[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3643538B2 - Position detection system and position detection method - Google Patents

Position detection system and position detection method Download PDF

Info

Publication number
JP3643538B2
JP3643538B2 JP2001030484A JP2001030484A JP3643538B2 JP 3643538 B2 JP3643538 B2 JP 3643538B2 JP 2001030484 A JP2001030484 A JP 2001030484A JP 2001030484 A JP2001030484 A JP 2001030484A JP 3643538 B2 JP3643538 B2 JP 3643538B2
Authority
JP
Japan
Prior art keywords
transmitting
station
receiving
transmission
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001030484A
Other languages
Japanese (ja)
Other versions
JP2002236166A (en
Inventor
雅史 清水
昭範 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001030484A priority Critical patent/JP3643538B2/en
Publication of JP2002236166A publication Critical patent/JP2002236166A/en
Application granted granted Critical
Publication of JP3643538B2 publication Critical patent/JP3643538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Burglar Alarm Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、店舗などで、商品に添着した送信機(無線標識)の位置を検出するシステムに関し、特に、屋内において送信機の周囲の環境の影響を大きく受けることなく高い精度で送信機の位置を検出することができる位置検出システムに係る。
【0002】
【従来の技術】
無線を利用した標識(送信局)は非常に広範囲な分野で使われている。例えば図6に示すような、店舗内にゲート21a,21bを設け、会計をせずに商品22a,22bをゲートに通すと警報が鳴るシステムが、多くの店舗で既に稼働している。このような無線送信局は多くの場合パッシブ型と呼ばれるタイプで(図では23a,23bで示している)、ゲートから放射される電波を送信局で変調して、それをゲートで受信する形式を採用している。
【0003】
すなわち、送信局には電源が無いためメインテナンス性に優れているが、通信距離が数十センチ程度であるため、広域の無線標識としては適していない。一方、広域で使用する標識として、送信局に電源を持たせて通信距離を長くしたものがある。一般に特定省電力に割り当てられた周波数帯を用いて、数メートルから十数メートルの範囲で通信が可能である。
【0004】
このような電波標識は図7に示すように、特定の受信局24あ,24bに対してその通信エリア25a,25b内に23a〜23fで示す送信局(Tag1,〜,Tag6)が存在するかしないかを同定する機能のみを持つ。
【0005】
【発明が解決しようとする課題】
このような送信局と受信局の組み合わせで送信局の位置を同定しようとすると位置推定精度は通信距離すなわち通信エリアサイズ以上になる。位置精度を上げるには送信局の送信出力を低くするか、受信局の感度を低くして、受信局に対するエリアを狭め、受信局数を多くする必要がある。屋外であればGPSを用いた手段も有効であるが、屋内環境ではまだ反射波の影響があるため、GPSのような絶対時間差を用いる手法では誤差が大きくなる。
【0006】
また、振幅情報を用いて位置を推定する場合でも、距離と受信レベルの関係はフリスの公式に合わない場合が多い。フリスの式はよく知られているように“数17”のように表される。
【0007】
【数17】

Figure 0003643538
【0008】
“数17”において、Lは伝播損失、dは距離、λは波長である。
屋内伝播の場合フリスの公式が成り立たない理由は、送受信局が物陰にあったり、反射波の影響で受信レベルに局地的な強弱が発生するためである。本発明は、上述のような従来の課題に鑑み成されたもので、屋内にあっても送信局の位置を高い精度で特定することの可能な位置検出システム及び位置検出方法を実現することを目的としている。
【0009】
【課題を解決するための手段】
本発明によれば、上述の課題は、前記特許請求の範囲に記載した手段によって解決される。すなわち、請求項1の発明は、予め定められた周波数の電波を変調して固有の標識番号を送信する手段を有する少なくとも1つの送信局と、予め定められた周波数の電波を固有の標識番号で変調して送信する手段と、前記送信局又は他の送受信局から送信された電波を受信する手段と、受信された電波の受信電界強度を測定する手段と、他の送受信局の前記受信電界強度と既知の送受信局の位置情報とから距離と受信電界強度の関係を推定する手段と、受信された電波から固有の標識番号を識別する手段とを有し、予め決められた既知の位置に設置される3つ以上の送受信局と、該3つ以上の送受信局と接続され、前記受信電界強度と固有の標識番号のデータを対で管理するデータ管理手段と、該データ管理手段で管理されるデータを用いて前記送信局の位置を計算する位置計算手段とから構成される位置検出システムである。
【0010】
請求項2の発明は、予め定められた周波数の電波を変調して固有の標識番号を送信する手段を有し、位置が未知である少なくとも1つの送信局と、予め定められた周波数の電波を固有の標識番号で変調して送信する手段を有し、位置が既知である3つ以上の送信局と、前記送信された電波を受信する手段と、受信された電波の受信電界強度を測定する手段と、位置が既知である送信局の前記受信電界強度と前記位置が既知である送信局の位置情報とから距離と受信電界強度の関係を推定する手段と、受信された電波から固有の標識番号を識別する手段とを有し、前記位置が既知である送信局のそれぞれに隣接して設置される受信局と、該3つ以上の受信局と接続され、前記受信電界強度と固有の標識番号のデータを対で管理するデータ管理手段と、該データ管理手段で管理されるデータを用いて前記送信局の位置を計算する位置計算手段とから構成される位置検出システム。
請求項の発明は、請求項1記載の位置検出システムにおいて、前記前記位置計算手段は、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)、送受信局jの既知の位置情報(uj,vj)を用いて、“数1”に示す関係式から、S1、S2を決定し、更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2と、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数2”に示す関係式より、送信局kの位置情報(xk,yk)を決定するように構成したものである。
【0011】
請求項の発明は、請求項1記載の位置検出システムにおいて、前記位置計算手段は、送受信局i(i=1〜n:n≧3)から送信された電波に対応する送受信局j(j=1〜n:n≧3)で受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)、送受信局jの既知の位置情報(uj,vj)及び送受信局jに対する環境係数krjを用いて、“数3”に示す関係式から、前記S1、S2及びKrjを決定し、更に、前記送信局k(k=1〜n:n≧1)から送信された電波に対応し、前記3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2と3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数4”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定するように構成したものである。
【0012】
請求項の発明は、請求項1記載の位置検出システムにおいて、前記位置計算手段は、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(uj,vj)及び送受信局jに対する環境係数Krjを用いて、“数5”に示す関係式から、S1、S2及びKrjを決定し、更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、前記3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2及び送信局kに対する環境係数Ktjと、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数6”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定するように構成したものである。
【0013】
請求項の発明は、請求項2又は請求項3に記載の位置検出システムにおいて、前記位置計算手段は、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekjが測定不能である場合に、該測定不能の送受信局m(m=1〜n:n≧3)と前記送信局kとの間の距離dkmが、前記送受信局m以外の送受信局jと前記送信局kとの間の距離dkjに対してdkj<dkmの関係にあることを拘束条件として加えて、“数7”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定するように構成したものである。
【0014】
請求項の発明は、請求項4記載の位置検出システムにおいて、前記位置計算手段は、送信局k(k=1〜n:n≧1)から受信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekjが測定不能である場合に、該測定不能の送受信局m(m=1〜n:n≧3)と前記送信局kとの間の距離dkmが、前記送受信局m以外の送受信局jと前記送信局kとの間の距離dkjに対して、dkj<dkmの関係にあることを拘束条件として加えて、“数8”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定するように構成したものである。
【0015】
請求項の発明は、請求項1記載の位置検出システムにおいて、前記位置計算手段は、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)送受信局jの既知の位置情報(uj,vj)及び前記送受信局jに対する環境係数Krjを用いて、“数9”に示す関係式から、S1、S2及びKrjを決定し、更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2及びKrjにより、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数10”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定するにあたって、“数11”で定義される前記送信局iと前記送受信局jとの距離mdijを用いて、“数12”に示す評価関数に対して、hi/mdijなる重み付けを行った上で、前記送信局kの位置情報(xk,yk)を決定するように構成したものである。
【0016】
請求項の発明は、請求項1記載の位置検出システムにおいて、前記位置計算手段は、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)、前記送受信局jの既知の位置情報(uj,vj)及び前記送受信局jに対する環境係数Krjを用いて、“数13”に示す関係式から、S1、S2及びKrjを決定し、更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2及びKrjにより、前記送信局に対する環境係数Ktjと、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数14”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定するにあたって、“数15”で定義される送信局iと送受信局jとの距離mdijを用いて、“数16”に示す評価関数に対して、hi/mdijなる重み付けを行った上で、前記送信局kの位置情報(xk,yk)を決定するように構成したものである。
【0017】
請求項10の発明は、請求項1から9のいずれか1項に記載の位置検出システムにおいて、前記送信局が受信機能を有する送受信局である場合のものである。
この請求項10の発明は、送信局(TAG)の代わりに例えば携帯可能な電話機などの送受信機を用いる場合のものである。この発明によれば、このような送受信機を所持する人の位置を検出することができる。
本発明では、屋内環境の送信局の位置を精度良く求めるため、上述の請求項1、請求項3、請求項4の原理を用いる。そして、位置を求めるための情報としては振幅値を使い、屋内の伝播状況を実際に測定しながらフリスの公式を補正して用いる。本発明では、これらの送受信局の位置に置ける不確実性を持った伝播ロスのファクタ−を環境係数として予め見込んでおき、既知のファクタ−からこれらの未知数を推定する。請求項3は、送信局に対する環境係数による補正を行うものであり、請求項4は受信局の環境係数の補正を行うものである。
【0018】
本発明に係る位置検出方法は、少なくとも1つの送信局が、予め定められた周波数の電波を変調して固有の標識番号を送信し、予め決められた既知の位置に設置される3つ以上の送受信局が、予め定められた周波数の電波を固有の標識番号で変調して送信するステップと、前記送受信局が前記送信局或いは他の送受信局から送信された電波を受信するステップと、前記送受信局が受信された電波の受信電界強度を測定するステップと、前記送受信局が他の送受信局の前記受信電界強度と既知の送受信局の位置情報とから距離と受信電界強度の関係を推定するステップと、前記送受信局が受信された電波から固有の標識番号を識別するステップと、前記送受信局と接続されたデータ管理手段が、前記受信電界強度と固有の標識番号のデータを対で管理するステップと、位置計算手段が、該データ管理手段で管理されるデータを用いて前記送信局の位置を計算する位置計算ステップと、を順に含む。
前記位置計算ステップは、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)、送受信局jの既知の位置情報(uj,vj)を用いて、“数1”に示す関係式から、S1、S2を決定し、更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2と、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数2”に示す関係式より、送信局kの位置情報(xk,yk)を決定してもよい。
前記位置計算ステップは、送受信局i(i=1〜n:n≧3)から送信された電波に対応する送受信局j(j=1〜n:n≧3)で受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)、送受信局jの既知の位置情報(uj,vj)及び送受信局jに対する環境係数krjを用いて、“数3”に示す関係式から、前記S1、S2及びKrjを決定し、更に、前記送信局k(k=1〜n:n≧1)から送信された電波に対応し、前記3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2と3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数4”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定してもよい。
前記位置計算ステップは、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(uj,vj)及び送受信局jに対する環境係数Krjを用いて、“数5”に示す関係式から、S1、S2及びKrjを決定し、更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、前記3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2及び送信局kに対する環境係数Ktjと、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数6”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定してもよい。
前記位置計算ステップは、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekjが測定不能である場合に、該測定不能の送受信局m(m=1〜n:n≧3)と前記送信局kとの間の距離dkmが、前記送受信局m以外の送受信局jと前記送信局kとの間の距離dkjに対してdkj<dkmの関係にあることを拘束条件として加えて、“数7”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定してもよい。
前記位置計算ステップは、送信局k(k=1〜n:n≧1)から受信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekjが測定不能である場合に、該測定不能の送受信局m(m=1〜n:n≧3)と前記送信局kとの間の距離dkmが、前記送受信局m以外の送受信局jと前記送信局kとの間の距離dkjに対して、dkj<dkmの関係にあることを拘束条件として加えて、“数8”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定してもよい。
前記位置計算ステップは、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)送受信局jの既知の位置情報(uj,vj)及び前記送受信局jに対する環境係数Krjを用いて、“数9”に示す関係式から、S1、S2及びKrjを決定し、更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2及びKrjにより、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数10”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定するにあたって、“数11”で定義される前記送信局iと前記送受信局jとの距離mdijを用いて、“数12”に示す評価関数に対して、hi/mdijなる重み付けを行った上で、前記送信局kの位置情報(xk,yk)を決定してもよい。
前記位置計算ステップは、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)、前記送受信局jの既知の位置情報(uj,vj)及び前記送受信局jに対する環境係数Krjを用いて、“数13”に示す関係式から、S1、S2及びKrjを決定し、更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2及びKrjにより、前記送信局に対する環境係数Ktjと、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数14”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定するにあたって、“数15”で定義される送信局iと送受信局jとの距離mdijを用いて、“数16”に示す評価関数に対して、hi/mdijなる重み付けを行った上で、前記送信局kの位置情報(xk,yk)を決定してもよい。
【0019】
【発明の実施の形態】
(1)フリスの公式の補正アルゴリズム
図1に本発明の実施の形態の例の構成を示す。T1〜T8は送信局、R1〜R4は受信局、11はTag位置計算機、12はサーバーである。送信局の内T5〜T8は受信局に取り付けてある。受信局の位置は既知であり、j番目の受信局の場所を(uj,vj)とする。送信局の位置は未知数でありi番目の送信局の位置を(xi,yi)とする。受信局jで受信される送信局iのレベルをeijとする。受信局jから送信局iまでの距離はdijとする。距離dは“数18”で与えられる。
【0020】
【数18】
Figure 0003643538
【0021】
次に、受信局jの環境係数Krjを定義する。この係数は受信局が理想状態に置かれたときから考えてどれだけ感度が変化するかという指標である。同様に送信局iに対しても環境係数Ktiを定義する。
【0022】
先ず、受信局の既知の位置情報を用いてフリスの式の補正を試みる。
本発明では受信局間の実測値を用いて距離と受信レベルの関係を推定する。基本的に距離と受信レベルは対数関係にあるとし、“数19”を仮定する。
【0023】
【数19】
Figure 0003643538
【0024】
“数19”において、S1,S2は補正係数である。
この場合受信レベルeはそれぞれの受信局に取り付けたT5〜T8の受信レベルである。図1の場合は受信局が4局あるので“数19”は連立方程式となり、未知数はS1,S2、Kr1〜Kr4の6個であるので、これらの未知数を全て解くことができる。誤差を最小にするこれら未知数の解は、“数20”で示される評価関数qを最小化することによって求められる。
【0025】
【数20】
Figure 0003643538
【0026】
“数20”において、rnは受信局の数であり、図1の場合は4である。分かりやすくするために未知数には^印をつけた。式“数20”を解くには様々な方法がある。ここでは詳しく述べないが例えば、qをそれぞれの変数で偏微分して、それぞれが0になる値をニュートン法等を用いて解くことができる。その他、シンプレックス法、最急降下法、ニュートラルネットワークを用いる方法等がある。これにより、“数19”の未知数である受信局の環境係数Krjと補正係数S1、S2を求めることができる。
【0027】
次に、送信局の環境係数の求め方について説明する。送信局の送信レベルは一定であるが、それぞれの場所によって環境係数が異なり、受信状態が変化する。そこで距離と受信レベルの式を、“数20”を使って求めた受信局の環境係数Krjと補正係数S1,S2を用いて“数21”のように考える。
【0028】
【数21】
Figure 0003643538
【0029】
“数21”において、mdは受信レベルによって導かれる距離である。Ktiは送信局iの環境係数である。受信局の場合と同様にして、送信局iの位置は評価関数hiを最小化することで求めることができる。
“数21”の場合と同様にわかりやすくするために、未知数には^印をつけた。以上述べた方法で送信局の位置を推定することができる。
【0030】
【数22】
Figure 0003643538
【0031】
図1において、受信局R1〜R4で受信したデータを共有サーバーに記録し、位置計算機によってこれを処理して求めた送信局の位置をサーバーに記録しておく。ある送信局の位置を知るには、利用者はLANを通じてサーバーに位置を知りたい送信局の番号を問い合わせすれば、該当する送信局の位置情報を入手できる。
【0032】
送信局が受信局に対して、自由空間ロスで考えると十分通信可能な領域にあっても、見通しの悪い位置にあった場合は受信局でその信号を受信できない場合がある。このような場合は受信していないため、受信レベルが未知となり、通常は位置推定には使えない。
【0033】
しかしながら、受信できないということは他の受信局よりも遠いことを示しているので、位置推定においては情報は持っていると考えられる。本発明では“数22”を解く過程で、このような不可視情報を、拘束条件の中に入れて有効に活用することができる。例えば、送信局2の信号を受信局1、2、4では受信できたが受信局3では受信できなかった場合は、
d21<d23
d22<d23
d24<d23
の拘束条件を付加することによって、不可視データを捨てることなく有効に位置推定に用いることができる。
【0034】
(2)位置の管理
送信局の位置を知ることが目的であるので、送信局が静止しているときには電波を発信する必要はない。更に、電波を発生しなければ電池の寿命が長くなるだけではなく、ログファイルも小さくなるため、システムとしては非常に好都合である。
【0035】
先に、(1)で述べたアルゴリズムによって各送信局の位置を記憶しておき、物理的に移動したときだけ電波を発信するスイッチを送信局に付加して、移動した送信局のみの、すなわち電波を発信した送信局のみの位置を再計算してアップデートする。
【0036】
これは、例えば、図2のような構成で、倒立振り子14を用いた加速度センサに保持回路15を付加した振動センサ13を送信局16の発信器につけることによって実現できる。保持回路15は、電極14a,14bが接触したとき(あるいは離れたとき)のみ発信器の電源17を数分間ONにする機能を持つ。
【0037】
これにより送信局16が動いたときのみ電波を発信するようにできる。また、加速度センサのON/OFFにかかわらず保持回路の中に非常に長周期の発信間隔の設定機能を同時に持たせることにより、発信局のメインテナンスに有効に働く。この時、発信周期は完全に一定ではなく、周期の数%ほどの幅でランダムに変化させることによって、送信局同士の信号の衝突を回避する。
【0038】
これまでの説明では、位置を検出する対象を送信局(TAG)としているが、この送信局は、送信のみの機能を有するもののみではなく、例えば、携帯可能な電話機などのように受信機能を有する送受信機の送信機能を利用するものであっても差し支えないことは言うまでもない。このことは、以降の説明においてもまったく同様である。
【0039】
(3)本発明の実施フローチャート
図3に本発明のフローチャートを示す。本発明は複数の送信局、複数の受信局、サーバー、位置計算機、利用者端末から構成されており、これらはLANによって繋がれている。
【0040】
(a)送信局の機能
送信局は2種類用意し、1種類は通常の送信局すなわち加速度を感知して伝播を発生する機能と長周期発生機能を持った一般送信局、もう1種類は受信局に設置する加速度センサが付加されていない短周期発生機能を持った送信局である。
【0041】
加速度センサ付きの一般送信局は加速度が加わったとき及び、ほぼ一定の長周期の間隔で信号を送信する。受信局設置用送信局は、短周期で信号を発生する。
【0042】
(b)受信局の機能
各受信局は、送信局から送信された信号の受信レベルとID番号をタイムスタンプと共にサーバーに送信し、サーバーはこれを記録する。(タイムスタンプはサーバーで生成しても良い)
【0043】
(c)位置計算機の機能
先ず位置計算機はサーバーに蓄積されたデータのタイムスタンプを見て、一定時間経過したかどうかを調べる。これは送信局が間欠動作をするため、信号の重複によって受信できない場合があるため、一定のサンプル時間を定義することによって見落としを防止するためである。
【0044】
前回のデータに対して一定のサンプル時間が経過している場合には、送信局の内、受信局に設置された送信局のデータを抽出し、“数20”を最小にする環境係数Ktおよび補正係数S1,S2を導出する。次に、それ以外の送信局のデータに対して“数22”を解いてそれぞれの送信局の位置を算出し、これをサーバーに記録する。
【0045】
算出した位置を前回の結果と比較し、一定値以上位置が変化したものと、どの受信局でも受信できなくなったものとを抽出する。次に、抽出された送信局のデータをサーバーに記録した後、関係がある利用者端末に警告メッセージを送信する。受信局データを記録するサーバー内のデータ構造は、例えば、“表1”のようにする。
【0046】
【表1】
Figure 0003643538
【0047】
位置計算機で計算した結果を保存するデータ構造は“表2”のようにする。
【0048】
【表2】
Figure 0003643538
【0049】
環境係数は送信局がおかれている環境に依存するため、実際に送信局を探すときには情報として有用である。すなわち、環境係数が大きいと受信局との見通しが悪いことを示すため、送信局は物陰にある場合が多い。逆に環境係数が小さい場合は見通しが良い場所にあることになる。これらの情報を警報に付加して送れば送信局を見つけだすときに非常に有用である。
【0050】
(d)利用者端末
利用者端末は2種類の動作をする。一つは上記の警報メッセージを受信する機能である。もう一つは、検索機能である。利用者がある送信機の情報を得たいときに、その送信局のIDを利用者端末に入力する。入力端末はこのIDをサーバーに送信し、該当する送信局のIDについて保存されている履歴、すなわちタイムスタンプ、位置情報、送信局の環境係数を検索し、端末に表示する。
【0051】
利用者は、タイムスタンプで記述された時間の位置情報、これらの履歴を知ることができる。さらに、送信局の環境係数を見ることによって、その送信局が見通しの良い場所にあるか否かを知ることができる。また、一定時間の履歴を見ることによっていつ加速度を加えられたかも知ることができる。
【0052】
【発明の効果】
以上述べたように、本発明を用いることにより、無線送信局と受信機を用いて従来にない高精度な送信局の位置推定が可能となる。いくつかの実験例を示しその効果を説明する。図4、5は本発明を用いて送信局の位置を推定した結果である。受信局は図中Pos1〜Pos4で示した4か所に設定してある。
【0053】
この受信局を用いて2か所の送信局の位置を推定した結果である。図4では送信局6を、図5では送信局15の位置を計算している。○印が実際に送信局がある場所、+印が本発明で推定された位置である。実際に、送信局を探すことを想定して、“数22”の評価関数hを等高線で示してある。送信局6の推定誤差はX方向に0.4、Y方向に0.9で長さにすると1.0になる。送信局15はX方向に0.9、Y方向に−0.7で、長さは1.14となった。
【0054】
従来の技術で述べたように、従来のシステムではある受信局に対してその通信範囲内の送信局の有無のみを知る機能しか有していないことから、推定位置は最も受信レベルが大きい受信局の位置となる。したがって、図4では送信局の推定位置はPos2の位置になり誤差は、X方向に−0.6、Y方向に−5.0で、長さは7.8となる。
【0055】
図5ではPos4の位置となりX方向に3.0、Y方向に−0.5で、長さは7.8となる。図5ではPos4の位置となりX方向に3.0、Y方向に3。0で、長さは2.4となる。本発明の推定結果と比較すると送信局位置の推定精度は、送信局6の場合は役8倍、送信局15の場合は約4倍向上することになる。
【0056】
さらに、本発明においては、環境係数を計算できる。実際に、送信局6は見通しの良い場所に、送信局15は見通しの無い(スチール製の箱の中)に設置したが、環境係数はそれぞれ−2.99と16.01となり、実際の設置環境と合致しているため、送信局を探すひとつの有効な情報になっていることがわかる。
【0057】
以上説明したように、本発明によれば、送信局の位置推定精度が大幅に向上し、さらに設置環境を特定する手掛かりを提供し、送信局の発見を容易にできる利点がある。
【図面の簡単な説明】
【図1】本発明の実施の形態の例の構成を示す図である。
【図2】間欠発信タグの例を示す図である。
【図3】本発明の実施の形態の例の制御を示す流れ図である。
【図4】本発明の位置推定結果の第1の例を示す図である。
【図5】本発明の位置推定結果の第2の例を示す図である。
【図6】従来のゲート式パッシブタグの例を示す図である。
【図7】従来のアクティブ型タグの例を示す図である。
【符号の説明】
11 Tag位置計算機
12 サーバー
13 振動センサ
14 倒立振り子
14a,14b 電極
15 保持回路
16 送信局
17 電源
T1〜T8 送信局
R1〜R4 受信局[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a system for detecting the position of a transmitter (wireless sign) attached to a product in a store or the like, and in particular, the position of the transmitter with high accuracy without being greatly affected by the environment around the transmitter indoors. The present invention relates to a position detection system capable of detecting the above.
[0002]
[Prior art]
Wireless signs (transmitting stations) are used in a very wide range of fields. For example, as shown in FIG. 6, a system in which gates 21a and 21b are provided in a store and an alarm sounds when goods 22a and 22b are passed through the gate without accounting is already in operation in many stores. Such a radio transmission station is often a type called a passive type (indicated by 23a and 23b in the figure), and the radio wave radiated from the gate is modulated by the transmission station and received by the gate. Adopted.
[0003]
That is, although the transmitting station has no power source, it is excellent in maintainability, but since the communication distance is about several tens of centimeters, it is not suitable as a wide area radio beacon. On the other hand, as a sign used in a wide area, there is one in which a transmission station is provided with a power source to increase a communication distance. In general, communication is possible within a range of several meters to several tens of meters using a frequency band assigned to specific power saving.
[0004]
As shown in FIG. 7, such radio wave labels indicate whether there are transmitting stations (Tag 1 to Tag 6) indicated by 23 a to 23 f in the communication areas 25 a and 25 b for the specific receiving stations 24 and 24 b. It has only the function to identify whether or not to do.
[0005]
[Problems to be solved by the invention]
When trying to identify the position of the transmitting station by such a combination of the transmitting station and the receiving station, the position estimation accuracy becomes equal to or larger than the communication distance, that is, the communication area size. In order to increase the position accuracy, it is necessary to reduce the transmission output of the transmitting station or reduce the sensitivity of the receiving station, narrow the area for the receiving station, and increase the number of receiving stations. A means using GPS is effective if it is outdoors, but in an indoor environment, there is still an influence of a reflected wave. Therefore, a method using an absolute time difference such as GPS has a large error.
[0006]
Even when the position is estimated using amplitude information, the relationship between the distance and the reception level often does not match the Friis formula. As is well known, Fris's equation is expressed as "Equation 17".
[0007]
[Expression 17]
Figure 0003643538
[0008]
  In “Equation 17”, L is a propagation loss, d is a distance, and λ is a wavelength.
The reason why Fris's formula does not hold in the case of indoor propagation is that the transmitting / receiving station is in the shadow, or the local level of the reception level is generated due to the influence of the reflected wave. The present invention has been made in view of the above-described conventional problems, and a position detection system capable of specifying the position of a transmitting station with high accuracy even indoors.And position detection methodIt aims to realize.
[0009]
[Means for Solving the Problems]
  According to the present invention, the above-mentioned problems are solved by the means described in the claims. In other words, the invention of claim 1 is characterized in that at least one transmitting station having means for modulating a radio wave of a predetermined frequency and transmitting a unique tag number and a radio wave of a predetermined frequency with a unique tag number. Means for modulating and transmitting; andFrom transmitting station or other transmitting / receiving stationMeans for receiving the transmitted radio wave, means for measuring the received electric field strength of the received radio wave,Means for estimating the relationship between the distance and the received electric field strength from the received electric field strength of another transmitting / receiving station and the position information of the known transmitting / receiving station;Means for identifying a unique sign number from the received radio wave, and connected to the three or more transmitting / receiving stations at three or more transmitting / receiving stations installed in a predetermined known position. A position detection system comprising: data management means for managing data of electric field strength and unique label number in pairs; and position calculation means for calculating the position of the transmitting station using data managed by the data management means It is.
[0010]
  The invention of claim 2It has means for modulating a radio wave of a predetermined frequency and transmitting a unique tag number, and modulates at least one transmitting station whose position is unknown and a radio wave of a predetermined frequency with a unique tag number. Three or more transmitting stations having a known position, means for receiving the transmitted radio wave, means for measuring the received electric field strength of the received radio wave, and a known position Means for estimating the relationship between the distance and the received electric field intensity from the received electric field strength of a certain transmitting station and the position information of the transmitting station whose position is known; and means for identifying a unique label number from the received radio wave A receiving station installed adjacent to each of the transmitting stations whose positions are known, and connected to the three or more receiving stations, and manages the received electric field strength and the data of the unique identification number in pairs Data management means and the data management The position detection system composed of a position calculation means for calculating the position of the transmitting station using the data managed by the stage.
  Claim3The position detection system according to claim 1,SaidThe position calculating means receives the received electric field intensity (eij) at the transmitting / receiving station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting / receiving station i (i = 1 to n: n ≧ 3). ), Using the known position information (ui, vi) of the transmitting / receiving station i and the known position information (uj, vj) of the transmitting / receiving station j, S1 and S2 are determined from the relational expression shown in “Equation 1”. Further, the received electric field strength received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1). ekj and the determined S1 and S2 and the known location information (uj, vj) of the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3), The position information (xk, yk) of the transmitting station k is determined from the relational expression shown.
[0011]
  Claim4The position detection system according to claim 1,SaidThe position calculation means receives and transmits the received electric field strength (eij) at the transmitting / receiving station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting / receiving station i (i = 1 to n: n ≧ 3). Using the known positional information (ui, vi) of the station i, the known positional information (uj, vj) of the transmission / reception station j, and the environment coefficient krj for the transmission / reception station j, from the relational expression shown in “Expression 3”, the S1 , S2 and Krj, and further correspond to the radio waves transmitted from the transmitting station k (k = 1 to n: n ≧ 1), and the three or more transmitting / receiving stations j (j = 1 to n: n). Received electric field strength ekj received at ≧ 3), and known position information (uj, vj) of the determined S1, S2 and three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3). And the positional information (xk, yk) of the transmitting station k is determined from the relational expression shown in “Formula 4”. It is intended.
[0012]
  Claim5The position detection system according to claim 1,SaidThe position calculating means receives the received electric field intensity (eij) at the transmission / reception station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmission / reception station i (i = 1 to n: n ≧ 3). S1, S2 and Krj are determined from the relational expression shown in “Formula 5” using the known position information (uj, vj) of the transmitting / receiving station i and the environment coefficient Krj for the transmitting / receiving station j, and further, the transmitting station k Corresponding to radio waves transmitted from (k = 1 to n: n ≧ 1), the received electric field strength ekj received by the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3), and Using the determined environmental factors Ktj for S1, S2 and the transmitting station k and the known position information (uj, vj) of the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3), “ What is configured to determine the position information (xk, yk) of the transmitting station k from the relational expression shown in Equation 6 ″ A.
[0013]
  Claim6In the position detection system according to claim 2 or 3,SaidThe position calculation means corresponds to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1) and is received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3). When the received electric field strength ekj is not measurable, the distance dkm between the unmeasurable transmitting / receiving station m (m = 1 to n: n ≧ 3) and the transmitting station k is a transmission / reception other than the transmitting / receiving station m. A constraint condition is that dkj <dkm with respect to the distance dkj between the station j and the transmitting station k, and the positional information (xk) of the transmitting station k is obtained from the relational expression shown in “Expression 7”. , Yk) is determined.
[0014]
  Claim7The position detection system according to claim 4,SaidThe position calculation means corresponds to the radio wave received from the transmitting station k (k = 1 to n: n ≧ 1) and is received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3). When the received electric field strength ekj is not measurable, the distance dkm between the unmeasurable transmitting / receiving station m (m = 1 to n: n ≧ 3) and the transmitting station k is a transmission / reception other than the transmitting / receiving station m. With respect to the distance dkj between the station j and the transmitting station k, a positional condition of dkj <dkm is added as a constraint condition, and the positional information of the transmitting station k (from the relational expression shown in “Equation 8”) ( xk, yk) is determined.
[0015]
  Claim8The position detection system according to claim 1,SaidThe position calculating means receives the received electric field intensity (eij) at the transmission / reception station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmission / reception station i (i = 1 to n: n ≧ 3). , The known position information (ui, vi) of the transmitting / receiving station i, the known position information (uj, vj) of the transmitting / receiving station j, and the environmental coefficient Krj for the transmitting / receiving station j, S1, S2 and Krj are determined, and more than three transmitting / receiving stations j (j = 1 to n: n ≧) corresponding to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1). 3) The received electric field strength ekj received in 3) and the determined S1, S2 and Krj, the known position information (uj, vj) is used to determine the position information (xk, yk) of the transmitting station k from the relational expression shown in “Equation 10”. In performing the calculation, the distance mdij between the transmitting station i and the transmitting / receiving station j defined by “Equation 11” is used, and the evaluation function shown in “Equation 12” is weighted by hi / mdij. The position information (xk, yk) of the transmitting station k is determined.
[0016]
  Claim9The position detection system according to claim 1,SaidThe position calculating means receives the received electric field intensity (eij) at the transmission / reception station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmission / reception station i (i = 1 to n: n ≧ 3). Using the known position information (ui, vi) of the transmission / reception station i, the known position information (uj, vj) of the transmission / reception station j, and the environment coefficient Krj for the transmission / reception station j, the relational expression shown in “Expression 13” , S1, S2 and Krj are determined, and three or more transmission / reception stations j (j = 1 to n :) correspond to the radio wave transmitted from the transmission station k (k = 1 to n: n ≧ 1). Based on the received electric field strength ekj received at n ≧ 3) and the determined S1, S2 and Krj, the environmental coefficient Ktj for the transmitting station and the three or more transmitting / receiving stations j (j = 1 to n: n) Using the known position information (uj, vj) of ≧ 3) In determining the position information (xk, yk) of the transmitting station k, the distance mdj between the transmitting station i and the transmitting / receiving station j defined by “Equation 15” is used to evaluate the evaluation function shown in “Equation 16”. Thus, the position information (xk, yk) of the transmitting station k is determined after performing the weighting of hi / mdij.
[0017]
  Claim10The invention of claim 1To 9In the position detection system according to any one of the above,SaidThis is a case where the transmitting station is a transmitting / receiving station having a receiving function.
  This claim10In the invention, a transmitter / receiver such as a portable telephone is used instead of the transmitting station (TAG). According to the present invention, it is possible to detect the position of a person carrying such a transceiver.
In the present invention, in order to obtain the position of the transmitting station in the indoor environment with high accuracy, the above-described principles of claims 1, 3, and 4 are used. The amplitude value is used as information for determining the position, and the Friis formula is corrected and used while actually measuring the indoor propagation situation. In the present invention, a factor of propagation loss having uncertainty at the position of these transmitting and receiving stations is estimated in advance as an environmental coefficient, and these unknowns are estimated from known factors. A third aspect of the present invention corrects the environment coefficient of the transmitting station by using an environmental coefficient, and a fourth aspect of the present invention corrects the environmental coefficient of the receiving station.
[0018]
  In the position detection method according to the present invention, at least one transmitting station modulates a radio wave having a predetermined frequency and transmits a unique marker number, and is installed at three or more predetermined positions. A step in which a transmitting / receiving station modulates and transmits a radio wave of a predetermined frequency with a unique identification number; a step in which the transmitting / receiving station receives a radio wave transmitted from the transmitting station or another transmitting / receiving station; A step of measuring a received electric field strength of a radio wave received by a station, and a step of estimating a relationship between a distance and a received electric field strength from the received electric field strength of another transmitting / receiving station and position information of a known transmitting / receiving station And a step of identifying a unique label number from the radio waves received by the transmitting / receiving station, and a data management means connected to the transmitting / receiving station pairing the received electric field strength with the data of the unique label number. A step of managing, position calculation means includes a position calculating step of calculating a position of the transmitting station using the data managed by the data management means, in this order.
In the position calculating step, the received electric field intensity (eij) at the transmitting / receiving station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting / receiving station i (i = 1 to n: n ≧ 3). ), Using the known position information (ui, vi) of the transmitting / receiving station i and the known position information (uj, vj) of the transmitting / receiving station j, S1 and S2 are determined from the relational expression shown in “Equation 1”. Further, the received electric field strength received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1). ekj and the determined S1 and S2 and the known location information (uj, vj) of the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3), The positional information (xk, yk) of the transmitting station k may be determined from the relational expression shown.
The position calculation step includes a reception electric field strength (eij) at a transmission / reception station j (j = 1 to n: n ≧ 3) corresponding to a radio wave transmitted from the transmission / reception station i (i = 1 to n: n ≧ 3), Using the known location information (ui, vi) of the transmission / reception station i, the known location information (uj, vj) of the transmission / reception station j, and the environment coefficient krj for the transmission / reception station j, S1, S2 and Krj are determined, and further correspond to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1), and the three or more transmitting / receiving stations j (j = 1 to n: received electric field strength ekj received at n ≧ 3) and known position information (uj, vj) of the determined S1, S2 and three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) The position information (xk, yk) of the transmitting station k may be determined from the relational expression shown in “Equation 4” using .
In the position calculation step, the received electric field intensity (eij) at the transmitting / receiving station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting / receiving station i (i = 1 to n: n ≧ 3). ), S1, S2 and Krj are determined from the relational expression shown in "Formula 5" using the known position information (uj, vj) of the transmission / reception station i and the environmental coefficient Krj for the transmission / reception station j. received electric field strength ekj received by the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) corresponding to radio waves transmitted from k (k = 1 to n: n ≧ 1), and , Using the determined environmental factors Ktj for S1, S2 and the transmitting station k and the known position information (uj, vj) of the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3), The positional information (xk, yk) of the transmitting station k may be determined from the relational expression shown in “Formula 6”.
The position calculation step corresponds to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1) and is received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3). When the received electric field strength ekj is unmeasurable, the distance dkm between the unmeasurable transmitting / receiving station m (m = 1 to n: n ≧ 3) and the transmitting station k is other than the transmitting / receiving station m. As a constraint condition, a relation dkj <dkm with respect to the distance dkj between the transmission / reception station j and the transmission station k is added as a constraint, and the positional information ( xk, yk) may be determined.
The position calculating step corresponds to the radio wave received from the transmitting station k (k = 1 to n: n ≧ 1) and is received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3). When the received electric field strength ekj is unmeasurable, the distance dkm between the unmeasurable transmitting / receiving station m (m = 1 to n: n ≧ 3) and the transmitting station k is other than the transmitting / receiving station m. With respect to the distance dkj between the transmission / reception station j and the transmission station k, a positional condition of dkj <dkm is added as a constraint, and the positional information of the transmission station k is obtained from the relational expression shown in “Equation 8”. (Xk, yk) may be determined.
In the position calculation step, the received electric field intensity (eij) at the transmitting / receiving station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting / receiving station i (i = 1 to n: n ≧ 3). ), The known position information (ui, vi) of the transmitting / receiving station i, and the known position information (uj, vj) of the transmitting / receiving station j and the environment coefficient Krj for the transmitting / receiving station j, , S1, S2 and Krj are determined, and three or more transmission / reception stations j (j = 1 to n: n) corresponding to radio waves transmitted from the transmission station k (k = 1 to n: n ≧ 1) are determined. Based on the received electric field strength ekj received at ≧ 3) and the determined S1, S2 and Krj, the known position information (uj) of the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) , Vj) and the positional information (xk, yk) of the transmitting station k from the relational expression shown in “Equation 10”. , The evaluation function shown in “Equation 12” was weighted with hi / mdij using the distance mdij between the transmitting station i and the transmitting / receiving station j defined by “Equation 11”. The position information (xk, yk) of the transmitting station k may be determined above.
In the position calculation step, the received electric field intensity (eij) at the transmitting / receiving station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting / receiving station i (i = 1 to n: n ≧ 3). ), The known position information (ui, vi) of the transmission / reception station i, the known position information (uj, vj) of the transmission / reception station j, and the environment coefficient Krj for the transmission / reception station j. From the equation, S1, S2 and Krj are determined, and more than three transmitting / receiving stations j (j = 1 to n) corresponding to radio waves transmitted from the transmitting station k (k = 1 to n: n ≧ 1). : The received electric field strength ekj received at n ≧ 3) and the determined S1, S2 and Krj, the environmental coefficient Ktj for the transmitting station and the three or more transmitting / receiving stations j (j = 1 to n: Using the known position information (uj, vj) where n ≧ 3), When determining the position information (xk, yk) of the transmitting station k from the equation, the evaluation shown in “Expression 16” is performed using the distance mdj between the transmitting station i and the transmitting / receiving station j defined by “Expression 15”. The position information (xk, yk) of the transmitting station k may be determined after weighting hi / mdij on the function.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
(1) Friis's official correction algorithm
FIG. 1 shows the configuration of an example of an embodiment of the present invention. T1 to T8 are transmitting stations, R1 to R4 are receiving stations, 11 is a Tag position calculator, and 12 is a server. Among the transmitting stations, T5 to T8 are attached to the receiving station. The position of the receiving station is known, and the location of the jth receiving station is (uj, vj). The position of the transmitting station is unknown, and the position of the i-th transmitting station is (xi, yi). Let eij be the level of the transmitting station i received by the receiving station j. The distance from the receiving station j to the transmitting station i is assumed to be dij. The distance d is given by “Equation 18”.
[0020]
[Expression 18]
Figure 0003643538
[0021]
Next, the environmental coefficient Krj of the receiving station j is defined. This coefficient is an index of how much the sensitivity changes when the receiving station is placed in an ideal state. Similarly, an environmental coefficient Kti is defined for the transmitting station i.
[0022]
First, the Friis equation is corrected using the known position information of the receiving station.
In the present invention, the relationship between the distance and the reception level is estimated using the measured value between the receiving stations. Basically, it is assumed that the distance and the reception level are in a logarithmic relationship, and “Equation 19” is assumed.
[0023]
[Equation 19]
Figure 0003643538
[0024]
In “Equation 19”, S1 and S2 are correction coefficients.
In this case, the reception level e is a reception level of T5 to T8 attached to each receiving station. In the case of FIG. 1, since there are four receiving stations, "Equation 19" is a simultaneous equation and there are six unknowns S1, S2, and Kr1 to Kr4. Therefore, all these unknowns can be solved. The solution of these unknowns that minimizes the error can be obtained by minimizing the evaluation function q expressed by “Equation 20”.
[0025]
[Expression 20]
Figure 0003643538
[0026]
In “Equation 20”, rn is the number of receiving stations, and in the case of FIG. The unknowns are marked with a ^ for clarity. There are various ways to solve the equation “Equation 20”. Although not described in detail, for example, q can be partially differentiated with respect to each variable, and values that become 0 can be solved using Newton's method or the like. In addition, there are a simplex method, a steepest descent method, a method using a neutral network, and the like. As a result, the environmental coefficient Krj and the correction coefficients S1 and S2 of the receiving station, which are unknown numbers of “Equation 19”, can be obtained.
[0027]
Next, how to determine the environmental coefficient of the transmitting station will be described. Although the transmission level of the transmitting station is constant, the environmental coefficient differs depending on the location, and the reception state changes. Therefore, the equation of the distance and the reception level is considered as “Equation 21” using the environment coefficient Krj of the receiving station obtained using “Equation 20” and the correction coefficients S1 and S2.
[0028]
[Expression 21]
Figure 0003643538
[0029]
In “Expression 21”, md is a distance derived by the reception level. Kti is an environmental coefficient of the transmitting station i. Similar to the case of the receiving station, the position of the transmitting station i can be obtained by minimizing the evaluation function hi.
As in the case of “Equation 21”, the unknowns are marked with “^” for easy understanding. The position of the transmitting station can be estimated by the method described above.
[0030]
[Expression 22]
Figure 0003643538
[0031]
In FIG. 1, the data received by the receiving stations R1 to R4 are recorded in the shared server, and the position of the transmitting station obtained by processing this by the position calculator is recorded in the server. In order to know the position of a certain transmitting station, the user can obtain the position information of the corresponding transmitting station by inquiring the number of the transmitting station whose position is to be known to the server via the LAN.
[0032]
Even if the transmitting station is in a sufficiently communicable area with respect to the receiving station in terms of free space loss, the receiving station may not be able to receive the signal if it is in a position with poor visibility. In such a case, since it is not received, the reception level is unknown, and it cannot be normally used for position estimation.
[0033]
However, the fact that it cannot be received indicates that it is farther than other receiving stations, and thus it is considered that information is included in position estimation. In the present invention, such invisible information can be put into the constraint condition and used effectively in the process of solving “Equation 22”. For example, if the signal of the transmitting station 2 can be received by the receiving stations 1, 2, and 4 but cannot be received by the receiving station 3,
d21 <d23
d22 <d23
d24 <d23
By adding this constraint condition, invisible data can be effectively used for position estimation without being discarded.
[0034]
(2) Location management
Since the purpose is to know the position of the transmitting station, it is not necessary to transmit radio waves when the transmitting station is stationary. Furthermore, if radio waves are not generated, the battery life is not only prolonged, but the log file is also small, which is very convenient as a system.
[0035]
First, the position of each transmitting station is stored by the algorithm described in (1), and a switch that transmits radio waves only when it physically moves is added to the transmitting station. Recalculate and update the location of only the transmitting station that sent the radio wave.
[0036]
This can be realized, for example, by attaching a vibration sensor 13 in which a holding circuit 15 is added to the acceleration sensor using the inverted pendulum 14 to the transmitter of the transmission station 16 in the configuration shown in FIG. The holding circuit 15 has a function of turning on the power supply 17 of the transmitter for several minutes only when the electrodes 14a and 14b are in contact (or separated).
[0037]
As a result, radio waves can be transmitted only when the transmitting station 16 moves. Also, regardless of whether the acceleration sensor is on or off, the holding circuit has a function for setting a transmission interval of a very long period at the same time, which effectively works for maintenance of the transmitting station. At this time, the transmission period is not completely constant, and the signal collision between the transmitting stations is avoided by changing the transmission period at random with a width of about several percent of the period.
[0038]
In the description so far, the object whose position is to be detected is the transmission station (TAG). However, this transmission station has not only the function of only transmission but also the reception function such as a portable telephone. Needless to say, the transmission function of the transceiver can be used. This is exactly the same in the following description.
[0039]
(3) Implementation flowchart of the present invention
FIG. 3 shows a flowchart of the present invention. The present invention includes a plurality of transmitting stations, a plurality of receiving stations, a server, a position calculator, and a user terminal, which are connected by a LAN.
[0040]
(A) Function of transmitting station
Two types of transmitter stations are prepared. One type is a normal transmitter station, that is, a general transmitter station that detects acceleration and generates propagation and a long-cycle generator function. The other type is an acceleration sensor installed at the receiver station. It is a transmission station with a short cycle generation function that is not added.
[0041]
A general transmission station with an acceleration sensor transmits signals when acceleration is applied and at intervals of a substantially constant long period. The receiving station installation transmitting station generates a signal in a short cycle.
[0042]
(B) Function of receiving station
Each receiving station transmits the reception level and ID number of the signal transmitted from the transmitting station to the server together with a time stamp, and the server records this. (Time stamp may be generated by server)
[0043]
(C) Function of position calculator
First, the position calculator looks at the time stamp of the data stored in the server and checks whether a certain time has elapsed. This is to prevent oversight by defining a certain sample time because the transmitting station performs intermittent operation and may not be able to be received due to duplication of signals.
[0044]
When a certain sample time has elapsed with respect to the previous data, the data of the transmitting station installed in the receiving station among the transmitting stations is extracted, and the environmental coefficient Kt that minimizes “Equation 20” and Correction coefficients S1 and S2 are derived. Next, "Equation 22" is solved for the data of the other transmitting stations, the position of each transmitting station is calculated, and this is recorded in the server.
[0045]
The calculated position is compared with the previous result, and the one whose position has changed by a predetermined value or more and the one that cannot be received by any receiving station are extracted. Next, after the data of the extracted transmitting station is recorded on the server, a warning message is transmitted to the relevant user terminal. The data structure in the server for recording the receiving station data is, for example, as shown in “Table 1”.
[0046]
[Table 1]
Figure 0003643538
[0047]
The data structure for storing the results calculated by the position calculator is as shown in “Table 2”.
[0048]
[Table 2]
Figure 0003643538
[0049]
Since the environmental coefficient depends on the environment in which the transmitting station is located, it is useful as information when actually searching for the transmitting station. In other words, a large environmental coefficient indicates that the prospect with the receiving station is poor, and the transmitting station is often behind the scenes. Conversely, when the environmental coefficient is small, it is in a place with a good view. It is very useful to find the transmitting station if these information is added to the alarm and sent.
[0050]
(D) User terminal
The user terminal performs two types of operations. One is a function for receiving the alarm message. The other is a search function. When a user wants to obtain information on a transmitter, the ID of the transmitting station is input to the user terminal. The input terminal transmits this ID to the server, searches the history stored for the ID of the corresponding transmitting station, that is, the time stamp, position information, and the environmental factor of the transmitting station, and displays them on the terminal.
[0051]
The user can know the position information of the time described by the time stamp and the history thereof. Further, by looking at the environmental factor of the transmitting station, it can be determined whether or not the transmitting station is in a place with a good view. It is also possible to know when acceleration is applied by looking at the history for a certain period of time.
[0052]
【The invention's effect】
As described above, by using the present invention, it is possible to estimate the position of a transmitting station with a high accuracy that has not been possible conventionally using a wireless transmitting station and a receiver. Some experimental examples will be shown and their effects will be explained. 4 and 5 show the results of estimating the position of the transmitting station using the present invention. The receiving stations are set at four places indicated by Pos1 to Pos4 in the figure.
[0053]
This is a result of estimating the positions of two transmitting stations using this receiving station. In FIG. 4, the position of the transmitting station 6 is calculated, and in FIG. 5, the position of the transmitting station 15 is calculated. A circle indicates a place where a transmitting station is actually located, and a + mark indicates a position estimated in the present invention. Actually, the evaluation function h of “Equation 22” is indicated by contour lines, assuming that a transmitting station is searched. The estimation error of the transmitting station 6 is 0.4 in the X direction, 0.9 in the Y direction, and 1.0 when the length is set. The transmitting station 15 is 0.9 in the X direction, -0.7 in the Y direction, and has a length of 1.14.
[0054]
As described in the prior art, since the conventional system has only a function of knowing whether there is a transmitting station within the communication range for a certain receiving station, the estimated position is the receiving station with the highest reception level. It becomes the position. Therefore, in FIG. 4, the estimated position of the transmitting station is the position of Pos2, and the error is −0.6 in the X direction, −5.0 in the Y direction, and the length is 7.8.
[0055]
In FIG. 5, the position is Pos4, 3.0 in the X direction, -0.5 in the Y direction, and the length is 7.8. In FIG. 5, the position is Pos4, 3.0 in the X direction, 3.0 in the Y direction, and 2.4 in length. Compared with the estimation result of the present invention, the estimation accuracy of the transmitting station position is improved by 8 times for the transmitting station 6 and about 4 times for the transmitting station 15.
[0056]
Furthermore, in the present invention, the environmental coefficient can be calculated. Actually, the transmitter station 6 was installed in a place with a good view, and the transmitter station 15 was installed without a line of sight (in a steel box), but the environmental factors were -2.99 and 16.01, respectively. Since it matches the environment, it can be seen that it is a piece of useful information for finding the transmitting station.
[0057]
As described above, according to the present invention, there is an advantage that the position estimation accuracy of the transmission station is greatly improved, a clue for specifying the installation environment is provided, and the discovery of the transmission station can be facilitated.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an example of an embodiment of the present invention.
FIG. 2 is a diagram illustrating an example of an intermittent transmission tag.
FIG. 3 is a flowchart showing the control of the example of the embodiment of the present invention.
FIG. 4 is a diagram illustrating a first example of a position estimation result according to the present invention.
FIG. 5 is a diagram showing a second example of the position estimation result of the present invention.
FIG. 6 is a diagram showing an example of a conventional gate-type passive tag.
FIG. 7 is a diagram showing an example of a conventional active tag.
[Explanation of symbols]
11 Tag position calculator
12 servers
13 Vibration sensor
14 Inverted pendulum
14a, 14b electrode
15 Holding circuit
16 Transmitting station
17 Power supply
T1-T8 transmitting station
R1-R4 receiving station

Claims (18)

予め定められた周波数の電波を変調して固有の標識番号を送信する手段を有する少なくとも1つの送信局と、
予め定められた周波数の電波を固有の標識番号で変調して送信する手段と、
前記送信局又は他の送受信局から送信された電波を受信する手段と、
受信された電波の受信電界強度を測定する手段と、
他の送受信局の前記受信電界強度と既知の送受信局の位置情報とから距離と受信電界強度の関係を推定する手段と、
受信された電波から固有の標識番号を識別する手段とを有し、
予め決められた既知の位置に設置される3つ以上の送受信局と、
該3つ以上の送受信局と接続され、前記受信電界強度と固有の標識番号のデータを対で管理するデータ管理手段と、
該データ管理手段で管理されるデータを用いて前記送信局の位置を計算する位置計算手段とから構成されることを特徴とする位置検出システム。
At least one transmitting station having means for modulating a radio wave of a predetermined frequency and transmitting a unique tag number;
Means for modulating and transmitting a radio wave of a predetermined frequency with a unique label number;
Means for receiving radio waves transmitted from the transmitting station or other transmitting / receiving stations ;
Means for measuring the received electric field strength of the received radio wave;
Means for estimating the relationship between the distance and the received electric field strength from the received electric field strength of another transmitting / receiving station and the position information of the known transmitting / receiving station;
Means for identifying a unique sign number from the received radio wave,
Three or more transmitting and receiving stations installed in a predetermined known position;
Data management means connected to the three or more transmitting and receiving stations, and managing the received electric field strength and the data of the unique label number in pairs;
A position detection system comprising: position calculation means for calculating the position of the transmitting station using data managed by the data management means.
予め定められた周波数の電波を変調して固有の標識番号を送信する手段を有し、位置が未知である少なくとも1つの送信局と、
予め定められた周波数の電波を固有の標識番号で変調して送信する手段を有し、位置が既知である3つ以上の送信局と、
前記送信された電波を受信する手段と、
受信された電波の受信電界強度を測定する手段と、
位置が既知である送信局の前記受信電界強度と前記位置が既知である送信局の位置情報とから距離と受信電界強度の関係を推定する手段と、
受信された電波から固有の標識番号を識別する手段とを有し、
前記位置が既知である送信局のそれぞれに隣接して設置される受信局と、
該3つ以上の受信局と接続され、前記受信電界強度と固有の標識番号のデータを対で管理するデータ管理手段と、
該データ管理手段で管理されるデータを用いて前記送信局の位置を計算する位置計算手段とから構成されることを特徴とする位置検出システム。
Have a means for transmitting a unique label number by modulating a radio wave of a predetermined frequency, and at least one transmission station position is unknown,
Three or more transmitting stations having a position where the radio wave having a predetermined frequency is modulated with a unique identification number and transmitted and having a known position ;
Means for receiving the transmitted radio wave;
Means for measuring the received electric field strength of the received radio wave;
Means for estimating the relationship between the distance and the received electric field strength from the received electric field strength of the transmitting station whose position is known and the position information of the transmitting station whose position is known;
Means for identifying a unique sign number from the received radio wave,
A receiving station installed adjacent to each of the transmitting stations of known position;
Data management means connected to the three or more receiving stations, and managing the received electric field strength and the data of the unique label number in pairs;
A position detection system comprising: position calculation means for calculating the position of the transmitting station using data managed by the data management means.
前記位置計算手段は、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)、送受信局jの既知の位置情報(uj,vj)を用いて、“数1”に示す関係式から、S1、S2を決定し、
Figure 0003643538
更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2と、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、
Figure 0003643538
“数2”に示す関係式より、送信局kの位置情報(xk,yk)を決定する請求項1記載の位置検出システム。
The position calculating means receives the received electric field intensity (eij) at the transmitting / receiving station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting / receiving station i (i = 1 to n: n ≧ 3). ), Using the known position information (ui, vi) of the transmitting / receiving station i and the known position information (uj, vj) of the transmitting / receiving station j, S1 and S2 are determined from the relational expression shown in “Equation 1”.
Figure 0003643538
Further, the received electric field strength received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1). ekj, and the determined location information (uj, vj) of the determined S1 and S2 and the three or more transmission / reception stations j (j = 1 to n: n ≧ 3),
Figure 0003643538
The position detection system according to claim 1, wherein the position information (xk, yk) of the transmitting station k is determined from the relational expression shown in "Formula 2".
前記位置計算手段は、送受信局i(i=1〜n:n≧3)から送信された電波に対応する送受信局j(j=1〜n:n≧3)で受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)、送受信局jの既知の位置情報(uj,vj)及び送受信局jに対する環境係数krjを用いて、
“数3”に示す関係式から、前記S1、S2及びKrjを決定し、
Figure 0003643538
更に、前記送信局k(k=1〜n:n≧1)から送信された電波に対応し、前記3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2と3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、
Figure 0003643538
“数4”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定する請求項1記載の位置検出システム。
The position calculating means is configured to receive electric field intensity (eij) at a transmission / reception station j (j = 1 to n: n ≧ 3) corresponding to a radio wave transmitted from the transmission / reception station i (i = 1 to n: n ≧ 3), Using the known position information (ui, vi) of the transmission / reception station i, the known position information (uj, vj) of the transmission / reception station j, and the environmental coefficient krj for the transmission / reception station j,
From the relational expression shown in “Equation 3”, S1, S2 and Krj are determined,
Figure 0003643538
Further, the reception received by the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1). Using the field strength ekj and the known position information (uj, vj) of the determined S1, S2 and three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3),
Figure 0003643538
The position detection system according to claim 1, wherein the position information (xk, yk) of the transmitting station k is determined from the relational expression shown in "Formula 4".
前記位置計算手段は、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(uj,vj)及び送受信局jに対する環境係数Krjを用いて、
Figure 0003643538
“数5”に示す関係式から、S1、S2及びKrjを決定し、
更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、前記3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2及び送信局kに対する環境係数Ktjと、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、
Figure 0003643538
“数6”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定する請求項1記載の位置検出システム。
The position calculating means receives the received electric field intensity (eij) at the transmitting / receiving station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting / receiving station i (i = 1 to n: n ≧ 3). ), The known location information (uj, vj) of the transmitting / receiving station i and the environmental coefficient Krj for the transmitting / receiving station j,
Figure 0003643538
From the relational expression shown in “Equation 5”, S1, S2 and Krj are determined,
Further, the received electric field corresponding to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1) and received by the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3). Intensity ekj, the environmental coefficient Ktj for the determined S1, S2 and transmitting station k, and known location information (uj, vj) of the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) Using,
Figure 0003643538
The position detection system according to claim 1, wherein the position information (xk, yk) of the transmitting station k is determined from the relational expression shown in "Formula 6".
前記位置計算手段は、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekjが測定不能である場合に、
該測定不能の送受信局m(m=1〜n:n≧3)と前記送信局kとの間の距離dkmが、前記送受信局m以外の送受信局jと前記送信局kとの間の距離dkjに対してdkj<dkmの関係にあることを拘束条件として加えて、
Figure 0003643538
“数7”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定する請求項3又は請求項4に記載の位置検出システム。
The position calculation means corresponds to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1) and is received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3). When the received electric field strength ekj cannot be measured,
The distance dkm between the transmission / reception station m (m = 1 to n: n ≧ 3) and the transmission station k is the distance between the transmission / reception station j other than the transmission / reception station m and the transmission station k. Adding a constraint that dkj <dkm is in relation to dkj,
Figure 0003643538
The position detection system according to claim 3 or 4, wherein the position information (xk, yk) of the transmitting station k is determined from the relational expression shown in "Expression 7".
前記位置計算手段は、送信局k(k=1〜n:n≧1)から受信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekjが測定不能である場合に、
該測定不能の送受信局m(m=1〜n:n≧3)と前記送信局kとの間の距離dkmが、前記送受信局m以外の送受信局jと前記送信局kとの間の距離dkjに対して、dkj<dkmの関係にあることを拘束条件として加えて、
Figure 0003643538
“数8”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定する請求項5記載の位置検出システム。
The position calculating means corresponds to radio waves received from a transmitting station k (k = 1 to n: n ≧ 1) and is received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3). When the received electric field strength ekj cannot be measured,
The distance dkm between the transmission / reception station m (m = 1 to n: n ≧ 3) and the transmission station k is the distance between the transmission / reception station j other than the transmission / reception station m and the transmission station k. With respect to dkj, a relation of dkj <dkm is added as a constraint condition,
Figure 0003643538
The position detection system according to claim 5, wherein the position information (xk, yk) of the transmitting station k is determined from the relational expression shown in "Formula 8".
前記位置計算手段は、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)送受信局jの既知の位置情報(uj,vj)及び前記送受信局jに対する環境係数Krjを用いて、
Figure 0003643538
“数9”に示す関係式から、S1、S2及びKrjを決定し、
更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2及びKrjにより、
前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、
Figure 0003643538
“数10”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定するにあたって、
Figure 0003643538
“数11”で定義される前記送信局iと前記送受信局jとの距離mdijを用いて、
Figure 0003643538
“数12”に示す評価関数に対して、
hi/mdijなる重み付けを行った上で、前記送信局kの位置情報(xk,yk)を決定する請求項1記載の位置検出システム。
The position calculating means receives the received electric field intensity (eij) at the transmitting / receiving station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting / receiving station i (i = 1 to n: n ≧ 3). ), The known position information (ui, vi) of the transmitting / receiving station i, the known position information (uj, vj) of the transmitting / receiving station j, and the environmental coefficient Krj for the transmitting / receiving station j,
Figure 0003643538
From the relational expression shown in “Equation 9”, S1, S2 and Krj are determined,
Further, the received electric field strength received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1). ekj and the determined S1, S2 and Krj,
Using the known position information (uj, vj) of the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3),
Figure 0003643538
In determining the position information (xk, yk) of the transmitting station k from the relational expression shown in “Equation 10”,
Figure 0003643538
Using the distance m dj between the transmitting station i and the transmitting / receiving station j defined by “Equation 11”,
Figure 0003643538
For the evaluation function shown in “Equation 12”,
The position detection system according to claim 1, wherein the position information (xk, yk) of the transmitting station k is determined after performing weighting of hi / mdij.
前記位置計算手段は、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)、前記送受信局jの既知の位置情報(uj,vj)及び前記送受信局jに対する環境係数Krjを用いて、
Figure 0003643538
“数13”に示す関係式から、S1、S2及びKrjを決定し、
更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2及びKrjにより、
前記送信局に対する環境係数Ktjと、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、
Figure 0003643538
“数14”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定するにあたって、
Figure 0003643538
“数15”で定義される送信局iと送受信局jとの距離mdijを用いて、
Figure 0003643538
“数16”に示す評価関数に対して、
hi/mdijなる重み付けを行った上で、前記送信局kの位置情報(xk,yk)を決定する請求項1記載の位置検出システム。
The position calculating means receives the received electric field intensity (eij) at the transmitting / receiving station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting / receiving station i (i = 1 to n: n ≧ 3). ), The known position information (ui, vi) of the transmitting / receiving station i, the known position information (uj, vj) of the transmitting / receiving station j, and the environmental coefficient Krj for the transmitting / receiving station j,
Figure 0003643538
From the relational expression shown in “Equation 13”, S1, S2 and Krj are determined,
Further, the received electric field strength received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1). ekj and the determined S1, S2 and Krj,
Using the environmental coefficient Ktj for the transmitting station and the known position information (uj, vj) of the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3),
Figure 0003643538
In determining the location information (xk, yk) of the transmitting station k from the relational expression shown in “Equation 14”,
Figure 0003643538
Using the distance mdij between the transmitting station i and the transmitting / receiving station j defined by “Equation 15”,
Figure 0003643538
For the evaluation function shown in “Equation 16”,
The position detection system according to claim 1, wherein the position information (xk, yk) of the transmitting station k is determined after performing weighting of hi / mdij.
前記送信局は受信機能を有する送受信局である請求項1〜請求項9のいずれか1項に記載の位置検出システム。The position detection system according to claim 1, wherein the transmission station is a transmission / reception station having a reception function. 少なくとも1つの送信局が、予め定められた周波数の電波を変調して固有の標識番号を送信し、
予め決められた既知の位置に設置される3つ以上の送受信局が、予め定められた周波数の電波を固有の標識番号で変調して送信するステップと、
前記送受信局が前記送信局或いは他の送受信局から送信された電波を受信するステップと、
前記送受信局が受信された電波の受信電界強度を測定するステップと、
前記送受信局が他の送受信局の前記受信電界強度と既知の送受信局の位置情報とから距離と受信電界強度の関係を推定するステップと、
前記送受信局が受信された電波から固有の標識番号を識別するステップと、
前記送受信局と接続されたデータ管理手段が、前記受信電界強度と固有の標識番号のデータを対で管理するステップと
位置計算手段が、該データ管理手段で管理されるデータを用いて前記送信局の位置を計算する位置計算ステップと、を順に含むことを特徴とする位置検出方法
At least one transmitting station modulates a radio wave of a predetermined frequency and transmits a unique tag number ,
Three or more transmitting and receiving stations installed at predetermined known positions modulate a radio wave having a predetermined frequency with a unique identification number and transmit the step ;
A step wherein the transceiver station for receiving radio waves transmitted from the transmitting station or other transceiver stations,
Measuring a reception field strength of radio waves the transceiver station is received,
Estimating the relationship between distance and received electric field strength from the received electric field strength of another transmitting / receiving station and the position information of a known transmitting / receiving station by the transmitting / receiving station;
Identifying a unique label number from the radio wave which the transceiver station has been received,
The transceiver station and the connected data management means, a step of managing the data of the reception electric field strength and a unique label number in pairs,
Position detecting method position calculating means, characterized in that it comprises a position calculation step of calculating the position of the transmitting station using the data managed by the data management means, in this order.
前記位置計算ステップは、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)、送受信局jの既知の位置情報(uj,vj)を用いて、“数1”に示す関係式から、S1、S2を決定し、更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2と、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数2”に示す関係式より、送信局kの位置情報(xk,yk)を決定する請求項11記載の位置検出方法  In the position calculation step, the received electric field intensity (eij) at the transmitting / receiving station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting / receiving station i (i = 1 to n: n ≧ 3). ), Using the known position information (ui, vi) of the transmitting / receiving station i and the known position information (uj, vj) of the transmitting / receiving station j, S1 and S2 are determined from the relational expression shown in “Equation 1”. Further, the received electric field strength received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1). ekj and the determined S1 and S2 and the known location information (uj, vj) of the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3), The position detection method according to claim 11, wherein the position information (xk, yk) of the transmitting station k is determined from the relational expression shown. . 前記位置計算ステップは、送受信局i(i=1〜n:n≧3)から送信された電波に対応する送受信局j(j=1〜n:n≧3)で受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)、送受信局jの既知の位置情報(uj,vj)及び送受信局jに対する環境係数krjを用いて、“数3”に示す関係式から、前記S1、S2及びKrjを決定し、The position calculation step includes a reception electric field strength (eij) at a transmission / reception station j (j = 1 to n: n ≧ 3) corresponding to a radio wave transmitted from the transmission / reception station i (i = 1 to n: n ≧ 3), Using the known location information (ui, vi) of the transmission / reception station i, the known location information (uj, vj) of the transmission / reception station j, and the environment coefficient krj for the transmission / reception station j, Determine S1, S2 and Krj;
更に、前記送信局k(k=1〜n:n≧1)から送信された電波に対応し、前記3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2と3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数4”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定する請求項11記載の位置検出方法。  Further, the reception received by the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1). Using the field strength ekj and the known position information (uj, vj) of the determined S1 and S2 and the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3), The position detection method according to claim 11, wherein position information (xk, yk) of the transmitting station k is determined from a relational expression shown.
前記位置計算ステップは、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(uj,vj)及び送受信局jに対する環境係数Krjを用いて、“数5”に示す関係式から、S1、S2及びKrjを決定し、In the position calculation step, the received electric field intensity (eij) at the transmitting / receiving station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting / receiving station i (i = 1 to n: n ≧ 3). ), S1, S2 and Krj are determined from the relational expression shown in “Formula 5” using the known position information (uj, vj) of the transmitting / receiving station i and the environment coefficient Krj for the transmitting / receiving station j,
更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、前記3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2及び送信局kに対する環境係数Ktjと、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数6”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定する請求項11記載の位置検出方法。  Further, the received electric field corresponding to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1) and received by the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3). Intensity ekj, environment coefficient Ktj for the determined S1, S2 and transmitting station k, and known position information (uj, vj) of the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) The position detection method according to claim 11, wherein the position information (xk, yk) of the transmitting station k is determined from the relational expression shown in “Equation 6” using
前記位置計算ステップは、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekjが測定不能である場合に、The position calculation step corresponds to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1) and is received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3). When the received electric field strength ekj cannot be measured,
該測定不能の送受信局m(m=1〜n:n≧3)と前記送信局kとの間の距離dkmが、前記送受信局m以外の送受信局jと前記送信局kとの間の距離dkjに対してdkj<dkmの関係にあることを拘束条件として加えて、“数7”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定する請求項12又は請求項13に記載の位置検出方法。  The distance dkm between the transmission / reception station m (m = 1 to n: n ≧ 3) and the transmission station k is the distance between the transmission / reception station j other than the transmission / reception station m and the transmission station k. 13. The positional information (xk, yk) of the transmitting station k is determined from the relational expression shown in “Formula 7” by adding a relation that dkj <dkm to dkj as a constraint condition. 14. The position detection method according to 13.
前記位置計算ステップは、送信局k(k=1〜n:n≧1)から受信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekjが測定不能である場合に、The position calculating step corresponds to the radio wave received from the transmitting station k (k = 1 to n: n ≧ 1) and is received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3). When the received electric field strength ekj cannot be measured,
該測定不能の送受信局m(m=1〜n:n≧3)と前記送信局kとの間の距離dkmが、前記送受信局m以外の送受信局jと前記送信局kとの間の距離dkjに対して、dkj<dkmの関係にあることを拘束条件として加えて、“数8”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定する請求項14記載の位置検出方法。  The distance dkm between the transmission / reception station m (m = 1 to n: n ≧ 3) and the transmission station k is the distance between the transmission / reception station j other than the transmission / reception station m and the transmission station k. 15. The positional information (xk, yk) of the transmitting station k is determined from the relational expression shown in “Equation 8” by adding that dkj <dkm as a constraint condition with respect to dkj. Position detection method.
前記位置計算ステップは、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)送受信局jの既知の位置情報(uj,vj)及び前記送受信局jに対する環境係数Krjを用いて、“数9”に示す関係式から、S1、S2及びKrjを決定し、In the position calculation step, the received electric field intensity (eij) at the transmitting / receiving station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting / receiving station i (i = 1 to n: n ≧ 3). ), The known position information (ui, vi) of the transmitting / receiving station i, and the known position information (uj, vj) of the transmitting / receiving station j and the environment coefficient Krj for the transmitting / receiving station j, , S1, S2 and Krj,
更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2及びKrjにより、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数10”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定するにあたって、“数11”で定義される前記送信局iと前記  Further, the received electric field strength received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1). ekj and the determined position information (uj, vj) of the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) by the determined S1, S2 and Krj, In determining the location information (xk, yk) of the transmitting station k from the relational expression shown in FIG. 送受信局jとの距離mdijを用いて、“数12”に示す評価関数に対して、hi/mdijなる重み付けを行った上で、前記送信局kの位置情報(xk,yk)を決定する請求項11記載の位置検出方法。The position information (xk, yk) of the transmitting station k is determined after weighting hi / mdij on the evaluation function shown in “Expression 12” using the distance mdij with the transmitting / receiving station j. Item 12. The position detection method according to Item 11.
前記位置計算ステップは、送受信局i(i=1〜n:n≧3)から送信された電波に対応する、送受信局j(j=1〜n:n≧3)での受信電界強度(eij)、送受信局iの既知の位置情報(ui,vi)、前記送受信局jの既知の位置情報(uj,vj)及び前記送受信局jに対する環境係数Krjを用いて、“数13”に示す関係式から、S1、S2及びKrjを決定し、In the position calculation step, the received electric field intensity (eij) at the transmitting / receiving station j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting / receiving station i (i = 1 to n: n ≧ 3). ), The known position information (ui, vi) of the transmission / reception station i, the known position information (uj, vj) of the transmission / reception station j, and the environment coefficient Krj for the transmission / reception station j. From the equation, S1, S2 and Krj are determined,
更に、送信局k(k=1〜n:n≧1)から送信された電波に対応し、3つ以上の送受信局j(j=1〜n:n≧3)で受信された受信電界強度ekj、並びに、前記決定したS1、S2及びKrjにより、前記送信局に対する環境係数Ktjと、前記3つ以上の送受信局j(j=1〜n:n≧3)の既知の位置情報(uj,vj)を用いて、“数14”に示す関係式より、前記送信局kの位置情報(xk,yk)を決定するにあたって、“数15”で定義される送信局iと送受信局jとの距離mdijを用いて、“数16”に示す評価関数に対して、hi/mdijなる重み付けを行った上で、前記送信局kの位置情報(xk,yk)を決定する請求項11記載の位置検出方法。  Further, the received electric field strength received by three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) corresponding to the radio wave transmitted from the transmitting station k (k = 1 to n: n ≧ 1). ekj and the determined S1, S2 and Krj, the environmental coefficient Ktj for the transmitting station and the known position information (uj, n ≧ n) of the three or more transmitting / receiving stations j (j = 1 to n: n ≧ 3) vj) is used to determine the position information (xk, yk) of the transmitting station k from the relational expression shown in “Expression 14”, the transmission station i defined by “Expression 15” and the transmitting / receiving station j 12. The position according to claim 11, wherein the position information (xk, yk) of the transmitting station k is determined after weighting hi / mdij on the evaluation function shown in “Equation 16” using the distance mdij. Detection method.
JP2001030484A 2001-02-07 2001-02-07 Position detection system and position detection method Expired - Lifetime JP3643538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001030484A JP3643538B2 (en) 2001-02-07 2001-02-07 Position detection system and position detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001030484A JP3643538B2 (en) 2001-02-07 2001-02-07 Position detection system and position detection method

Publications (2)

Publication Number Publication Date
JP2002236166A JP2002236166A (en) 2002-08-23
JP3643538B2 true JP3643538B2 (en) 2005-04-27

Family

ID=18894697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001030484A Expired - Lifetime JP3643538B2 (en) 2001-02-07 2001-02-07 Position detection system and position detection method

Country Status (1)

Country Link
JP (1) JP3643538B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346107A (en) * 2002-05-27 2003-12-05 Totoku Electric Co Ltd Wireless article management tag and article management system
WO2004069702A1 (en) * 2003-02-03 2004-08-19 Nippon Telegraph And Telephone Corporation Container management device and container management method
JP4038443B2 (en) * 2003-03-03 2008-01-23 日本電信電話株式会社 Container device and container management system
JP2004294403A (en) * 2003-03-28 2004-10-21 Canon Inc Information processor
JP2005241301A (en) * 2004-02-24 2005-09-08 Ntt Advanced Technology Corp Position detection system
EP1732239A4 (en) 2004-03-17 2007-12-26 Brother Ind Ltd POSITION DETECTION SYSTEM, RESPONSE DEVICE AND INTERROGATION DEVICE, RADIO COMMUNICATION SYSTEM, POSITION DETECTION METHOD, POSITION DETECTION PROGRAM, AND INFORMATION RECORDING MEDIUM
JP4137910B2 (en) * 2005-05-09 2008-08-20 日本電信電話株式会社 Positioning device, identification information transmitting device, receiving device, positioning system, positioning method, computer program, and recording medium
JP4444879B2 (en) * 2005-05-24 2010-03-31 日本電信電話株式会社 POSITION DETECTING METHOD, POSITION DETECTING SYSTEM, POSITION DETECTING PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING THE PROGRAM
JP4813190B2 (en) * 2005-05-26 2011-11-09 オリンパスメディカルシステムズ株式会社 Capsule medical device
JP2007121014A (en) * 2005-10-26 2007-05-17 Nec Tokin Corp Article position detecting system
CN101313227B (en) * 2005-11-21 2012-10-31 日本电气株式会社 Detection object identifying/position estimating system, its method, and program
US7791487B2 (en) * 2007-11-29 2010-09-07 International Business Machines Corporation Locating radio frequency identification tags in time and space
SE536087C2 (en) * 2011-02-10 2013-04-30 Atlas Copco Ind Tech Ab Location system for determining the position of an object
KR101635422B1 (en) * 2014-12-10 2016-07-04 한양대학교 산학협력단 Methods for estimating location and Location detecting server
WO2016199254A1 (en) * 2015-06-10 2016-12-15 三菱電機株式会社 Position estimation device and position estimation method
JP6656454B1 (en) * 2019-06-12 2020-03-04 Hoyaデジタルソリューションズ株式会社 Product management device
JP6656455B1 (en) * 2019-06-12 2020-03-04 Hoyaデジタルソリューションズ株式会社 Product management device

Also Published As

Publication number Publication date
JP2002236166A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
JP3643538B2 (en) Position detection system and position detection method
Hameed et al. Survey on indoor positioning applications based on different technologies
US8392107B2 (en) Sub-room-level indoor location system using power line positioning
Gomez-de-Gabriel et al. Monitoring harness use in construction with BLE beacons
US6963289B2 (en) Wireless local area network (WLAN) channel radio-frequency identification (RFID) tag system and method therefor
US7899006B2 (en) Location system for wireless local area network (WLAN) using RSSI and time difference of arrival (TDOA) processing
US8738028B2 (en) Method and radio device for detecting a movement
CN102160293B (en) A mthod and a system for determining the location of a subject, and a radio frequency identification tag assembly
US8494762B2 (en) Sub room level indoor location system using wideband power line positioning
US6946956B2 (en) Locating system and method for determining positions of objects
Zhao et al. A battery-free RFID-based indoor acoustic localization platform
Popleteev Indoor positioning using FM radio signals
CN103167608B (en) A kind of localization method based on feedback radio frequency loss estimated distance and base station
Din et al. Indoor positioning: technology comparison analysis
Cinefra An adaptive indoor positioning system based on Bluetooth Low Energy RSSI
Sichitiu et al. Simple Algorithm for Outdoor Localization of Wireless Sensor Networks with Inaccurate Range Measurements.
Puschita et al. Performance evaluation of the UWB-based CDS indoor positioning solution
CN104075706A (en) Method for identifying indoor space position
Ledeczi et al. Towards precise indoor RF localization
Rozum et al. SIMO RSS measurement in Bluetooth low power indoor positioning system
CN105872977A (en) Improved LANDMARAC locating algorithm for wireless sensor network
CN107094290B (en) Wireless indoor positioning system and positioning method based on self-extinguishing type super-regenerative receiver
Chothani et al. RFID-based location tracking system using a RSS and DA
WO2021140983A1 (en) Article management system and article management method
CN114396950A (en) Indoor positioning method and indoor positioning system based on intercom communication indoor sub-network

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3643538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term