[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3527786B2 - Multilayer magnetoresistive film and magnetic head - Google Patents

Multilayer magnetoresistive film and magnetic head

Info

Publication number
JP3527786B2
JP3527786B2 JP4157995A JP4157995A JP3527786B2 JP 3527786 B2 JP3527786 B2 JP 3527786B2 JP 4157995 A JP4157995 A JP 4157995A JP 4157995 A JP4157995 A JP 4157995A JP 3527786 B2 JP3527786 B2 JP 3527786B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
magnetoresistive effect
thickness
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4157995A
Other languages
Japanese (ja)
Other versions
JPH08235540A (en
Inventor
亮一 中谷
裕之 星屋
勝美 星野
Original Assignee
株式会社日立グローバルストレージテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立グローバルストレージテクノロジーズ filed Critical 株式会社日立グローバルストレージテクノロジーズ
Priority to JP4157995A priority Critical patent/JP3527786B2/en
Publication of JPH08235540A publication Critical patent/JPH08235540A/en
Application granted granted Critical
Publication of JP3527786B2 publication Critical patent/JP3527786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高い磁気抵抗効果を有す
る多層磁気抵抗効果膜およびこれを用いた磁気抵抗効果
素子,磁気ヘッド,磁気記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer magnetoresistive effect film having a high magnetoresistive effect, a magnetoresistive effect element using the same, a magnetic head and a magnetic recording / reproducing apparatus.

【0002】[0002]

【従来の技術】磁気記録の高密度化に伴い、再生用磁気
ヘッドに用いる磁気抵抗効果材料として、低い磁界領域
において高い磁気抵抗効果を示す材料が求められてい
る。1991年,フィジカル・レビュー・B(Physical Revi
ew B),第43巻,第1号,1297〜1300ページに記
載の「軟磁性多層膜における巨大磁気抵抗効果(Giant
Magnetoresistance in Soft Ferromagnetic Multilayer
s)」のように、多層構造を持つ磁性膜において、比較的
高い磁気抵抗変化率が報告されている。
2. Description of the Related Art As the magnetic recording density has increased, a material having a high magnetoresistive effect in a low magnetic field region has been required as a magnetoresistive effect material used for a reproducing magnetic head. 1991, Physical Review B (Physical Revi)
ew B), Vol. 43, No. 1, pp. 1297-1300, "Giant magnetoresistance effect in soft magnetic multilayer film (Giant
Magnetoresistance in Soft Ferromagnetic Multilayer
s) ”, a relatively high magnetoresistance change rate has been reported in a magnetic film having a multilayer structure.

【0003】[0003]

【発明が解決しようとする課題】上述の多層膜は、二層
の磁性層が非磁性層により分離されており、一層の磁性
層に反強磁性層が接している構造を有する。反強磁性層
は、一般に、Fe−Mn系合金が用いられている。Fe
−Mn系合金は、面心立方構造を有する時に、室温で反
強磁性を示す。ジャパニーズ・ジャーナル・オブ・アプ
ライド・フィジクス(Japanese Journal of Applied Ph
ysics),第33巻,第1A号,133〜137ページに
記載の「種々のバッファ層材料を有するFe−Mn/N
i−Fe/Cu/Ni−Feサンドイッチにおける磁気
抵抗効果および結晶配向性(Magnetoresistance and Pr
eferred Orientation in Fe-Mn/Ni-Fe/Cu/Ni-Fe Sandwi
ches with Various Buffer Layer Materials)」のよう
に、上述の多層膜において、Fe−Mn系合金層を面心
立方構造とするために、多層膜は周期律表のIVa,Va
族元素からなるバッファ層上に形成される。しかし、上
述の多層膜にバッファ層を含めると、最低でも、4種類
のターゲットを有するスパッタリング装置が必要にな
る。また、磁気抵抗変化率を高くするために、Ni−F
e層とCu層との間にCo層を形成するためには、5種
類のターゲットを有するスパッタリング装置が必要にな
る。
The above-mentioned multilayer film has a structure in which two magnetic layers are separated by a nonmagnetic layer, and an antiferromagnetic layer is in contact with one magnetic layer. For the antiferromagnetic layer, an Fe-Mn-based alloy is generally used. Fe
The -Mn-based alloy exhibits antiferromagnetism at room temperature when it has a face-centered cubic structure. Japanese Journal of Applied Physics
ysics), Vol. 33, No. 1A, pp. 133-137, "Fe-Mn / N with Various Buffer Layer Materials".
Magnetoresistance Effect and Crystal Orientation in i-Fe / Cu / Ni-Fe Sandwich
eferred Orientation in Fe-Mn / Ni-Fe / Cu / Ni-Fe Sandwi
ches with various buffer layer materials), in order to make the Fe—Mn alloy layer have a face-centered cubic structure, the multilayer film has IVa and Va of the periodic table.
It is formed on the buffer layer made of a group element. However, when a buffer layer is included in the above-mentioned multilayer film, a sputtering apparatus having at least four types of targets is required. In order to increase the rate of change in magnetic resistance, Ni-F
In order to form the Co layer between the e layer and the Cu layer, a sputtering device having five types of targets is required.

【0004】[0004]

【課題を解決するための手段】本発明者等は、上述の多
層膜を用いた磁気抵抗効果素子について鋭意研究を重ね
た結果、上記多層膜と基板との間に、3d遷移金属元素
の酸化物からなるバッファ層を形成することにより、多
層膜中のFe−Mn系合金層を面心立方構造とすること
ができることを見出し、本発明を完成するに至った。
The inventors of the present invention have conducted extensive studies on the magnetoresistive effect element using the above-mentioned multilayer film, and as a result, oxidation of a 3d transition metal element between the multilayer film and the substrate has occurred. It was found that the Fe-Mn-based alloy layer in the multilayer film can have a face-centered cubic structure by forming a buffer layer made of a material, and completed the present invention.

【0005】すなわち、SiO2,Al23 などの3d
遷移金属元素以外の酸化物層の上に、磁性層と非磁性層
とが交互に積層されている多層膜を形成しても、多層膜
中のFe−Mn系合金層が十分に面心立方構造になら
ず、Fe−Mn系合金層から磁性層に印加される交換バ
イアス磁界は低い。これに対し、3d遷移金属元素の酸
化物からなる層の上に多層膜を形成することにより、多
層膜中のFe−Mn系合金層が十分に面心立方構造にな
り、Fe−Mn系合金層から磁性層に印加される交換バ
イアス磁界は高くなる。また、この交換バイアス磁界の
値は、IVa,Va族元素からなるバッファ層上に形成し
た多層膜における交換バイアス磁界の値とほぼ同等であ
る。
That is, 3d of SiO 2 , Al 2 O 3, etc.
Even if a multilayer film in which magnetic layers and nonmagnetic layers are alternately laminated is formed on an oxide layer other than a transition metal element, the Fe-Mn-based alloy layer in the multilayer film is sufficiently face-centered cubic. The structure does not have a structure, and the exchange bias magnetic field applied from the Fe—Mn alloy layer to the magnetic layer is low. On the other hand, when the multilayer film is formed on the layer made of the oxide of the 3d transition metal element, the Fe-Mn alloy layer in the multilayer film has a sufficiently face-centered cubic structure, and the Fe-Mn alloy is The exchange bias field applied from the layer to the magnetic layer is high. The value of the exchange bias magnetic field is almost the same as the value of the exchange bias magnetic field in the multilayer film formed on the buffer layer made of the IVa and Va group elements.

