[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3525386B1 - Ventilation system for highly airtight and highly insulated houses - Google Patents

Ventilation system for highly airtight and highly insulated houses

Info

Publication number
JP3525386B1
JP3525386B1 JP2003300988A JP2003300988A JP3525386B1 JP 3525386 B1 JP3525386 B1 JP 3525386B1 JP 2003300988 A JP2003300988 A JP 2003300988A JP 2003300988 A JP2003300988 A JP 2003300988A JP 3525386 B1 JP3525386 B1 JP 3525386B1
Authority
JP
Japan
Prior art keywords
air
duct
room
exhaust
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003300988A
Other languages
Japanese (ja)
Other versions
JP2005069590A (en
Inventor
三上征宏
Original Assignee
三上 征宏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三上 征宏 filed Critical 三上 征宏
Priority to JP2003300988A priority Critical patent/JP3525386B1/en
Application granted granted Critical
Publication of JP3525386B1 publication Critical patent/JP3525386B1/en
Publication of JP2005069590A publication Critical patent/JP2005069590A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)

Abstract

【要約】 【課題】 新鮮な外気を、各部屋に必要な量だけ、季
節、天候、昼夜、部屋の位置にかかわらず供給する換気
システムを安価に提供する。 【解決手段】 外気が給気ファン41により高気密高断
熱の家のほぼ中央に供給され、各部屋の空気は、必要な
換気量から算出された内径のダクトを通して空気槽61
に排出され、空気槽の空気は、常時開放のダクトと外気
の温度により開閉するダクトから構成された空気槽排気
装置66を通して外部に排出される。
A ventilation system for supplying fresh air in an amount required for each room regardless of the season, weather, day and night, and the position of the room is provided at a low cost. SOLUTION: Outside air is supplied to a substantially airtight and highly insulated house at a substantially center of a house by an air supply fan 41, and air in each room is passed through a duct having an inner diameter calculated from a required ventilation volume.
The air in the air tank is discharged to the outside through an air tank exhaust device 66 which is constituted by a duct which is always open and a duct which opens and closes depending on the temperature of the outside air.

Description

【発明の詳細な説明】Detailed Description of the Invention 【技術分野】【Technical field】

【0001】本発明は、高気密高断熱住宅の換気を行う
換気システムに関する。
The present invention relates to a ventilation system for ventilating a highly airtight and highly insulated house.

【背景技術】[Background technology]

【0002】従来の、強制給気方式を用い、家の中央付
近に吹出し口を持ち、給気ファンにより外気を室内に取
り入れる換気システムにおいて、各部屋の空気の排気量
をレジスタを有する通気装置(ルーバ)で制限し、各部
屋の換気量を部屋の大きさ、使用目的等で調整するもの
(例えば、特許文献1参照。)がある。
In a conventional ventilation system that uses a forced air supply system, has an outlet near the center of the house, and takes in outside air into the room by an air supply fan, a ventilation device having a register for the amount of air exhausted in each room ( There is a device (for example, see Patent Document 1) in which the ventilation amount of each room is controlled by the size of the room, the purpose of use, etc.

【0003】以下、図により従来例の換気システムに
ついて説明する。ダクトファン220を有するダクト2
21が、建物の屋根裏空間211の下方に画成された屋
内空間の概略中央部に位置する廊下に、外気を供給し、
その供給された外気が各ドアのルーバ218やアンダー
カット219を通って各部屋内へ流れ、これにより各部
屋内の空気が、内壁203に設けられたルーバ225に
より、ダクトファン220での外気の供給量より少ない
量に制限されつつ、外壁202と内壁203との間の通
気層205に排出されて、夏場は外壁202で温められ
た通気層205内の上昇気流にのり、冬場はそれ自体の
温かさによる上昇気流によって屋根裏空間211内へ運
ばれる。そして屋内から屋根裏空間211内へ到達した
空気は、妻壁に設けられた排気口226を通って屋外に
排出される。通気装置としてのルーバは通気量を任意に
調節し得るレジスタを有し、そのレジスタを適宜調節し
て、全てのルーバを合わせても屋内空間から通気層に排
出する空気の量をダクトファン220による外気供給量
よりも少なくするように通気量を制限する。これにより
各部屋に適切な換気量を供給できる。
[0003] The following describes a conventional example ventilation system by FIG. Duct 2 with duct fan 220
21 supplies outside air to the corridor located in the approximate center of the indoor space defined below the attic space 211 of the building,
The supplied outside air flows into each room through the louvers 218 and the undercuts 219 of each door, whereby the air in each room is separated from the outside air in the duct fan 220 by the louvers 225 provided on the inner wall 203. It is discharged to the ventilation layer 205 between the outer wall 202 and the inner wall 203 while being limited to an amount less than the supply amount, and in the summer, it rises in the ventilation layer 205 heated by the outer wall 202, and in the winter, it rises up. It is carried into the attic space 211 by the rising airflow due to the warmth. The air that has reached the inside of the attic space 211 from the inside is exhausted to the outside through the exhaust port 226 provided in the end wall. The louver as a ventilation device has a register capable of arbitrarily adjusting the ventilation amount, and the amount of air discharged from the indoor space to the ventilation layer is adjusted by the duct fan 220 even if all the louvers are combined by appropriately adjusting the register. Limit the ventilation so that it is less than the outside air supply. This makes it possible to supply an appropriate amount of ventilation to each room.

【0004】[0004]

【特許文献1】特願2000−138561(特開20
01−317779)(図1)
[Patent Document 1] Japanese Patent Application No. 2000-138561
01-317779) (Fig. 1)

【発明の開示】DISCLOSURE OF THE INVENTION 【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0005】従来の、各部屋の空気の排気量をレジスタ
を有する通気装置(ルーバ)で制限し、各部屋の換気量
を部屋の大きさ、使用目的等で調整する方法は各部屋の
換気量が通気層と室内の温度差、通気層の気流の強さに
より大きく変わるので、レジスタにより設定した換気量
は季節、天候、昼夜等により大きく変わる。例えば冬、
晴天の日、日射が当っている南側では通気層の温度は外
気の温度よりかなり高く、その温度による上昇気流が強
く、排気量が多くなる。しかし、日射が当たらない夜ま
たは雨天の日等では通気層の温度上昇は少なく排気量は
多くならない。従って、レジスタを設定した季節と天候
と異なった時は換気量は設定値と大きく異なる。
The conventional method of limiting the air exhaust volume of each room with a ventilation device (louver) having a register and adjusting the ventilation volume of each room according to the size of the room, purpose of use, etc. is the ventilation volume of each room. Changes greatly depending on the temperature difference between the ventilation layer and the room, and the strength of the airflow in the ventilation layer, so the ventilation volume set by the register varies greatly depending on the season, weather, day and night, etc. For example, winter
On a sunny day, the temperature of the aeration layer is considerably higher than the temperature of the outside air on the south side where the sunlight is shining, and the upward airflow due to that temperature is strong and the displacement is large. However, the temperature of the aeration layer does not rise so much and the exhaust volume does not increase on a day when it is not exposed to sunlight or on a rainy day. Therefore, when the season when the register is set and the weather are different, the ventilation volume is significantly different from the set value.

【0006】更に、特許文献1は2階建てあるいはそれ
以上の階層をもつものにも適用されると記述されている
が、この方法を2階建ての家に適応するのは困難であ
る。例えば、冬室内が暖房され、給気により室内の気圧
が外部より高い場合、通気層と室内の気圧差は2階が大
きく1階が小さいため2階の排気量が多くなり、1階の
排気量が少なくなる。一方、夏室内が冷房され、給気に
より室内の気圧が外部より高い場合、通気層と室内の気
圧差は2階が小さく1階が大きいため2階の排気量が少
なくなり、1階の排気量が大きくなる。
Further, although Patent Document 1 describes that the method is applied to a two-story building or one having more floors, it is difficult to apply this method to a two-story house. For example, if the interior of a room is heated in winter and the air pressure inside is higher than the outside due to air supply, the air pressure difference between the ventilation layer and the room is large on the second floor and small on the first floor, so the exhaust volume on the second floor is large and the exhaust gas on the first floor The quantity is reduced. On the other hand, when the air pressure inside the room is higher than the outside due to air supply in the summer, the pressure difference between the ventilation layer and the room is small on the second floor and large on the first floor, so the exhaust volume on the second floor is small and the exhaust air on the first floor is small. The amount increases.

【0007】本発明は前記従来例の不具合を解消し、各
部屋に必要な量の外気を季節、天候、昼夜、部屋の位置
にかかわらず供給する換気システムを安価に提供するこ
と、無駄な換気による無駄な熱損失を減らすことを目的
とする。
The present invention solves the above-mentioned problems of the prior art, provides an inexpensive ventilation system for supplying the required amount of outside air to each room regardless of the season, weather, day and night, and the position of the room. The purpose is to reduce wasteful heat loss due to.

【課題を解決するための手段】[Means for Solving the Problems]

【0008】請求項1記載の本発明によれば、排気装置
が空気槽と、各部屋から前記空気槽に配管された部屋排
気ダクトと、前記空気槽から家の外部に排気する空気槽
排気装置から構成されている。前記空気槽内の空気の流
れは小さいので前記空気槽内の気圧はほぼ均一であり、
また各部屋内及び部屋間の風速は小さいので全部の部屋
内の気圧はほぼ均一であり、更に高気密高断熱層の内部
にある前記空気槽と前記部屋排気ダクトの気温はほぼ同
じであるので前記各部屋排気ダクトの両端にかかる気圧
はほぼ同じである。ダクトが円形でない場合は等価的に
円形に換算できるのでダクトは全て円形とする。円形の
ダクトの風量は両端にかかる気圧と長さと内径と内壁の
粗さに依存し、ダクトの長さは家のレイアウトに依存す
るので、前記部屋排気ダクトの内径により各部屋の排気
量の割合を調整できる。従って、前記部屋排気ダクトの
内径を適切に選択することにより季節、天候、昼夜、部
屋の位置にかかわらず、必要な換気量を各部屋に供給で
きる。
According to the first aspect of the present invention, the exhaust device includes an air tank, a room exhaust duct provided from each room to the air tank, and an air tank exhaust device for exhausting air from the air tank to the outside of the house. It consists of Since the air flow in the air tank is small, the air pressure in the air tank is almost uniform,
Also, since the air velocity in each room and between rooms is low, the air pressure in all rooms is almost uniform, and the air temperature inside the airtight and highly insulating layer is almost the same as the air temperature in the room exhaust duct. The air pressures applied to both ends of each room exhaust duct are almost the same. If the ducts are not circular, they can be equivalently converted into circles, so all ducts should be circular. The air volume of the circular duct depends on the pressure and length on both ends, the inner diameter and the roughness of the inner wall, and the length of the duct depends on the layout of the house, so the ratio of the exhaust volume of each room depends on the inner diameter of the room exhaust duct. Can be adjusted. Therefore, by appropriately selecting the inner diameter of the room exhaust duct, it is possible to supply a necessary ventilation amount to each room regardless of the season, weather, day and night, and the position of the room.

【0009】空気の気圧は空気の密度によって生じ、空
気の密度は気温が高いほど小さいので、高気密高断熱住
宅の内部と同じ水平線上の外部との気圧差は室内と外気
の温度差によって生じる。夏、冷房されている室内の気
圧は基礎コンクリートに近いほど同じ水平線上の外部よ
り相対的に高くなり、家の上部に設置され外部に通じて
いる前記空気槽排気装置の位置の室内の気圧は外部より
圧力損失分だけ高いので、前記空気槽排気装置が排気し
ている時は室内の気圧はどこでも外部の気圧より高い。
一方、冬は、基礎コンクリートに近いほど外部より気圧
が相対的に低くなるので、前記空気槽排気装置の圧力損
失を大きくし、基礎コンクリート付近の気圧を外部の気
圧より高くする。前記空気槽排気装置の圧力損失は空気
の摩擦抵抗を大きくすることにより大きくできるので前
記空気槽排気装置の空気の摩擦抵抗を調整して室内の気
圧を外部より高くできる。
Since the air pressure is caused by the air density, and the air density is smaller as the temperature is higher, the air pressure difference between the inside of a highly airtight and highly insulated house and the outside on the same horizon is caused by the temperature difference between the room and the outside air. . In summer, the air pressure inside the air-conditioned room is higher than the outside on the same horizon as it is closer to the basic concrete, and the air pressure inside the room at the position of the air tank exhaust device installed at the top of the house and communicating with the outside is Since the pressure loss is higher than that of the outside, the atmospheric pressure in the room is higher than the atmospheric pressure everywhere when the air tank exhaust device is exhausting.
On the other hand, in winter, the air pressure becomes relatively lower than the outside as it gets closer to the basic concrete, so the pressure loss of the air tank exhaust device is increased and the atmospheric pressure near the basic concrete is made higher than the external pressure. Since the pressure loss of the air tank exhaust device can be increased by increasing the frictional resistance of air, the air pressure inside the room can be made higher than the outside by adjusting the frictional resistance of air in the air tank exhaust device.

【0010】前記空気槽排気装置は高気密高断層を貫通
した第一の排気ダクトと第二の排気ダクトと、前記第二
の排気ダクトの一端または途中に配置され外気温度によ
り開閉されるダンパーから構成されている。気密断熱層
の漏洩の風量は室内の気圧が高いほど多い。漏洩は気密
断熱層の全体に亘り不均一に分布し、各部屋の必要換気
量に含められないので室内の気圧をできるだけ低く保つ
ことにより無駄な換気を減らし、換気による熱損失を減
らすことができる。前記第二の排気ダクトは内径が大き
く空気の摩擦抵抗の小さいダクトを使い、前記第一の排
気ダクトは内径が小さく空気の摩擦抵抗の大きいダクト
を使う。夏、前記第二の排気ダクトを開けることにより
室内の気圧をできるだけ低く保ち、冬、前記第二の排気
ダクトを閉じることにより室内の気圧を高くし、基礎コ
ンクリート付近の気圧を外部の気圧より高くする。前記
第二の排気ダクトの開閉をすることにより室内の気圧を
外部より高く保ち且室内の気圧を低く保つことができ
る。
The air tank exhaust device comprises a first exhaust duct and a second exhaust duct which penetrate a high airtight and high fault, and a damper which is arranged at one end or in the middle of the second exhaust duct and which is opened and closed by the outside air temperature. It is configured. The higher the air pressure in the room, the greater the amount of air leaked from the airtight insulating layer. Leaks are unevenly distributed throughout the airtight insulation layer and cannot be included in the required ventilation of each room, so keeping the room air pressure as low as possible reduces unnecessary ventilation and reduces heat loss due to ventilation. . The second exhaust duct uses a duct having a large inner diameter and a small frictional resistance against air, and the first exhaust duct uses a duct having a small inner diameter and a large frictional resistance against air. In summer, keep the atmospheric pressure in the room as low as possible by opening the second exhaust duct, and in winter, raise the indoor air pressure by closing the second exhaust duct, making the atmospheric pressure near the foundation concrete higher than the external atmospheric pressure. To do. By opening and closing the second exhaust duct, the atmospheric pressure in the room can be kept higher than the outside and the atmospheric pressure in the room can be kept low.

【0011】請求項記載の本発明によれば、各ダクト
は2つの異なる内径のダクトとジョイントから構成され
ている。前記部屋排気ダクトの長さは家の構造やレイア
ウトにより決まり、換気量は各部屋の大きさと用途によ
り決まるので前記部屋排気ダクトの内径はまちまちとな
る。必要なダクトの内径と長さと同じ損失係数を持つダ
クトを、必要な内径より小さい内径を持つダクトと、必
要な内径より大きい内径を持つダクトをジョイントで連
結し、必要な長さを有するダクトを作成できる。これに
より必要な内径と長さを持つダクトを販売されている2
種類の内径のダクトとジョイントにより安価に作成でき
る。
According to the present invention described in claim 2, each duct is composed of the duct and the joint of the two different inner diameters. Since the length of the room exhaust duct is determined by the structure and layout of the house, and the ventilation amount is determined by the size and use of each room, the inner diameter of the room exhaust duct varies. A duct with the same loss factor as the inner diameter and length of the required duct is connected with a duct with an inner diameter smaller than the required inner diameter and a duct with an inner diameter larger than the required inner diameter with a joint to form a duct with the required length. Can be created. This makes it possible to sell ducts with the required inner diameter and length. 2
It can be manufactured at low cost by using ducts and joints with different inner diameters.

【0012】請求項記載の本発明によれば、短期間、
局部的に排気する強制排気システムが配置された住宅に
おいて、前記給気ファンの給気量が、前記強制排気シス
テムが駆動された時前記強制排気システムの排気量とほ
ぼ同量だけ増加する。風呂や台所等で強制的に排気する
時その排気量だけ給気量を増やすことにより、室内の気
圧を外部の気圧より高く保つことができる。
According to the present invention as defined in claim 3 ,
In a house in which a forced exhaust system for locally exhausting air is arranged, the supply amount of the air supply fan increases by about the same amount as the exhaust amount of the forced exhaust system when the forced exhaust system is driven. When the gas is forcibly exhausted in a bath or kitchen, the air pressure in the room can be kept higher than the air pressure outside by increasing the air supply amount by the exhaust amount.

【0013】請求項記載の本発明によれば、前記給気
ファンの給気量が前記給気ダクト内に設置された風量セ
ンサの出力と設定された風量によりコントロールされ
る。前記給気ファンが供給する給気量は前記給気ファン
に供給する電圧でコントロールされるが、前記エアフィ
ルタの目詰まり等により空気の摩擦抵抗が増えた場合、
給気量は減少する。前記給気ダクト内に前記風量センサ
を設置し、前記風量センサの出力と風量の設定値により
前記給気ファンに供給する電圧を調整することにより、
設定された給気量を前記エアフィルタの目詰まり等にか
かわらず正確に供給できる。また前記強制排気システム
を駆動する時、風量の設定値を前記強制排気システムの
排気量だけ増やすことにより前記給気ファンの給気量を
排気量だけ増やすことができる。また居住者数が変わっ
た時、居住者数に合せた給気量に調整できる。これによ
り給気量を適量に保ち、過剰な給気量による無駄な熱損
失を減らし、冷暖房費を下げることができる。
According to the fourth aspect of the present invention, the air supply amount of the air supply fan is controlled by the output of the air flow sensor installed in the air supply duct and the set air flow rate. The amount of air supplied by the air supply fan is controlled by the voltage supplied to the air supply fan, but when the frictional resistance of air increases due to clogging of the air filter,
Air supply is reduced. By installing the air volume sensor in the air supply duct, by adjusting the voltage supplied to the air supply fan according to the output of the air volume sensor and the set value of the air volume,
The set air supply amount can be accurately supplied regardless of clogging of the air filter. Further, when the forced exhaust system is driven, the air supply amount of the air supply fan can be increased by the exhaust amount by increasing the set value of the air amount by the exhaust amount of the forced exhaust system. Also, when the number of residents changes, it is possible to adjust the amount of air supply according to the number of residents. As a result, the amount of air supply can be maintained at an appropriate amount, wasteful heat loss due to excessive amount of air supply can be reduced, and cooling and heating costs can be reduced.

【発明の効果】【The invention's effect】

【0014】以上述べたように、本発明の高気密高断熱
住宅の換気システムは、構造が簡単であることにより、
各部屋に必要な量の新鮮な外気を季節、天候、昼夜、部
屋の位置にかかわらず供給するシステムを安価に提供
し、また室内の気圧を低く保ち、給気量を正確にコント
ロールし無駄な換気による無駄な熱損失を減らすことに
より冷暖房費を削減する。
As described above, the ventilation system for a highly airtight and highly insulated house according to the present invention has a simple structure.
We provide an inexpensive system that supplies the required amount of fresh outside air to each room regardless of the season, weather, day and night, and the position of the room. Cooling and heating costs are reduced by reducing unnecessary heat loss due to ventilation .

【発明を実施するための最良の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0015】以下、図面について本発明の実施の形態を
詳細に説明する。図1は本発明の換気システムの1実施
形態を示す断面図である。室内は、屋根15と外壁12
と紙面に平行な妻壁の外壁12の内側に設けられた気密
断熱層13と、基礎コンクリート11により囲まれた高
気密高断熱の空間である。基礎コンクリート11は高気
密であり、部屋Dと部屋Eの気温は基礎コンクリート1
1の気温より高いので床下空間Fの基礎コンクリート1
1付近の空気は断熱層としての機能も果たしている。室
内は屋根裏空間Aと部屋Bと部屋Cと部屋Dと部屋Eと
床下空間Fと内壁空間Gで構成されている。吹出し口4
2のある部屋Eと、部屋Bと部屋Cと部屋Dとの間には
空気の流れによる圧力損失を少なくするために、それぞ
れすき間52とすき間53とすき間51を設けてある。
また1階の床16、内壁14、壁20、壁21、壁2
2、2階の天井19は機密性と断熱性が低いので室内の
温度はほぼ均一であり、室内の空気の流れによる圧力損
失は少ない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing one embodiment of the ventilation system of the present invention. The interior has a roof 15 and an outer wall 12
Is a space of high airtightness and high heat insulation surrounded by the airtight heat insulating layer 13 provided inside the outer wall 12 of the gable wall parallel to the paper surface and the basic concrete 11. The basic concrete 11 is highly airtight, and the temperatures of the rooms D and E are the same as the basic concrete 1
Since the temperature is higher than 1, the basic concrete in the underfloor space F 1
The air around 1 also functions as a heat insulating layer. The room is composed of an attic space A, a room B, a room C, a room D, a room E, an underfloor space F and an inner wall space G. Outlet 4
A space 52, a space B, a room C, and a room D are provided with a space 52, a space 53, and a space 51 to reduce pressure loss due to air flow.
In addition, the floor 16, the inner wall 14, the wall 20, the wall 21, and the wall 2 on the first floor
Since the ceiling 19 on the second and second floors has low airtightness and heat insulation, the temperature inside the room is almost uniform, and the pressure loss due to the air flow in the room is small.

【0016】外気は給気ファン41により家の外部にあ
る給気口43から、給気ダクト31を通して吹出し口4
2で室内の中央付近に取り入れられる。室内の気圧が外
部より高い場合、吹出し口42に取り入れられた空気は
気圧が相対的に低い外部に向けて流れる。例えば、吹出
し口42付近の空気は1階の床16を通して床下空間F
に流れ、排気ダクト36を通して排出される。また吹出
し口42付近の空気は2階の天井19を通して屋根裏空
間Aに流れ、気密断熱層13の漏洩により外部に排出さ
れる。また吹出し口42付近の空気はすき間51を通し
て部屋Dに流れ、一部は内壁14を通して内壁空間Gに
流れ、気密断熱層13の漏洩により外部に排出され、大
部分は排気口62から排気ダクト32を通して空気槽6
1に流れ、空気槽排気装置66を通して家の外部に排出
される。紙面に垂直に配置された空気槽排気装置66
は、紙面と平行な妻壁の気密断熱層13を貫通してお
り、空気槽61の空気を家の外部に排出する。
The outside air is blown out from the air supply port 43 located outside the house by the air supply fan 41 through the air supply duct 31 to the outlet 4
At 2, it is installed near the center of the room. When the atmospheric pressure inside the room is higher than the outside, the air taken into the outlet 42 flows toward the outside where the atmospheric pressure is relatively low. For example, the air near the outlet 42 passes through the floor 16 on the first floor and the underfloor space F
And is discharged through the exhaust duct 36. The air near the outlet 42 flows into the attic space A through the ceiling 19 on the second floor, and is discharged to the outside due to the leak of the airtight heat insulating layer 13. Further, the air near the outlet 42 flows into the room D through the gap 51, a part of the air flows into the inner wall space G through the inner wall 14, and is discharged to the outside by the leakage of the airtight heat insulating layer 13. Most of the air is exhausted from the exhaust port 62 to the exhaust duct 32. Through the air tank 6
1 and is discharged to the outside of the house through the air tank exhaust device 66. Air tank exhaust device 66 arranged perpendicular to the paper surface
Penetrates the airtight heat insulating layer 13 on the end wall parallel to the paper surface and discharges the air in the air tank 61 to the outside of the house.

【0017】従って、室内の気圧が外部より高い場合、
空気の流れは、室内の中央付近にある吹出し口42から
外部に向いている。
Therefore, when the atmospheric pressure in the room is higher than the outside,
The air flow is directed to the outside from the outlet 42 near the center of the room.

【0018】図2は各部屋の排気ダクトの内径を計算す
るための図である。室内の温度が均一である場合、ダク
トを流れる風量はダクトの配置や垂直位置に無関係であ
るので、図2はダクトを平面的に表してある。気密断熱
層13には漏洩があり、その漏洩を等価的に仮想排気ダ
クト37で表してある。実線は気密層を表し、破線は非
気密層を表す。説明を簡単にするために、室内の各空間
の間の空気の流れと空気槽61内の空気の流れによる圧
力損失を無視する。ダクトによる圧力損失は直線のダク
トの管の内壁と空気の流速との摩擦により発生する摩擦
損失と、ジョイントやベントキャップ等により流速が急
に変わるために発生する局部損失の合計である。局部損
失はジョイントやベントキャップ等の形状により決ま
り、等価的にダクトの長さで表すことができる。ダクト
の風量はダクトの実効長と内径と内壁の粗さと圧力損失
から算出される。ここで実効長とはダクトの直線部分の
長さと局部損失の等価的ダクトの長さの合計である。図
2ではダクトは実効長の直線で表してある。
FIG. 2 is a diagram for calculating the inner diameter of the exhaust duct of each room. When the temperature in the room is uniform, the air volume flowing through the duct is irrelevant to the arrangement and vertical position of the duct, so FIG. 2 shows the duct in a plan view. There is a leak in the airtight insulating layer 13, and the leak is equivalently represented by a virtual exhaust duct 37. The solid line represents the hermetic layer and the broken line represents the non-hermetic layer. For the sake of simplicity, the pressure loss due to the air flow between the spaces in the room and the air flow in the air tank 61 will be ignored. The pressure loss due to the duct is the sum of the friction loss caused by the friction between the inner wall of the pipe of the straight duct and the flow velocity of the air, and the local loss caused by the sudden change in the flow velocity due to the joint or the vent cap. The local loss is determined by the shape of the joint, vent cap, etc., and can be equivalently expressed by the length of the duct. The air volume in the duct is calculated from the effective length of the duct, the inner diameter, the roughness of the inner wall, and the pressure loss. Here, the effective length is the sum of the length of the straight portion of the duct and the equivalent duct length of the local loss. In FIG. 2, the duct is represented by a straight line of effective length.

【0019】給気ファン41により、風量Qtが室内に
取り入れられ、室内の気圧が家の外部の気圧よりP高く
なり、空気槽61内の気圧が外部の気圧よりP2高くな
った場合、部屋排気ダクト32と部屋排気ダクト33と
部屋排気ダクト34と部屋排気ダクト35の両端には同
じ気圧(P−P2)がかかる。各部屋排気ダクトの長さ
は家のレイアウトにより決まるので各部屋排気ダクトの
内径で各部屋の換気量の割合を調整できる。各部屋排気
ダクトの内径は次のように決める。まず、漏洩の風量Q
vを家の相当隙間面積(C値)と家の床面積と室内と外
部の気圧差Pから算出し、合計の風量が、給気の風量Q
tから漏洩の風量Qvを引いた風量に等しくなるよう
に、風量Qfと風量Qbと風量Qcと風量Qdと風量Q
eを設定する。空気槽排気装置66の風量Qaは風量Q
bと風量Qcと風量Qdと風量Qeの合計に等しい。次
に、各部屋排気ダクトの圧力損失と風量と実効長と内壁
の粗さから内径を算出する。
When the air volume Qt is taken into the room by the air supply fan 41, the air pressure inside the room becomes P higher than the air pressure outside the house, and the air pressure inside the air tank 61 becomes P2 higher than the air pressure outside, the room exhaust air is discharged. The same atmospheric pressure (P-P2) is applied to both ends of the duct 32, the room exhaust duct 33, the room exhaust duct 34, and the room exhaust duct 35. Since the length of the exhaust duct in each room is determined by the layout of the house, the ratio of ventilation volume in each room can be adjusted by the inner diameter of the exhaust duct in each room. The inner diameter of the exhaust duct for each room is determined as follows. First, the leakage air volume Q
v is calculated from the equivalent clearance area (C value) of the house, the floor area of the house, and the atmospheric pressure difference P between the room and the outside, and the total air volume is the air volume Q of the supply air.
The air volume Qf, the air volume Qb, the air volume Qc, the air volume Qd, and the air volume Q are equal to the air volume obtained by subtracting the leakage air volume Qv from t.
Set e. The air volume Qa of the air tank exhaust device 66 is the air volume Q
It is equal to the sum of b, air volume Qc, air volume Qd, and air volume Qe. Next, the inner diameter is calculated from the pressure loss of each room exhaust duct, the air volume, the effective length, and the roughness of the inner wall.

【0020】図3は室内の垂直位置と気圧の関係を示す
グラフである。図3の(1)は気密断熱層13と基礎コ
ンクリート11で囲まれた室内を示し、仮想ダクト81
と仮想ダクト82は説明のための仮想的なダクトであ
り、同じ内径と長さと内壁の粗さを持つ。仮想ダクト8
1は室内の最上位部に配置され、仮想ダクト82は室内
の最下位部に配置されている。暖房時、開閉可能な給気
ダクト89が閉じている場合、空気の密度は温度が高く
なるほど小さくなるため、室内の気圧Pは基礎コンクリ
ート11に近いほど相対的に同じ水平位置の外部より気
圧が低くなり、圧力特性71で表される。室内の下部の
気圧は外部より低いため仮想ダクト82を通して外気が
入り、室内の上部の気圧は外部より高いため仮想ダクト
81を通して室内の空気が排出される。2階の床18付
近の気圧が外部と同じ気圧になるのは仮想ダクト81と
82が同じ内径と長さと内壁の粗さを持つためである。
室内の温度は冷暖房装置96により常に一定かつ均一に
保たれているとする。室内の気圧は、給気ダクト89を
開け、給気ファン90を駆動し室内に空気を供給するこ
とにより圧力特性72で示したように外部の気圧より高
くできる。家の高さが6mで、室内の温度が20度、外
気の温度が零下10度の時P3は9.0パスカルであ
る。
FIG. 3 is a graph showing the relationship between the vertical position in the room and the atmospheric pressure. (1) of FIG. 3 shows the room surrounded by the airtight heat insulating layer 13 and the foundation concrete 11, and the virtual duct 81
And the virtual duct 82 are virtual ducts for explanation, and have the same inner diameter, length, and inner wall roughness. Virtual duct 8
1 is arranged in the uppermost part of the room, and the virtual duct 82 is arranged in the lowermost part of the room. When the openable air supply duct 89 is closed during heating, the air density becomes smaller as the temperature becomes higher. Therefore, the air pressure P inside the room becomes closer to the basic concrete 11 than the outside at the same horizontal position. It becomes low and is represented by the pressure characteristic 71. Since the air pressure in the lower part of the room is lower than that of the outside, the outside air enters through the virtual duct 82, and the air pressure in the upper part of the room is higher than the outside, and the air in the room is discharged through the virtual duct 81. The atmospheric pressure in the vicinity of the floor 18 on the second floor becomes the same atmospheric pressure as the outside because the virtual ducts 81 and 82 have the same inner diameter, length and inner wall roughness.
It is assumed that the room temperature is always kept constant and uniform by the cooling and heating device 96. The air pressure inside the room can be made higher than the atmospheric pressure outside as shown by the pressure characteristic 72 by opening the air supply duct 89 and driving the air supply fan 90 to supply air into the room. When the height of the house is 6 m, the indoor temperature is 20 degrees, and the outside air temperature is 10 degrees below zero, P3 is 9.0 pascals.

【0021】一方、冷房時、給気ダクト89が閉じてい
る場合、室内の気圧Pは基礎コンクリート11に近いほ
ど相対的に同じ水平位置の外部より気圧が高くなり、圧
力特性73で表される。室内の上部の気圧は外部より低
いため仮想ダクト81を通して外気が入り、室内の下部
の気圧は外部より高いため仮想ダクト82を通して室内
の空気が排出される。室内の気圧Pは、給気ダクト89
を開け、給気ファン90を駆動し室内に空気を供給する
ことにより圧力特性74で示したように外部の気圧より
高くできる。室内の温度が25度で、外気の温度が35
度の時(P5−P4)は2.5パスカルである。暖房と
冷房の切替が必要となるがその切替の頻度を切替にヒス
テリシス特性を持たせて、少なくするのが好ましい。そ
のために、P4は2.0パスカル程度に設定するのが好
ましい。
On the other hand, when the air supply duct 89 is closed during cooling, the atmospheric pressure P in the room becomes higher than the outside at the same horizontal position as it is closer to the basic concrete 11, and is represented by the pressure characteristic 73. . Since the air pressure in the upper part of the room is lower than that of the outside, the outside air enters through the virtual duct 81, and the air pressure in the lower part of the room is higher than the outside, and the air in the room is discharged through the virtual duct 82. The air pressure P in the room is determined by the air supply duct 89.
By opening the air supply fan and driving the air supply fan 90 to supply air into the room, the pressure can be made higher than the external atmospheric pressure as shown by the pressure characteristic 74. The room temperature is 25 degrees and the outside air temperature is 35 degrees.
At the time of degree (P5-P4), it is 2.5 Pascal. It is necessary to switch between heating and cooling, but it is preferable to reduce the frequency of switching by giving hysteresis characteristics to the switching. Therefore, P4 is preferably set to about 2.0 Pascal.

【0022】室内の気圧が外部の気圧より下がった場
合、外気が高気密高断層13の漏洩により室内に入る。
When the air pressure inside the room falls below the air pressure outside, the outside air enters the room due to the leakage of the high airtight high fault 13 .

【0023】一方、室内の気圧を高くした場合、気密断
熱層13の漏洩の風量が大きくなる。漏洩は気密断熱層
13の全体に亘り不均一に分布し、各部屋の必要換気量
に含められないので、無駄な換気である。従って、室内
の気圧を外部より高く保ち、且できるだけ低く保つこと
が好ましい。
On the other hand, when the atmospheric pressure in the room is increased, the leaked air volume of the airtight heat insulating layer 13 becomes large. Leakage is non-uniformly distributed over the entire airtight insulating layer 13 and cannot be included in the required ventilation of each room, which is wasteful ventilation. Therefore, it is preferable to keep the atmospheric pressure in the room higher than the outside and keep it as low as possible.

【0024】図4は空気槽排気装置66の1実施例を示
す。空気槽排気装置66は排気ダクト83と排気口84
と排気ダクト85とダンパー86とダンパーコントロー
ラ87と外気の温度を検出する温度センサ88から構成
されている。ダンパー86は、ダンパーコントローラ8
7と温度センサ88により、外気温度が設定値1より高
くなった場合に開き、外気温度が設定値2より低くなっ
た場合に閉じる。ダンパー86の開閉の頻度を減らすた
めにヒステリシス特性を持たせ、設定値1を設定値2よ
り数度高く設定するのが好ましい。ダンパー86が開い
ている時、空気槽61の空気は排気ダクト83と排気ダ
クト85を通して排出される。ダンパー86が閉じてい
る時は、空気槽61の空気は全て排気ダクト83を通し
て排出され、排気ダクト83の排気量が大きくなるので
排気ダクト83の圧力損失も大きくなる。従って、室内
の気圧Pは、空気槽排気装置66の圧力損失と部屋排気
ダクト32の圧力損失の合計であるので、ダンパー86
の開閉により調整できる。排気ダクト83と排気ダクト
85の内径と長さを、最も寒い時に室内の圧力が圧力特
性72のようになり、最も暑い時に室内の圧力が圧力特
性74のようになるように、設定する。
FIG. 4 shows an embodiment of the air tank exhaust device 66. The air tank exhaust device 66 includes an exhaust duct 83 and an exhaust port 84.
The exhaust duct 85, the damper 86, the damper controller 87, and the temperature sensor 88 for detecting the temperature of the outside air. The damper 86 is the damper controller 8
7 and the temperature sensor 88 open when the outside air temperature becomes higher than the set value 1, and close when the outside air temperature becomes lower than the set value 2. In order to reduce the frequency of opening / closing of the damper 86, it is preferable to provide a hysteresis characteristic so that the set value 1 is set higher than the set value 2 by several degrees. When the damper 86 is open, the air in the air tank 61 is discharged through the exhaust duct 83 and the exhaust duct 85. When the damper 86 is closed, all the air in the air tank 61 is exhausted through the exhaust duct 83, and the exhaust amount of the exhaust duct 83 increases, so that the pressure loss of the exhaust duct 83 also increases. Therefore, the atmospheric pressure P in the room is the sum of the pressure loss of the air tank exhaust device 66 and the pressure loss of the room exhaust duct 32.
It can be adjusted by opening and closing. The inner diameter and the length of the exhaust duct 83 and the exhaust duct 85 are set so that the pressure inside the room has a pressure characteristic 72 at the coldest time and the pressure inside the room has a pressure characteristic 74 at the hottest time.

【0025】例えば、排気ダクト83と排気ダクト85
の内径と長さを、外気温度が設定値2以下の時、室内の
最上部の気圧Pが同じ水平線上の外部より9.0パスカ
ル高くなり、空気槽の気圧P2が同じ水平線上の外部よ
り8.0パスカル高くなり、外気温度が設定値1以上の
時、室内の最上部の気圧Pが同じ水平線上の外部より
2.0パスカル高くなり、空気槽の気圧P2が同じ水平
線上の外部より1.0パスカル高くなるように、設定す
る。この場合、外気温度が35度で室内の温度が25度
の時、室内の最上部の気圧Pが同じ水平線上の外部より
2.0パスカル高くなり、室内の最下部の気圧Pが同じ
水平線上の外部より4.5パスカル高くなり、室内の平
均気圧は外部より3.3パスカル高くなる。
For example, the exhaust duct 83 and the exhaust duct 85
When the outside air temperature is less than or equal to the set value 2, the innermost pressure P of the room becomes 9.0 Pascal higher than the outside on the same horizontal line, and the atmospheric pressure P2 of the air tank is higher than the outside on the same horizontal line. When the outside air temperature is higher than the set value 1 by 8.0 Pascal, the atmospheric pressure P at the top of the room becomes 2.0 Pascal higher than the outside on the same horizontal line, and the air pressure P2 in the air tank is higher than the outside on the same horizontal line. Set so that it is 1.0 Pascal higher. In this case, when the outside air temperature is 35 degrees and the room temperature is 25 degrees, the air pressure P at the top of the room is 2.0 Pascal higher than the outside on the same horizontal line, and the air pressure P at the bottom of the room is on the same horizontal line. It is 4.5 Pascal higher than the outside and the average atmospheric pressure in the room is 3.3 Pascal higher than the outside.

【0026】一方、空気槽排気装置66が図4の構成と
は異なり、排気ダクト85が存在せず排気ダクト83の
みの場合、外気温度が零下10度で室内の気圧を外気の
気圧より高く保つためにP3を9.0パスカルに設定す
ると、夏、外気が35度で室内の気温が25度の時の室
内の圧力は圧力特性75で示され、室内の平均気圧は外
部より10.2パスカル高くなる。
On the other hand, when the air tank exhaust device 66 is different from the configuration of FIG. 4 and the exhaust duct 85 does not exist but only the exhaust duct 83, the outside air temperature is 10 degrees below zero and the indoor air pressure is kept higher than the outside air pressure. Therefore, when P3 is set to 9.0 Pascal, the pressure in the room when the outside air is 35 degrees and the room temperature is 25 degrees is indicated by the pressure characteristic 75 in summer, and the average pressure in the room is 10.2 Pascals from the outside. Get higher

【0027】従って、空気槽排気装置66に排気ダクト
85とダンパー86を設けることにより、外気が35度
の時、室内の平均気圧を68%下げ、気密断熱層13の
漏洩の風量を43%少なくできる。図4に示された実施
例ではダンパー86が閉じていて外気温度が設定値1の
時に室内の平均気圧が最も高く、設定値1が15度、外
気温度が15度、室内温度が20度とすると室内の平均
気圧は外部より8.4パスカル高くなる。従って、排気
ダクト85を開閉することにより最高の室内の平均気圧
を18%下げることができる。
Therefore, by providing the air duct exhaust device 66 with the exhaust duct 85 and the damper 86, when the outside air is at 35 degrees, the average atmospheric pressure in the room is reduced by 68%, and the leakage air volume of the airtight insulating layer 13 is reduced by 43%. it can. In the embodiment shown in FIG. 4, when the damper 86 is closed and the outside air temperature is the set value 1, the average atmospheric pressure in the room is the highest, the set value 1 is 15 degrees, the outside air temperature is 15 degrees, and the indoor temperature is 20 degrees. Then, the average atmospheric pressure in the room becomes 8.4 Pascal higher than the outside. Therefore, by opening and closing the exhaust duct 85, the maximum average air pressure in the room can be lowered by 18%.

【0028】図4の実施例では空気槽排気装置66の摩
擦抵抗が外気温度により2段階に変わるが、空気槽排気
装置66の摩擦抵抗を外気温度により3段階に変わるよ
うにすることにより、更に、室内の気圧を外部より高く
保ちつつ、最高の室内の平均気圧を下げることができ
る。
In the embodiment of FIG. 4, the friction resistance of the air tank exhaust device 66 changes in two steps depending on the outside air temperature, but by changing the friction resistance of the air tank exhaust apparatus 66 in three steps depending on the outside air temperature, , It is possible to lower the highest average air pressure in the room while keeping the air pressure in the room higher than the outside.

【0029】図5は同じ圧力損失特性を持つ2本の同じ
長さのダクトを示す。例えば、部屋排気ダクト32の内
径は部屋Dの必要換気量と部屋排気ダクト32の実効長
と圧力損失と内壁の粗さから算出されるが販売されてい
るダクトの内径は75mm、100mm、150mm等
であり、必ずしも一致しない。ダクト91は要求された
ダクトであり、合成ダクト95は販売されているダクト
で合成したダクトである。ダクト92はダクト91より
内径が大きい販売されているダクトであり、ダクト93
はダクト91より内径が小さい販売されているダクトで
あり、ジョイント94はダクト92とダクト93を接続
する部品である。ダクト93の長さを適切に選定するこ
とにより、ダクト95はダクト91と同じ圧力損失特性
を持つようにできる。従って、要求された内径を持つダ
クトを販売されているダクトで作成できる。
FIG. 5 shows two ducts of the same length with the same pressure drop characteristics. For example, the inner diameter of the room exhaust duct 32 is calculated from the necessary ventilation amount of the room D, the effective length of the room exhaust duct 32, the pressure loss, and the roughness of the inner wall, but the inner diameter of the sold duct is 75 mm, 100 mm, 150 mm, etc. And do not necessarily match. Duct 91 is the required duct and synthetic duct 95 is a synthetic duct of the ducts sold. The duct 92 is a commercially available duct having an inner diameter larger than that of the duct 91.
Is a commercially available duct having an inner diameter smaller than that of the duct 91, and the joint 94 is a component that connects the duct 92 and the duct 93. By appropriately selecting the length of the duct 93, the duct 95 can have the same pressure loss characteristic as the duct 91. Therefore, it is possible to make a duct having the required inner diameter with a duct that is sold.

【0030】図は給気ファン41による給気量が台所
や風呂場等に設置された強制排気システムと連動する1
実施例を示す。強制排気システムはスイッチ115とコ
ントローラ111と排気ダクト112と排気ファン11
3と排気ダンパー114で構成されている。コントロー
ラ111は、スイッチ115の状態を定期的に読み、ス
イッチ115の状態がオンになった時、排気ダンパー1
14を開け、排気ファン113を駆動し部屋Dの空気を
排出する。排気ファン113が駆動された時、給気ファ
ン41に供給する電圧を高くして給気ファン41による
給気量を排気ファン113の排気量だけ増加する。これ
により排気ファン113が駆動された時、室内の気圧を
外部の気圧より高く保つことができる。
FIG. 6 shows that the amount of air supplied by the air supply fan 41 is linked to the forced exhaust system installed in the kitchen or bathroom.
An example is shown. The forced exhaust system includes a switch 115, a controller 111, an exhaust duct 112, and an exhaust fan 11.
3 and an exhaust damper 114. The controller 111 periodically reads the state of the switch 115, and when the state of the switch 115 is turned on, the exhaust damper 1
14 is opened, the exhaust fan 113 is driven, and the air in the room D is discharged. When the exhaust fan 113 is driven, the voltage supplied to the air supply fan 41 is increased to increase the amount of air supplied by the air supply fan 41 by the amount of exhaust air of the exhaust fan 113. Thus, when the exhaust fan 113 is driven, the atmospheric pressure inside the room can be kept higher than the atmospheric pressure outside.

【0031】コントローラ111は給気ダクト31の内
部に配置された風量センサ116の出力が給気量の設定
値と異なる時、給気ファン41に供給する電圧を補正す
ることにより給気量を設定値に常に合わせる。
The controller 111 sets the air supply amount by correcting the voltage supplied to the air supply fan 41 when the output of the air flow sensor 116 arranged inside the air supply duct 31 is different from the set value of the air supply amount. Always match the value.

【0032】図8は給気ファン41の静圧ー風量特性と
全圧力損失特性の1例を示す。静圧ー風量特性76は電
圧V1が供給された給気ファン41の静圧ー風量特性を
示し、静圧ー風量特性77は電圧V2が供給された給気
ファン41の静圧ー風量特性を示す。全圧力損失特性7
8と全圧力損失特性79は家の全圧力損失特性を示し、
家の全圧力損失特性は給気口43から吹出し口42まで
の給気の圧力損失特性と家の排気の圧力損失特性から得
られる。給気ファン41に電圧V1が供給され、家の全
圧力損失特性が全圧力損失特性78である時、静圧ー風
量特性76と全圧力損失特性78の交点から給気量Qt
と全圧力損失P6が得られる。
FIG. 8 shows an example of static pressure-air volume characteristics and total pressure loss characteristics of the air supply fan 41. The static pressure-air volume characteristic 76 shows the static pressure-air volume characteristic of the air supply fan 41 supplied with the voltage V1, and the static pressure-air volume characteristic 77 shows the static pressure-air volume characteristic of the air supply fan 41 supplied with the voltage V2. Show. Total pressure loss characteristics 7
8 and the total pressure loss characteristic 79 show the total pressure loss characteristic of the house,
The total pressure loss characteristic of the house is obtained from the pressure loss characteristic of the supply air from the air supply port 43 to the outlet 42 and the pressure loss characteristic of the exhaust gas of the house. When the voltage V1 is supplied to the air supply fan 41 and the total pressure loss characteristic of the house is the total pressure loss characteristic 78, the supply air amount Qt is calculated from the intersection of the static pressure-air volume characteristic 76 and the total pressure loss characteristic 78.
And total pressure loss P6 is obtained.

【0033】給気ファン41に常に同じ電圧が供給され
ている場合、エアフィルタ106が目詰まりを起こし、
家の全圧力損失特性が全圧力損失特性79になった場
合、給気量はQsとなり、給気量が減少する。一方、給
気ダクト31の途中に配置された風量センサ116を使
用して給気量をコントロールする場合、エアフィルタ1
06が目詰まりを起こし、家の全圧力損失特性が全圧力
損失特性79になった場合、給気量は設定値Qtに保も
たれ、給気ファン41に供給される電圧はV2となる。
また空気槽排気装置66の摩擦抵抗を変えた時、家の全
圧力損失特性が変わるが、給気量を設定値Qtに保つこ
とができる。更に、強制排気システムを駆動した時、ま
た居住者数が変わった時、給気量の設定値を変えること
により必要な給気量を正確に給気できる。
When the same voltage is constantly supplied to the air supply fan 41, the air filter 106 is clogged,
When the total pressure loss characteristic of the house becomes the total pressure loss characteristic 79, the air supply amount becomes Qs, and the air supply amount decreases. On the other hand, when the air supply amount is controlled by using the air flow sensor 116 arranged in the air supply duct 31, the air filter 1
When 06 is clogged and the total pressure loss characteristic of the house becomes the total pressure loss characteristic 79, the supply air amount is maintained at the set value Qt, and the voltage supplied to the supply fan 41 becomes V2.
Further, when the frictional resistance of the air tank exhaust device 66 is changed, the total pressure loss characteristic of the house changes, but the air supply amount can be maintained at the set value Qt. Furthermore, when the forced exhaust system is driven or when the number of residents changes, the required amount of air supply can be accurately supplied by changing the set value of the amount of air supply.

【0034】以上、図示例に基づき説明したが、本発明
は上述の例に限定されるものではなく、例えば、本発明
の高気密高断熱住宅の換気システムは中気密中断熱住宅
にも適用可能である。
Although the present invention has been described above based on the illustrated example, the present invention is not limited to the above-mentioned example, and for example, the ventilation system for a highly airtight and highly insulated house of the present invention can be applied to a medium airtight and medium insulated house. Is.

【図面の簡単な説明】[Brief description of drawings]

【0035】図1 本発明の高気密高断熱住宅の換気シ
ステムの1実施形態を示す断面図である。図2 各部屋
の排気ダクトの内径を計算するための図である。図3
室内の垂直位置と気圧の関係を示すグラフである。図4
空気槽排気装置の1実施例である。図5 同じ圧力損
失特性を持つ2本のダクトを示す。図 給気ファンが
強制排気システムと連動する1実施例を示す。図
気ファンの静圧ー風量特性と全圧力損失特性の1例を示
す。図 従来例の換気システムを示す断面図である
FIG. 1 is a cross-sectional view showing one embodiment of a ventilation system for a highly airtight and highly insulated house of the present invention. 2 is a diagram for calculating the inner diameter of the exhaust duct of each room. Figure 3
It is a graph which shows the vertical position of a room, and the relationship of atmospheric pressure. Figure 4
1 is an example of an air tank exhaust device. Figure 5 shows two ducts with the same pressure loss characteristics. FIG. 6 shows an embodiment in which the air supply fan works in conjunction with the forced exhaust system. FIG. 7 shows an example of static pressure-air volume characteristics and total pressure loss characteristics of the air supply fan. 8 is a sectional view showing a conventional ventilation system.

【符号の説明】[Explanation of symbols]

【0036】 11 基礎コンクリート 12 外壁 13 気密断熱層 14 内壁 15 屋根 16 1階の床 17 1階の天井 18 2階の床 19 2階の天井 20、21、22 壁 23 吹抜 31 給気ダクト 32、33、34、35 部屋排気ダクト 36 排気ダクト 37 仮想排気ダクト 41 給気ファン 42 吹出し口 43 給気口 51、52、53 すき間 61 空気槽 62、63、64、65 排気口 66 空気槽排気装置 71、72、73、74、75 圧力特性 76、77 静圧ー風量特性 78、79 全圧力損失特性 81、82 仮想ダクト 83、85 排気ダクト 84 排気口 86 ダンパー 87 ダンパーコントローラ 88 温度センサ 89 給気ダクト 90 給気ファン 91、92、93 ダクト 94 ジョイント 95 合成ダクト 96 冷暖房装置 111 コントローラ 112 ダクト 113 排気ファン 114 排気ダンパー 115 スイッチ 116 風量センサ 202 外壁 203 内壁 204 気密断熱層 205 通気層 211 屋根裏空間 218 ルーバ 219 アンダーカット 220 ダクトファン 221 ダクト 225 ルーバ 226 排気口 A 屋根裏空間 B、C、D、E 部屋 F 床下空間 G 内壁空間 P 室内の気圧 P3、P4、P5、P6、P7 気圧 Qa、Qb、Qc、Qd、Qf、Qs、Qt、Qv 風
11 foundation concrete 12 outer wall 13 airtight heat insulating layer 14 inner wall 15 roof 16 floor of the first floor 17 ceiling of the first floor 18 floor of the second floor 19 floor of the second floor 20, 21, 22 wall 23 blowout 31 air supply duct 32, 33, 34, 35 Room Exhaust Duct 36 Exhaust Duct 37 Virtual Exhaust Duct 41 Air Supply Fan 42 Outlet 43 Air Supply 51, 52, 53 Gap 61 Air Tank 62, 63, 64, 65 Exhaust 66 Air Tank Exhaust Device 71 , 72, 73, 74, 75 Pressure characteristic 76, 77 Static pressure-air flow rate characteristic 78, 79 Total pressure loss characteristic 81, 82 Virtual duct 83, 85 Exhaust duct 84 Exhaust port 86 Damper 87 Damper controller 88 Temperature sensor 89 Air supply duct 90 air supply fans 91, 92, 93 duct 94 joint 95 synthetic duct 96 air conditioner 111 controller 1 2 Duct 113 Exhaust fan 114 Exhaust damper 115 Switch 116 Air volume sensor 202 Outer wall 203 Inner wall 204 Airtight heat insulating layer 205 Ventilation layer 211 Attic space 218 Louver 219 Undercut 220 Duct fan 221 Duct 225 Louver 226 Exhaust port A Attic space B, C, D , E room F underfloor space G inner wall space P indoor air pressure P3, P4, P5, P6, P7 air pressure Qa, Qb, Qc, Qd, Qf, Qs, Qt, Qv

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】家の外部に配置された給気口を一端とし前
記家の中央付近に配置された吹出し口を他の一端とする
給気ダクトと、前記給気ダクトの途中に配置された給気
ファンにより外気が室内に取り入れられ、前記家の各部
屋の空気が排気装置により排出される高気密高断熱住宅
の換気システムにおいて、前記排気装置が空気槽と、前
記各部屋から前記空気槽に配管された部屋排気ダクト
と、高気密高断層を貫通し前記空気槽から前記家の外部
に排気する空気槽排気装置から構成され、前記空気槽排
気装置が前記高気密高断層を貫通した第一の排気ダクト
と第二の排気ダクトと、前記第二の排気ダクトの一端ま
たは途中に配置され外気温度により開閉されるダンパー
から構成されることを特徴とする高気密高断熱住宅の換
気システム
1. An air supply duct having an air supply port arranged outside the house as one end and an air outlet arranged near the center of the house as the other end, and the air supply duct is arranged in the middle of the air supply duct. In a ventilation system of a highly airtight and highly insulated house in which outside air is taken into the room by an air supply fan and air in each room of the house is exhausted by an exhaust device, the exhaust device is an air tank and the air tank from each room and room exhaust duct plumbed to be configured from the air tank exhaust device for exhausting to the outside of the house from the air tank through the airtight high fault, the air tank exhaust
The first exhaust duct where the air system penetrates the high airtight high fault
And the second exhaust duct and one end of the second exhaust duct.
Or a damper that is placed midway and opens and closes depending on the outside temperature
Ventilation system for airtight and highly insulated houses characterized by being composed of
【請求項2】前記部屋排気ダクトまたは前記第一の排気
ダクトまたは前記第二の排気ダクトが第一のダクトと、
前記第一のダクトと異なる内径を持つ第二のダクトと、
前記第一のダクトと前記第二のダクトを連結するジョイ
ントから構成される請求項記載の高気密高断熱住宅の
換気システム
2. The room exhaust duct, the first exhaust duct, or the second exhaust duct is a first duct,
A second duct having an inner diameter different from that of the first duct;
Ventilation system airtight high insulation housing according to claim 1, wherein comprised joint for connecting the second duct with the first duct
【請求項3】短期間、局部的に排気する強制排気システ
ムが配置された高気密高断熱住宅において、前記給気フ
ァンの給気量が、前記強制排気システムが駆動された
時、前記強制排気システムの排気量とほぼ同量だけ増加
する請求項1記載の高気密高断熱住宅の換気システム
3. In a highly airtight and highly insulated house in which a forced exhaust system for locally exhausting air for a short period of time is arranged, the amount of air supplied by the air supply fan is the forced exhaust when the forced exhaust system is driven. The ventilation system for a highly airtight and highly insulated house according to claim 1, wherein the ventilation amount increases by almost the same amount as the system displacement.
【請求項4】前記給気ファンが前記給気ダクト内に設置
された風量センサの出力と設定された風量によりコント
ロールされる請求項1記載の高気密高断熱住宅の換気シ
ステム
4. The ventilation system for a highly airtight and highly insulated house according to claim 1, wherein the air supply fan is controlled by an output of an airflow sensor installed in the air supply duct and a set airflow.
JP2003300988A 2003-08-26 2003-08-26 Ventilation system for highly airtight and highly insulated houses Expired - Fee Related JP3525386B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003300988A JP3525386B1 (en) 2003-08-26 2003-08-26 Ventilation system for highly airtight and highly insulated houses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300988A JP3525386B1 (en) 2003-08-26 2003-08-26 Ventilation system for highly airtight and highly insulated houses

Publications (2)

Publication Number Publication Date
JP3525386B1 true JP3525386B1 (en) 2004-05-10
JP2005069590A JP2005069590A (en) 2005-03-17

Family

ID=32463753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300988A Expired - Fee Related JP3525386B1 (en) 2003-08-26 2003-08-26 Ventilation system for highly airtight and highly insulated houses

Country Status (1)

Country Link
JP (1) JP3525386B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7448897B2 (en) * 2019-08-28 2024-03-13 三協立山株式会社 ventilation system
JP7265566B2 (en) * 2021-01-25 2023-04-26 パナソニックホームズ株式会社 Method for evaluating construction condition of air flow passage and method for manufacturing building

Also Published As

Publication number Publication date
JP2005069590A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
US11781762B1 (en) Air cooling system for building structures with attic
US5722483A (en) Air exchange apparatus and method
CN106642419A (en) Air conditioning system
JP4647503B2 (en) Air conditioning system
CN101886838A (en) Self-circulation culvert type natural ventilation equipment
KR20210106836A (en) Building ventilation system
CN207584951U (en) All-fresh air ceiling type air conditioner system
JP2008038497A (en) Ventilation system
KR100577204B1 (en) Regulated by Pressure for Ventilation System and method for controlling ventilation using it
JP3525386B1 (en) Ventilation system for highly airtight and highly insulated houses
KR200435724Y1 (en) System for elevating an exhaust efficiency of waste gas in chimney
JP2004232999A (en) Ventilation system for airtight residence
CN105823147B (en) A kind of step combined type dehumidification system
KR20160038550A (en) Energy saving envelope ventilation structure in renovation building
CN106940062A (en) A kind of indoor ventilation system
JP2001221474A (en) Structure of naturally ventilated building for detached house of three stories or higher and natural ventilation system
JPH10176851A (en) Ventilator for residence
JP3982240B2 (en) Air conditioner outdoor equipment
CN201724332U (en) Self circulation culvert-type natural ventilation device
JPH09280604A (en) Air conditioning unit
JP4334887B2 (en) Ventilated housing and method for forming cold pool
JP2002277034A (en) Air conditioner
JP4638831B2 (en) Floor heating system
JP3132958B2 (en) Residential ventilation system
KR20020025128A (en) The compound air control system of convection type and its air control method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees