微粉炭の場合で微粉炭吹込み比 150kg/銑鉄t以上を安定して吹込むとともに、高価なコークスの使用を極力抑制した高炉への補助燃料吹込み操業方法を提供するものである。
【0014】
【課題を解決するための手段】
本発明者等は、上記の課題を解決するために、鋭意調査、検討を重ね、従来技術の項で説明したような現状を把握し、更に本出願人が先に特公平 1− 28804号公報に提案したラバール羽口に着目するとともに、通常羽口に用いられている補助燃料吹込みランスに着目して本発明をなしたものである。そして、その要旨(請求項1)は、羽口に接続されたブローパイプの接続部近傍から羽口先端に至る間の管内にブローパイプの内径及び羽口先端の内径より小径の縮径部を有し、且つ、補助燃料吹込みランスの先端位置が前記縮径部より羽口先端側に配設されてなる構成の補助燃料吹込み羽口より補助燃料を吹込む高炉への補助燃料吹込み操業方法であって、前記構成の補助燃料吹込み羽口を、高炉全体の補助燃料吹込み羽口の内の10%以上設けて補助燃料を吹込む、高炉への補助燃料吹込み操業方法とするものである。
【0015】
上記構成では、先願のラバール羽口の構造を利用するものであるが、羽口の内径が大径であったり、あるいは羽口の全長が比較的短い場合なども考慮して、羽口に接続されたブローパイプの接続部近傍を含めてラバール羽口に構成してもよいとしたもので、羽口自体でラバール羽口が構成できる場合には羽口自体でラバール羽口を構成してもよい。このラバール羽口では縮径部を出た流れは高速の中心流と縮径部の下流側の末広部に沿った拡がりのある流れとができ、これによって高炉深く深度のある且つ拡がりのあるレースウエイが形成できる。そして、上記構成では、このラバール羽口に対して補助燃料吹込みランスの先端位置を、縮径部より羽口先端側に配設するものである。すなわち、補助燃料吹込みランスの先端位置がラバール羽口の縮径部より後方(送風方向の上流側)に配設した場合には、補助燃料が縮径部の上流側で混合されてしまい、その結果、縮径部より下流側の末広部内で、あるいはその末広部を出た近傍で激しく燃焼し背圧(羽口内圧損)が高くなり、良好な衝風条件(生産条件)が期待できなくなる。これに対して、補助燃料吹込みランスの先端位置を、ラバール羽口の縮径部より羽口先端側に配設した場合には、縮径部を経た熱風が補助燃料吹込みランスの先端部によって攪拌されるので、吹込まれた補助燃料が熱風中に攪拌分散されながら高速で高炉内に吹込め、これにより、縮径部より下流側の末広部内で、あるいはその末広部を出た近傍で激しく燃焼することがなく羽口内圧損を低くして高炉内深く補助燃料を吹き込むことができる。
【0016】
また、上記のように、補助燃料吹込みランスの先端位置をラバール羽口の縮径部より羽口先端側に配設することで、縮径部を経た熱風が補助燃料吹込みランスの先端部によって攪拌され、その結果、吹込まれた補助燃料がラバール羽口の縮径部より先で熱風中に攪拌分散されるので、縮径部の先の末広部での熱風速度を、特公昭53− 19442号公報に説明されているような衝撃波を発生させるような超音速(M>1)にしてまでも攪拌分散させる必要がなく、亜音速(0.3<M<0.8)程度で、十分補助燃料を分散させ、しかも幅のある且つ長さのある良好なレースウエイを形成させて補助燃料を高炉内に吹込むことができる。また、亜音速の場合には、超音速の場合に比較して送風圧力が低くてよいことから、ブロワーや送風管などの送風設備のコストを低く抑えることができる。
【0017】
そして本発明では、上記の如き構成のラバール羽口を、高炉全体の補助燃料吹込み羽口の内の10%以上設けて補助燃料を吹込むもので、当該ラバール羽口を装備することにより、補助燃料を、補助燃料の燃焼性を損なうことなく羽口内からレースウエイ内に攪拌分散させて高炉内深く吹込むことができ、このようなラバール羽口の作用により、高炉の圧力損失を抑え、通気性を高め、送風圧変動や装入物のスリップなどの発生の少ない高炉操業が可能となり、これにより、高炉への補助燃料吹込みが、例えば微粉炭の場合で微粉炭吹込み比 150kg/銑鉄t以上、更には微粉炭吹込み比 200kg/銑鉄t乃至 300kg/銑鉄t以上を安定して吹込むことができるようになり、従って高価なコークスの使用を低減できコークス比を下げることができる。
【0018】
上記本発明に係る高炉への補助燃料吹込み操業方法においては、補助燃料吹込みランスを、ラバール羽口内に複数セットし、そのそれぞれより同種又は異種の補助燃料を吹込んでもよく、このようにすることで、より効果的に補助燃料が高炉内へ吹込める。
【0019】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。
【0020】
図1は、本発明方法に適用するラバール羽口の概要を示す断面図であって、ラバール羽口1は、その中央部に縮径部2が形成され、その縮径部2の内径D2、入口部3の内径D1、出口部4の内径D3とした場合に、D1>D2<D3の関係を満たす形状に形成されている。そして、ラバール羽口1の入口部3側にはブローパイプ5が接続され、またブローパイプ5を貫通させて微粉炭吹込みランス6が対称位置に2本、且つその先端7の位置を縮径部2より僅かに出口部4側に出して装着されている。
【0021】
上記図1に示す構成のラバール羽口を、通常羽口に代えて内容積4500m3、出銑量 9000t/d の大型高炉(羽口総数40本)に装備して、補助燃料の吹込みを実施した。図2は、前記実施により得た、通常羽口のみで微粉炭を吹込んだ場合と、全羽口の60%(24本)をラバール羽口に代えて微粉炭を吹込んだ場合における微粉炭吹込み比と高炉内装入物の降下速度変動の相対値〔通常羽口での微粉炭吹込み比 200kg/銑鉄tの時の降下速度の変動幅を基準(=1)とした際の相対値〕との関係を示すグラフ図である。なお、このときの羽口前の送風速度は常用の速度であり、ラバール羽口の羽口先端側の末広部内では計算によればM= 0.4程度の亜音速である。
【0022】
上記図2から明らかなように、全て通常羽口では微粉炭吹込み比 150kg/銑鉄tから 200kg/銑鉄tの過程において、高炉内装入物の降下速度変動が直線的に増大し、高炉操業の炉熱制御性が悪化した。ところが、本発明に係るラバール羽口を全羽口の60%に適用して同じ微粉炭吹込み条件で操業した場合には、全て通常羽口とした場合の微粉炭吹込み比 150kg/銑鉄tの時よりも更に装入物降下性が安定するとともに、その安定の結果、通常羽口のみの時の最大微粉炭吹込み比に対して、微粉炭比を約25%以上(この試験段階で最大微粉炭吹込み比 250kg/銑鉄t)まで安定して増量することができた。
【0023】
また、補助燃料吹込みランスの先端位置の影響を補助燃料として重油と微粉炭とを用いて調査したもので、その調査結果を図3に示す。図3は、補助燃料吹込みランスの先端位置と風圧変動の相対値〔通常羽口での微粉炭吹込み比 200kg/銑鉄tの時の風圧変動量を基準(=1)とした際の相対値〕との関係を示すグラフ図であって、図3から明らかなように、補助燃料吹込みランスの先端位置が最縮径部より炉内側に有る場合と、炉外側に有る場合とでは送風圧の変動幅が明らかに異なっており、その理由を考察すると、ランス先端がラバール羽口の炉外側から最縮径部の間にあるときは、吹込み補助燃料(重油、微粉炭)が部分的にガス化、燃焼するためにこの領域を通過するガス体積が増大すること、また未反応の補助燃料が羽口内面及び周囲のガス塊と相互作用をすることで圧損を増大するとともに非定常の燃焼振動を発生させるため、これにより送風圧の変動幅が大きくなると考えられ、一方、ランス先端がラバール羽口の最縮径部から炉内側の間にある場合は、補助燃料のガス化、燃焼に伴うガス体積の増大が末広部の流断面積拡大により緩和されるため背圧とその変動が低減されることから、送風圧の変動幅が小さくなると考えられる。なお、図3の横軸はラバール羽口の最縮径部を0点とし、入口部の位置を−1、出口部の位置を1として表示した。
【0024】
また、図4は、上記図1に示す構成のラバール羽口の大型高炉への適用を、当初、全通常羽口の 2%から取り換え使用を開始し60%まで交換したときまでの、適用数の割合と高炉内装入物の降下速度変動の相対値〔通常羽口での微粉炭吹込み比 200kg/銑鉄tの時の降下速度の変動幅を基準(=1)とした際の相対値〕との関係を示すグラフ図である。なお、ラバール羽口の交換に当たっては、高炉の円周バランスを考慮した場合(高炉の中心に対して略対称位置で交換)と、円周方向の一部に集中させて交換した場合とでは、高炉操業状態の効果の現れ方に差があることが判明したので、微粉炭吹込み比の増量とラバール羽口の適用数拡大に際しては、前者の高炉の円周バランスを配慮して行った。
【0025】
上記図4から明らかなように、ラバール羽口を全羽口の10%以上交換したところから高炉内装入物の降下速度の変動幅が小さくなり、降下挙動に改善が見られ始めることが分かる。
【0026】
なお、上記本発明に係る高炉への補助燃料吹込み操業方法によれば、ラバール羽口を全羽口の10%以上交換して設けることによる、上述のごとき微粉炭の場合で微粉炭吹込み比 150kg/銑鉄t以上を安定して吹込むことができる作用効果の他に、次のような作用効果を併せて期待することができる。
【0027】
▲1▼:低強度コークスの使用が可能となる。すなわち、コークス強度が低下すると炉内での粉発生が増加し、通気性が悪化して炉内圧損が大きく増加するが、ラバール羽口を全羽口の10%以上交換して設けることで、ラバール羽口の炉内前方に深く拡がりのあるレースウエイを形成することができ、ガス流れの周辺化の抑制が期待できることから低強度コークスの使用が期待できる。
【0028】
▲2▼:小粒コークスの使用が可能となる。小粒コークス(粒径15mm以下)を使用すると、高炉装入物の平均粒径が低下し炉内圧損が大きく増加するとともに炉内ガス流れが周辺化するが、ラバール羽口を全羽口の10%以上交換して設けることで、ラバール羽口の炉内前方に深く拡がりのあるレースウエイを形成することができ、ガス流れの周辺化の抑制が期待できることから小粒コークスの使用量の増大が期待できる。
【0029】
▲3▼:塊鉱石配合率の増大が可能となる。すなわち、高炉原料鉱石の一つである塊鉱石(生鉱石)は熱割れといった特異な性状を有し、炉内の比較的低温域で割れが生じて大量の粉を発生する。このため上記▲1▼や▲2▼と同様の不具合が生じるため従来、熱割れの少ない塊鉱石を選択するとともに塊鉱石配合率(装入鉱石中の塊鉱石の重量比率)も10〜20%に制限していたが、ラバール羽口を全羽口の10%以上交換して設けることで、ラバール羽口の炉内前方に深く拡がりのあるレースウエイを形成することができ、ガス流れの周辺化の抑制が期待できることから塊鉱石配合率を増大することが期待できる。
【0030】
(4):ペレット配合率の増大が可能となる。ペレットは形状が球形のため焼結鉱や塊鉱石に比べて堆積傾斜角が小さく、ペレットの多配合下ではペレットの炉中心部への流れ込みが起こり、炉内ガス流れの周辺化や軟化融着帯のW型化が生じることにより炉内圧損が大きく増加するが、ラバール羽口を全羽口の10%以上交換して設けることで、ラバール羽口の炉内前方に深く拡がりのあるレースウエイを形成することができ、ガス流れの周辺化の抑制が期待できることからペレット配合率を増大することが期待できる
【0031】
▲5▼:ベルレス高炉でのロングテラス操業が可能となる。ベルレス高炉においては、装入物分布の制御性の面からコークステラス(炉壁部から炉中心に向けてコークス層上面が平坦に堆積している部分)を長くするロングテラス操業が指向されてきた。しかし、一方でテラス長さを大きくすると装入物の傾斜距離が短くなり、装入物の偏析が弱くなり、炉中心部の粒子径が低下して中心ガス流れが低下しガス流れが周辺化するが、ラバール羽口を全羽口の10%以上交換して設けることで、ラバール羽口の炉内前方に深く拡がりのあるレースウエイを形成することができ、ガス流れの周辺化の抑制が期待できることからベルレス高炉でのロングテラス操業が期待できる。
【0032】
【発明の効果】
以上説明したように、本発明に係る高炉への補助燃料吹込み操業方法によれば、高炉への補助燃料吹込みを、従来よりも大量に、例えば微粉炭の場合で微粉炭吹込み比 150kg/銑鉄t以上、更には微粉炭吹込み比 200kg/銑鉄t乃至 300kg/銑鉄t以上を安定して吹込むことができるようになり、高価なコークスの使用が低減できる。また、このような効果の他に、従来炉内圧損の上昇を招くことで抑制してきた低強度コークスの使用、小粒コークスの使用や、塊鉱石配合率の増大、ペレット配合率の増大などが期待できる。
【0033】
また、補助燃料吹込みランスの先端位置を、ラバール羽口の縮径部より羽口先端側に配設することで、縮径部を経た熱風が補助燃料吹込みランスの先端部によって攪拌されるので、吹込まれた微粉炭が熱風中に攪拌分散されるため、縮径部の先の末広部での熱風の速度を亜音速(0.3<M<0.8)程度で十分微粉炭を分散させて操業することができ、ブロワーや送風管などの送風設備のコストを低く抑えて操業できる。
【図面の簡単な説明】
【図1】本発明方法に適用するラバール羽口の概要を示す断面図である。
【図2】通常羽口のみで微粉炭を吹込んだ場合と、全羽口の60%をラバール羽口に代えて微粉炭を吹込んだ場合における微粉炭吹込み比と高炉内装入物の降下速度変動の相対値との関係を示すグラフ図である。
【図3】補助燃料吹込みランスの先端位置と風圧変動の相対値との関係を示すグラフ図である。
【図4】高炉へのラバール羽口の適用数の割合と高炉内装入物の降下速度変動の相対値との関係を示すグラフ図である。
【符号の説明】
1:ラバール羽口 2:縮径部 3:入口部
4:出口部 5:ブローパイプ 6:微粉炭吹込みランス
7:ランス先端
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for injecting auxiliary fuel into a blast furnace.
[0002]
[Prior art]
As is well known, in conventional blast furnaces, iron ore (including pellets and sintered ore), coke, limestone, etc. are charged from the top, while high temperature air is supplied from the lower tuyere to fuel coke. Iron ore has been reduced and dissolved as a (heat source) and reducing agent, and pig iron has been manufactured. Thereafter, in order to reduce the use of coke, which has a high manufacturing cost, and as a countermeasure for aging of coke ovens, In order to reduce the operation rate, for example, an auxiliary fuel injection operation method into a blast furnace in which auxiliary fuel is injected from a blast furnace tuyere as a fuel to replace coke has been widely implemented.
[0003]
As a supplementary fuel, liquid fuel such as heavy oil with excellent combustibility was initially used, but the price of heavy oil has soared since the previous oil shock, and in recent years, pulverized coal obtained by pulverizing coal has become a partial substitute for coke. So-called pulverized coal injection operation (hereinafter referred to as PCI operation) that is injected from the tuyere is becoming common. Furthermore, recently, as part of dealing with environmental problems, waste synthetic resin materials represented by waste plastics and waste-derived solid fuel are supplied into the blast furnace through the tuyere, and the heat source and reducing agent are supplied. It has also been proposed to serve as
[0004]
By the way, in order to reduce the hot metal cost, it is the most effective method to increase the injection ratio of auxiliary fuel such as pulverized coal and heavy oil and reduce the coke. The tuyere that has been used normally (see, for example, 3rd Edition Steel Handbook, Volume II Steelmaking and Steelmaking (Figure 306 on page 306), JP-A 64-4410, JP-A-3-240908) (Hereinafter referred to as normal tuyere), when the auxiliary fuel injection ratio from the tuyere is increased, the auxiliary fuel is converted into combustion gas in the tuyere and the gas volume increases and tuyere pressure loss increases. Furthermore, it has been confirmed that the combustibility in the raceway at the tuyere deteriorates and the replacement rate with coke deteriorates, and these are said to limit the increase in the auxiliary fuel injection ratio.