【0006】また、上記多層磁気抵抗効果膜は、磁気抵
抗効果素子,磁界センサ,磁気ヘッドなどに好適であ
る。また、上記磁気ヘッドを用いることにより、高性能
磁気記録再生装置を得ることができる。
The multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head and the like. Further, by using the above magnetic head, a high performance magnetic recording / reproducing apparatus can be obtained.

【0007】[0007]

【作用】上述のように、多層膜と基板との間に、3d遷
移金属元素の酸化物からなるバッファ層を形成すること
により、Fe−Mn系合金層から磁性層に印加される交
換バイアス磁界を高くすることができる。3d遷移金属
元素の酸化物は、形成した後に大気中に取り出してもバ
ッファ層として機能するため、従来のIVa,Va族元素
からなるバッファ層を用いる場合と比較して、少ないス
パッタリング・カソードのスパッタリング装置を用いる
ことができる。さらに、多層磁気抵抗効果膜は、磁気抵
抗効果素子,磁界センサ,磁気ヘッドなどに好適であ
る。また、磁気ヘッドを用いることにより、高性能磁気
記録再生装置を得ることができる。
As described above, the exchange bias magnetic field applied from the Fe--Mn alloy layer to the magnetic layer is formed by forming the buffer layer composed of the oxide of the 3d transition metal element between the multilayer film and the substrate. Can be higher. Since the oxide of the 3d transition metal element functions as a buffer layer even if it is taken out into the air after being formed, the amount of sputtering / cathode sputtering is less than that in the case of using the conventional buffer layer made of the IVa and Va group elements. A device can be used. Furthermore, the multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head, and the like. Further, by using the magnetic head, a high performance magnetic recording / reproducing device can be obtained.

【0008】[0008]

【実施例】【Example】

<実施例1>本発明の一実施例の多層膜構造を図1に示
す。基板11にはSi(100)単結晶基板を用いた。
基板11の上に、まず、イオンビームスパッタリング装
置を用い、種々の厚さのNi−O系のバッファ層12を
形成した。スパッタリングターゲットには、NiOを用
いたが、スパッタリングにより形成したバッファ層の組
成は、化学量論的組成からはずれているものと考えられ
る。スパッタリング条件は、Ar圧力0.02Pa ,イ
オンガン加速電圧900V,イオン電流120mAであ
る。
<Example 1> FIG. 1 shows a multilayer film structure of an example of the present invention. As the substrate 11, a Si (100) single crystal substrate was used.
First, the Ni—O based buffer layer 12 having various thicknesses was formed on the substrate 11 by using an ion beam sputtering apparatus. Although NiO was used as the sputtering target, it is considered that the composition of the buffer layer formed by sputtering deviates from the stoichiometric composition. The sputtering conditions are an Ar pressure of 0.02 Pa, an ion gun acceleration voltage of 900 V, and an ion current of 120 mA.

【0009】Ni−O系のバッファ層を形成した3イン
チSi基板を一度、イオンビームスパッタリング装置か
ら出し、7mm×7mmのサイズに切断した後、再び、装置
内に戻した。さらに、基板11上に形成したNi−O系
のバッファ層12の上に、厚さ10.0nmのNi−F
e−Co磁性層13,厚さ3.0nmのCu非磁性層1
4,厚さ5.0nmのNi−Fe−Co磁性層15,厚
さ10.0nmのFe−Mn系合金反強磁性層16,厚
さ5.0nm のTa保護層17を積層した。スパッタリ
ング条件は、Ar圧力0.02Pa ,イオンガン加速電
圧300V,イオン電流30mAである。Ni−Fe−
Co磁性層形成用のスパッタリングターゲットには、N
i−16at%Fe−18at%Coの組成の合金ター
ゲットを用いた。また、Fe−Mn系合金反強磁性層形
成用のスパッタリングターゲットには、Fe−50at
%Mnの組成の合金ターゲットを用いた。また、同時
に、Ni−O系のバッファ層を形成していないSi基板
上にも多層膜を積層した。Ni−O系のバッファ層を形
成していないSi基板の表面には、主にSiO2 からな
る酸化物層が存在する。
The 3-inch Si substrate on which the Ni--O buffer layer was formed was once taken out from the ion beam sputtering apparatus, cut into a size of 7 mm × 7 mm, and then returned to the inside of the apparatus again. Further, on the Ni—O-based buffer layer 12 formed on the substrate 11, a Ni—F having a thickness of 10.0 nm is formed.
e-Co magnetic layer 13, Cu non-magnetic layer 1 having a thickness of 3.0 nm
4, a Ni—Fe—Co magnetic layer 15 having a thickness of 5.0 nm, a Fe—Mn alloy antiferromagnetic layer 16 having a thickness of 10.0 nm, and a Ta protective layer 17 having a thickness of 5.0 nm were laminated. The sputtering conditions are an Ar pressure of 0.02 Pa, an ion gun acceleration voltage of 300 V, and an ion current of 30 mA. Ni-Fe-
The sputtering target for forming the Co magnetic layer includes N
An alloy target having a composition of i-16 at% Fe-18 at% Co was used. In addition, the sputtering target for forming the Fe-Mn alloy antiferromagnetic layer is Fe-50 at.
An alloy target having a composition of% Mn was used. At the same time, the multilayer film was also laminated on the Si substrate on which the Ni—O based buffer layer was not formed. An oxide layer mainly composed of SiO 2 exists on the surface of the Si substrate on which the Ni—O-based buffer layer is not formed.

