[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3519775B2 - Sealed nickel-hydrogen storage battery - Google Patents

Sealed nickel-hydrogen storage battery

Info

Publication number
JP3519775B2
JP3519775B2 JP07272194A JP7272194A JP3519775B2 JP 3519775 B2 JP3519775 B2 JP 3519775B2 JP 07272194 A JP07272194 A JP 07272194A JP 7272194 A JP7272194 A JP 7272194A JP 3519775 B2 JP3519775 B2 JP 3519775B2
Authority
JP
Japan
Prior art keywords
battery
hydrogen storage
storage battery
sealed nickel
discharge capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07272194A
Other languages
Japanese (ja)
Other versions
JPH07254430A (en
Inventor
礼造 前田
義人 近野
光造 野上
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP07272194A priority Critical patent/JP3519775B2/en
Publication of JPH07254430A publication Critical patent/JPH07254430A/en
Application granted granted Critical
Publication of JP3519775B2 publication Critical patent/JP3519775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉型ニッケル−水素蓄
電池に係わり、詳しくは放電容量が大きく、しかも電解
液のリーク(漏洩)が起こりにくいニッケル−水素蓄電
池を得ることを目的とした、空体積(電池缶内の空間部
分の総体積)の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed nickel-metal hydride storage battery, and more specifically, to a nickel-metal hydride storage battery having a large discharge capacity and less leakage of electrolyte. The present invention relates to improvement in volume (total volume of space inside battery can).

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
水素を可逆的に吸蔵及び放出することが可能な水素吸蔵
合金を負極に用いたニッケル−水素蓄電池が、エネルギ
ー密度が高い、クリーンである、ニッケル−カドミウム
蓄電池と電圧がほぼ同じであるため互換性を有する、な
どの利点を有することから、次世代の密閉型アルカリ蓄
電池として注目されている。
2. Description of the Related Art In recent years,
A nickel-hydrogen storage battery that uses a hydrogen storage alloy capable of reversibly storing and releasing hydrogen in the negative electrode is compatible because it has a high energy density and is clean, and the voltage is almost the same as that of the nickel-cadmium storage battery. Since it has advantages such as that it has, it is attracting attention as a next-generation sealed alkaline storage battery.

【0003】しかしながら、現在実用化されているニッ
ケル−水素蓄電池には、さらに改善すべき幾つかの点が
有る。充電時の電解液のリークも、その一つである。す
なわち、従来のニッケル−水素蓄電池には、充電時のガ
スの発生に伴って電池内圧が上昇し、安全弁からガスと
ともに電解液がリークし易く、信頼性の点で問題があっ
た。
However, the nickel-hydrogen storage batteries currently in practical use have some points to be further improved. Leakage of the electrolytic solution at the time of charging is one of them. That is, the conventional nickel-hydrogen storage battery has a problem in reliability because the internal pressure of the battery rises with the generation of gas during charging and the electrolyte solution easily leaks together with the gas from the safety valve.

【0004】本発明は、この問題を解決するべくなされ
たものであって、その目的とするところは、充電時に電
解液がリークしにくい信頼性の高い密閉型ニッケル−水
素蓄電池を提供するにある。
The present invention has been made to solve this problem, and an object of the present invention is to provide a highly reliable sealed nickel-hydrogen storage battery in which electrolyte does not easily leak during charging. .

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る密閉型ニッケル−水素蓄電池(以下、
「本発明電池」と称する。)は、開放作動圧1.5気圧
以上の安全弁を備えた、水素吸蔵合金電極を負極とする
電池であって、下式で定義されるXの値が2.5以上、
且つ5.0以下の電池である。
MEANS FOR SOLVING THE PROBLEMS A sealed nickel-hydrogen storage battery according to the present invention for achieving the above object (hereinafter, referred to as
The battery of the present invention is called. ) Is a battery with a hydrogen storage alloy electrode as a negative electrode, which is equipped with a safety valve with an open operating pressure of 1.5 atm or more, and the value of X defined by the following formula is 2.5 or more,
The battery is 5.0 or less.

【0006】 X=空体積(cc)/半密閉放電容量(Ah)[0006] X = empty volume (cc) / semi-hermetic discharge capacity (Ah)

【0007】〔式中、空体積とは電解液を注液した後の
電池缶内の空間部分の総体積をいい、半密閉放電容量と
は開放作動圧1.5気圧の逃し弁を設けて0.1Cで1
2時間充電した後、0.1Cで1Vまで放電した場合の
放電容量をいう。〕
[In the formula, the empty volume refers to the total volume of the space within the battery can after the electrolyte is injected, and the semi-hermetic discharge capacity refers to a relief valve with an open working pressure of 1.5 atm. 1 at 0.1C
After being charged for 2 hours, it is the discharge capacity when discharged to 0.1V at 0.1C. ]

【0008】正極、負極、セパレータなどを収納し、電
解液を注液した後の電池缶内には、空間部分(空隙)が
存在しており、この空間部分の総体積(空体積)を、電
池の半密閉放電容量の大きさに応じて規制することとし
たのが本発明である。
After the positive electrode, the negative electrode, the separator, etc. are housed and the electrolytic solution is injected, there is a space (void) in the battery can, and the total volume (empty volume) of this space is According to the present invention, the regulation is performed according to the semi-hermetic discharge capacity of the battery.

【0009】本発明においてXの値が上述の範囲に規制
されるのは、Xの値が5.0を越えて単位容量(半密閉
放電容量)当たりの空体積が大きくなると、電解液が電
池系内に充分に行きわたらなくなるために、両電極の利
用率が低下して電池容量が減少し、一方Xの値が2.5
未満となって単位容量(半密閉放電容量)当たりの空体
積が小さくなると、電池内圧が上昇して安全弁から電解
液がリークし易くなるからである。因みに、従来市販さ
れているニッケル−水素蓄電池〔AAサイズ、4/3A
サイズ、スリムタイプなど〕のXの値は、1.0〜1.
7である。
In the present invention, the value of X is regulated within the above range because when the value of X exceeds 5.0 and the empty volume per unit capacity (semi-closed discharge capacity) becomes large, the electrolytic solution becomes a battery. Since it does not reach the system sufficiently, the utilization rate of both electrodes decreases and the battery capacity decreases, while the value of X is 2.5.
This is because when the volume becomes less than the above and the empty volume per unit capacity (semi-hermetic discharge capacity) becomes small, the internal pressure of the battery rises and the electrolyte easily leaks from the safety valve. By the way, the nickel-hydrogen storage battery [AA size, 4 / 3A
Size, the value of X of Slim, etc.], 1.0 to 1.
7

【0010】なお、開放作動圧1.5気圧の逃し弁は、
本発明における半密閉放電容量を求めるためにのみ用い
られるものであり、本発明電池に実際に装着される安全
弁は、その開放作動圧が1.5気圧のものであってもよ
く、1.5気圧を越えるものであってもよい。
The relief valve with an opening operating pressure of 1.5 atm is
The safety valve, which is used only for obtaining the semi-closed discharge capacity in the present invention, and which is actually installed in the battery of the present invention, may have an opening working pressure of 1.5 atm. It may exceed atmospheric pressure.

【0011】本発明は、電池缶(電槽)の耐圧が低い角
型電池や大型電池など、開放作動圧が1.5〜6気圧程
度の安全弁を備える密閉型ニッケル−水素蓄電池に特に
好適に適用される。その理由は次のとおりである。
INDUSTRIAL APPLICABILITY The present invention is particularly suitable for a sealed nickel-hydrogen storage battery having a safety valve with an open operating pressure of about 1.5 to 6 atm, such as a rectangular battery or a large battery having a low withstand voltage of a battery can (battery case). Applied. The reason is as follows.

【0012】すなわち、電池缶の耐圧が高い小型円筒型
電池などでは、一般に開放作動圧が10〜20気圧程度
の安全弁が用いられているので、電池内圧が多少上昇し
ても、電解液のリークは起こりにくいのに対して、電池
缶(電槽)の耐圧が低い角型電池や大型電池では、開放
作動圧が6気圧以下の比較的低い安全弁が用いられてい
るので、電池内圧の上昇に伴う電解液のリークが起こり
易いからである。
That is, since a safety valve having an open operating pressure of about 10 to 20 atmospheres is generally used in a small cylindrical battery having a high withstand voltage of a battery can, even if the internal pressure of the battery rises a little, the electrolyte leaks. Is unlikely to occur, on the other hand, for prismatic batteries and large batteries with low withstand voltage of the battery can (battery case), a relatively low safety valve with an open operating pressure of 6 atm or less is used. This is because the accompanying electrolyte leakage is likely to occur.

【0013】[0013]

【作用】Xの値が所定値(2.5)以上に規制されてい
るので、充電末期又は過充電時に電池内圧がさほど上昇
せず、電解液のリークが起こりにくい。また、Xの値が
所定値(5.0)以下に規制されているので、電解液が
電池系内に行きわたる。それゆえ、両極板への電解液の
供給不足に因る電池容量の低下が抑制される。
Since the value of X is regulated to the predetermined value (2.5) or more, the internal pressure of the battery does not rise so much at the end of charging or overcharging, and the electrolyte does not easily leak. Further, since the value of X is regulated to a predetermined value (5.0) or less, the electrolytic solution spreads in the battery system. Therefore, a decrease in battery capacity due to insufficient supply of the electrolytic solution to the bipolar plates is suppressed.

【0014】[0014]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the examples described below, and various modifications may be made without departing from the scope of the invention. Is possible.

【0015】〔密閉型ニッケル−水素蓄電池の作製〕負
極としての水素吸蔵合金電極(水素吸蔵合金:MmNi
3.2 Co1.0 Al0.6 Mn0.2 )と、正極としての公知
の焼結式ニッケル極とを用いて角型の密閉型ニッケル−
水素蓄電池A(公称容量:100Ah)を組み立てた
(電解液は未注液)。
[Fabrication of sealed nickel-hydrogen storage battery] Hydrogen storage alloy electrode (hydrogen storage alloy: MmNi) as a negative electrode
3.2 Co 1.0 Al 0.6 Mn 0.2 ) and a publicly known sintered nickel electrode as a positive electrode are used to form a square closed nickel-
A hydrogen storage battery A (nominal capacity: 100 Ah) was assembled (electrolyte solution was not injected).

【0016】図1は、組み立てた密閉型ニッケル−水素
蓄電池Aの一部切り欠き斜視図であり、図示の密閉型ニ
ッケル−水素蓄電池Aの角型の電池缶1内には、正極と
負極とをセパレータを介して順次積層してなる、14枚
の正極、15枚の負極及び15枚のセパレータからなる
電極群2(電極群2の両端には負極が位置している。)
が収納されており、電極群2と電池缶1の内壁の間には
絶縁シート3が配されている。また、電池缶1の上蓋1
aには、正極端子4、開放作動圧1.5気圧の安全弁5
及び負極端子6が取り付けられている。
FIG. 1 is a partially cutaway perspective view of the assembled sealed nickel-hydrogen storage battery A. In the rectangular sealed battery can 1 of the sealed nickel-hydrogen storage battery A shown in FIG. Electrode group 2 composed of 14 positive electrodes, 15 negative electrodes, and 15 separators, which are sequentially stacked with a separator interposed therebetween (negative electrodes are located at both ends of the electrode group 2).
And an insulating sheet 3 is arranged between the electrode group 2 and the inner wall of the battery can 1. Also, the upper lid 1 of the battery can 1
In a, a positive electrode terminal 4 and a safety valve 5 with an opening working pressure of 1.5 atm.
And the negative electrode terminal 6 is attached.

【0017】この密閉型ニッケル−水素蓄電池Aの電解
液を注液する前の電池缶1内の空間部分の体積を、大気
圧(1気圧)の下で電池缶1の上蓋1aに穴をあけ、水
中に入れ、電池缶1から出てくるガスを水上置換により
捕集して、そのガス量から求めたところ、700ccで
あった。
The volume of the space in the battery can 1 before the electrolytic solution of the sealed nickel-hydrogen storage battery A is injected is punched in the upper lid 1a of the battery can 1 under atmospheric pressure (1 atm). It was 700 cc when it was put in water, the gas coming out of the battery can 1 was collected by displacement on water, and the amount of the gas was determined.

【0018】次いで、密閉型ニッケル−水素蓄電池Aの
安全弁5を取り外し、その孔(注液口)から種々の量の
電解液を注液し、封口し、活性化処理して、空体積のみ
が異なる8種類の密閉型ニッケル−水素蓄電池A1〜A
8を作製した。活性化処理は、0.05Cで、30時間
以内に電池内圧が3気圧に達しなかった場合は30時
間、又は、30時間以内に電池内圧が3気圧に達した場
合は電池内圧が3気圧に達するまで充電し、60°Cで
24時間休止した後、0.1Cで1Vまで放電すること
により行った。このときの電池内圧のモニタリングは、
安全弁5を取り外した際にできた開口部に圧力センサー
を取り付けて行った。電解液としては、水酸化カリウム
を25重量%、水酸化ナトリウムを2重量%及び水酸化
リチウムを1重量%含有する水溶液を用いた。なお、密
閉型ニッケル−水素蓄電池A8は、電解液200ccを
注液することに加えて、総量100ccのポリプロピレ
ン製のビーズ及びプレートをスペーサとして電池缶1内
に挿入して、空体積を400ccとしたものである。各
密閉型ニッケル−水素蓄電池の電解液量(cc)及び空
体積を表1に示す。
Next, the safety valve 5 of the sealed nickel-hydrogen storage battery A is removed, various amounts of electrolytic solution are injected through the hole (injection port), sealed, and activated so that only an empty volume is left. Eight different types of sealed nickel-hydrogen storage batteries A1 to A
8 was produced. The activation treatment is 0.05 C, and when the battery internal pressure does not reach 3 atm within 30 hours, it is 30 hours, or when the battery internal pressure reaches 3 atm within 30 hours, the battery internal pressure becomes 3 atm. It was carried out by charging until it reached, resting at 60 ° C for 24 hours, and then discharging to 1V at 0.1C. At this time, monitoring the battery internal pressure
A pressure sensor was attached to the opening formed when the safety valve 5 was removed. As the electrolytic solution, an aqueous solution containing 25% by weight of potassium hydroxide, 2% by weight of sodium hydroxide and 1% by weight of lithium hydroxide was used. In addition, in the sealed nickel-hydrogen storage battery A8, in addition to injecting 200 cc of the electrolytic solution, 100 cc of polypropylene beads and plates as spacers were inserted as spacers into the battery can 1 to give an empty volume of 400 cc. It is a thing. Table 1 shows the electrolytic solution amount (cc) and empty volume of each sealed nickel-hydrogen storage battery.

【0019】[0019]

【表1】 [Table 1]

【0020】〔完全密閉放電容量〕密閉型ニッケル−水
素蓄電池A1〜A8について、電池缶1の上蓋1aの安
全弁5を取り外した際にできた開口部に圧力センサーを
取り付けて、0.1Cで、12時間以内に電池内圧が
1.5気圧に達しなかった場合は12時間、又は、12
時間以内に電池内圧が1.5気圧に達した場合は電池内
圧が1.5気圧に達するまで充電した後、0.1Cで1
Vまで放電して、完全密閉放電容量D1を調べた。結果
を先の表1に示す。
[Completely Sealed Discharge Capacity] With respect to the sealed nickel-hydrogen storage batteries A1 to A8, a pressure sensor was attached to the opening formed when the safety valve 5 of the upper lid 1a of the battery can 1 was removed, and at 0.1C, 12 hours if the battery internal pressure does not reach 1.5 atm within 12 hours, or 12
If the battery internal pressure reaches 1.5 atm within the time, charge the battery until the battery internal pressure reaches 1.5 atm, and then perform 1 at 0.1C.
After discharging to V, the completely sealed discharge capacity D1 was examined. The results are shown in Table 1 above.

【0021】〔半密閉放電容量〕密閉型ニッケル−水素
蓄電池A1〜A8について、電池缶1の上蓋1aに開放
作動圧1.5気圧の逃し弁(上記安全弁5をそのまま逃
し弁として用いた。)を取り付けて、0.1Cで12時
間充電した後、0.1Cで1Vまで放電して、半密閉放
電容量D2を調べた。結果を先の表1に示す。
[Semi-closed discharge capacity] Regarding the sealed nickel-hydrogen storage batteries A1 to A8, a relief valve having an opening working pressure of 1.5 atm (the safety valve 5 was directly used as a relief valve) on the upper lid 1a of the battery can 1. Was attached, the battery was charged at 0.1 C for 12 hours, then discharged to 0.1 V at 0.1 C, and the semi-hermetic discharge capacity D2 was examined. The results are shown in Table 1 above.

【0022】表1に示すように、Xの値が2.5〜5.
0の範囲内にある密閉型ニッケル−水素蓄電池A2〜A
5及びA8(本発明電池)は、半密閉放電容量D2が大
きく、しかも電解液のリークが起こらないのに対して、
Xの値が上記範囲を外れて小さい密閉型ニッケル−水素
蓄電池A6及びA7(比較電池)は、半密閉放電容量D
2は大きいものの、蓄電池A7では多量の電解液がリー
クしており、蓄電池A6では逃し弁が作動し電解液が飛
散する寸前の状態にある。
As shown in Table 1, the value of X is 2.5-5.
Sealed nickel-hydrogen storage batteries A2-A in the range of 0
5 and A8 (the battery of the present invention) have a large semi-hermetic discharge capacity D2 and do not cause leakage of the electrolytic solution,
The sealed nickel-hydrogen storage batteries A6 and A7 (comparative batteries) in which the value of X is smaller than the above range have a semi-sealed discharge capacity D.
Although 2 is large, a large amount of electrolytic solution is leaking in the storage battery A7, and the relief valve is operating in the storage battery A6, and the electrolytic solution is on the verge of being scattered.

【0023】また、Xの値が上記範囲を外れて大きい密
閉型ニッケル−水素蓄電池A1(比較電池)は、電解液
のリークは起こっていないものの、半密閉放電容量D2
が小さい。
Further, in the sealed nickel-hydrogen storage battery A1 (comparative battery) in which the value of X is out of the above range and is large, the electrolyte leakage does not occur, but the semi-sealed discharge capacity D2.
Is small.

【0024】なお、密閉型ニッケル−水素蓄電池A6及
びA7の完全密閉放電容量D1が小さいのは、充電時に
電池内圧が上昇したために充電が十分になされなかった
ためであり、また密閉型ニッケル−水素蓄電池A1の完
全密閉放電容量D1が小さいのは、電解液が十分に行き
わたらず、両電極の利用率が低下したためである。
The reason why the completely sealed discharge capacity D1 of the sealed nickel-hydrogen storage batteries A6 and A7 is small is that the internal pressure of the battery was increased during charging, so that the battery was not sufficiently charged. The reason why the completely sealed discharge capacity D1 of A1 is small is that the electrolytic solution is not sufficiently spread and the utilization rate of both electrodes is lowered.

【0025】表1に示す結果から、Xの値が2.5〜
5.0の範囲内になるように電池缶1内の空体積を設計
することにより、充電末期又は過充電時に電解液のリー
クが起こりにくく、しかも電池容量の大きい密閉型ニッ
ケル−水素蓄電池が得られることが分かる。
From the results shown in Table 1, the value of X is 2.5 to
By designing the empty volume in the battery can 1 so as to be within the range of 5.0, it is possible to obtain a sealed nickel-hydrogen storage battery with a large battery capacity, which is unlikely to cause leakage of the electrolyte solution at the end of charging or overcharge. You can see that

【0026】[0026]

【発明の効果】半密閉放電容量に対する電池缶内の空間
部分の総体積の割合が所定の範囲内になるように設計さ
れているので、充電末期又は過充電時に電解液のリーク
が起こりにくく、しかも高容量である。
Since the ratio of the total volume of the space within the battery can to the semi-closed discharge capacity is designed to fall within a predetermined range, the electrolyte does not easily leak at the end of charging or overcharging. Moreover, it has a high capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で作製した角型の密閉型ニッケル−水素
蓄電池の一部切り欠き斜視図である。
FIG. 1 is a partially cutaway perspective view of a rectangular sealed nickel-hydrogen storage battery manufactured in an example.

【符号の説明】[Explanation of symbols]

A 密閉型ニッケル−水素蓄電池 1 電池缶 1a 電池缶の上蓋 2 電極群 3 絶縁シート 4 正極端子 5 安全弁 6 負極端子 A Sealed nickel-hydrogen storage battery 1 battery can 1a Battery can top 2 electrode group 3 insulating sheet 4 Positive terminal 5 Safety valve 6 Negative electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (58)調査した分野(Int.Cl.7,DB名) H01M 2/12 H01M 10/30 H01M 10/34 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Denki Co., Ltd. (72) Toshihiko Saito 2-5-5 Keihanhondori, Moriguchi-shi, Osaka No. 5 within Sanyo Electric Co., Ltd. (58) Fields investigated (Int.Cl. 7 , DB name) H01M 2/12 H01M 10/30 H01M 10/34

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】開放作動圧1.5気圧以上の安全弁を備え
た、水素吸蔵合金電極を負極とする密閉型ニッケル−水
素蓄電池であって、下式で定義されるXの値が2.5〜
5.0であることを特徴とする密閉型ニッケル−水素蓄
電池。 X=空体積(cc)/半密閉放電容量(Ah) 〔式中、空体積とは電解液を注液した後の電池缶内の空
間部分の総体積をいい、半密閉放電容量とは開放作動圧
1.5気圧の逃し弁を設けて、0.1Cで12時間充電
した後、0.1Cで1Vまで放電した場合の放電容量を
いう。〕
1. A sealed nickel-hydrogen storage battery having a hydrogen storage alloy electrode as a negative electrode, which is equipped with a safety valve having an open operating pressure of 1.5 atm or more, wherein the value of X defined by the following formula is 2.5. ~
A sealed nickel-hydrogen storage battery, which is 5.0. X = empty volume (cc) / semi-hermetic discharge capacity (Ah) [In the formula, the empty volume means the total volume of the space inside the battery can after the electrolyte is injected, and the semi-hermetic discharge capacity is open. It is a discharge capacity when a relief valve having an operating pressure of 1.5 atm is provided, and the battery is charged at 0.1 C for 12 hours and then discharged to 0.1 V at 0.1 C. ]
【請求項2】前記安全弁の開放作動圧が1.5〜6気圧
である請求項1記載の密閉型ニッケル−水素蓄電池。
2. The sealed nickel-hydrogen storage battery according to claim 1, wherein the opening operating pressure of the safety valve is 1.5 to 6 atmospheres.
JP07272194A 1994-03-16 1994-03-16 Sealed nickel-hydrogen storage battery Expired - Lifetime JP3519775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07272194A JP3519775B2 (en) 1994-03-16 1994-03-16 Sealed nickel-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07272194A JP3519775B2 (en) 1994-03-16 1994-03-16 Sealed nickel-hydrogen storage battery

Publications (2)

Publication Number Publication Date
JPH07254430A JPH07254430A (en) 1995-10-03
JP3519775B2 true JP3519775B2 (en) 2004-04-19

Family

ID=13497510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07272194A Expired - Lifetime JP3519775B2 (en) 1994-03-16 1994-03-16 Sealed nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP3519775B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4475840B2 (en) 2000-04-05 2010-06-09 パナソニック株式会社 Nickel metal hydride storage battery and assembly thereof
JP4126684B2 (en) 2001-05-11 2008-07-30 松下電器産業株式会社 Nickel metal hydride secondary battery

Also Published As

Publication number Publication date
JPH07254430A (en) 1995-10-03

Similar Documents

Publication Publication Date Title
JP3293287B2 (en) Square sealed alkaline storage battery and its unit battery
JP3349321B2 (en) Battery pack
JP2002313432A (en) Nickel-hydrogen storage battery
JP3474919B2 (en) Stacked sealed nickel-hydride battery
JP3519775B2 (en) Sealed nickel-hydrogen storage battery
JP7193420B2 (en) Nickel-metal hydride secondary battery manufacturing method
JP3390309B2 (en) Sealed alkaline storage battery
JP4126684B2 (en) Nickel metal hydride secondary battery
JP3383210B2 (en) Open industrial storage battery with maintenance-free alkaline electrolyte
US20040131927A1 (en) Battery with insulative tubular housing
US6893771B2 (en) Battery assembly
KR100615153B1 (en) Lithium secondary battery
JP3670838B2 (en) Square sealed alkaline storage battery
CN112886075B (en) Method for manufacturing nickel-hydrogen storage battery
JP2988974B2 (en) Prismatic nickel-metal hydride storage battery
CN114300759B (en) Method for manufacturing nickel-hydrogen storage battery
JP3339327B2 (en) Storage battery
JP2001500314A (en) Electrochemical storage battery in which electrolyte is stored
JP2514659Y2 (en) Nickel zinc storage battery
JP3071033B2 (en) Hydrogen storage electrode
CN114975896A (en) Method for manufacturing nickel-metal hydride storage battery
JP2856855B2 (en) Method for manufacturing prismatic nickel-metal hydride storage battery
JP2000030688A (en) Wound alkaline storage battery and manufacture thereof
CN115336077A (en) Alkaline storage battery
JP2003173815A (en) Sealed square alkaline storage battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

EXPY Cancellation because of completion of term