[0005]
Therefore, in order to improve the above problem, when the pulverized coal is blown as auxiliary fuel using the normal tuyere, for example, the tip position of the pulverized coal blowing lance is set to the optimum position, or the volatile content is high. Improvements such as using pulverized coal or pulverized coal whose particle size configuration has been changed from fine particles have been attempted, but even if these improvements are made, the amount of pulverized coal that can be stably blown from the above tuyere is fine powder The charcoal blowing ratio is about 150kg / t.
[0006]
On the other hand, JP-B-53-19442, JP-B-1-28804, and JP-A-2-104604 disclose Laval type tuyere (hereinafter referred to as Laval tuyere) used as tuyeres for blast furnaces (blast furnaces). Proposed).
[0007]
For example, Japanese Patent Publication No. 53-19442 (especially page 1, column 2, line 8 to page 2, column 3, line 1) describes the price of solid fuel such as coke used in shaft furnaces such as blast furnaces. Due to the high cost, Laval tuyere has been proposed as a tuyere used in a technique in which part of the fuel is replaced with a liquid hydrocarbon auxiliary fuel and the auxiliary fuel is injected into a blow pipe opened to the shaft furnace. This Laval tuyere has a replaceable first member having a tapered portion and a divergent portion constituting the sonic furnace throat and an injection pipe for injecting fuel in the tuyere, and a divergent portion of the first member connected to the first member. This is basically composed of a fixed second member that extends to the end and forms the divergent portion. In this Laval tuyere, a condition for transitioning from a supersonic flow state to a subsonic speed state in the divergent part of the tuyere, that is, a condition in which a shock wave is formed in the divergent part, fuel is generated upstream of the shock wave. When the injected fuel passes through the shock wave band, the dispersion action into the combustion medium becomes effective, and the fuel injection rate can be increased without generating soot. It is explained. In this Laval tuyere, in order to generate a shock wave in the divergent part, it is necessary to design the furnace mouth (constriction part) according to the supply speed of the combustion medium of the shaft furnace. Focusing on this point, the first member can be replaced so that the shape of the furnace port can be changed according to the combustion medium supply speed.
[0008]
Further, Japanese Patent Publication No. 1-28284 proposes that the blower tuyere itself used in the blast furnace is a so-called Laval tuyere having a central portion formed smaller than the inlet diameter and the outlet diameter. According to the publication, “In this Laval tuyere, the subsonic wind at the entrance side of the tuyere is Mach number M = 1 at the central part (throat part) and the supersonic flow is at the exit side of the tuyere. However, the supersonic speed of the exit side is determined by the wind pressure at the entrance and exit of the tuyere, and the supersonic flow from this Laval tuyere becomes a turbulent compressible free jet, The speed at the exit of the Laval tuyere is maintained and the energy is transmitted deep into the blast furnace, and the speed core is longer as the Mach number is larger. " According to the mouth, there are the following effects. {Circle around (1)} An inactive furnace core called dead man is narrowed, and the amount of blown air can be increased by increasing the operating internal volume, increasing the amount of output. {Circle around (2)} The reactivity at the bottom of the blast furnace is increased, and the fuel ratio can be reduced by directly increasing the reduction rate. {Circle around (3)} The central operation of the blast furnace can be performed, and the furnace body and the bottom of the furnace can be protected by reducing the fuel ratio by reducing the heat loss of the furnace body and by centralizing the core flow. {Circle around (4)} The number of tuyere breaks decreases due to an increase in kinetic energy before tuyere and deepening of the raceway. {Circle around (5)} Although it is said that the raceway becomes shallower when the recessive coke is used, the raceway can be maintained.
[0009]
JP-A-2-104604 relates to a blast furnace tuyeres structure in which a large amount of pulverized coal is blown into a front tube and a rear tube with a throat portion (throat portion) as a boundary, and the length of the front tube. A so-called Laval tuyere with a tuyere length of 0.2 to 0.6 has been proposed. According to the publication, “hot air mixed with pulverized coal enters the front pipe from the rear pipe, but when passing through the throat part, the flow velocity is set to 105 m / s or more and is blown into the blast furnace from the front end of the front pipe.” Also, “Because the gas flow velocity at the throat section is 105 m / s or more, which is the critical speed for backfire, combustion of pulverized coal does not occur inside the rear pipe.” Furthermore, according to this Laval tuyere Since the length of the front tube is set to 0.2 to 0.6 of the tuyere length, the flow rate at the tuyere tip can be increased to prevent the flashback phenomenon and to reduce the wear of the front tube. " Has been.
[0010]
By the way, in the case of the Laval tuyere described above, for example, in the Laval tuyere described in Japanese Patent Publication No. 53-19442, the combustion medium (hot air) is supplied in a condition that generates a shock wave in the divergent section, and upstream of the shock wave. The fuel (auxiliary fuel) is injected into the fuel, so that the injected auxiliary fuel can be expected to be distributed and supplied into the hot air when passing through the shock wave band, and the fuel injection rate can be increased without generating soot. However, there are concerns about the following problems. That is, (1): Since the first and second members are required, the replacement / recovery operation becomes complicated and troublesome in the event of trouble such as damage to the tuyere compared to the conventional normal tuyere. Because of the possibility, the risk of furnace cooling increases. (2): When the auxiliary fuel is injected, in order to form a shock wave in the divergent part, it is installed on the first member that has a tapered part suitable for blast conditions (production conditions), divergent part, and sonic furnace aperture. I need to fix it. (3): Also, in high-pressure blast furnace operation that keeps the furnace top pressure high, which is the mainstream in recent years, the pressure of the combustion medium is increased to the pressure required to form a shock wave in the divergent section at the first member inlet. Because it is necessary, the equipment load such as blower and piping increases. {Circle around (4)} Since the auxiliary fuel injection holes are formed on the inner peripheral surface of the Laval tuyere, the auxiliary fuel is not necessarily dispersedly supplied into the hot air. {Circle over (5)} The first member has a complicated shape because the first member has a tapered portion forming the sonic furnace port, a divergent portion, and an injection pipe for injecting fuel in the tuyere. It must be configured in a shape that generates a shock wave in the divergent part, and there is a concern about practicality.
[0011]
In the Laval tuyere described in JP-B-1-28804, the supersonic flow from the Laval tuyere becomes a turbulent compressible free jet, and the speed of the Laval tuyere exit is maintained deep into the blast furnace. Although the energy is transmitted, there is no description about injecting auxiliary fuel together with this Laval tuyere.
[0012]
In addition, in the pulverized coal injection laval tuyere described in JP-A-2-104604, although a large amount of pulverized coal can be expected by increasing the flow velocity of the tuyere and preventing the flashback phenomenon, The supply of the pulverized coal is as follows: “Hot air mixed with pulverized coal enters the front pipe from the rear pipe, but the gas passing through the throat part has a flow rate of 105 m / As described above, the pulverized coal is mixed with hot air upstream from the Laval tuyere and supplied from the Laval tuyere. For this reason, even if the flashback phenomenon can be prevented, a strong blast condition (production condition) cannot be expected because intense combustion occurs in the front tube and the exit from the front tube and the back pressure increases.
[0013]
[Problems to be solved by the invention]
Therefore, in the present invention, when the normal tuyere is used as described above, the amount of pulverized coal that can be stably injected when using inexpensive pulverized coal as an auxiliary fuel, for example, is at most 150 kg / It is about pig iron t, and it is difficult to increase the amount of pulverized coal injection, and it is difficult to expect a reduction in the amount of coke used (a reduction in the coke ratio). As proposed in the official gazette, the use of Laval tuyere has focused on the fact that hot air can be supplied deep inside the blast furnace depending on the blast conditions (production conditions). Auxiliary fuel injection, for example, in the case of pulverized coal, provides a pulverized coal injection ratio of 150 kg / pig iron t or more, and provides a method for injecting auxiliary fuel into a blast furnace while minimizing the use of expensive coke. To do.
[0014]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted intensive investigations and examinations, grasped the current situation as described in the section of the prior art, and further, the present applicant previously issued Japanese Patent Publication No. 1-28804. The present invention has been made by paying attention to the Laval tuyere proposed in (1) and to the auxiliary fuel injection lance normally used for the tuyere. The gist (Claim 1) is that the inner diameter of the blow pipe and the reduced diameter portion smaller than the inner diameter of the tuyere tip are formed in the pipe between the vicinity of the connecting portion of the blow pipe connected to the tuyere and the tip of the tuyere. Auxiliary fuel injection into the blast furnace in which auxiliary fuel is injected from the auxiliary fuel injection tuyere having a configuration in which the tip position of the auxiliary fuel injection lance is disposed on the tip side of the tuyere from the reduced diameter portion A method of operating auxiliary fuel injection into a blast furnace, wherein the auxiliary fuel injection tuyere having the above-described configuration is provided with 10% or more of the auxiliary fuel injection tuyere of the entire blast furnace to inject auxiliary fuel, and To do.
[0015]
In the above configuration, the Laval tuyere structure of the previous application is used, but considering the case where the tuyere's inner diameter is large or the tuyere's overall length is relatively short, It is said that the Laval tuyere may be configured including the vicinity of the connected part of the connected blowpipe, and if the Laval tuyere can be configured by the tuyere itself, the Laval tuyere is configured by the tuyere itself. Also good. In this Laval tuyere, the flow exiting the reduced diameter part can be a high-speed central flow and a widening flow along the divergent part downstream of the reduced diameter part, thereby allowing the blast furnace to have a deep and deep race. Ways can be formed. And in the said structure, the front-end | tip position of an auxiliary | assistant fuel blowing lance is arrange | positioned with respect to this Laval tuyere on the tuyere tip side rather than a reduced diameter part. That is, when the tip position of the auxiliary fuel injection lance is disposed behind the diameter-reduced portion of the Laval tuyere (upstream side in the blowing direction), the auxiliary fuel is mixed on the upstream side of the reduced-diameter portion, As a result, it burns violently in the vicinity of the divergent part downstream of the reduced diameter part or in the vicinity of the divergent part, resulting in a high back pressure (pressure loss in the tuyere), and good blast conditions (production conditions) cannot be expected. . On the other hand, when the tip position of the auxiliary fuel blowing lance is disposed closer to the tuyere tip side than the reduced diameter portion of the Laval tuyere, the hot air passing through the reduced diameter portion is heated to the tip portion of the auxiliary fuel blowing lance. Therefore, the injected auxiliary fuel is blown into the blast furnace at a high speed while being stirred and dispersed in the hot air, so that in the divergent part downstream of the reduced diameter part or in the vicinity of the divergent part. Auxiliary fuel can be injected deeply into the blast furnace with low pressure loss in the tuyere without burning intensely.
[0016]
In addition, as described above, the tip position of the auxiliary fuel blowing lance is disposed closer to the tip of the tuyere than the diameter reducing portion of the Laval tuyere, so that the hot air that has passed through the reduced diameter portion is moved to the tip of the auxiliary fuel blowing lance. As a result, the injected auxiliary fuel is agitated and dispersed in the hot air before the reduced diameter portion of the Laval tuyere, so that the hot air velocity at the divergent portion ahead of the reduced diameter portion is It is not necessary to stir and disperse even at supersonic speeds (M> 1) that generate shock waves as described in Japanese Patent No. 19442, and sufficient auxiliary fuel is supplied at subsonic speeds (0.3 <M <0.8). The auxiliary fuel can be injected into the blast furnace by dispersing and forming a good wide and long raceway. Further, in the case of subsonic speed, the blowing pressure may be lower than in the case of supersonic speed, so that the cost of blower equipment such as a blower and a blow pipe can be kept low.
[0017]
In the present invention, the Laval tuyere having the above-described configuration is provided with 10% or more of the auxiliary fuel blowing tuyere of the entire blast furnace, and the auxiliary fuel is blown, and by providing the Laval tuyere, Auxiliary fuel can be agitated and dispersed from the tuyere into the raceway without impairing the combustibility of the auxiliary fuel, and blown deep into the blast furnace. By the action of such Laval tuyere, the pressure loss of the blast furnace is suppressed, Blast furnace operation with improved air permeability and less occurrence of air pressure fluctuations and slipping of charge is possible, which makes it possible to inject auxiliary fuel into the blast furnace, for example, in the case of pulverized coal, a pulverized coal injection ratio of 150 kg / More than pig iron t, and even pulverized coal injection ratio 200kg / pig iron t to 300kg / pig iron t or more can be stably injected, so the use of expensive coke can be reduced and the coke ratio can be lowered. .
[0018]
In the method for injecting auxiliary fuel into the blast furnace according to the present invention, a plurality of auxiliary fuel injection lances may be set in the Laval tuyere and the same or different types of auxiliary fuel may be injected from each of them. By doing so, auxiliary fuel can be injected into the blast furnace more effectively.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
FIG. 1 is a cross-sectional view showing an outline of a Laval tuyere applied to the method of the present invention. A Laval tuyere 1 has a reduced diameter portion 2 formed at the center thereof, and an inner diameter D2 of the reduced diameter portion 2; When the inner diameter D1 of the inlet portion 3 and the inner diameter D3 of the outlet portion 4 are set, they are formed in a shape that satisfies the relationship D1> D2 <D3. A blow pipe 5 is connected to the inlet 3 side of the Laval tuyere 1, and two pulverized coal blowing lances 6 are passed through the blow pipe 5 at symmetrical positions, and the position of the tip 7 is reduced in diameter. It is attached to the outlet part 4 side slightly from the part 2.
[0021]
The Laval tuyere configured as shown in Fig. 1 above is installed in a large blast furnace (total number of tuyere of 40 tuyere) with an internal volume of 4500m 3 and an output volume of 9000t / d instead of the normal tuyere to inject auxiliary fuel. Carried out. FIG. 2 shows the pulverized powder obtained when the pulverized coal is blown only with the normal tuyere, and the pulverized coal is blown with 60% (24) of all tuyere replaced with the laval tuyere. Relative value of charcoal injection ratio and fluctuation in descent speed of blast furnace interior [relative relative to the fluctuation range of descent speed when pulverized coal injection ratio at normal tuyere is 200kg / pig iron t (= 1) It is a graph which shows the relationship with [value]. Note that the blowing speed before the tuyere at this time is a normal speed, and the subsonic speed of M = 0.4 is calculated in the divergent part on the tip side of the laval tuyere.
[0022]
As can be seen from Fig. 2 above, in the normal tuyere, in the process of pulverized coal injection ratio 150kg / pig iron t to 200kg / pig iron t, the descent speed fluctuation of the blast furnace interior linearly increases, Furnace heat controllability deteriorated. However, when the Laval tuyere according to the present invention is applied to 60% of all tuyere and operated under the same pulverized coal injection conditions, the pulverized coal injection ratio of 150 kg / pig iron t As a result of the stabilization, the pulverized coal ratio is more than about 25% of the maximum pulverized coal injection ratio when only the tuyere is used (at this test stage). The maximum pulverized coal injection ratio was 250 kg / pig iron (t), and the amount could be stably increased.
[0023]
Further, the influence of the tip position of the auxiliary fuel injection lance was investigated using heavy oil and pulverized coal as auxiliary fuel, and the results of the investigation are shown in FIG. Figure 3 shows the relative value of the tip position of the auxiliary fuel injection lance and the wind pressure fluctuation [relative to the standard (= 1) wind pressure fluctuation when the pulverized coal injection ratio at the tuyere is 200 kg / pig iron t FIG. 3 is a graph showing the relationship between the tip position of the auxiliary fuel injection lance and the outside of the furnace when the tip position of the auxiliary fuel injection lance is on the inside of the furnace from the most contracted diameter portion. The fluctuation range of the wind pressure is clearly different. Considering the reason, when the tip of the lance is between the outer diameter of the laval tuyere and the most reduced diameter part, the auxiliary fuel for injection (heavy oil, pulverized coal) is partially The volume of gas passing through this region increases for gasification and combustion, and the unreacted auxiliary fuel interacts with the inner surface of the tuyere and the surrounding gas mass to increase pressure loss and unsteady. This causes a large fluctuation range of the blowing pressure. On the other hand, when the tip of the lance is between the most contracted diameter part of the Laval tuyere and the inside of the furnace, the gasification of the auxiliary fuel and the increase in gas volume due to combustion are caused by the expansion of the flow cross-sectional area of the divergent part. Since the back pressure and its fluctuation are reduced because it is relaxed, it is considered that the fluctuation range of the blowing pressure becomes small. Note that the horizontal axis in FIG. 3 indicates that the most contracted diameter portion of the Laval tuyere is 0 point, the position of the inlet portion is -1, and the position of the outlet portion is 1.
[0024]
In addition, Fig. 4 shows the number of applications of the Laval tuyere configured as shown in Fig. 1 to the large blast furnace from the beginning when 2% of all normal tuyers were replaced and used up to 60%. Ratio and relative value of blast furnace interior descent rate fluctuation (relative value when the fluctuation range of descent rate when the pulverized coal injection ratio at the tuyere is 200 kg / pig iron t is the standard (= 1)) It is a graph which shows the relationship. In addition, when replacing the Laval tuyere, when considering the circumferential balance of the blast furnace (replacement at a substantially symmetrical position with respect to the center of the blast furnace) and when exchanging concentrated in a part of the circumferential direction, Since it became clear that there was a difference in how the effects of the blast furnace operating state appeared, the increase in the pulverized coal injection ratio and the increase in the number of Laval tuyere were carried out in consideration of the circumferential balance of the former blast furnace.
[0025]
As is clear from FIG. 4 above, when the Laval tuyere is replaced by 10% or more of the whole tuyere, it can be seen that the fluctuation range of the descending speed of the blast furnace interior decreases and the descent behavior starts to be improved.
[0026]
According to the method for injecting auxiliary fuel into the blast furnace according to the present invention, pulverized coal injection is performed in the case of pulverized coal as described above by replacing the Laval tuyere with 10% or more of all tuyere. In addition to the function and effect of stably blowing a ratio of 150 kg / pig iron t or more, the following function and effect can be expected.
[0027]
{Circle around (1)} Low-strength coke can be used. That is, when the coke strength is reduced, the generation of powder in the furnace increases, the air permeability deteriorates and the pressure loss in the furnace increases greatly, but by replacing the Laval tuyere with 10% or more of all tuyere, A low-strength coke can be expected because a raceway with a deep extension can be formed in front of the Laval tuyere in the furnace, and the peripheralization of the gas flow can be suppressed.
[0028]
(2): Use of small coke is possible. Using small coke (particle size of 15 mm or less) reduces the average particle size of the blast furnace charge, greatly increases the pressure loss in the furnace, and peripheralizes the gas flow in the furnace. By exchanging more than 50%, it is possible to form a raceway that extends deeply in front of the Laval tuyere and to suppress the peripheralization of the gas flow, so the use of small coke is expected to increase. it can.
[0029]
{Circle around (3)} It is possible to increase the lump ore blending ratio. That is, a lump ore (raw ore), which is one of blast furnace raw ores, has a unique property such as thermal cracking, and cracks are generated in a relatively low temperature region in the furnace to generate a large amount of powder. For this reason, the same problems as in the above (1) and (2) occur. Conventionally, a lump ore with less heat cracking is selected and the lump ore blending ratio (weight ratio of lump ore in the charged ore) is 10 to 20%. However, by replacing the Laval tuyere with 10% or more of all tuyere, it is possible to form a raceway that extends deeply forward in the furnace of the Laval tuyere, and around the gas flow. It can be expected to increase the lump ore blending ratio because it can be expected to suppress crystallization.
[0030]
(4): It is possible to increase the pellet content. Pellets have a spherical shape and therefore have a smaller inclination angle than sintered or massive ores. When multiple pellets are mixed, pellets flow into the center of the furnace, making the gas flow peripheral and softening fusion. Although the pressure loss in the furnace greatly increases due to the W-shaped belt, the raceway has a deep expansion in front of the Laval tuyere in the furnace by replacing 10% or more of the Laval tuyere. And can be expected to increase the blending ratio of pellets because it can be expected to suppress the peripheralization of the gas flow.
(5): Long terrace operation in the bell-less blast furnace becomes possible. In the bell-less blast furnace, the long terrace operation that lengthens the coke terrace (the part where the upper surface of the coke layer is flatly deposited from the furnace wall to the furnace center) has been directed from the viewpoint of controllability of the charge distribution. . However, on the other hand, if the terrace length is increased, the tilt distance of the charge is shortened, the segregation of the charge is weakened, the particle diameter at the center of the furnace is reduced, the central gas flow is lowered, and the gas flow is peripheralized. However, by replacing the Laval tuyere with 10% or more of all tuyere, it is possible to form a raceway that extends deeply in front of the Laval tuyere in the furnace, and suppresses the peripheralization of the gas flow. The long terrace operation in the bell-less blast furnace can be expected from what can be expected.
[0032]
【The invention's effect】
As described above, according to the method for injecting auxiliary fuel into the blast furnace according to the present invention, auxiliary fuel injection into the blast furnace is performed in a larger amount than in the past, for example, in the case of pulverized coal, a pulverized coal injection ratio of 150 kg. / Pile iron t or more, and further, pulverized coal injection ratio 200 kg / pile iron t to 300 kg / pile iron t or more can be stably injected, and the use of expensive coke can be reduced. In addition to these effects, the use of low-strength coke, which has been suppressed by increasing the pressure loss in the furnace, the use of small coke, the increase of the lump ore content, and the increase of the pellet content are expected. it can.
[0033]
In addition, by disposing the tip position of the auxiliary fuel blowing lance closer to the tip of the tuyere than the diameter reducing portion of the Laval tuyere, the hot air passing through the diameter reducing portion is agitated by the tip of the auxiliary fuel blowing lance. Therefore, since the injected pulverized coal is stirred and dispersed in the hot air, the operation is performed by sufficiently dispersing the pulverized coal at the subsonic speed (0.3 <M <0.8) at the divergent part at the tip of the reduced diameter part. It is possible to operate with a low cost of blower equipment such as a blower and a blower pipe.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an outline of a Laval tuyere applied to a method of the present invention.
[Fig.2] The ratio of pulverized coal injection and the blast furnace interior in the case where pulverized coal is blown only with normal tuyere and when pulverized coal is blown instead of Laval tuyere for 60% of all tuyere It is a graph which shows the relationship with the relative value of descent speed fluctuation.
FIG. 3 is a graph showing the relationship between the tip position of an auxiliary fuel injection lance and the relative value of fluctuations in wind pressure.
FIG. 4 is a graph showing the relationship between the ratio of the number of applied Laval tuyere to the blast furnace and the relative value of the descent speed fluctuation of the blast furnace interior.
[Explanation of symbols]
1: Laval tuyere 2: Reduced diameter part 3: Inlet part 4: Outlet part 5: Blow pipe 6: Pulverized coal blowing lance 7: Lance tip

Claims (2)

羽口に接続されたブローパイプの接続部近傍から羽口先端に至る間の管内にブローパイプの内径及び羽口先端の内径より小径の縮径部を有し、且つ、補助燃料吹込みランスの先端位置が前記縮径部より羽口先端側に配設されてなる構成の補助燃料吹込み羽口より補助燃料を吹込む高炉への補助燃料吹込み操業方法であって、前記構成の補助燃料吹込み羽口を、高炉全体の補助燃料吹込み羽口の内の10%以上設けて補助燃料を吹込むことを特徴とする高炉への補助燃料吹込み操業方法。The pipe between the vicinity of the connection portion of the blow pipe connected to the tuyere and the tip of the tuyere has a reduced diameter portion smaller than the inner diameter of the blow pipe and the inner diameter of the tuyere tip, and the auxiliary fuel blowing lance An auxiliary fuel injection operation method into a blast furnace in which auxiliary fuel is injected from an auxiliary fuel injection tuyere having a tip position disposed closer to the tip of the tuyere than the reduced diameter portion, the auxiliary fuel having the above-described configuration A method for injecting auxiliary fuel into a blast furnace, characterized in that an auxiliary fuel is injected by providing at least 10% of the auxiliary fuel injection tuyere of the entire blast furnace. 補助燃料吹込みランスが複数セットされ、そのそれぞれより同種又は異種の補助燃料を吹込む請求項1記載の高炉への補助燃料吹込み操業方法。The method for injecting auxiliary fuel into a blast furnace according to claim 1, wherein a plurality of auxiliary fuel injection lances are set, and the same or different types of auxiliary fuel are injected from each of the auxiliary fuel injection lances.
JP36434199A 1998-12-25 1999-12-22 Auxiliary fuel injection operation method to blast furnace Expired - Lifetime JP3644862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36434199A JP3644862B2 (en) 1998-12-25 1999-12-22 Auxiliary fuel injection operation method to blast furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-370424 1998-12-25
JP37042498 1998-12-25
JP36434199A JP3644862B2 (en) 1998-12-25 1999-12-22 Auxiliary fuel injection operation method to blast furnace

Publications (2)

Publication Number Publication Date
JP2000239719A JP2000239719A (en) 2000-09-05
JP3644862B2 true JP3644862B2 (en) 2005-05-11

Family

ID=26581564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36434199A Expired - Lifetime JP3644862B2 (en) 1998-12-25 1999-12-22 Auxiliary fuel injection operation method to blast furnace

Country Status (1)

Country Link
JP (1) JP3644862B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634887B2 (en) * 2005-08-03 2011-02-16 新日本製鐵株式会社 Blast furnace operation method
JP5923968B2 (en) * 2010-12-27 2016-05-25 Jfeスチール株式会社 Blast furnace operation method
JP6261173B2 (en) * 2013-02-22 2018-01-17 株式会社神戸製鋼所 Blast furnace operation method

Also Published As

Publication number Publication date
JP2000239719A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
JP5087955B2 (en) Melting reduction method
KR101555222B1 (en) Blast furnace operating method and tube bundle-type lance
CN101270873B (en) Method and device for blowing breeze to pure oxygen smelting mobile filling bed smelting furnace
JP3450205B2 (en) How to inject auxiliary fuel into the blast furnace
JP3644862B2 (en) Auxiliary fuel injection operation method to blast furnace
JP3644856B2 (en) Auxiliary fuel injection operation method to blast furnace
JP2006312757A (en) Injection lance for gaseous reducing material, blast furnace and blast furnace operation method
EP2796566A1 (en) Blast furnace operation method
JP3450206B2 (en) Auxiliary fuel injection operation method to blast furnace
JP3492929B2 (en) Pulverized coal injection tuyere structure in blast furnace
TW202332780A (en) Method of blowing gaseous reducing material and tuyere for blast furnace
JP4747662B2 (en) Lance for blowing gas reducing material, blast furnace and blast furnace operating method
KR100803990B1 (en) Tuvere tuyere of melter-gasifier
JPH11315310A (en) Method for blowing pulverized coal into blast furnace
JP3649628B2 (en) Blast furnace air tuyeres
KR200278280Y1 (en) Pulverized coal blow lance
JP2001348605A (en) Lance for blowing synthetic resin material into vertical type metallurgical furnace and method for producing molten iron by using vertical type metallurgical furnace with attendant blowing of synthetic resin material
JP7310858B2 (en) Blast furnace operation method
KR20030005779A (en) A pulverized solid fuel injecting apparatus
JPH1129804A (en) Method for injecting pulverized fine coal in blast furnace
JP2697454B2 (en) Gasification burner for powdered solid fuel and method of using the same
JPH08157916A (en) Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal
KR101629122B1 (en) Blast furnace operation method
JP3523720B2 (en) Scrap melting method
KR100627464B1 (en) Increasing apparatus for combustibiliy of pulverized coal at blast furnace operation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050201

R150 Certificate of patent or registration of utility model

Ref document number: 3644862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

EXPY Cancellation because of completion of term