【0010】図2にバッファ層のNi−O層の厚さと多
層膜の磁化曲線との関係を示す。図に見られる磁界が零
近傍の磁化の変化は、反強磁性層16に接していない磁
性層13の磁化反転に起因する。また、正の磁界領域に
見られる磁化の変化は、反強磁性層16に接している磁
性層15の磁化反転に起因する。すなわち、磁性層15
は、反強磁性層16からの交換バイアス磁界を印加され
ており、その分だけ磁化曲線はシフトする。そのシフト
した量を交換バイアス磁界と呼ぶ。
FIG. 2 shows the relationship between the thickness of the Ni—O layer of the buffer layer and the magnetization curve of the multilayer film. The change in the magnetization near the zero magnetic field shown in the figure is due to the magnetization reversal of the magnetic layer 13 not in contact with the antiferromagnetic layer 16. Further, the change in the magnetization seen in the positive magnetic field region is caused by the magnetization reversal of the magnetic layer 15 in contact with the antiferromagnetic layer 16. That is, the magnetic layer 15
Is applied with the exchange bias magnetic field from the antiferromagnetic layer 16, and the magnetization curve shifts accordingly. The shifted amount is called an exchange bias magnetic field.

【0011】図のように、Ni−O層の厚さにともな
い、交換バイアス磁界が高くなる。このため、磁性層1
3と磁性層15の磁化反転する磁界の高さが大きく異な
るようになる。磁性層13の磁化反転する磁界と磁性層
15の磁化反転する磁界との間では、二つの磁性層の磁
化の向きは反平行になる。
As shown in the figure, the exchange bias magnetic field increases with the thickness of the Ni-O layer. Therefore, the magnetic layer 1
3 and the height of the magnetic field for reversing the magnetization of the magnetic layer 15 are significantly different. Between the magnetic field for reversing the magnetization of the magnetic layer 13 and the magnetic field for reversing the magnetization of the magnetic layer 15, the magnetization directions of the two magnetic layers are antiparallel.

【0012】多層膜を磁気抵抗効果素子に応用する場
合、磁気抵抗効果素子は磁界零近傍で使用する。この領
域で使用している時には、磁化の変化のヒステリシスは
小さい。しかし、何らかの原因で多層膜に高い磁界が印
加されることがある。この時、印加磁界が高く、反強磁
性層16に接している磁性層15の磁化が反転すると、
その影響で磁化の変化のヒステリシスは大きくなる。従
って、磁性層15に印加される交換バイアス磁界は高い
ことが好ましい。
When the multilayer film is applied to a magnetoresistive effect element, the magnetoresistive effect element is used in the vicinity of zero magnetic field. When used in this region, the hysteresis of the change in magnetization is small. However, a high magnetic field may be applied to the multilayer film for some reason. At this time, when the applied magnetic field is high and the magnetization of the magnetic layer 15 in contact with the antiferromagnetic layer 16 is reversed,
As a result, the hysteresis of the change in magnetization becomes large. Therefore, the exchange bias magnetic field applied to the magnetic layer 15 is preferably high.

【0013】図3にバッファ層のNi−O層の厚さと磁
性層15に印加される交換バイアス磁界との関係を示
す。図のように、Ni−O層の厚さが0nm、すなわ
ち、Si基板上のSiO2 の上に多層膜を形成した場
合、交換バイアス磁界は5kA/m程度である。これに
対し、Ni−Oからなるバッファ層12を設けると、N
i−O層の厚さにともない、交換バイアス磁界が高くな
る。Ni−O層の厚さが10nmになると、交換バイア
ス磁界の高さはほぼ飽和する。Ta,Hfなどのバッフ
ァ層を用いた多層膜では、交換バイアス磁界の値は約1
2kA/mである。従って、Ni−Oバッファ層を用い
た本実施例の多層膜は、Ta,Hfなどのバッファ層を
用いた多層膜とほぼ同様の特性を示すことになる。ま
た、図のように、Ni−O層は、厚さ2.5nmと薄く
ても、バッファ層として機能する。従って、バッファ層
の厚さは2.5nm以上が好ましい。
FIG. 3 shows the relationship between the thickness of the Ni—O layer of the buffer layer and the exchange bias magnetic field applied to the magnetic layer 15. As shown, when the thickness of the Ni—O layer is 0 nm, that is, when the multilayer film is formed on SiO 2 on the Si substrate, the exchange bias magnetic field is about 5 kA / m. On the other hand, when the buffer layer 12 made of Ni—O is provided, N
The exchange bias magnetic field increases with the thickness of the i-O layer. When the thickness of the Ni—O layer becomes 10 nm, the height of the exchange bias magnetic field is almost saturated. In a multilayer film using a buffer layer such as Ta or Hf, the value of the exchange bias magnetic field is about 1
It is 2 kA / m. Therefore, the multilayer film of this embodiment using the Ni—O buffer layer exhibits almost the same characteristics as the multilayer film using the buffer layer of Ta, Hf, or the like. Further, as shown in the figure, the Ni—O layer functions as a buffer layer even if it is as thin as 2.5 nm. Therefore, the thickness of the buffer layer is preferably 2.5 nm or more.

【0014】図4にバッファ層のNi−O層の厚さと磁
性層13の保磁力との関係を示す。Ni−O層の厚さが
12.5nm 以下の領域では、磁性層13の保磁力はほ
ぼ一定である。これに対し、Ni−O層の厚さが12.
5nm より厚くなると、磁性層13の保磁力は急激に
高くなる。従って、保磁力の観点からは、バッファ層の
厚さは12.5nm 以下であることが好ましい。また、
上述の結果から、磁性層15に印加される交換バイアス
磁界を高くし、磁性層13の保磁力を低くするために
は、バッファ層の厚さを2.5〜12.5nmとする必要
がある。
FIG. 4 shows the relationship between the thickness of the Ni—O layer of the buffer layer and the coercive force of the magnetic layer 13. In the region where the thickness of the Ni-O layer is 12.5 nm or less, the coercive force of the magnetic layer 13 is almost constant. On the other hand, the thickness of the Ni-O layer is 12.
When the thickness is more than 5 nm, the coercive force of the magnetic layer 13 rapidly increases. Therefore, from the viewpoint of coercive force, the thickness of the buffer layer is preferably 12.5 nm or less. Also,
From the above results, in order to increase the exchange bias magnetic field applied to the magnetic layer 15 and reduce the coercive force of the magnetic layer 13, the thickness of the buffer layer needs to be 2.5 to 12.5 nm. .

【0015】図5にバッファ層のNi−O層の厚さと磁
気抵抗変化率との関係を示す。図のように、磁気抵抗変
化率は約3%であり、また、ほぼ一定である。
FIG. 5 shows the relationship between the thickness of the Ni—O layer of the buffer layer and the magnetoresistance change rate. As shown in the figure, the rate of change in magnetic resistance is about 3% and is almost constant.

【0016】図6に、Ni−Oバッファ層により、磁性
層15に印加される交換バイアス磁界が増加する原因に
ついて調べた結果を示す。図のように、多層膜中のNi
−Fe−Co層とCu層の結晶の(111)面のX線回
折強度は、Ni−O層厚とともに増加する。前記ジャパ
ニーズ・ジャーナル・オブ・アプライド・フィジクス第
33巻,第1A号,133〜137ページに記載のよう
に、Ni−FeとCu層の結晶の(111)面のX線回
折強度が高くなると、Fe−Mn系合金が面心立方構造
になり、室温で反強磁性を示すようになる。このため、
(111)面のX線回折強度が高い多層膜では、反強磁
性層に接している磁性層に高い交換バイアス磁界が印加
される。従って、Ni−Oバッファ層を設けることによ
り、多層膜の(111)面配向が強くなり、このため、
磁性層15に印加される交換バイアス磁界が高くなった
ものと考えられる。
FIG. 6 shows the result of an examination of the cause of the increase in the exchange bias magnetic field applied to the magnetic layer 15 due to the Ni—O buffer layer. As shown in the figure, Ni in the multilayer film
The X-ray diffraction intensity of the (111) plane of the crystals of the —Fe—Co layer and the Cu layer increases with the Ni—O layer thickness. As described in the Japanese Journal of Applied Physics, Vol. 33, No. 1A, pp. 133-137, when the X-ray diffraction intensity of the (111) plane of the crystals of the Ni—Fe and Cu layers becomes high, The Fe-Mn alloy has a face-centered cubic structure and exhibits antiferromagnetism at room temperature. For this reason,
In a multilayer film having a high (111) plane X-ray diffraction intensity, a high exchange bias magnetic field is applied to the magnetic layer in contact with the antiferromagnetic layer. Therefore, by providing the Ni—O buffer layer, the (111) plane orientation of the multilayer film becomes strong, and therefore,
It is considered that the exchange bias magnetic field applied to the magnetic layer 15 was increased.

【0017】ところで、本実施例では、非磁性層14と
してCuを用いた場合について述べたが、Au,Agを
用いても、同様の結果を得ることができる。また、C
u,Ag,Auを主成分とする合金を非磁性層14とし
て用いることができる。
In the present embodiment, the case where Cu is used as the nonmagnetic layer 14 has been described, but the same result can be obtained by using Au or Ag. Also, C
An alloy containing u, Ag, and Au as a main component can be used as the nonmagnetic layer 14.

【0018】また、本実施例では、磁性層13および磁
性層15として、Ni−Fe−Co系合金を用いたが、
Ni−Fe系合金も用いることができる。
Further, in the present embodiment, the magnetic layers 13 and 15 are made of Ni--Fe--Co alloy, but
Ni-Fe based alloys can also be used.

【0019】また、本実施例では、反強磁性層16とし
てFe−Mn系合金を用いたが、他のMn系合金反強磁
性材料を用いても同様の結果が得られる。他の反強磁性
材料は、Mn−Ir,Mn−Ni,Mn−Pt−Co,
Mn−Co,Mn−Pt,Mn−Pdなどが好ましい。
In this embodiment, the Fe-Mn alloy is used as the antiferromagnetic layer 16, but the same result can be obtained by using other Mn alloy antiferromagnetic material. Other antiferromagnetic materials include Mn-Ir, Mn-Ni, Mn-Pt-Co,
Mn-Co, Mn-Pt, Mn-Pd, etc. are preferable.

【0020】また、基板11としても、Si単結晶以外
の他の基板を用いることができる。
As the substrate 11, a substrate other than Si single crystal can be used.

【0021】<実施例2>本実施例1では、Ni−Oを
バッファ層として用いた場合について述べた。本実施例
では、他の3d遷移金属元素の酸化物のバッファ層を用
いた場合について述べる。バッファ層の厚さは10nm
とし、他の多層膜の構造は実施例1と同様とした。この
結果を表1に示す。表のように、SiO2,Al23
どの3d遷移金属元素以外の酸化物バッファ層を用いた
場合と比較して、3d遷移金属元素の酸化物のバッファ
層を用いた場合、磁性層15に印加される交換バイアス
磁界は高い。
<Embodiment 2> In Embodiment 1, the case where Ni--O is used as the buffer layer has been described. In this embodiment, a case where a buffer layer of an oxide of another 3d transition metal element is used will be described. The thickness of the buffer layer is 10 nm
The structure of the other multilayer films was the same as in Example 1. The results are shown in Table 1. As shown in the table, in comparison with the case where the oxide buffer layer other than the 3d transition metal element such as SiO 2 and Al 2 O 3 is used, when the buffer layer made of the oxide of the 3d transition metal element is used, the magnetic layer The exchange bias field applied to 15 is high.

【0022】[0022]

【表1】 [Table 1]

【0023】また、3d遷移金属元素の酸化物のバッフ
ァ層の厚さの多層膜の磁気抵抗変化率への影響を調べた
ところ、Ni−Oを用いた時と同様に、2.5〜12.5
nmのバッファ層厚が好ましいことがわかった。
Further, the effect of the thickness of the buffer layer of the oxide of the 3d transition metal element on the magnetoresistance change rate of the multilayer film was examined, and as in the case of using Ni--O, it was 2.5-12. .5
A buffer layer thickness of nm has been found to be preferred.

【0024】<実施例3>磁性層の一部にCoを用いた
多層膜について、実施例1と同様の実験を行った。図7
に多層膜の構造を示す。多層膜は実施例1と同様の方法
で形成した。基板21にはSi(100)単結晶基板を
用いた。バッファ層22には種々の厚さのNi−O系材
料を用いた。さらに、基板21上に形成したNi−O系
のバッファ層22の上に、厚さ9.0nmのNi−Fe
−Co磁性層23,厚さ1.0nmのCo磁性層24,
厚さ3.0nmのCu非磁性層25,厚さ2.0nmのC
o磁性層26,厚さ3.0nmのNi−Fe−Co磁性
層27,厚さ10.0nmのFe−Mn系合金反強磁性
層28,厚さ5.0nm のCu保護層29を積層した。
Example 3 The same experiment as in Example 1 was conducted on a multilayer film in which Co was used as a part of the magnetic layer. Figure 7
Shows the structure of the multilayer film. The multilayer film was formed by the same method as in Example 1. A Si (100) single crystal substrate was used as the substrate 21. The buffer layer 22 was made of Ni—O based materials having various thicknesses. Further, on the Ni—O-based buffer layer 22 formed on the substrate 21, a Ni—Fe layer having a thickness of 9.0 nm is formed.
-Co magnetic layer 23, Co magnetic layer 24 having a thickness of 1.0 nm,
Cu non-magnetic layer 25 with a thickness of 3.0 nm, C with a thickness of 2.0 nm
A magnetic layer 26, a Ni-Fe-Co magnetic layer 27 having a thickness of 3.0 nm, a Fe-Mn alloy antiferromagnetic layer 28 having a thickness of 10.0 nm, and a Cu protective layer 29 having a thickness of 5.0 nm are laminated. .

【0025】図8にバッファ層のNi−O層の厚さと多
層膜の磁化曲線との関係を示す。図のように、バッファ
層の形成により、反強磁性層28に接している磁性層
(磁性層26および磁性層27)に印加される交換バイ
アス磁界が高くなる。
FIG. 8 shows the relationship between the thickness of the Ni—O layer of the buffer layer and the magnetization curve of the multilayer film. As shown in the figure, the formation of the buffer layer increases the exchange bias magnetic field applied to the magnetic layers (magnetic layer 26 and magnetic layer 27) in contact with the antiferromagnetic layer 28.

【0026】図9にバッファ層のNi−O層の厚さと反
強磁性層に接している磁性層に印加される交換バイアス
磁界との関係を示す。図のように、Ni−O層の厚さが
0nm、すなわち、Si基板上のSiO2 の上に多層膜
を形成した場合、交換バイアス磁界は4kA/m程度で
ある。これに対し、Ni−Oからなるバッファ層22を
設けると、Ni−O層の厚さにともない、交換バイアス
磁界が高くなる。Ni−O層の厚さが5nmになると、
交換バイアス磁界の高さはほぼ飽和する。また、図のよ
うに、Ni−O層は、厚さ2.5nm と薄くても、バッ
ファ層として機能する。従って、バッファ層の厚さは
2.5nm 以上が好ましい。
FIG. 9 shows the relationship between the thickness of the Ni—O layer of the buffer layer and the exchange bias magnetic field applied to the magnetic layer in contact with the antiferromagnetic layer. As shown in the figure, when the thickness of the Ni—O layer is 0 nm, that is, when the multilayer film is formed on SiO 2 on the Si substrate, the exchange bias magnetic field is about 4 kA / m. On the other hand, when the buffer layer 22 made of Ni—O is provided, the exchange bias magnetic field becomes higher with the thickness of the Ni—O layer. When the thickness of the Ni-O layer becomes 5 nm,
The height of the exchange bias magnetic field is almost saturated. Further, as shown in the drawing, the Ni—O layer functions as a buffer layer even if it is as thin as 2.5 nm. Therefore, the thickness of the buffer layer is preferably 2.5 nm or more.

【0027】図10にバッファ層のNi−O層の厚さと
反強磁性層28に接していない磁性層(磁性層23およ
び磁性層24)の保磁力との関係を示す。Ni−O層の
厚さが12.5nm 以下の領域では、磁性層の保磁力は
ほぼ一定である。これに対し、Ni−O層の厚さが1
2.5nm より厚くなると、磁性層の保磁力は急激に高
くなる。従って、保磁力の観点からは、バッファ層の厚
さは12.5nm 以下であることが好ましい。また、上
述の結果から、磁性層26および27に印加される交換
バイアス磁界を高くし、磁性層23および24の保磁力
を低くするためには、バッファ層の厚さを2.5〜12.
5nmとする必要がある。
FIG. 10 shows the relationship between the thickness of the Ni—O layer of the buffer layer and the coercive force of the magnetic layers (magnetic layer 23 and magnetic layer 24) not in contact with the antiferromagnetic layer 28. In the region where the thickness of the Ni—O layer is 12.5 nm or less, the coercive force of the magnetic layer is almost constant. On the other hand, the thickness of the Ni-O layer is 1
When it becomes thicker than 2.5 nm, the coercive force of the magnetic layer rapidly increases. Therefore, from the viewpoint of coercive force, the thickness of the buffer layer is preferably 12.5 nm or less. From the above results, in order to increase the exchange bias magnetic field applied to the magnetic layers 26 and 27 and decrease the coercive force of the magnetic layers 23 and 24, the thickness of the buffer layer should be 2.5 to 12.
It must be 5 nm.

【0028】図11にバッファ層のNi−O層の厚さと
磁気抵抗変化率との関係を示す。図のように、磁気抵抗
変化率は約4%である。この値は実施例1より高い。こ
れは、磁性層の一部にCoを用いたためである。また、
図のように、Ni−O層の形成により磁気抵抗変化率は
低下するが、この原因は不明である。
FIG. 11 shows the relationship between the thickness of the Ni—O layer of the buffer layer and the magnetoresistance change rate. As shown in the figure, the rate of change in magnetic resistance is about 4%. This value is higher than in Example 1. This is because Co is used for a part of the magnetic layer. Also,
As shown in the figure, the magnetoresistance change rate decreases due to the formation of the Ni—O layer, but the cause is unknown.

【0029】また、図12のように、Ni−Oバッファ
層厚により、多層膜中のNi−Fe−Co層,Co層、
およびCu層の結晶の(111)面のX線回折強度は増
加する。この(111)面のX線回折強度の増加に見ら
れる組織の変化が、Fe−Mn系合金を面心立方構造と
し、磁性層に印加する交換バイアス磁界を高くしたもの
と考えられる。
Further, as shown in FIG. 12, depending on the thickness of the Ni—O buffer layer, the Ni—Fe—Co layer, the Co layer in the multilayer film,
And the X-ray diffraction intensity of the (111) plane of the crystal of the Cu layer increases. It is considered that the change in the structure observed with the increase in the X-ray diffraction intensity of the (111) plane is caused by making the Fe-Mn alloy a face-centered cubic structure and increasing the exchange bias magnetic field applied to the magnetic layer.

【0030】ところで、本実施例では、非磁性層25と
してCuを用いた場合について述べたが、Au,Agを
用いても、同様の結果を得ることができる。また、C
u,Ag,Auを主成分とする合金を非磁性層25とし
て用いることができる。
In the present embodiment, the case where Cu is used for the nonmagnetic layer 25 has been described, but the same result can be obtained by using Au or Ag. Also, C
An alloy containing u, Ag, and Au as a main component can be used as the nonmagnetic layer 25.

【0031】また、本実施例では、磁性層23および磁
性層27として、Ni−Fe−Co系合金を用いたが、
Ni−Fe系合金も用いることができる。
Further, in this embodiment, the magnetic layers 23 and 27 are made of Ni--Fe--Co alloy, but
Ni-Fe based alloys can also be used.

【0032】また、本実施例では、反強磁性層28とし
てFe−Mn系合金を用いたが、他のMn系合金反強磁
性材料を用いても同様の結果が得られる。他の反強磁性
材料は、Mn−Ir,Mn−Ni,Mn−Pt−Co,
Mn−Co,Mn−Pt,Mn−Pdなどが好ましい。
In this embodiment, the Fe-Mn alloy is used as the antiferromagnetic layer 28, but the same result can be obtained by using other Mn alloy antiferromagnetic material. Other antiferromagnetic materials include Mn-Ir, Mn-Ni, Mn-Pt-Co,
Mn-Co, Mn-Pt, Mn-Pd, etc. are preferable.

【0033】また、基板21としても、Si単結晶以外
の他の基板を用いることができる。
As the substrate 21, a substrate other than Si single crystal can be used.

【0034】<実施例4>図7におけるバッファ層22
として、Ni−O(10.0nm)/NM(10.0nm)
<NMは非磁性金属>という積層構造を有する材料を用
いた。バッファ層上には、実施例3と同様の多層膜を形
成した。バッファ層材料と磁気抵抗変化率との関係を表
2に示す。
<Embodiment 4> The buffer layer 22 shown in FIG.
As Ni-O (10.0 nm) / NM (10.0 nm)
A material having a laminated structure of <NM is a non-magnetic metal> was used. A multilayer film similar to that in Example 3 was formed on the buffer layer. Table 2 shows the relationship between the buffer layer material and the magnetoresistance change rate.

【0035】[0035]

【表2】 [Table 2]

【0036】表2のように、NMとして周期律表のIV
a,Va族元素を用いると、実施例3で述べたNi−O
のみの場合の磁気抵抗変化率3.7% よりも高い磁気抵
抗変化率が得られる。
As shown in Table 2, IV of the periodic table as NM
When the a and Va group elements are used, the Ni—O described in Example 3 is used.
A magnetic resistance change rate higher than the magnetic resistance change rate of 3.7% in the case of only is obtained.

【0037】また、本実施例では、Ni−Oについての
み述べたが、他の3d遷移金属元素の酸化物を用いても
同様の結果を得ることができる。
In this embodiment, only Ni-O has been described, but similar results can be obtained by using an oxide of another 3d transition metal element.

【0038】<実施例5>本発明の多層膜を用いた磁気
抵抗効果素子を形成した。本実施例では、図1のバッフ
ァ層12として、厚さ10nmのNi−Oを用いた。バ
ッファ層12の上に実施例1で述べた多層膜を形成した
図13に磁気抵抗効果素子の構造を示す。磁気抵抗効果
素子は、多層磁気抵抗効果膜51および電極52をシー
ルド層53,54で挟んだ構造を有する。磁気抵抗効果
素子に磁界を印加し、電気抵抗率の変化を測定したとこ
ろ、本発明の多層磁気抵抗効果膜を用いた磁気抵抗効果
素子は、2.4kA/m(30Oe)程度の印加磁界で3
%程度の磁気抵抗変化率を示した。また、本発明の磁気
抵抗効果素子の再生出力は、Ni−Fe単層膜を用いた
磁気抵抗効果素子と比較して2.5倍であった。
Example 5 A magnetoresistive effect element using the multilayer film of the present invention was formed. In this embodiment, as the buffer layer 12 in FIG. 1, Ni-O having a thickness of 10 nm is used. The structure of the magnetoresistive element is shown in FIG. 13 in which the multilayer film described in the first embodiment is formed on the buffer layer 12. The magnetoresistive effect element has a structure in which a multilayer magnetoresistive effect film 51 and an electrode 52 are sandwiched by shield layers 53 and 54. When a magnetic field was applied to the magnetoresistive effect element and a change in electric resistivity was measured, it was found that the magnetoresistive effect element using the multilayer magnetoresistive effect film of the present invention has an applied magnetic field of about 2.4 kA / m (30 Oe). Three
The magnetic resistance change rate was about%. Further, the reproduction output of the magnetoresistive effect element of the present invention was 2.5 times that of the magnetoresistive effect element using the Ni-Fe single layer film.

【0039】本実施例では、バッファ層材料として、N
i−Oを用いたが、実施例2で述べた本発明のバッファ
層材料は全て磁気抵抗効果素子用の多層膜のバッファ層
として用いることができる。また、実施例3および実施
例4で述べた磁性層の一部にCoを用いた多層膜を用い
ることもできる。
In this embodiment, N is used as the buffer layer material.
Although i-O is used, all the buffer layer materials of the present invention described in Example 2 can be used as a multilayer buffer layer for a magnetoresistive effect element. Further, a multilayer film using Co can be used as a part of the magnetic layer described in the third and fourth embodiments.

【0040】<実施例6>実施例4で述べた磁気抵抗効
果素子を用い、磁気ヘッドを作製した。磁気ヘッドの構
造を以下に示す。図14は、記録再生分離型ヘッドの一
部分を切断した場合の斜視図である。多層磁気抵抗効果
膜61をシールド層62,63で挾んだ部分が再生ヘッ
ドとして働き、コイル64を挾む下部磁極65,上部磁
極66の部分が記録ヘッドとして働く。また、電極68
には、Cr/Cu/Crという多層構造の材料を用い
た。
Example 6 A magnetic head was produced using the magnetoresistive effect element described in Example 4. The structure of the magnetic head is shown below. FIG. 14 is a perspective view when a part of the recording / reproducing separated type head is cut. The portion of the multilayer magnetoresistive effect film 61 sandwiched by the shield layers 62 and 63 functions as a reproducing head, and the portions of the lower magnetic pole 65 and the upper magnetic pole 66 that sandwich the coil 64 function as a recording head. Also, the electrode 68
As the material, a material having a multilayer structure of Cr / Cu / Cr was used.

【0041】以下にこのヘッドの作製方法を示す。Al
23・TiCを主成分とする焼結体をスライダ用の基板
67とした。シールド層,記録磁極にはスパッタリング
法で形成したNi−Fe合金を用いた。各磁性膜の膜厚
は、以下のようにした。上下のシールド層62,63は
1.0μm、下部磁極65,上部66は3.0μm、各層
間のギャップ材はスパッタリングで形成したAl23
用いた。ギャップ層の膜厚は、シールド層と磁気抵抗効
果素子間で0.2μm、記録磁極間では0.4μmとし
た。さらに再生ヘッドと記録ヘッドの間隔は約4μmと
し、このギャップもAl23で形成した。コイル64に
は膜厚3μmのCuを使用した。
The manufacturing method of this head will be described below. Al
A sintered body containing 2 O 3 .TiC as a main component was used as the slider substrate 67. A Ni-Fe alloy formed by a sputtering method was used for the shield layer and the recording magnetic pole. The thickness of each magnetic film was as follows. The upper and lower shield layers 62 and 63 were 1.0 μm, the lower magnetic pole 65 and the upper part 66 were 3.0 μm, and the gap material between the layers was Al 2 O 3 formed by sputtering. The film thickness of the gap layer was 0.2 μm between the shield layer and the magnetoresistive effect element and 0.4 μm between the recording magnetic poles. Further, the distance between the reproducing head and the recording head was set to about 4 μm, and this gap was also formed of Al 2 O 3 . Cu having a film thickness of 3 μm was used for the coil 64.

【0042】この構造の磁気ヘッドで記録再生を行った
ところ、Ni−Fe単層膜を用いた磁気ヘッドと比較し
て、2.3 倍高い再生出力を得た。これは、本発明の磁
気ヘッドに高磁気抵抗効果を示す多層膜を用いたためと
考えられる。
When recording / reproducing was performed with the magnetic head having this structure, a reproducing output 2.3 times higher than that of the magnetic head using the Ni--Fe single layer film was obtained. It is considered that this is because the magnetic head of the present invention uses a multilayer film having a high magnetoresistive effect.

【0043】また、本発明の磁気抵抗効果素子は、磁気
ヘッド以外の磁界検出器にも用いることができる。
Further, the magnetoresistive effect element of the present invention can be used in a magnetic field detector other than the magnetic head.

【0044】<実施例7>実施例6で述べた本発明の磁
気ヘッドを用い、磁気ディスク装置を作製した。装置の
構成を図15に示す。磁気記録媒体71には、残留磁束
密度0.75T のCo−Ni−Pt−Ta系合金からな
る材料を用いた。磁気ヘッド73のトラック幅は3μm
とした。磁気ヘッド73における磁気抵抗効果素子は、
再生出力が高いため、信号処理に負担をかけない高性能
磁気ディスク装置が得られた。
<Embodiment 7> Using the magnetic head of the present invention described in Embodiment 6, a magnetic disk device was manufactured. The configuration of the device is shown in FIG. For the magnetic recording medium 71, a material made of a Co—Ni—Pt—Ta alloy having a residual magnetic flux density of 0.75T was used. The track width of the magnetic head 73 is 3 μm
And The magnetoresistive effect element in the magnetic head 73 is
Since the reproduction output is high, a high-performance magnetic disk device which does not burden the signal processing was obtained.

【0045】[0045]

【発明の効果】多層膜と基板との間に3d遷移金属元素
の酸化物のバッファ層を形成すると、多層膜中の磁性層
に印加される反強磁性層からの交換バイアス磁界が増加
する。このため、磁化過程のヒステリシスの少ない、優
れた磁気特性を示す多層膜が得られる。また、バッファ
層形成後に、一度、大気にさらしても優れた特性が得ら
れるため、スパッタリング・カソードの少ないスパッタ
リング装置を用いても多層膜を形成することができる。
また、本発明の多層膜は低い印加磁界で磁気抵抗効果を
示す。さらに、多層磁気抵抗効果膜は、磁気抵抗効果素
子,磁界センサ,磁気ヘッドなどに好適である。また、
磁気ヘッドを用いることにより、高性能磁気記録再生装
置を得ることができる。
When the buffer layer of the oxide of the 3d transition metal element is formed between the multilayer film and the substrate, the exchange bias magnetic field from the antiferromagnetic layer applied to the magnetic layer in the multilayer film increases. Therefore, it is possible to obtain a multi-layered film having excellent magnetic characteristics with less hysteresis in the magnetization process. Further, since excellent characteristics can be obtained even after exposure to the atmosphere once after the formation of the buffer layer, a multilayer film can be formed even by using a sputtering apparatus with few sputtering cathodes.
Further, the multilayer film of the present invention exhibits a magnetoresistive effect at a low applied magnetic field. Furthermore, the multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head, and the like. Also,
A high-performance magnetic recording / reproducing apparatus can be obtained by using the magnetic head.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多層磁気抵抗効果膜の構造を示す断面
図。
FIG. 1 is a sectional view showing the structure of a multilayer magnetoresistive effect film of the present invention.

【図2】Ni−Oバッファ層厚と多層膜の磁化曲線との
関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the Ni—O buffer layer thickness and the magnetization curve of a multilayer film.

【図3】Ni−Oバッファ層厚と反強磁性層に接してい
る磁性層に印加される交換バイアス磁界との関係を示す
グラフ。
FIG. 3 is a graph showing the relationship between the Ni—O buffer layer thickness and the exchange bias magnetic field applied to the magnetic layer in contact with the antiferromagnetic layer.

【図4】Ni−Oバッファ層厚と反強磁性層に接してい
ない磁性層の保磁力との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the Ni—O buffer layer thickness and the coercive force of the magnetic layer that is not in contact with the antiferromagnetic layer.

【図5】Ni−Oバッファ層厚と多層膜の磁気抵抗変化
率との関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the Ni—O buffer layer thickness and the magnetoresistance change rate of the multilayer film.

【図6】Ni−Oバッファ層厚と多層膜の(111)面
のX線回折強度との関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the Ni—O buffer layer thickness and the X-ray diffraction intensity of the (111) plane of the multilayer film.

【図7】本発明の多層磁気抵抗効果膜の構造を示す断面
図。
FIG. 7 is a sectional view showing the structure of the multilayer magnetoresistive effect film of the present invention.

【図8】Ni−Oバッファ層厚と多層膜の磁化曲線との
関係を示すグラフ。
FIG. 8 is a graph showing the relationship between the Ni—O buffer layer thickness and the magnetization curve of a multilayer film.

【図9】Ni−Oバッファ層厚と反強磁性層に接してい
る磁性層に印加される交換バイアス磁界との関係を示す
グラフ。
FIG. 9 is a graph showing the relationship between the Ni—O buffer layer thickness and the exchange bias magnetic field applied to the magnetic layer in contact with the antiferromagnetic layer.

【図10】Ni−Oバッファ層厚と反強磁性層に接して
いない磁性層の保磁力との関係を示すグラフ。
FIG. 10 is a graph showing the relationship between the Ni—O buffer layer thickness and the coercive force of the magnetic layer that is not in contact with the antiferromagnetic layer.

【図11】Ni−Oバッファ層厚と多層膜の磁気抵抗変
化率との関係を示すグラフ。
FIG. 11 is a graph showing the relationship between the Ni—O buffer layer thickness and the magnetoresistance change rate of the multilayer film.

【図12】Ni−Oバッファ層厚と多層膜の(111)
面のX線回折強度との関係を示すグラフ。
FIG. 12: Ni-O buffer layer thickness and multilayer film (111)
The graph which shows the relationship with the X-ray diffraction intensity of a surface.

【図13】本発明の多層磁気抵抗効果膜を用いた磁気抵
抗効果素子の構造を示す斜視図。
FIG. 13 is a perspective view showing the structure of a magnetoresistive effect element using the multilayer magnetoresistive effect film of the present invention.

【図14】本発明の磁気ヘッドの構造を示す斜視図。FIG. 14 is a perspective view showing the structure of the magnetic head of the present invention.

【図15】本発明の磁気記録再生装置の説明図。FIG. 15 is an explanatory diagram of a magnetic recording / reproducing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

11…基板、12…バッファ層、13,15…磁性層、
14…非磁性層、16…反強磁性層、17…保護層。
11 ... Substrate, 12 ... Buffer layer, 13, 15 ... Magnetic layer,
14 ... Nonmagnetic layer, 16 ... Antiferromagnetic layer, 17 ... Protective layer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−6329(JP,A) 特開 平6−325934(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/31 - 5/39 H01F 10/30 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-6329 (JP, A) JP-A-6-325934 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G11B 5/31-5/39 H01F 10/30

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二層の磁性層が非磁性層により分離されて
おり、一層の磁性層に反強磁性層が接している多層膜
が、3d遷移金属元素の酸化物からなる層の上に形成さ
れていることを特徴とする多層磁気抵抗効果膜。
1. A multilayer film in which two magnetic layers are separated by a non-magnetic layer and an antiferromagnetic layer is in contact with one magnetic layer is formed on a layer made of an oxide of a 3d transition metal element. A multi-layered magnetoresistive effect film characterized by being formed.
【請求項2】請求項1において、上記3d遷移金属元素
の酸化物が、Ni−O,Fe−O,Co−Oの群から選
ばれる材料である多層磁気抵抗効果膜。
2. The multilayer magnetoresistive effect film according to claim 1, wherein the oxide of the 3d transition metal element is a material selected from the group consisting of Ni—O, Fe—O and Co—O.
【請求項3】請求項1または請求項2において、上記N
i−O,Fe−O,Co−Oの群から選ばれる材料の層
の厚さが2.5〜12.5nmである多層磁気抵抗効果
膜。
3. The N according to claim 1 or 2,
A multilayer magnetoresistive effect film in which a layer of a material selected from the group of i-O, Fe-O, and Co-O has a thickness of 2.5 to 12.5 nm.
【請求項4】請求項1,2または3において、上記3d
遷移金属元素の酸化物層と基板との間に、周期律表のIV
a,Va族元素からなる金属層が形成されている多層磁
気抵抗効果膜。
4. The above 3d according to claim 1, 2 or 3.
Between the oxide layer of the transition metal element and the substrate, IV of the periodic table
A multi-layered magnetoresistive effect film in which a metal layer composed of a and Va group elements is formed.
【請求項5】請求項1,2,3または4に記載の上記多
層磁気抵抗効果膜を少なくとも一部に用いた磁気抵抗効
果素子。
5. A magnetoresistive effect element using at least a part of the multilayer magnetoresistive effect film according to claim 1, 2, 3 or 4.
【請求項6】請求項5に記載の磁気抵抗効果素子を少な
くとも一部に用いた磁気ヘッド。
6. A magnetic head using the magnetoresistive effect element according to claim 5 in at least a part thereof.
【請求項7】請求項5に記載の磁気抵抗効果素子と誘導
型磁気ヘッドを組み合わせた複合型磁気ヘッド。
7. A composite magnetic head in which the magnetoresistive effect element according to claim 5 and an inductive magnetic head are combined.
【請求項8】請求項6または請求項7に記載の磁気ヘッ
ドを用いた磁気記録再生装置。
8. A magnetic recording / reproducing apparatus using the magnetic head according to claim 6.
JP4157995A 1995-03-01 1995-03-01 Multilayer magnetoresistive film and magnetic head Expired - Fee Related JP3527786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4157995A JP3527786B2 (en) 1995-03-01 1995-03-01 Multilayer magnetoresistive film and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4157995A JP3527786B2 (en) 1995-03-01 1995-03-01 Multilayer magnetoresistive film and magnetic head

Publications (2)

Publication Number Publication Date
JPH08235540A JPH08235540A (en) 1996-09-13
JP3527786B2 true JP3527786B2 (en) 2004-05-17

Family

ID=12612363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4157995A Expired - Fee Related JP3527786B2 (en) 1995-03-01 1995-03-01 Multilayer magnetoresistive film and magnetic head

Country Status (1)

Country Link
JP (1) JP3527786B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717550A (en) * 1996-11-01 1998-02-10 Read-Rite Corporation Antiferromagnetic exchange biasing using buffer layer
US6295187B1 (en) 1999-06-29 2001-09-25 International Business Machines Corporation Spin valve sensor with stable antiparallel pinned layer structure exchange coupled to a nickel oxide pinning layer
US6430013B1 (en) 1999-12-06 2002-08-06 International Business Machines Corporation Magnetoresistive structure having improved thermal stability via magnetic barrier layer within a free layer
US6489035B1 (en) 2000-02-08 2002-12-03 Gould Electronics Inc. Applying resistive layer onto copper
US6489034B1 (en) 2000-02-08 2002-12-03 Gould Electronics Inc. Method of forming chromium coated copper for printed circuit boards
JP4337209B2 (en) * 2000-02-22 2009-09-30 日立金属株式会社 Permanent magnet thin film and manufacturing method thereof
US6867951B1 (en) 2000-07-12 2005-03-15 Hitachi Global Storage Technologies Netherlands B.V. Spin valve magnetic properties with oxygen-rich NiO underlayer
US6622374B1 (en) 2000-09-22 2003-09-23 Gould Electronics Inc. Resistor component with multiple layers of resistive material

Also Published As

Publication number Publication date
JPH08235540A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
JP3088478B2 (en) Magnetoresistive element
JP2738312B2 (en) Magnetoresistive film and method of manufacturing the same
JPH04247607A (en) Magnetoresistance effect element
JP3231313B2 (en) Magnetic head
JPH10143822A (en) Thin-film magnetic structure and thin-film magnetic head
JP3527786B2 (en) Multilayer magnetoresistive film and magnetic head
JPH0969211A (en) Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
JPH076329A (en) Magneto-resistance effect element and magnetic head using the same and magnetic recording and reproducing device
JPH0950612A (en) Magnetoresistive effect film, magnetoresistive effect element, magnetic head and magnetic recording and reproducing device
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element
JPH07220246A (en) Magneto-resistance effect film, magneto-resistance effect type head and magnetic recording and reproducing device
JP2001284680A (en) Magnetoresistive effect element, manufacturing method thereof and magnetoresistive effect magnetic head
JPH06310329A (en) Multilayer magnetoresistance effect film and magnetic head
JP3083237B2 (en) Magnetoresistive element and magnetic head
JPH0766036A (en) Multilayer magnetoresistance effect film, and magnetoresistance effect element and magnetic head using same
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head
JP2656449B2 (en) Magnetoresistive head
JP2907805B1 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing device
JPH0765329A (en) Multilayered magnetoresistance effect film and magnetic head
JPH08241506A (en) Multilayered magnetoresistance effect film and magnetic head
JPH09161243A (en) Multilayered magnetoresistive film and magnetic head
JP3132809B2 (en) Magnetoresistive element and magnetoresistive head
JPH06260337A (en) Multilayer magnetoresistance effect film and magnetic head
JPH07211956A (en) Magnetoresistance effect element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Effective date: 20031128

Free format text: JAPANESE INTERMEDIATE CODE: A712

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040217

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040223

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees