JP3518845B2 - Thermoelectric semiconductor device manufacturing method - Google Patents
Thermoelectric semiconductor device manufacturing methodInfo
- Publication number
- JP3518845B2 JP3518845B2 JP05527899A JP5527899A JP3518845B2 JP 3518845 B2 JP3518845 B2 JP 3518845B2 JP 05527899 A JP05527899 A JP 05527899A JP 5527899 A JP5527899 A JP 5527899A JP 3518845 B2 JP3518845 B2 JP 3518845B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric semiconductor
- assembly jig
- partition plates
- single crystal
- thermoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 128
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 239000013078 crystal Substances 0.000 claims description 75
- 238000005192 partition Methods 0.000 claims description 55
- 239000000853 adhesive Substances 0.000 claims description 17
- 230000001070 adhesive effect Effects 0.000 claims description 16
- 238000005520 cutting process Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 238000010292 electrical insulation Methods 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 239000003292 glue Substances 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱電半導体素子の
製造方法に関し、特に放熱側と吸熱側とが仕切板により
熱的に絶縁された熱電半導体素子の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric semiconductor element, and more particularly to a method for manufacturing a thermoelectric semiconductor element in which a heat radiating side and a heat absorbing side are thermally insulated by a partition plate.
【0002】[0002]
【従来の技術】ビスマス・テルル系、鉄・シリサイド系
若しくはコバルト・アンチモン系等の化合物からなる熱
電半導体を利用した熱電半導体素子は、冷却・加熱装置
等に使用されている。これらの熱電素子は、液体、気体
を使用せず、スペースもとらずまた回転磨耗もなく保守
の不要な冷却・加熱源として重宝なものである。2. Description of the Related Art A thermoelectric semiconductor element using a thermoelectric semiconductor made of a compound such as bismuth / tellurium type, iron / silicide type or cobalt / antimony type is used in a cooling / heating device. These thermoelectric elements are useful as a cooling / heating source that does not use liquid or gas, does not take up space, does not wear due to rotation, and does not require maintenance.
【0003】従来から知られている一般的な熱電モジュ
ールの構成を図15に示す。ここで図15(a)は正面
図であり、図15(b)は斜視図である。これらの図に
示されているように、従来の熱電モジュールでは、n型
熱電半導体とp型熱電半導体からなる熱電半導体が交互
に配列されており、熱電半導体の上面と下面はそれぞれ
金属電極に接合されている。熱電半導体は、上面と下面
で金属電極に交互に接合され、最終的には全部の熱電半
導体が電気的に直列に接続される。上下の金属電極と熱
電半導体との接合は、ハンダ付けで行われる。そして、
上面、下面のそれぞれの金属電極は、メタライズしたセ
ラミック基板に接合されて全体が剛体で固定されてい
る。FIG. 15 shows the structure of a generally known general thermoelectric module. Here, FIG. 15A is a front view and FIG. 15B is a perspective view. As shown in these figures, in the conventional thermoelectric module, thermoelectric semiconductors composed of n-type thermoelectric semiconductors and p-type thermoelectric semiconductors are alternately arranged, and the upper surface and the lower surface of the thermoelectric semiconductors are bonded to the metal electrodes, respectively. Has been done. The thermoelectric semiconductors are alternately joined to the metal electrodes on the upper surface and the lower surface, and finally all the thermoelectric semiconductors are electrically connected in series. The upper and lower metal electrodes are joined to the thermoelectric semiconductor by soldering. And
The metal electrodes on the upper surface and the lower surface are bonded to a metallized ceramic substrate and fixed as a whole with a rigid body.
【0004】この熱電モジュールの電極に直流電源を接
続して、n型熱電半導体からp型熱電半導体の方向へ電
流を流すと、ペルチェ効果によりπ型の上部で吸熱が起
こり、下部で放熱が起こる。つまり、図15(a)に示
されているように、熱電半導体の上部が吸熱側(コール
ド・ジャンクション)となり、下部が放熱側(ホット・
ジャンクション)となる。この際、電源の接続方向を逆
転すると、吸熱、放熱の方向が変わる。この現象を利用
して、熱電モジュールが冷却・加熱装置に使用されるの
である。熱電モジュールは、LSI(大規模集積回
路)、コンピュータのCPU(中央演算処理装置)やレ
ーザ等の冷却をはじめ、保温冷蔵庫に至る広範な用途を
有している。When a direct current power supply is connected to the electrodes of this thermoelectric module and a current is passed from the n-type thermoelectric semiconductor to the p-type thermoelectric semiconductor, heat absorption occurs at the upper part of the π type due to the Peltier effect and heat dissipation occurs at the lower part. . That is, as shown in FIG. 15A, the upper part of the thermoelectric semiconductor is the heat absorption side (cold junction) and the lower part is the heat dissipation side (hot junction).
Junction). At this time, if the connection direction of the power source is reversed, the directions of heat absorption and heat dissipation change. Utilizing this phenomenon, the thermoelectric module is used in a cooling / heating device. Thermoelectric modules have a wide range of applications from cooling LSIs (large-scale integrated circuits), CPUs (central processing units) of computers, lasers, etc. to heat insulation refrigerators.
【0005】ところが、このように構成された熱電モジ
ュールでは、放熱側と吸熱側との間で熱の対流が起こる
ため、冷却効率が低下するという問題点があった。これ
に対して、例えば実公昭38-27922号、特公昭48-32942号
などに開示されている熱電モジュールは、断熱性を有す
る板あるいは枠体に熱電半導体を嵌め込んでいるため、
放熱側と吸熱側との間で熱の対流を防止し、冷却効率の
低下を防止することができる。However, in the thermoelectric module having such a structure, convection of heat occurs between the heat radiating side and the heat absorbing side, so that the cooling efficiency is lowered. On the other hand, for example, the thermoelectric module disclosed in Japanese Utility Model Publication No. 38-27922, Japanese Patent Publication No. 48-32942, etc., because the thermoelectric semiconductor is fitted into the plate or frame having heat insulation,
It is possible to prevent heat convection between the heat radiating side and the heat absorbing side and prevent the cooling efficiency from decreasing.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、前述し
た断熱性を有する板あるいは枠体に熱電半導体を埋め込
んだ熱電モジュールを製造するには断熱性を有する板あ
るいは枠体などの穴に熱電半導体を一個ずつ嵌め込む作
業が必要であったため、量産に適していなかった。ま
た、その熱電半導体は、インゴット状の結晶をスライス
して円板状に形成し、さらにこの円板をダイシングして
一辺が1〜3mm程度の立方体状の熱電半導体を製造する
方法などで製造されていたため、三回のスライスが必要
となり製造工数が多かった。However, in order to manufacture a thermoelectric module in which a thermoelectric semiconductor is embedded in a plate or frame having the above-mentioned heat insulating property, one thermoelectric semiconductor is placed in the hole of the plate or frame having the heat insulating property. It was not suitable for mass production because it required a work of fitting each one. In addition, the thermoelectric semiconductor is manufactured by a method of slicing an ingot-shaped crystal into a disk shape, and dicing the disk to manufacture a cubic thermoelectric semiconductor having a side of 1 to 3 mm. Therefore, slicing was required three times, and the number of manufacturing steps was large.
【0007】本発明はこのような問題点に鑑みてなされ
たものであって、放熱側と吸熱側とが仕切板により熱的
に絶縁された熱電モジュールに用いて好適な熱電半導体
素子の量産を可能にした熱電半導体素子の製造方法を提
供するものである。The present invention has been made in view of such problems, and mass production of thermoelectric semiconductor elements suitable for use in a thermoelectric module in which a heat radiating side and a heat absorbing side are thermally insulated by a partition plate. A method for manufacturing a thermoelectric semiconductor device is provided.
【0008】[0008]
【課題を解決するための手段】前記した本発明の課題
は、少なくとも一方の先端が細く形成され、かつ結晶の
方向性が一定であり、かつa軸配向を有する複数本のn
型およびp型熱電半導体針状単結晶と、複数の穴があけ
られた電気絶縁性および熱不良導性を有する複数枚の仕
切板と、これらの仕切板を互いに平行に挿入することの
できる組立治具とを用い、前記複数枚の仕切板を前記組
立治具に挿入する工程と、前記複数枚の仕切板の対向す
る穴に前記複数本の熱電半導体針状単結晶を挿入する工
程と、前記複数枚の仕切板と前記複数本の熱電半導体針
状単結晶とを接着する工程と、前記複数本の熱電半導体
針状単結晶を前記複数枚の仕切板の間で長手方向と直交
する方向に切断する工程とを有する熱電半導体素子の製
造方法であって、前記前記複数枚の仕切板と前記複数本
の熱電半導体針状単結晶とを接着する工程は、前記組立
治具を収納することのできる組立治具容器内に前記組立
治具を収納した後、その組立治具容器内を接着剤で満た
し、次に余分な接着剤を前記組立治具容器内から除去す
る工程を有することを特徴とする熱電半導体素子の製造
方法により解決することができる。The above-mentioned object of the present invention is to provide a plurality of n-types each having at least one tip formed thin, having a constant crystal orientation, and having an a-axis orientation.
-Type and p-type thermoelectric semiconductor acicular single crystals, a plurality of partition plates having a plurality of holes and having electrical insulation properties and poor thermal conductivity, and an assembly capable of inserting these partition plates in parallel with each other Using a jig, the step of inserting the plurality of partition plates into the assembly jig, and the step of inserting the plurality of thermoelectric semiconductor needle-shaped single crystals into the opposing holes of the plurality of partition plates, A step of adhering the plurality of partition plates and the plurality of thermoelectric semiconductor needle-shaped single crystals, and cutting the plurality of thermoelectric semiconductor needle-shaped single crystals in a direction orthogonal to the longitudinal direction between the plurality of partition plates. A method of manufacturing a thermoelectric semiconductor element, the method including: a plurality of partition plates and the plurality of partition plates.
The step of adhering the thermoelectric semiconductor needle-shaped single crystal of
Assemble the jig in an assembly jig container that can store the jig.
After storing the jig, fill the assembly jig container with adhesive.
Then remove excess adhesive from inside the assembly jig container.
This can be solved by a method for manufacturing a thermoelectric semiconductor element, which has the following steps .
【0009】本発明に係る熱電半導体素子の製造方法に
よれば、熱電半導体の小片を仕切板に嵌め込むのではな
く、熱電半導体針状単結晶を仕切板の穴に挿入し、接着
した後に切断するので、量産化が容易である。また、切
断(スライス)工程は一回だけなので、製造工程が少な
い。さらに、熱電半導体針状単結晶は結晶の方向が一定
でa軸配向であるため、仕切板の穴に挿入する際および
切断の際に折れたり欠けたりしない。また、先端が細く
形成されているので、仕切板の穴に挿入する操作が容易
である。さらに、熱電半導体針状単結晶を仕切板の穴と
接着するときに、組立治具容器内に収納し、その組立治
具容器内を接着剤で満たし、次に余分な接着剤を前記組
立治具容器内から除去するので、必要最小限の接着剤で
必要な部分のみ固定することができる。 According to the method of manufacturing a thermoelectric semiconductor element of the present invention, a thermoelectric semiconductor needle-shaped single crystal is inserted into a hole of a partition plate and cut after being bonded instead of fitting a small piece of the thermoelectric semiconductor into the partition plate. Therefore, mass production is easy. Further, since the cutting (slicing) process is performed only once, the number of manufacturing processes is small. Furthermore, since the thermoelectric semiconductor acicular single crystal has a constant crystal orientation and a-axis orientation, it does not break or chip when it is inserted into the hole of the partition plate and when it is cut. Moreover, since the tip is formed thin, the operation of inserting it into the hole of the partition plate is easy. Furthermore, the thermoelectric semiconductor needle-shaped single crystal is used as a hole in the partition plate.
When bonding, store in the assembly jig container and
Fill the inside of the container with adhesive, and then fill the excess adhesive
Since it is removed from the vertical jig container, the minimum necessary adhesive is used.
Only the required part can be fixed.
【0010】[0010]
【発明の実施の形態】以下本発明の実施の形態について
図面を参照しながら詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.
【0011】図1は本発明により製造する熱電半導体素
子の構成の一例を示す。ここで図1(a)は平面図、図
1(b)は図1(a)におけるA−A断面図である。FIG. 1 shows an example of the structure of a thermoelectric semiconductor device manufactured according to the present invention. Here, FIG. 1A is a plan view and FIG. 1B is a sectional view taken along the line AA in FIG.
【0012】熱電半導体素子1は、それぞれ円柱状のp
型熱電半導体3Aとn型熱電半導体3Bがほぼ正方形の仕切
板2を貫通した状態で固定されている。仕切板2は例え
ば厚みが0.3〜0.6mm程度の電気絶縁性および熱不
良導性および耐熱性を有する材料、例えばガラスエポキ
シなどから構成されている。p型熱電半導体3Aとn型熱
電半導体3Bは、例えばそれぞれ断面積が1.7〜5.0
mm2 程度、長さが1.5〜2mm程度の円柱状のビスマス
・テルル系熱電半導体単結晶であり、仕切板2の両側に
0.5〜0.7mm程度突出している。これらのp型熱電
半導体3Aとn型熱電半導体3Bはマトリックス状に交互に
配列されている。なお、ここでは便宜上、4×4のマト
リックス状配列を図示したが、実際には多数(16×1
6、24×24など)の熱電半導体単結晶を配列するこ
とができ、大面積の熱電半導体素子の製造が可能であ
る。The thermoelectric semiconductor element 1 has a cylindrical p-shape.
The type thermoelectric semiconductor 3A and the n-type thermoelectric semiconductor 3B are fixed in a state of penetrating the substantially square partition plate 2. The partition plate 2 is made of, for example, a material having a thickness of about 0.3 to 0.6 mm and having electrical insulating properties, poor thermal conductivity and heat resistance, such as glass epoxy. The p-type thermoelectric semiconductor 3A and the n-type thermoelectric semiconductor 3B each have, for example, a cross-sectional area of 1.7 to 5.0.
It is a cylindrical bismuth-tellurium-based thermoelectric semiconductor single crystal having a length of about mm 2 and a length of about 1.5 to 2 mm, and protrudes on both sides of the partition plate 2 by about 0.5 to 0.7 mm. The p-type thermoelectric semiconductors 3A and the n-type thermoelectric semiconductors 3B are alternately arranged in a matrix. Although a 4 × 4 matrix-like array is shown here for convenience, a large number (16 × 1) is actually used.
6, 24 × 24, etc.) thermoelectric semiconductor single crystals can be arranged, and a large-area thermoelectric semiconductor element can be manufactured.
【0013】図2は本発明により製造する熱電半導体素
子の別の構成例の平面図である。この熱電半導体素子で
は、マトリックス状配列の最下行の両端には熱電半導体
素子に代えて、銅などの金属や仕切板2と同等の材料か
らなるダミー素子を固定したものである。このように構
成することにより、この熱電半導体素子を用いて熱電モ
ジュールを製造する際、リード端子をダミー素子にハン
ダ付けあるいは接着し、リード端子と熱電半導体とのハ
ンダ付けの強度を補完することができる。FIG. 2 is a plan view of another example of the structure of the thermoelectric semiconductor device manufactured according to the present invention. In this thermoelectric semiconductor element, instead of the thermoelectric semiconductor element, dummy elements made of a metal such as copper or a material equivalent to the partition plate 2 are fixed to both ends of the bottom row of the matrix array. With this configuration, when a thermoelectric module is manufactured using this thermoelectric semiconductor element, the lead terminals can be soldered or adhered to the dummy element to complement the strength of the soldering between the lead terminals and the thermoelectric semiconductor. it can.
【0014】次に、このような熱電半導体素子の製造に
必要な材料および治具について説明する。Next, materials and jigs necessary for manufacturing such a thermoelectric semiconductor element will be described.
【0015】図3はp型熱電半導体針状単結晶11とn型
熱電半導体針状単結晶12である。これらの熱電半導体針
状単結晶11、12は断面が円形であり、両端が細くなるよ
うに略半球状のテーパが形成されている。また、結晶の
方向性が一定でa軸配向である、つまり結晶の長手方向
(成長方向)とa軸の方向とが一致している。このよう
に、結晶の方向性が一定でa軸配向である単結晶は、図
4(a)に示すようにヘキ開面が結晶の長手方向となる
ため、分割や損傷が起こり難い。これに対して、a軸の
方向が結晶の長手方向に対して傾いているような場合に
は、分割や損傷が起こり難い。このような特徴を有する
熱電半導体針状単結晶11、12を一つの熱電半導体素子に
必要な本数用意する。FIG. 3 shows a p-type thermoelectric semiconductor acicular single crystal 11 and an n-type thermoelectric semiconductor acicular single crystal 12. These thermoelectric semiconductor needle-shaped single crystals 11 and 12 have a circular cross section, and are formed in a substantially hemispherical taper so that both ends are thin. Further, the directionality of the crystal is constant and a-axis oriented, that is, the longitudinal direction (growth direction) of the crystal and the a-axis direction coincide with each other. As described above, in a single crystal in which the orientation of the crystal is constant and the a-axis is oriented, the cleavage plane is in the longitudinal direction of the crystal as shown in FIG. On the other hand, when the direction of the a-axis is tilted with respect to the longitudinal direction of the crystal, division or damage is unlikely to occur. The thermoelectric semiconductor needle-shaped single crystals 11 and 12 having such characteristics are prepared in the number required for one thermoelectric semiconductor element.
【0016】図5は穴あき仕切板の斜視図である。穴あ
き仕切板21は例えば厚みが0.3〜0.6mm程度の電気
絶縁性および熱不良導性および耐熱性を有する材料で構
成されている。そして、多数(図示は4×4=16)の
円形の穴がマトリックス状に配列されている。円形の穴
の直径は熱電半導体針状単結晶11、12を通すことがで
き、穴の内側と熱電半導体針状単結晶11、12の表面との
間に接着剤が入り接着されるように、熱電半導体針状単
結晶11、12の直径よりも大きめに定められている。ま
た、矩形の角の一つに切欠23が形成されている。FIG. 5 is a perspective view of the perforated partition plate. The perforated partition plate 21 is made of, for example, a material having a thickness of about 0.3 to 0.6 mm, which has electrical insulation properties, heat failure conductivity, and heat resistance. Then, a large number (4 × 4 = 16 in the drawing) of circular holes are arranged in a matrix. The diameter of the circular hole allows the thermoelectric semiconductor needle-shaped single crystals 11 and 12 to pass therethrough, so that an adhesive enters and is bonded between the inside of the hole and the surface of the thermoelectric semiconductor needle-shaped single crystals 11 and 12, The diameter is set larger than the diameter of the thermoelectric semiconductor needle-shaped single crystals 11 and 12. In addition, a notch 23 is formed at one of the corners of the rectangle.
【0017】図6は組立治具の斜視図である。組立治具
31は例えば厚みが0.5mm程度の矩形の鉄の薄板により
ほぼコの字形に構成されている。この図に示すように、
組立治具31の両側面および底面はそれぞれ二箇所でコの
字の内側に折り曲げられ、その部分に多数(図示は13
個ずつであるが、実際には例えば2〜3mm間隔で数十個
ずつ形成されている)の側面スリット32および底面スリ
ット33が形成されている。側面スリット32および底面ス
リット33はそれぞれ前述した間隔で平行に形成され、か
つ対向する一対の側面スリット32と一つの底面スリット
33に、前述した穴あき仕切板21の両側端面と下端面を嵌
め込むことができるように、コの字のサイズと各スリッ
トの位置およびサイズが定められている。また、組立治
具31の側面の上端はコの字の外側に折り曲げられ、細長
い平坦面34が形成されている。組立治具31は、まず鉄の
薄板の表面に対してエッチングや打ち抜きなどを行うこ
とにより、側面スリット32および底面スリット33を形成
し、次に鉄の薄板を機械加工により折り曲げることで安
価に大量生産することができる。FIG. 6 is a perspective view of the assembly jig. Assembly jig
The reference numeral 31 is, for example, a rectangular iron thin plate having a thickness of about 0.5 mm and formed in a substantially U-shape. As shown in this figure,
Both side surfaces and the bottom surface of the assembly jig 31 are respectively bent at two locations inside the U-shape, and a large number (13 in FIG.
Side slits 32 and bottom slits 33 are formed, for example, but dozens are actually formed at intervals of 2-3 mm, for example. The side surface slits 32 and the bottom surface slits 33 are formed in parallel at the intervals described above, and a pair of side surface slits 32 and one bottom surface slit are opposed to each other.
The size of the U-shape and the position and size of each slit are determined so that both end surfaces and the lower end surface of the perforated partition plate 21 can be fitted into the 33. Further, the upper end of the side surface of the assembly jig 31 is bent outward in a U-shape to form an elongated flat surface 34. The assembly jig 31 first forms the side slits 32 and the bottom slits 33 by etching or punching the surface of the thin iron plate, and then bends the thin iron plate by machining to produce a large amount at low cost. Can be produced.
【0018】図7は組立治具を収納するための組立治具
容器の斜視図である。この組立治具容器41は、ステンレ
ス板またはテフロン系の材料により箱形に形成されたも
のである。FIG. 7 is a perspective view of an assembly jig container for housing the assembly jig. This assembly jig container 41 is formed in a box shape from a stainless plate or a Teflon-based material.
【0019】次に、以上のような構成の材料および治具
を用いて熱電半導体素子を製造する方法を説明する。Next, a method of manufacturing a thermoelectric semiconductor element using the materials and jigs having the above-mentioned structures will be described.
【0020】まず、組立治具31の全ての側面スリット32
と底面スリット33に穴あき仕切板21を嵌め込む。本実施
の形態では13枚の穴あき仕切板21を嵌め込む。このと
き、切欠23が上端に位置するように嵌め込む。次いで、
全ての穴あき仕切21の対向する穴22を貫通するように、
p型熱電半導体針状単結晶11とn型熱電半導体針状単結
晶12を挿入する。このとき、切欠23を基準にして図1に
示すパターンでp型熱電半導体針状単結晶11とn型熱電
半導体針状単結晶12を挿入する。以上の工程を経た状態
を図8に示す。ただし、ここでは便宜上、穴あき仕切板
21は両端の2枚のみ図示し、熱電半導体針状単結晶は最
上行の左から二番目の一本のn型熱電半導体針状単結晶
12のみ図示した。本実施の形態では、p型熱電半導体針
状単結晶11およびn型熱電半導体針状単結晶12は結晶の
方向性が一定でa軸配向であり、かつ先端にテーパが形
成されているため、穴あき仕切板21の穴22に針状単結晶
を損傷することなく容易に挿入することができる。な
お、p型熱電半導体針状単結晶11およびn型熱電半導体
針状単結晶12の先端は略半球状に限定されるものではな
く、徐々に細くなるようなテーパが形成されていれば良
い。First, all side slits 32 of the assembly jig 31.
And insert the perforated partition plate 21 into the bottom slit 33. In this embodiment, 13 perforated partition plates 21 are fitted. At this time, the notch 23 is fitted so that it is located at the upper end. Then
So that it penetrates through the opposing holes 22 of all the perforated partitions 21,
A p-type thermoelectric semiconductor acicular single crystal 11 and an n-type thermoelectric semiconductor acicular single crystal 12 are inserted. At this time, the p-type thermoelectric semiconductor needle single crystal 11 and the n-type thermoelectric semiconductor needle single crystal 12 are inserted in the pattern shown in FIG. The state after the above steps is shown in FIG. However, here, for convenience, a perforated partition plate
21 shows only two sheets at both ends, and the thermoelectric semiconductor needle single crystal is the second n-type thermoelectric semiconductor needle single crystal from the left in the top row.
Only 12 is shown. In the present embodiment, the p-type thermoelectric semiconductor acicular single crystal 11 and the n-type thermoelectric semiconductor acicular single crystal 12 have constant crystal orientation and are a-axis oriented, and the tip is tapered. The needle-shaped single crystal can be easily inserted into the hole 22 of the perforated partition plate 21 without damaging it. The tips of the p-type thermoelectric semiconductor acicular single crystal 11 and the n-type thermoelectric semiconductor acicular single crystal 12 are not limited to the substantially hemispherical shape, and may be tapered so as to gradually become thinner.
【0021】次に、図9に示すように、穴あき仕切板21
とp型熱電半導体針状単結晶11およびn型熱電半導体針
状単結晶12をセットした組立治具31を組立治具容器41内
に収納する。このとき、組立治具31の一対の細長い平坦
面34が組立治具容器41の上端の対向する二面42,42に当
接する。図10は組立治具31を組立治具容器41内に収納
した状態の断面図である。Next, as shown in FIG. 9, a perforated partition plate 21
An assembling jig 31 in which the p-type thermoelectric semiconductor acicular single crystal 11 and the n-type thermoelectric semiconductor acicular single crystal 12 are set is housed in an assembling jig container 41. At this time, the pair of elongated flat surfaces 34 of the assembly jig 31 come into contact with the two opposing surfaces 42, 42 of the upper end of the assembly jig container 41. FIG. 10 is a sectional view of the assembly jig 31 housed in the assembly jig container 41.
【0022】次いで、組立治具容器41内をポリイミドな
どの接着剤で満たした後、接着剤を組立治具容器41内か
ら除去する。これによって、図11に示すように、穴あ
き仕切板21と熱電半導体針状単結晶(図示はn型熱電半
導体針状単結晶12)との間に必要最小限の接着剤51が残
るようになる。Next, after filling the inside of the assembly jig container 41 with an adhesive such as polyimide, the adhesive is removed from the inside of the assembly jig container 41. As a result, as shown in FIG. 11, the minimum necessary adhesive agent 51 remains between the perforated partition plate 21 and the thermoelectric semiconductor needle-shaped single crystal (n-type thermoelectric semiconductor needle-shaped single crystal 12). Become.
【0023】接着剤が固化する前に、組立治具31を組立
治具容器41内から取り出す。そして、接着剤が固化した
後、図12(a)の斜視図および図12(b)の断面図
に示すように、隣り合う穴あき仕切板21の中間の位置
で、ワイヤーソーなどにより組立治具31を切断する。前
述したように、熱電半導体針状単結晶結晶11、12は結晶
の方向性が一定でa軸配向であるため、この切断の際に
も分割や損傷が発生し難い。The assembly jig 31 is taken out of the assembly jig container 41 before the adhesive is solidified. Then, after the adhesive is solidified, as shown in the perspective view of FIG. 12 (a) and the sectional view of FIG. 12 (b), it is assembled with a wire saw or the like at an intermediate position between adjacent perforated partition plates 21. Cut the tool 31. As described above, since the thermoelectric semiconductor acicular single crystal crystals 11 and 12 have a constant crystal orientation and a-axis orientation, division and damage are unlikely to occur during this cutting.
【0024】この切断により、図13に示すような、組
立治具31の切断片31Aにより挟まれた熱電半導体素子1
が数十枚同時に作成できる。この切断片31Aの上端の両
側を広げることにより、熱電半導体素子1を容易に分離
することができる。分離後の熱電半導体素子1を洗浄す
ることで、図1に示した多数の熱電半導体素子1を同時
に得ることができる。なお、図2に示したようなダミー
素子を有する熱電半導体素子を製造する際には、図8に
示した工程において、穴あき仕切板21にマトリックス状
に配列された穴22のうち最下行の両端の穴には、熱電半
導体針状単結晶の代わりに銅などで構成された棒を挿入
すればよい。By this cutting, the thermoelectric semiconductor element 1 sandwiched by the cutting pieces 31A of the assembly jig 31 as shown in FIG.
There can create dozens at the same time. The thermoelectric semiconductor element 1 can be easily separated by expanding both sides of the upper end of the cut piece 31A. By washing the thermoelectric semiconductor element 1 after separation, a large number of thermoelectric semiconductor elements 1 shown in FIG. 1 can be obtained at the same time. When manufacturing a thermoelectric semiconductor element having a dummy element as shown in FIG. 2, in the step shown in FIG. 8, the bottom row of the holes 22 arranged in a matrix on the perforated partition plate 21 is manufactured. Rods made of copper or the like may be inserted into the holes at both ends instead of the thermoelectric semiconductor acicular single crystal.
【0025】以上説明した工程により製造した熱電半導
体素子におけるp型熱電半導体素子3Aおよびn型熱電半
導体素子3Bの上面および下面に電極4,5をハンダ付け
することにより、図14(a)の断面図に示すような両
側スケルトンタイプの熱電モジュールを製造することが
できる。同様に、以上説明した工程により製造したダミ
ー素子を有する熱電半導体素子におけるp型熱電半導体
素子3Aおよびn型熱電半導体素子3Bおよびダミー素子3C
の上面および下面に電極4,5をハンダ付けすることに
より、図14(b)の断面図に示すような、ダミー素子
3Cを有する両側スケルトンタイプの熱電モジュールを製
造することができる。このハンダ付けの際、p型熱電半
導体素子3Aおよびn型熱電半導体素子3Bの上下の面が仕
切板2から突出しているため、隣り合う電極が余剰なハ
ンダにより短絡される状態を防止することができ、ハン
ダ性が向上する。また、p型熱電半導体素子3Aおよびn
型熱電半導体素子3Bが仕切板2により固定されているた
め、熱電モジュール製造の際の取り扱いが容易であり、
スケルトンタイプの熱電モジュールの大型化に有効であ
る。The electrodes 4 and 5 are soldered to the upper and lower surfaces of the p-type thermoelectric semiconductor element 3A and the n-type thermoelectric semiconductor element 3B in the thermoelectric semiconductor element manufactured by the steps described above, thereby obtaining the cross section of FIG. 14 (a). A double-sided skeleton type thermoelectric module as shown in the figure can be manufactured. Similarly, the p-type thermoelectric semiconductor element 3A, the n-type thermoelectric semiconductor element 3B, and the dummy element 3C in the thermoelectric semiconductor element having the dummy element manufactured by the steps described above are used.
By soldering the electrodes 4 and 5 to the upper and lower surfaces of the dummy element, as shown in the sectional view of FIG.
It is possible to manufacture a double-sided skeleton type thermoelectric module having 3C. At the time of this soldering, since the upper and lower surfaces of the p-type thermoelectric semiconductor element 3A and the n-type thermoelectric semiconductor element 3B project from the partition plate 2, it is possible to prevent a state where adjacent electrodes are short-circuited by excess solder. The solderability is improved. In addition, p-type thermoelectric semiconductor elements 3A and n
Since the thermoelectric semiconductor element 3B is fixed by the partition plate 2, it is easy to handle when manufacturing the thermoelectric module,
This is effective for increasing the size of the skeleton type thermoelectric module.
【0026】なお、以上の説明ではp型熱電半導体針状
単結晶11およびn型熱電半導体針状単結晶12の断面が円
形の場合について説明したが、熱電半導体針状単結晶の
断面形状は四角形や六角形などの多角形でも良い。ま
た、p型熱電半導体針状単結晶11およびn型熱電半導体
針状単結晶12は、少なくとも一方の先端のみが細くなっ
ていれば良い。In the above description, the case where the p-type thermoelectric semiconductor needle-shaped single crystal 11 and the n-type thermoelectric semiconductor needle-shaped single crystal 12 have a circular cross section has been described. It may be a polygon such as or a hexagon. Further, at least one tip of the p-type thermoelectric semiconductor acicular single crystal 11 and the n-type thermoelectric semiconductor acicular single crystal 12 may be thin.
【0027】このように、本発明の実施の形態では、p
型熱電半導体針状単結晶11およびn型熱電半導体針状単
結晶12は結晶の方向性が一定でa軸配向であり、かつ先
端に略半球状のテーパが形成されているので、穴あき仕
切板21の穴22に対して単結晶を損傷することなく容易に
挿入することができる。また、穴あき仕切板21に位置決
め用の切欠23を設けたので、穴あき仕切板21を組立治具
31のスリットに挿入する際に、所定の向きに挿入し、さ
らに切欠23を基準にして熱電半導体針状単結晶を配列す
ることができる。さらに、組立治具31も鉄の薄板をエッ
チングまたは打抜いてスリットを形成し、その後折り曲
げるだけで製造できるため、低コストで量産可能であ
る。また、必要最小限の接着剤で必要な部分のみ固定す
ることができる。さらに、p型熱電半導体素子3Aおよび
n型熱電半導体素子3Bが仕切板2により固定されている
ため、熱電モジュール製造の際の取り扱いが容易であ
り、スケルトンタイプの熱電モジュールの大型化に有効
である。As described above, in the embodiment of the present invention, p
Type thermoelectric semiconductor needle-shaped single crystal 11 and n-type thermoelectric semiconductor needle-shaped single crystal 12 have a uniform crystal orientation and are a-axis oriented, and have a substantially hemispherical taper at the tip. The single crystal can be easily inserted into the hole 22 of the plate 21 without damaging it. Further, since the notch 23 for positioning is provided on the perforated partition plate 21, the perforated partition plate 21 can be used as an assembly jig.
When it is inserted into the slit of 31, the thermoelectric semiconductor needle-like single crystal can be arrayed with the notch 23 as a reference. Further, the assembly jig 31 can be mass-produced at low cost because it can be manufactured simply by etching or punching a thin iron plate to form a slit and then bending it. Further, it is possible to fix only a necessary portion with the minimum necessary adhesive. Further, since the p-type thermoelectric semiconductor element 3A and the n-type thermoelectric semiconductor element 3B are fixed by the partition plate 2, it is easy to handle when manufacturing the thermoelectric module, and it is effective for increasing the size of the skeleton type thermoelectric module. .
【0028】[0028]
【発明の効果】以上詳細に説明したように、本発明によ
れば、熱電半導体針状単結晶を仕切板の穴に挿入し、接
着した後に切断することにより多数の熱電半導体素子を
同時に製造することができる。また、切断工程は一回だ
けなので、製造工数が少なくなる。さらに、熱電半導体
針状単結晶は結晶の方向が一定でa軸配向であるため、
仕切板の穴に挿入する際および切断の際に折れたり欠け
たりしない。また、先端が細く形成されているので、仕
切板の穴に容易に挿入することができる。さらに、熱電
半導体針状単結晶を仕切板の穴と接着するときに、組立
治具容器内に収納し、その組立治具容器内を接着剤で満
たし、次に余分な接着剤を前記組立治具容器内から除去
するので、必要最小限の接着剤で必要な部分のみ固定す
ることができる。したがって、本発明によれば、放熱側
と吸熱側とが仕切板により熱的に絶縁された熱電半導体
素子を低コストで量産することが可能である。As described in detail above, according to the present invention, a large number of thermoelectric semiconductor elements are simultaneously manufactured by inserting a thermoelectric semiconductor needle-shaped single crystal into a hole of a partition plate, adhering and cutting the same. be able to. Moreover, since the cutting process is performed only once, the number of manufacturing steps is reduced. Further, since the thermoelectric semiconductor acicular single crystal has a constant crystal orientation and a-axis orientation,
Do not break or chip when inserting into the holes in the partition plate and when cutting. Further, since the tip is formed thin, it can be easily inserted into the hole of the partition plate. In addition, thermoelectric
Assembly when bonding semiconductor needle-shaped single crystals to the holes in the partition plate
Store in the jig container and fill the assembly jig container with adhesive.
Then, remove the excess adhesive from the assembly jig container.
Therefore, fix only the necessary parts with the minimum necessary adhesive.
You can Therefore, according to the present invention, it is possible to mass-produce a thermoelectric semiconductor element whose heat radiating side and heat absorbing side are thermally insulated by the partition plate at low cost.
【図1】本発明により製造する熱電半導体素子の構成の
一例を示す図である。FIG. 1 is a diagram showing an example of the configuration of a thermoelectric semiconductor element manufactured according to the present invention.
【図2】本発明により製造する熱電半導体素子の構成の
別の一例を示す図である。FIG. 2 is a diagram showing another example of the configuration of the thermoelectric semiconductor element manufactured according to the present invention.
【図3】本発明の実施の形態における熱電半導体針状単
結晶を示す図である。FIG. 3 is a diagram showing a thermoelectric semiconductor acicular single crystal according to an embodiment of the present invention.
【図4】本発明の実施の形態における熱電半導体針状単
結晶の特徴を説明するための図である。FIG. 4 is a diagram for explaining the characteristics of a thermoelectric semiconductor acicular single crystal according to an embodiment of the present invention.
【図5】本発明の実施の形態における穴あき仕切板を示
す図である。FIG. 5 is a diagram showing a perforated partition plate according to the embodiment of the present invention.
【図6】本発明の実施の形態における組立治具を示す図
である。FIG. 6 is a diagram showing an assembly jig in the embodiment of the present invention.
【図7】本発明の実施の形態における組立治具容器を示
す図である。FIG. 7 is a diagram showing an assembly jig container in the embodiment of the present invention.
【図8】組立治具に穴あき仕切板と熱電半導体針状単結
晶をセットした状態を示す図である。FIG. 8 is a view showing a state in which a perforated partition plate and a thermoelectric semiconductor acicular single crystal are set in an assembly jig.
【図9】穴あき仕切板と熱電半導体針状単結晶をセット
した組立治具を組立治具容器内に収納する様子を示す図
である。FIG. 9 is a view showing a state in which an assembly jig in which a partition plate with holes and a thermoelectric semiconductor acicular single crystal are set is housed in an assembly jig container.
【図10】穴あき仕切板と熱電半導体針状単結晶をセッ
トした組立治具を組立治具容器内に収納した状態の断面
図である。FIG. 10 is a cross-sectional view showing a state in which an assembly jig in which a perforated partition plate and a thermoelectric semiconductor needle single crystal are set is housed in an assembly jig container.
【図11】穴あき仕切板と熱電半導体針状単結晶との間
の接着剤の付着状態を示す図である。FIG. 11 is a diagram showing a state of adhesion of an adhesive between a perforated partition plate and a thermoelectric semiconductor acicular single crystal.
【図12】熱電半導体針状単結晶を切断する様子を示す
図である。FIG. 12 is a diagram showing a state of cutting a thermoelectric semiconductor acicular single crystal.
【図13】上記切断の結果得られる熱電半導体素子を示
す図である。FIG. 13 is a view showing a thermoelectric semiconductor element obtained as a result of the above cutting.
【図14】本発明により製造した熱電半導体素子を用い
た熱電モジュールを示す断面図である。FIG. 14 is a cross-sectional view showing a thermoelectric module using a thermoelectric semiconductor element manufactured according to the present invention.
【図15】従来の一般的な熱電モジュールを示す図であ
る。FIG. 15 is a diagram showing a conventional general thermoelectric module.
11 p型熱電半導体針状単結晶 12 n型熱電半導体針状単結晶 21 穴あき仕切板 22 穴 31 組立治具 32,33 スリット 41 組立治具容器 11 p-type thermoelectric semiconductor acicular single crystal 12 n-type thermoelectric semiconductor acicular single crystal 21 perforated divider 22 holes 31 Assembly jig 32, 33 slits 41 Assembly jig container
フロントページの続き (72)発明者 塩瀬 伸行 東京都青梅市河辺9丁目8−6 ファミ ネス河辺506号 (56)参考文献 特開 平8−228027(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 35/34 H01L 35/16 H01L 35/32 Front page continuation (72) Inventor Nobuyuki Shiose 9-8-6 Kawabe, Ome City, Tokyo No. 506 Family Kawabe (56) References JP-A-8-228027 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) H01L 35/34 H01L 35/16 H01L 35/32
Claims (4)
つ結晶の方向性が一定であり、かつa軸配向を有する複
数本のn型およびp型熱電半導体針状単結晶と、複数の
穴があけられた電気絶縁性および熱不良導性を有する複
数枚の仕切板と、これらの仕切板を互いに平行に挿入す
ることのできる組立治具とを用い、前記複数枚の仕切板
を前記組立治具に挿入する工程と、前記複数枚の仕切板
の対向する穴に前記複数本の熱電半導体針状単結晶を挿
入する工程と、前記複数枚の仕切板と前記複数本の熱電
半導体針状単結晶とを接着する工程と、前記複数本の熱
電半導体針状単結晶を前記複数枚の仕切板の間で長手方
向と直交する方向に切断する工程とを有する熱電半導体
素子の製造方法であって、前記前記複数枚の仕切板と前
記複数本の熱電半導体針状単結晶とを接着する工程は、
前記組立治具を収納することのできる組立治具容器内に
前記組立治具を収納した後、その組立治具容器内を接着
剤で満たし、次に余分な接着剤を前記組立治具容器内か
ら除去する工程を有することを特徴とする熱電半導体素
子の製造方法。 1. A plurality of acicular single crystal n-type and p-type thermoelectric semiconductors, each of which has at least one tip thinly formed, has a constant crystal orientation, and has a-axis orientation, and a plurality of holes. By using a plurality of opened partition plates having electrical insulation and thermal conductivity, and an assembly jig capable of inserting these partition plates in parallel with each other, the plurality of partition plates are assembled and repaired. A step of inserting into a tool, a step of inserting the plurality of thermoelectric semiconductor needle-shaped single crystals into the opposite holes of the plurality of partition plates, the plurality of partition plates and the plurality of thermoelectric semiconductor needle-shaped single crystals A method of manufacturing a thermoelectric semiconductor element, comprising a step of adhering a crystal, and a step of cutting the plurality of thermoelectric semiconductor acicular single crystals in a direction orthogonal to a longitudinal direction between the plurality of partition plates , wherein In front of the plurality of partition plates
The step of adhering a plurality of thermoelectric semiconductor needle-shaped single crystals,
In an assembly jig container that can store the assembly jig
After storing the assembly jig, glue inside the assembly jig container
Agent and then add excess adhesive in the assembly jig container.
Thermoelectric semiconductor element having a step of removing
Child manufacturing method.
に構成され、かつ内壁面に互いに平行な複数のスリット
が設けられ、それらのスリットに前記仕切板を挿入する
ことを特徴とする請求項1記載の熱電半導体素子の製造
方法。 2. The assembly jig is made of a metal plate and is substantially U-shaped.
And a plurality of slits that are parallel to each other on the inner wall surface
Are provided, and the partition plate is inserted into those slits.
The manufacture of the thermoelectric semiconductor device according to claim 1, wherein
Method.
により形成されたものであることを特徴とする請求項2
記載の熱電半導体素子の製造方法。 3. The slit is etched or punched
It is formed by the following.
A method for manufacturing the thermoelectric semiconductor element according to claim 1.
欠が設けられており、この切欠により前記組立治具に挿
入する向きを定めることを特徴とする請求項1記載の熱
電半導体素子の製造方法。 4. A positioning cut is provided at one of the corners of the partition plate.
A notch is provided, and this notch inserts it into the assembly jig.
The heat according to claim 1, characterized in that the direction of entry is determined.
Method for manufacturing electronic semiconductor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05527899A JP3518845B2 (en) | 1999-03-03 | 1999-03-03 | Thermoelectric semiconductor device manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05527899A JP3518845B2 (en) | 1999-03-03 | 1999-03-03 | Thermoelectric semiconductor device manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000252531A JP2000252531A (en) | 2000-09-14 |
JP3518845B2 true JP3518845B2 (en) | 2004-04-12 |
Family
ID=12994137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05527899A Expired - Fee Related JP3518845B2 (en) | 1999-03-03 | 1999-03-03 | Thermoelectric semiconductor device manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3518845B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015135932A (en) * | 2014-01-20 | 2015-07-27 | アイアールスペック株式会社 | Peltier cooling type IC package |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006032849A (en) * | 2004-07-21 | 2006-02-02 | Okano Electric Wire Co Ltd | Thermoelectric conversion module |
KR101493797B1 (en) * | 2013-10-18 | 2015-02-17 | 한국과학기술원 | Flexible thermoelectric device using mesh substrate and fabricating method thereof |
WO2021256810A1 (en) * | 2020-06-15 | 2021-12-23 | 엘지이노텍 주식회사 | Thermoelectric module and power generation apparatus including same |
-
1999
- 1999-03-03 JP JP05527899A patent/JP3518845B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015135932A (en) * | 2014-01-20 | 2015-07-27 | アイアールスペック株式会社 | Peltier cooling type IC package |
Also Published As
Publication number | Publication date |
---|---|
JP2000252531A (en) | 2000-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5171372A (en) | Thermoelectric cooler and fabrication method | |
US6097088A (en) | Thermoelectric element and cooling or heating device provided with the same | |
US7032389B2 (en) | Thermoelectric heat pump with direct cold sink support | |
US5064476A (en) | Thermoelectric cooler and fabrication method | |
JP2000049391A (en) | Thermoelectric module and manufacture thereof | |
WO2005117153A1 (en) | Thermoelectric converter and its manufacturing method | |
JPH0325022B2 (en) | ||
JPH04354363A (en) | Semiconductor device unit | |
JPH09199766A (en) | Manufacture of thermoelectric conversion module | |
JP3518845B2 (en) | Thermoelectric semiconductor device manufacturing method | |
US20070096317A1 (en) | Semiconductor device featuring electrode terminals forming superior heat-radiation system | |
JPH09181362A (en) | Flexible thermoelectric device and cooler/heater employing it | |
JP2000022224A (en) | Manufacture of thermoelectric element and manufacture thereof | |
JP3956405B2 (en) | Thermoelectric module manufacturing method | |
JP2002208741A (en) | Thermoelectric semiconductor device, cooler-heater using thermoelectric semiconductor device and manufacturing method therefor | |
JP2000349353A (en) | Peltier module and module for optical communication equipped with the same | |
US6486540B2 (en) | Three-dimensional semiconductor device and method of manufacturing the same | |
JP4003254B2 (en) | Thermoelectric conversion element and manufacturing method thereof | |
JPH1187787A (en) | Production of thermoelectrtc module | |
JP4913617B2 (en) | Thermo module and manufacturing method thereof | |
JP4706819B2 (en) | Thermoelectric device | |
US20060112982A1 (en) | Method of manufacturing thermoelectric transducer, thermoelectric transducer, and method for forming corrugated fin used for the same | |
JP3512691B2 (en) | Thermoelectric element and method of manufacturing the same | |
JPH1168174A (en) | Thermoelectric semiconductor chip and manufacturing thermoelectric module | |
JPS63128681A (en) | Thermoelectric conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3518845 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080206 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100206 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110206 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110206 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110206 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140206 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |