JP3518501B2 - Oxidoreductase gene, cloning of the gene and method for producing the enzyme - Google Patents
Oxidoreductase gene, cloning of the gene and method for producing the enzymeInfo
- Publication number
- JP3518501B2 JP3518501B2 JP2000306503A JP2000306503A JP3518501B2 JP 3518501 B2 JP3518501 B2 JP 3518501B2 JP 2000306503 A JP2000306503 A JP 2000306503A JP 2000306503 A JP2000306503 A JP 2000306503A JP 3518501 B2 JP3518501 B2 JP 3518501B2
- Authority
- JP
- Japan
- Prior art keywords
- gene
- glu
- ile
- transformant
- oxidoreductase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、新規オリゴヌクレ
オチド、同オリゴヌクレオチドをプライマーとして用い
た新規酸化還元酵素遺伝子の増幅・クローニング法、同
遺伝子を含有する組換えベクター、同組換えベクターに
より形質転換された形質転換体、および同形質転換体に
よる酸化還元酵素の製造方法に関する。TECHNICAL FIELD The present invention relates to a novel oligonucleotide, a novel oxidoreductase gene amplification / cloning method using the oligonucleotide as a primer, a recombinant vector containing the gene, and transformation with the recombinant vector. And a method for producing an oxidoreductase by the transformant.
【0002】[0002]
【従来の技術】従来、ジケトン化合物に対し還元能を有
する酸化還元酵素産生微生物としては、サッカロミセス
セレビシエ(Saccharomyces cerevisiae)が知られて
いる。しかし、当該サッカロミセス セレビシエで、た
とえば芳香族ジケトン化合物の1種であるベンジル(be
nzil)を還元した場合には、ラセミ体のベンゾインが生
成する。このため、当該微生物産生酵素は立体選択性が
低いという難点がある(Chemistry Letters、1191
〜1192頁、1988年)。芳香族ジケトン化合物で
あるベンジルに対し不斉還元能を有する酸化還元酵素を
産生する微生物としては、キサントモナス オリゼー
(Xanthomonas oryzae)も知られている。同酵素産生微
生物でベンジルを不斉還元した場合には、還元生成物と
して立体選択的に(R)−ベンゾインを生成する(Chem
istry Letters、1111〜1112頁、1985年)。2. Description of the Related Art Saccharomyces cerevisiae has been known as an oxidoreductase-producing microorganism capable of reducing diketone compounds. However, in the Saccharomyces cerevisiae, for example, benzyl (be
When nzil) is reduced, racemic benzoin is produced. Therefore, the microorganism-produced enzyme has a drawback of low stereoselectivity (Chemistry Letters, 1191).
~ 1192, 1988). Xanthomonas oryzae is also known as a microorganism that produces an oxidoreductase having an asymmetric reduction ability for benzyl which is an aromatic diketone compound. When benzyl is asymmetrically reduced by the same enzyme-producing microorganism, (R) -benzoin is stereoselectively produced as a reduction product (Chem
istry Letters, pages 1111-1112, 1985).
【0003】また、サッカロミセス セレビシエは、脂
肪族ジケトン化合物である4−クロロアセト酢酸エステ
ルを還元して4−ヒドロキシブタン酸エステルとする7
種類の酵素を産生することが知られているが、これら7
種酵素の全ての遺伝子は単離されるに至っておらず(化
学と生物、第35号、590〜598頁、1997年)、それらのア
ミノ酸配列も、2種類の酵素についてサッカロミセス
セレビシエのゲノム配列から類推されているにすぎない
(Biosci. Biotech. Biochem.、第60号、1538〜1539
頁、1996年)。Further, Saccharomyces cerevisiae reduces 4-chloroacetoacetic acid ester, which is an aliphatic diketone compound, to 4-hydroxybutanoic acid ester 7.
It is known to produce a variety of enzymes, but these 7
All the genes for seed enzymes have not been isolated yet (Chemicals and Biology, No. 35, pp. 590-598, 1997), and their amino acid sequences are also about Saccharomyces for two types of enzymes.
It is only deduced from the genomic sequence of S. cerevisiae (Biosci. Biotech. Biochem., 60, 1538-1539.
Page, 1996).
【0004】バチラス セリウス(Bacillus cereus)
に関しては、非ジケトン化合物である9−フルオレノン
のカルボニル基に対し還元能を示すことが知られている
が(Biosci. Biotechnol. Biochem.、第62号、814〜815
頁、1998年)、当該微生物の芳香族ジケトン化合物に対
する還元能はこれまで全く報告されていない。Bacillus cereus
Is known to exhibit reducing ability for the carbonyl group of 9-fluorenone, which is a non-diketone compound (Biosci. Biotechnol. Biochem., No. 62, 814-815.
(1998, 1998), the reducing ability of the microorganism for aromatic diketone compounds has never been reported.
【0005】[0005]
【発明が解決しようとする課題】本発明者らは、前記の
状況下、種々研究を重ねた結果、バチラス セリウスT
im−r01(通商産業省工業技術院生命工学工業技術
研究所、受託番号FERM P−14210)が芳香族
ジケトン化合物に対し還元能を有し、たとえばベンジル
を不斉還元して(S)−ベンゾインを生成する、新規酸
化還元酵素を産生することを見出した。しかし、当該菌
株の生菌体を用いた場合、その培養条件によって当該酸
化還元酵素の発現量は大きく影響される。また、当該生
菌体を用いて長時間酸化還元反応を実施すると、逆反応
が起こり不斉還元生成物の収量が減少するなどの欠点を
有していた。DISCLOSURE OF THE INVENTION The present inventors have conducted various studies under the above circumstances, and as a result, have found that the Bacillus cerius T
im-r01 (Ministry of International Trade and Industry, Institute of Industrial Science and Technology, Institute of Life Science and Technology, Accession No. FERM P-14210) has a reducing ability for aromatic diketone compounds, for example, by asymmetric reduction of benzyl (S) -benzoin. It was found that it produces a novel oxidoreductase that produces However, when live cells of the strain are used, the expression level of the oxidoreductase is greatly affected by the culture conditions. Further, when the redox reaction is carried out for a long time using the living cells, there is a drawback that a reverse reaction occurs and the yield of the asymmetric reduction product decreases.
【0006】そこで本発明者らは、先の出願において、
バチラス セリウスFERM P−14210菌株の染
色体DNAから酸化還元酵素をコードする新規遺伝子お
よび同遺伝子のオープンリーディングフレーム(以下O
RFと略称する)を同定の上、当該微生物由来の酸化還
元酵素、同酵素をコードする新規遺伝子、同遺伝子を含
有するベクターおよび同ベクターにより形質転換した形
質転換体を各々提供した(特願2000−25782
9)。[0006] Therefore, the present inventors in the previous application,
A novel gene encoding an oxidoreductase from the chromosomal DNA of the Bacillus serius FERM P-14210 strain and an open reading frame of the gene (hereinafter referred to as O
(Hereinafter, abbreviated as "RF"), the oxidoreductase derived from the microorganism, a novel gene encoding the enzyme, a vector containing the gene, and a transformant transformed with the vector were provided (Japanese Patent Application No. 2000-2000). -25782
9).
【0007】本発明者らは、このような研究成果をもと
に更に研究を重ねた結果、先の出願(特願2000−2
57829)でその塩基配列を決定した新規酸化還元酵
素遺伝子の特定配列部位をプライマーとして利用すれ
ば、各種微生物から酸化還元酵素の遺伝子を得ることが
でき、また同遺伝子を含む形質転換体を利用すれば、芳
香族ジケトン化合物に対し不斉還元能を示す酸化還元酵
素を工業的有利に製造し得ることを見出し、本発明を完
成したものである。The present inventors have conducted further research based on such research results, and as a result, have filed a previous application (Japanese Patent Application No. 2000-2).
If the specific sequence site of the novel oxidoreductase gene whose nucleotide sequence was determined in 57829) is used as a primer, the gene for oxidoreductase can be obtained from various microorganisms, and a transformant containing the gene can be used. For example, they have found that an oxidoreductase having an asymmetric reduction ability with respect to an aromatic diketone compound can be industrially advantageously produced, and have completed the present invention.
【0008】したがって、本発明は、酸化還元酵素遺伝
子の増幅に利用できる新規オリゴヌクレオチド、同オリ
ゴヌクレオチドを用いる新規酸化還元酵素遺伝子の増幅
・クローニング法、同遺伝子を含有する組換えベクタ
ー、同組換えベクターにより形質転換された形質転換
体、ならびに同形質転換体による酸化還元酵素の製造方
法を提供することを目的とする。Therefore, the present invention provides a novel oligonucleotide that can be used for amplification of an oxidoreductase gene, a novel oxidoreductase gene amplification / cloning method using the same oligonucleotide, a recombinant vector containing the same gene, and the same recombination. It is an object to provide a transformant transformed with a vector, and a method for producing an oxidoreductase by the transformant.
【0009】[0009]
【課題を解決するための手段】本発明者らは、以下に示
す発明を提供することで、前記課題を解決するものであ
る。The inventors of the present invention solve the above problems by providing the following inventions.
【0010】(1)配列表の配列番号9に示した酸化還
元酵素遺伝子の5´末端2〜22個の塩基配列と実質的
に同じ塩基配列を有するオリゴヌクレオチド。
(2)配列表の配列番号9に示した酸化還元酵素遺伝子
の3´末端2〜23個の塩基配列と実質的に相補的な塩
基配列を有するオリゴヌクレオチド。
(3)前記(1)記載のオリゴヌクレオチドの5´末端
側に制限酵素の認識配列を含むオリゴヌクレオチド。
(4)前記(2)記載のオリゴヌクレオチドの5´末端
側に制限酵素の認識配列を含むオリゴヌクレオチド。
(5)配列表の配列番号1、2、3または4に示した塩
基配列を有するオリゴヌクレオチド。
(6)(a)前記(1)、(2)、(3)、(4)およ
び(5)記載のオリゴヌクレオチドから選ばれた少なく
とも1つのオリゴヌクレオチドをプライマーとして、試
料に含まれる標的酸化還元酵素遺伝子を増幅し、(b)
増幅された当該遺伝子をベクターに挿入して組換えベク
ターを調製した後、(c)当該ベクターにより形質転換
された形質転換体を得ることを特徴とする酸化還元酵素
遺伝子含有形質転換体の製法。
(7)酸化還元酵素遺伝子を含有する試料が、バチラス
属に属する菌株から得られた染色体DNA、当該染色体
のDNAライブラリー、cDNAライブラリーまたは当
該遺伝子を含む組換えベクターであることを特徴とする
前記(6)記載の酸化還元酵素遺伝子含有形質転換体の
製法。
(8)酸化還元酵素遺伝子を含有する試料が、バチラス
セリウスから得られた染色体DNA、当該染色体のD
NAライブラリー、cDNAライブラリーまたは当該遺
伝子を含む組換えベクターであることを特徴とする前記
(6)記載の酸化還元酵素遺伝子含有形質転換体の製
法。
(9)前記(3)および(4)記載の2種のオリゴヌク
レオチドをプライマーとして用いることを特徴とする前
記(6)、(7)または(8)記載の酸化還元酵素遺伝
子含有形質転換体の製法。
(10)配列表の配列番号2および4記載の2種のオリゴ
ヌクレオチドをプライマーとして用いることを特徴とす
る前記(6)、(7)または(8)記載の酸化還元酵素
遺伝子含有形質転換体の製法。
(11)形質転換する宿主細胞が微生物であることを特徴
とする前記(6)、(7)、(8)、(9)または(1
0)記載の酸化還元酵素遺伝子含有形質転換体の製法。
(12)ベクターがpUC19であり、形質転換する宿主
細胞が大腸菌であることを特徴とする前記(6)、
(7)、(8)、(9)または(10)記載の酸化還元酵
素遺伝子含有形質転換体の製法。
(13)前記(1)、(2)、(3)、(4)および
(5)記載のオリゴヌクレオチドから選ばれた少なくと
も1つのオリゴヌクレオチドをプライマーとして用いた
ポリメラーゼ連鎖反応により得られ、配列表の配列番号
5、7、10、12、14、16、18または20に示
した塩基配列を有する酸化還元酵素遺伝子。
(14)前記(1)、(2)、(3)、(4)および
(5)記載のオリゴヌクレオチドから選ばれた少なくと
も1つのオリゴヌクレオチドをプライマーとして用いた
ポリメラーゼ連鎖反応により得られ、配列表の配列番号
6、8、11、13、15、17、19または21に示
したアミノ酸配列をコードする酸化還元酵素遺伝子。
(15)前記(13)または(14)記載の遺伝子に規定され
た酸化還元酵素。
(16)前記(13)記載の遺伝子の塩基配列と相補的な塩
基配列を有するDNAにハイブリダイズするDNAまた
はオリゴヌクレオチド。
(17)前記(13)記載の遺伝子の塩基配列と相補的な塩
基配列を有するDNAにハイブリダイズするDNAでコ
ードされるアミノ酸配列を有するタンパク質またはポリ
ペプチド。
(18)前記(13)記載の遺伝子の塩基配列と相補的な塩
基配列を有するDNAにハイブリダイズするDNAを発
現させることによって得られるタンパク質またはポリペ
プチド。
(19)前記(13)または(14)記載の遺伝子を含有する
組換えベクター。
(20)ベクターがpUC19である前記(19)記載の組
換えベクター。
(21)前記(19)または(20)記載の組換えベクターに
より形質転換された形質転換体。
(22)宿主細胞が微生物である前記(21)記載の形質転
換体。
(23)微生物が大腸菌である前記(21)記載の形質転換
体。
(24)前記(6)、(7)、(8)、(9)、(10)、
(11)または(12)記載の方法で得られる酸化還元酵素
遺伝子含有形質転換体を培養し、培養物から酸化還元酵
素を採取することを特徴とする酸化還元酵素の製造方
法。(1) An oligonucleotide having a nucleotide sequence substantially the same as the nucleotide sequence of 2 to 22 5'ends of the oxidoreductase gene shown in SEQ ID NO: 9 in the sequence listing. (2) An oligonucleotide having a base sequence that is substantially complementary to the 2'to 3'base sequences of the oxidoreductase gene shown in SEQ ID NO: 9 in the sequence listing. (3) An oligonucleotide containing a recognition sequence for a restriction enzyme on the 5'end side of the oligonucleotide according to (1) above. (4) An oligonucleotide containing a recognition sequence for a restriction enzyme on the 5'end side of the oligonucleotide according to (2). (5) An oligonucleotide having the nucleotide sequence shown in SEQ ID NO: 1, 2, 3 or 4 in the sequence listing. (6) (a) Target redox contained in a sample using at least one oligonucleotide selected from the oligonucleotides described in (1), (2), (3), (4) and (5) as a primer. Amplify the enzyme gene, (b)
A method for producing a transformant containing an oxidoreductase gene, which comprises: (c) obtaining a transformant transformed with the vector after inserting the amplified gene into a vector to prepare a recombinant vector. (7) The sample containing the oxidoreductase gene is characterized in that it is a chromosomal DNA obtained from a strain belonging to the genus Bacillus, a DNA library of the chromosome, a cDNA library or a recombinant vector containing the gene. The method for producing a transformant containing an oxidoreductase gene according to (6) above. (8) The sample containing the oxidoreductase gene is a chromosomal DNA obtained from Bacillus cerius, D of the chromosome.
The method for producing a transformant containing an oxidoreductase gene according to (6) above, which is an NA library, a cDNA library or a recombinant vector containing the gene. (9) The oxidoreductase gene-containing transformant according to (6), (7) or (8), characterized in that the two kinds of oligonucleotides according to (3) and (4) above are used as primers. Manufacturing method. (10) The transformant containing the oxidoreductase gene according to (6), (7) or (8) above, wherein the two kinds of oligonucleotides shown in SEQ ID NOS: 2 and 4 of the Sequence Listing are used as primers. Manufacturing method. (11) The above-mentioned (6), (7), (8), (9) or (1) wherein the transformed host cell is a microorganism.
0) A method for producing a transformant containing a redox enzyme gene described in (12) The above-mentioned (6), wherein the vector is pUC19 and the host cell to be transformed is Escherichia coli.
A method for producing the oxidoreductase gene-containing transformant according to (7), (8), (9) or (10). (13) Sequence listing obtained by polymerase chain reaction using at least one oligonucleotide selected from the oligonucleotides described in (1), (2), (3), (4) and (5) above as a primer. An oxidoreductase gene having the base sequence shown in SEQ ID NO: 5, 7, 10, 12, 14, 16, 18, or 20. (14) Sequence listing obtained by polymerase chain reaction using at least one oligonucleotide selected from the oligonucleotides described in (1), (2), (3), (4) and (5) above as a primer. A redox enzyme gene encoding the amino acid sequence shown in SEQ ID NO: 6, 8, 11, 13, 15, 17, 19 or 21. (15) An oxidoreductase defined by the gene according to (13) or (14) above. (16) A DNA or an oligonucleotide that hybridizes to a DNA having a base sequence complementary to the base sequence of the gene described in (13) above. (17) A protein or polypeptide having an amino acid sequence encoded by a DNA that hybridizes to a DNA having a base sequence complementary to the base sequence of the gene described in (13) above. (18) A protein or polypeptide obtained by expressing a DNA that hybridizes to a DNA having a base sequence complementary to the base sequence of the gene described in (13) above. (19) A recombinant vector containing the gene according to (13) or (14). (20) The recombinant vector according to (19) above, wherein the vector is pUC19. (21) A transformant transformed with the recombinant vector according to (19) or (20). (22) The transformant according to the above (21), wherein the host cell is a microorganism. (23) The transformant according to the above (21), wherein the microorganism is Escherichia coli. (24) The above (6), (7), (8), (9), (10),
(11) A method for producing an oxidoreductase, which comprises culturing the oxidoreductase gene-containing transformant obtained by the method according to (12) and collecting the oxidoreductase from the culture.
【0011】本発明にかかる前記オリゴヌクレオチド、
酸化還元酵素遺伝子、同遺伝子を含有する組換えベクタ
ー、同組換えベクターにより形質転換された形質転換
体、酸化還元酵素は、以下に説明する実施の態様に基づ
いて得ることができ、また当該形質転換体の製法および
酸化還元酵素の製法も、以下に示す実施の態様に基づい
て実施することができる。以下、本発明について詳細に
説明する。The above-mentioned oligonucleotide according to the present invention,
The oxidoreductase gene, the recombinant vector containing the gene, the transformant transformed with the recombinant vector, and the oxidoreductase can be obtained based on the embodiments described below. The method for producing the transformant and the method for producing the redox enzyme can also be carried out based on the embodiments described below. Hereinafter, the present invention will be described in detail.
【0012】[0012]
【発明の実施の形態】本発明にかかる新規オリゴヌクレ
オチド、すなわち「課題を解決するための手段」の項
(1)および(2)に記載したオリゴヌクレオチド、は
本発明者らが先の出願(特願2000−257829)
でその塩基配列を決定した配列番号9記載の酸化還元酵
素遺伝子に基づいて設定することができる。とくに酸化
還元酵素遺伝子のORF全長をクローニングするために
は、配列番号9の5´または3´末端側の約20塩基に
基づいて設定するのが好ましく、たとえば配列番号1ま
たは3に示すオリゴヌクレオチドを設定することができ
る。BEST MODE FOR CARRYING OUT THE INVENTION The novel oligonucleotides according to the present invention, that is, the oligonucleotides described in the paragraphs (1) and (2) of "Means for Solving the Problems", were previously filed by the present inventors ( (Japanese Patent Application 2000-257829)
The base sequence can be set based on the oxidoreductase gene of SEQ ID NO: 9 determined in. In particular, in order to clone the full-length ORF of the oxidoreductase gene, it is preferable to set it based on about 20 bases on the 5'or 3'terminal side of SEQ ID NO: 9, for example, the oligonucleotide shown in SEQ ID NO: 1 or 3 is used. Can be set.
【0013】これらのオリゴヌクレオチドは、さらにそ
の5´末端側に制限酵素の認識配列、ヒスチジンタグも
しくはフラッグ(FLAG)タグのようなタグまたはグ
リーン蛍光タンパク質などを含んでいてもよい。増幅さ
れた遺伝子を以後の過程で制限酵素により切り出す場合
には、オリゴヌクレオチドの5´末端側にII型制限酵
素の認識配列を付加しておくのが好ましい。オリゴヌク
レオチドが制限酵素の認識配列を含む場合、付加する制
限酵素の認識配列はベクターのクローニング部位に合わ
せて適宜選択することができる。当該制限酵素として
は、認識配列の出現する位置でDNA鎖を正確に消化す
ることができるという点で、II型制限酵素、たとえば
制限酵素BamHI、EcoRI、HindIII、K
pnI、NcoI、NdeI、PstI、SacI、S
alI、SapI、SmaI、SphIまたはXbaI
などの認識配列を選択するのが好ましい。当該制限酵素
認識配列に加え、制限酵素による消化を助けるクランプ
(clamp)とよばれる数個の塩基を付加してもよい。ま
た、たとえばpUC系ベクター、pTYB系ベクター
(ニューイングランドBioLabs(登録商標)(NE
W ENGLAND BioLabs)社製)またはpGEX系ベクター
(アマシャムファルマシアバイオテク社(amersham pha
rmacia biotech)製)など、使用ベクターの種類によっ
ては、制限酵素の認識配列と酸化還元酵素をコードする
オリゴヌクレオチドとの間に、数塩基を付加することも
できる。このような本発明にかかるオリゴヌクレオチド
の具体例としては、配列番号2または4に示した塩基配
列を有するオリゴヌクレオチドが挙げられる。These oligonucleotides may further include a recognition sequence for a restriction enzyme, a tag such as a histidine tag or a FLAG tag, a green fluorescent protein or the like on the 5'end side thereof. When the amplified gene is cut out with a restriction enzyme in the subsequent process, it is preferable to add a recognition sequence for a type II restriction enzyme to the 5'end of the oligonucleotide. When the oligonucleotide contains a restriction enzyme recognition sequence, the restriction enzyme recognition sequence to be added can be appropriately selected according to the cloning site of the vector. Examples of the restriction enzyme include a type II restriction enzyme such as restriction enzymes BamHI, EcoRI, HindIII, and K, in that the DNA chain can be accurately digested at the position where the recognition sequence appears.
pnI, NcoI, NdeI, PstI, SacI, S
alI, SapI, SmaI, SphI or XbaI
It is preferable to select a recognition sequence such as. In addition to the restriction enzyme recognition sequence, several bases called a clamp that aids digestion by the restriction enzyme may be added. In addition, for example, pUC-based vectors, pTYB-based vectors (New England BioLabs (registered trademark) (NE
W ENGLAND BioLabs) or pGEX vector (Amersham Pharmacia Biotech)
Some bases can be added between the recognition sequence of the restriction enzyme and the oligonucleotide encoding the oxidoreductase, depending on the type of vector used (eg, rmacia biotech). Specific examples of such an oligonucleotide according to the present invention include an oligonucleotide having the base sequence shown in SEQ ID NO: 2 or 4.
【0014】本発明にかかる当該オリゴヌクレオチド
は、これ自体公知の方法、たとえば亜リン酸−トリエス
テル法で合成することができる。プライマー合成の際に
はプライマー合成機を用いることができ、たとえばDN
AシンセサイザModel380A、同381Aまたは
同394(商品名、ピーイーアプライドバイオシステム
ズ社(PE Applied Biosystems)製)を用いることがで
きる。The oligonucleotide according to the present invention can be synthesized by a method known per se, for example, the phosphite-triester method. A primer synthesizer can be used for primer synthesis.
A synthesizers Model 380A, 381A or 394 (trade name, manufactured by PE Applied Biosystems) can be used.
【0015】本発明にかかる遺伝子の増幅用試料として
は、標的とする酸化還元酵素遺伝子を含むものであれ
ば、制限なく使用することができる。たとえば標的とす
る酸化還元酵素遺伝子を含む微生物菌体から、必要に応
じて当該菌体を溶菌処理、たとえばGenとるくん(商
品名、宝酒造株式会社製)を用いた処理、により調製さ
れた染色体DNA、当該菌株の染色体DNAライブラリ
ー、cDNAライブラリー、および標的遺伝子を含むベ
クターなどを適宜用いることができる。試料の例として
は、バチラス属に属する菌株を用いることができる。具
体的には、たとえばバチラス セリウスFERM P−
14210、財団法人発酵研究所から入手可能なバチラ
ス セリウスIFO3001、同IFO3002、同I
FO3003、同IFO3132、同IFO3457、
同IFO3466、同IFO3514、同IFO356
3、同IFO3836、同IFO13494、同IFO
13597、同IFO13690および同IFO153
05、ならびに東京大学分子細胞生物学研究所から入手
可能なIAM1029、同IAM1110、同IAM1
656および同IAM1729から得られる染色体DN
A、同染色体のDNAライブラリー、cDNAライブラ
リーまたは同遺伝子を含むプラスミドなどが挙げられ
る。該菌体のベンジル還元活性を調べたところ、全ての
菌体がFERMP−14210菌体と同程度のベンジル
の不斉還元能を有していた。As a sample for gene amplification according to the present invention, any sample containing a target oxidoreductase gene can be used without limitation. For example, a chromosomal DNA prepared from a microbial cell containing a target oxidoreductase gene, if necessary, by lysing the cell, for example, using Gen Torukun (trade name, manufactured by Takara Shuzo Co., Ltd.) , A chromosomal DNA library of the strain, a cDNA library, a vector containing a target gene, and the like can be appropriately used. A strain belonging to the genus Bacillus can be used as an example of the sample. Specifically, for example, Bacillus cerius FERM P-
14210, Bacillus Celius IFO3001, IFO3002, and I available from Fermentation Research Institute
FO3003, IFO3132, IFO3457,
Same IFO 3466, Same IFO 3514, Same IFO 356
3, the same IFO 3836, the same IFO 13494, the same IFO
13597, IFO 13690 and IFO 153
05, and IAM1029, IAM1110, and IAM1 available from Institute of Molecular and Cellular Biology, University of Tokyo
Chromosomal DN from 656 and IAM1729
A, a DNA library of the same chromosome, a cDNA library or a plasmid containing the same gene. When the benzyl-reducing activity of the cells was examined, all the cells had the same degree of asymmetric reduction of benzyl as the FERMP-14210 cells.
【0016】本発明によれば、所望の酸化還元酵素遺伝
子の増幅は、それ自体公知の方法、たとえばポリメラー
ゼ連鎖反応(以下、PCRと略称する)、で実施するこ
とができる。PCR法で増幅する場合は、標的遺伝子を
含有する試料を、遺伝子増幅用プライマーとしてのオリ
ゴヌクレオチド、耐熱性ポリメラーゼ、dNTP(デオ
キシATP、デオキシTTP、デオキシGTPおよびデ
オキシCTP)および反応用緩衝液を含む溶液に加え、
標的遺伝子にオリゴヌクレオチドをアニーリングさせて
増幅することができる。ここで、耐熱性ポリメラーゼと
は、至適温度が70℃以上で、90℃でも不活しにくい
DNA依存性5´→3´DNA合成酵素である。当該遺
伝子のPCR条件は、たとえば94℃で1分間インキュ
ベーションした後、94℃で1分間および72℃で3分
間を1サイクルとしてこれを10サイクル、さらに94
℃で1分間、65℃で2分間および72℃で1分間を1
サイクルとしてこれを10サイクル、その上さらに94
℃で1分間、60℃で2分間および72℃で1分間を1
サイクルとしてこれを15サイクル行うことで実施する
ことができる(Genes to Cells、第5号、111〜125頁、
2000年)。According to the present invention, amplification of a desired oxidoreductase gene can be carried out by a method known per se, for example, polymerase chain reaction (hereinafter abbreviated as PCR). In the case of amplification by the PCR method, the sample containing the target gene contains an oligonucleotide as a primer for gene amplification, thermostable polymerase, dNTP (deoxy ATP, deoxy TTP, deoxy GTP and deoxy CTP) and a reaction buffer. Add to the solution,
Oligonucleotides can be annealed to the target gene and amplified. Here, the thermostable polymerase is a DNA-dependent 5 ′ → 3 ′ DNA synthase having an optimum temperature of 70 ° C. or higher and hardly inactivating even at 90 ° C. PCR conditions for the gene are, for example, incubation at 94 ° C. for 1 minute, 10 cycles at 94 ° C. for 1 minute and 72 ° C. for 3 minutes, and further 94 cycles.
1 minute at ℃, 2 minutes at 65 ℃ and 1 minute at 72 ℃
This is 10 cycles, and 94 more
1 min at ℃, 2 min at 60 ℃ and 1 min at 72 ℃
This can be carried out by performing 15 cycles as a cycle (Genes to Cells, No. 5, pages 111 to 125,
the year of 2000).
【0017】前記遺伝子増幅反応は、前述したオリゴヌ
クレオチドの1つを用いて実施することができる。ま
た、2つ以上のオリゴヌクレオチドを組み合わせて用い
ることもできる。2つ以上のオリゴヌクレオチドの組合
せとしては、たとえば[A](1)配列番号9に示した
酸化還元酵素の5´末端2〜22個の塩基配列と実質的
に同じ塩基配列を有するオリゴヌクレオチドと(2)配
列番号9に示した酸化還元酵素遺伝子の3´末端2〜2
3個の塩基配列と実質的に相補的な塩基配列を有するオ
リゴヌクレオチドとの組合せ、または好ましくは[B]
(1)配列番号9に示した酸化還元酵素の5´末端2〜
22個の塩基配列と実質的に同じ塩基配列を有し、かつ
5´末端側に制限酵素の認識配列を含むオリゴヌクレオ
チドと(2)配列番号9に示した酸化還元酵素の3´末
端2〜23個の塩基配列と実質的に相補的な塩基配列を
有し、かつ5´末端側に制限酵素の認識配列を含むオリ
ゴヌクレオチドとの組合せを用いて実施することができ
る。当該オリゴヌクレオチドの組合せの具体例として
は、たとえば配列番号2に示した塩基配列を有するオリ
ゴヌクレオチドと配列番号4に示した塩基配列を有する
オリゴヌクレオチドの組合せが挙げられる。さらに当該
遺伝子増幅反応は、市販の耐熱性ポリメラーゼを用いて
実施することができる。このようなポリメラーゼの具体
例としては、たとえばTaKaRa Ex Taq(商
品名、宝酒造株式会社製)が挙げられる。該ポリメラー
ゼを用いたPCRで目的の酸化還元酵素遺伝子を増幅す
ることができない場合、その原因としては目的遺伝子の
塩基配列とプライマーの塩基配列との間のミスマッチが
考えられる。このような場合には、優れた校正機能を有
したDNAポリメラーゼ、たとえばKOD DNA p
olymerase(商品名、東洋紡績株式会社製)、
KOD DNA plus DNA polymera
se(商品名、東洋紡績株式会社製)またはPyrob
est(商品名)DNA polymerase(商品
名、宝酒造株式会社製)、好ましくはKODDNA p
lus DNA polymerase(商品名、東洋
紡績株式会社製)またはPyrobest(商品名)D
NA polymerase(商品名、宝酒造株式会社
製)、より好ましくはPyrobest(商品名)DN
A polymerase(商品名、宝酒造株式会社
製)を用いることにより、該原因を回避することができ
る。たとえばIFO3001、IFO3002、IFO
3003、IFO3563、IFO3836、IFO1
3597およびIFO15305、ならびにIAM16
56およびIAM1729菌体を試料として用いた場合
は、TaKaRa Ex Taq(商品名、宝酒造株式
会社製)により目的遺伝子を増幅することができる。し
かし、IFO3132、IFO3457、IFO346
6、IFO3514、IFO13494、IFO136
90、IAM1029およびIAM1110はTaKa
Ra Ex Taq(商品名、宝酒造株式会社製)で増
幅することができない。このうちIFO3466、IF
O13494およびIAM1029は、KOD DNA
polymerase(商品名、東洋紡績株式会社
製)を用いることにより該菌株から目的遺伝子を増幅す
ることができる。IFO3132、IFO3457、I
FO3514、IFO13690およびIAM1110
は、KOD DNA polymeraseを用いた場
合でも目的遺伝子を増幅することができなかったが、P
yrobest(商品名)DNA polymeras
e(商品名、宝酒造株式会社製)を用いることにより増
幅することができる。The gene amplification reaction can be carried out using one of the above-mentioned oligonucleotides. Also, two or more oligonucleotides can be used in combination. As a combination of two or more oligonucleotides, for example, [A] (1) an oligonucleotide having a nucleotide sequence substantially the same as the 5'-terminal 2 to 22 nucleotide sequences of the oxidoreductase shown in SEQ ID NO: 9 (2) 3'ends 2 to 2 of the oxidoreductase gene shown in SEQ ID NO: 9
A combination with an oligonucleotide having a base sequence substantially complementary to the three base sequences, or preferably [B]
(1) From the 5'end of the oxidoreductase shown in SEQ ID NO: 2
An oligonucleotide having a base sequence substantially the same as 22 base sequences and containing a recognition sequence for a restriction enzyme on the 5'end side, and (2) 3'end 2 of the oxidoreductase shown in SEQ ID NO: 9. It can be carried out by using a combination with an oligonucleotide having a nucleotide sequence substantially complementary to the 23 nucleotide sequence and containing a restriction enzyme recognition sequence at the 5'end side. Specific examples of the combination of the oligonucleotides include a combination of the oligonucleotide having the base sequence shown in SEQ ID NO: 2 and the oligonucleotide having the base sequence shown in SEQ ID NO: 4. Furthermore, the gene amplification reaction can be carried out using a commercially available thermostable polymerase. Specific examples of such a polymerase include TaKaRa Ex Taq (trade name, manufactured by Takara Shuzo Co., Ltd.). When the oxidoreductase gene of interest cannot be amplified by PCR using the polymerase, the cause may be a mismatch between the base sequence of the target gene and the base sequence of the primer. In such a case, a DNA polymerase having an excellent proofreading function, for example, KOD DNA p
olymase (trade name, manufactured by Toyobo Co., Ltd.),
KOD DNA plus DNA polymer
se (trade name, manufactured by Toyobo Co., Ltd.) or Pyrob
est (trade name) DNA polymerase (trade name, manufactured by Takara Shuzo Co., Ltd.), preferably KODDNA p
lus DNA polymerase (trade name, manufactured by Toyobo Co., Ltd.) or Pyrobest (trade name) D
NA polymerase (trade name, manufactured by Takara Shuzo Co., Ltd.), more preferably Pyrobest (trade name) DN
By using A polymerase (trade name, manufactured by Takara Shuzo Co., Ltd.), the cause can be avoided. For example, IFO3001, IFO3002, IFO
3003, IFO3563, IFO3836, IFO1
3597 and IFO15305, and IAM16
When 56 and IAM1729 cells are used as samples, the target gene can be amplified with TaKaRa Ex Taq (trade name, manufactured by Takara Shuzo Co., Ltd.). However, IFO3132, IFO3457, IFO346
6, IFO3514, IFO13494, IFO136
90, IAM1029 and IAM1110 are TaKa
It cannot be amplified by Ra Ex Taq (trade name, manufactured by Takara Shuzo Co., Ltd.). Of these, IFO3466, IF
O13494 and IAM1029 are KOD DNA
The target gene can be amplified from the strain by using polymerase (trade name, manufactured by Toyobo Co., Ltd.). IFO3132, IFO3457, I
FO3514, IFO13690 and IAM1110
Was unable to amplify the target gene even when KOD DNA polymerase was used.
yrbest (brand name) DNA polymeras
It can be amplified by using e (trade name, manufactured by Takara Shuzo Co., Ltd.).
【0018】遺伝子の増幅反応後、たとえば1.5%の
アガロースゲルを用いる電気泳動にてPCR産物を展開
し、約800bpのバンドを含む画分を切り出す。つい
で、たとえばPrep−A−Gene DNA Pur
ification Kit(商品名、バイオラッド社
(BIO-RAD)製)を用いることにより、目的のPCR断
片を精製することができる。After the amplification reaction of the gene, the PCR product is developed by electrophoresis using, for example, 1.5% agarose gel, and a fraction containing a band of about 800 bp is cut out. Then, for example, Prep-A-Gene DNA Pur
The PCR fragment of interest can be purified by using the purification Kit (trade name, manufactured by Bio-Rad (BIO-RAD)).
【0019】制限酵素の認識配列を含むオリゴヌクレオ
チドをプライマーとして用いる場合は、増幅された遺伝
子のDNA断片に対して、当該オリゴヌクレオチドプラ
イマーに含まれる制限酵素の認識配列を認識する制限酵
素を作用させ、所望の遺伝子断片を得ることができる。When an oligonucleotide containing a restriction enzyme recognition sequence is used as a primer, a restriction enzyme that recognizes the restriction enzyme recognition sequence contained in the oligonucleotide primer is allowed to act on the amplified DNA fragment of the gene. The desired gene fragment can be obtained.
【0020】酸化還元酵素遺伝子を含有する組換えベク
ターは、前記の遺伝子断片とべクターを2〜5:1のモ
ル比で混合してライゲーションすることにより調製する
ことができる。すなわち、まずベクターに制限酵素を作
用させて実質的に完全に消化し、DNA断片を挿入する
ためのベクターを得る。制限酵素による消化反応の反応
温度、反応時間などの反応条件は、選択した酵素に応じ
て適宜条件設定することができる。The recombinant vector containing the oxidoreductase gene can be prepared by mixing the above gene fragment and the vector at a molar ratio of 2 to 5: 1 and ligating. That is, first, a restriction enzyme is allowed to act on the vector to substantially completely digest it to obtain a vector for inserting a DNA fragment. Reaction conditions such as reaction temperature and reaction time for digestion reaction with a restriction enzyme can be appropriately set according to the selected enzyme.
【0021】組換えに用い得るベクターに制約はなく、
たとえばプラスミドベクター、バクテリオファージベク
ター、レトロウイルスベクター、バキュロウイルスベク
ターまたはパピローマウイルスベクターなどをいずれも
用いることができる。具体的には、たとえばpUC19
DNA(宝酒造株式会社製)、pTYB−1またはpT
YB−11(ニューイングランドBioLabs(登録
商標)社製)を用いるのが好ましい。これらのベクター
は、必要とあればフェノール抽出などの精製手段により
精製し、さらにたとえばエタノール沈殿法などの濃縮手
段により濃縮することができる。また、ベクター断片の
セルフライゲーションを防ぐために、たとえば仔牛小腸
由来のアルカリホスファターゼなどによるホスファター
ゼ処理を行ってもよい。ついで、前工程で得た増幅され
た遺伝子とベクターを混合し、これにリガーゼ、たとえ
ばT4DNAリガーゼ、を作用させて組換えベクターを
得ることができる。具体的には、ライゲーションキッ
ト、たとえばDNA Ligation Kit Ve
r.1(商品名、宝酒造株式会社製)またはLigat
ion high(商品名、東洋紡績株式会社製)、を
用いて規定の条件にてライゲーションを行うことによ
り、組換えベクターを得ることができる。There is no restriction on the vector that can be used for recombination,
For example, any of plasmid vector, bacteriophage vector, retrovirus vector, baculovirus vector, papillomavirus vector and the like can be used. Specifically, for example, pUC19
DNA (Takara Shuzo Co., Ltd.), pTYB-1 or pT
It is preferable to use YB-11 (manufactured by New England BioLabs (registered trademark)). If necessary, these vectors can be purified by a purification means such as phenol extraction, and further concentrated by a concentration means such as an ethanol precipitation method. Further, in order to prevent self-ligation of the vector fragment, for example, phosphatase treatment with alkaline phosphatase derived from calf small intestine may be performed. Then, the amplified gene obtained in the previous step and the vector are mixed, and a ligase such as T4 DNA ligase is allowed to act on this to obtain a recombinant vector. Specifically, a ligation kit such as DNA Ligation Kit Ve
r. 1 (trade name, manufactured by Takara Shuzo Co., Ltd.) or Ligat
The recombinant vector can be obtained by ligation using ion high (trade name, manufactured by Toyobo Co., Ltd.) under prescribed conditions.
【0022】制限酵素の認識配列が含まれていないオリ
ゴヌクレオチドをプライマーとして用いる場合は、PC
Rによる増幅断片をクローニングするために適した市販
のベクター、たとえばpGEM(登録商標)−T Ea
sy Vector SystemI(商品名、プロメ
ガ社(Promega)製)に含まれている、pGEM(登録
商標)−T Easy Vectorを用いることがで
きる。当該ベクターおよびT4リガーゼを用いれば、P
CRによる増幅産物およびベクターの制限酵素処理をせ
ずにライゲーションを行うことができ、酸化還元酵素遺
伝子を含有する組換えベクターを調製することができ
る。When an oligonucleotide containing no restriction enzyme recognition sequence is used as a primer, PC
A commercially available vector suitable for cloning the amplified fragment by R, eg pGEM®-TEa.
pGEM (registered trademark) -T Easy Vector included in sy Vector System I (trade name, manufactured by Promega) can be used. Using the vector and T4 ligase, P
Ligation can be performed without treating the amplification product with CR and the vector with a restriction enzyme, and a recombinant vector containing an oxidoreductase gene can be prepared.
【0023】また、制限酵素の認識配列が含まれている
オリゴヌクレオチドと含まれていないオリゴヌクレオチ
ドの組合せをプライマーとして用いる場合にも、PCR
断片クローニング用ベクターを用いることにより、前記
同様に制限酵素処理をせずに酸化還元酵素遺伝子を含有
する組換えベクターを調製することができる。When a combination of an oligonucleotide containing a restriction enzyme recognition sequence and an oligonucleotide not containing a recognition sequence is used as a primer, PCR is also performed.
By using the fragment cloning vector, a recombinant vector containing an oxidoreductase gene can be prepared without the restriction enzyme treatment as described above.
【0024】前記の組換えベクターを、既知の形質転換
法により宿主に導入する。この形質転換は常法(たとえ
ばMethods Enzymol.、第204号、63〜113頁、1991年)に
より、好適に実施することができる。本発明における宿
主細胞としては、前記組換えベクターが複製可能なもの
であれば制限なく使用することができる。宿主細胞の具
体例としては、たとえば大腸菌および酵母のような微生
物、sf9株のような昆虫細胞、またはCOS細胞のよ
うな動物細胞などを挙げることができる。具体的には、
大腸菌DH5α、JM109、ER2566またはEp
icurianColi(登録商標)BL21−Cod
onPlus(商品名)Competent Cell
s(商品名、東洋紡績株式会社製)を用いるのが好まし
い。The above recombinant vector is introduced into a host by a known transformation method. This transformation can be suitably carried out by a conventional method (eg, Methods Enzymol., No. 204, 63-113, 1991). As the host cell in the present invention, any cell can be used without limitation as long as it can replicate the recombinant vector. Specific examples of host cells include microorganisms such as Escherichia coli and yeast, insect cells such as sf9 strain, and animal cells such as COS cells. In particular,
E. coli DH5α, JM109, ER2566 or Ep
icurianColi (registered trademark) BL21-Cod
onPlus (trade name) Competent Cell
It is preferable to use s (trade name, manufactured by Toyobo Co., Ltd.).
【0025】次に必要とあれば、かくして得られた形質
転換体に含まれる酸化還元酵素遺伝子の塩基配列および
同遺伝子によってコードされる酸化還元酵素のアミノ酸
配列を適宜決定することができる。具体的には、たとえ
ば形質転換体を培養後、FlexiPrep(商品名)
Kit(商品名、アマシャムファルマシアバイオテク社
(amersham pharmacia biotech)製)を用いて、該菌体
からプラスミドDNAを調製し、ABI PRIZM
(商品名) BigDye(商品名) Termina
tor Cycle Sequencing Read
y Reaction Kit(商品名、ピーイーアプ
ライドバイオシステムズ社)によりその塩基配列を決定
することができる。当該配列決定方法に準拠して、本発
明者らは、バチラス セリウスIFO3001、IFO
3003、IFO3132、IFO3563、IFO1
3597、IFO15305、IAM1029およびI
AM1110菌株から得た酸化還元酵素遺伝子の塩基配
列を決定し、同時にそれら遺伝子でコードされた酸化還
元酵素がコードするアミノ酸配列を推定した。Next, if necessary, the base sequence of the oxidoreductase gene contained in the transformant thus obtained and the amino acid sequence of the oxidoreductase encoded by the gene can be appropriately determined. Specifically, for example, after culturing the transformant, FlexiPrep (trade name)
Kit (trade name, manufactured by Amersham Pharmacia Biotech) was used to prepare plasmid DNA from the cells, and ABI PRIZM was prepared.
(Brand name) BigDye (Brand name) Termina
tor Cycle Sequencing Read
The base sequence can be determined by y Reaction Kit (trade name, PE Applied Biosystems). Based on the sequencing method, the present inventors have found that Bacillus cerius IFO3001, IFO
3003, IFO3132, IFO3563, IFO1
3597, IFO15305, IAM1029 and I
The nucleotide sequences of the oxidoreductase genes obtained from the AM1110 strain were determined, and at the same time, the amino acid sequences encoded by the oxidoreductases encoded by these genes were estimated.
【0026】本発明のさらなる実施態様によれば、本発
明に係る酸化還元酵素は、前記酸化還元酵素遺伝子を含
有する組換えベクターにより形質転換された形質転換体
を培養することによって、工業的に有利に製造すること
ができる。According to a further embodiment of the present invention, the oxidoreductase according to the present invention is industrially produced by culturing a transformant transformed with a recombinant vector containing the oxidoreductase gene. It can be manufactured advantageously.
【0027】当該酵素生産に使用する形質転換体として
は、前記組換えベクターによる形質変換体をそのまま用
いることができる。また、前記組換えベクターの挿入断
片を新たな別の発現ベクターにサブクローニングしても
よいし、あるいは前記組換えベクターを新たな宿主細胞
に導入した形質転換体を用いることもできる。これらの
場合は、適当な宿主細胞とベクターの選択、および使用
方法などは当業者に既知であり、それらの中から本発明
に係る酸化還元酵素遺伝子の発現に適した系を任意に選
択することができる。たとえばベクターと宿主細胞とし
ては、前記遺伝子クローニング工程で例示したものから
選択することができる。As the transformant used for the production of the enzyme, the transformant using the recombinant vector can be used as it is. The insert fragment of the recombinant vector may be subcloned into another new expression vector, or a transformant obtained by introducing the recombinant vector into a new host cell can be used. In these cases, the selection of appropriate host cells and vectors, the method of use, etc. are known to those skilled in the art, and among them, a system suitable for expressing the oxidoreductase gene of the present invention can be arbitrarily selected. You can For example, the vector and host cell can be selected from those exemplified in the above gene cloning step.
【0028】当該形質転換体の培養条件は、宿主細胞に
より適宜選択でき、特定の条件に限定されるわけではな
い。培養は通常この技術分野で用いられる培地および培
養条件下で行うことができる。たとえば炭素源として
は、グルコース、グリセロール、でんぷんなどを、窒素
源としては硫酸アンモニウム、硝酸アンモニウム、酢酸
アンモニウムなどのアンモニウム塩、硝酸塩、トリプト
ン、ペプトンなどを用いることができる。その他微量の
無機金属類、ビタミン類、成長促進因子、たとえばチア
ミン、ビオチンを含む酵母エキスなどを添加してもよ
い。これらの培地成分は本微生物の生育を阻害しない濃
度であればよい。培地は通常pH7.0〜7.5に調整
し、滅菌して使用する。培養温度の範囲は本微生物が生
育し得る温度であればよく、通常は30〜37℃で培養
するのが好ましい。本微生物を液体培養する場合は、振
とう培養または通気撹拌培養が好ましい。培養時間は種
々の培養条件によって異なるが、振とう培養または通気
撹拌培養の場合は12〜36時間培養するのが適当であ
る。または、550〜600nmの吸光度が1〜6にな
るまで15〜37℃で培養した後、イソプロピルチオガ
ラクトシド(IPTG)を加えてさらに培養することに
より、酵素の発現を誘導してもよい。The culture conditions for the transformant can be appropriately selected depending on the host cell and are not limited to specific conditions. Culturing can be performed under the medium and culture conditions usually used in this technical field. For example, glucose, glycerol, starch and the like can be used as the carbon source, and ammonium salts such as ammonium sulfate, ammonium nitrate and ammonium acetate, nitrates, tryptone and peptone can be used as the nitrogen source. In addition, trace amounts of inorganic metals, vitamins and growth promoting factors such as yeast extract containing thiamine and biotin may be added. These medium components may have any concentrations as long as they do not inhibit the growth of the present microorganism. The medium is usually adjusted to pH 7.0 to 7.5 and sterilized before use. The range of culture temperature may be any temperature as long as the microorganism can grow, and it is usually preferable to culture at 30 to 37 ° C. When the present microorganism is liquid-cultured, shaking culture or aeration-agitation culture is preferable. The culturing time varies depending on various culturing conditions, but in the case of shaking culturing or aeration stirring culturing, it is suitable to cultivate for 12 to 36 hours. Alternatively, the expression of the enzyme may be induced by culturing at 15 to 37 ° C. until the absorbance at 550 to 600 nm becomes 1 to 6, then adding isopropylthiogalactoside (IPTG) and further culturing.
【0029】培養終了後、遠心分離、濾過または共沈な
どの通常の方法によって、培養液から菌体細胞壁などの
不溶物を除去した粗酵素液を得ることができる。あるい
は当業者に公知の手段により、該粗酵素液の濃縮液を得
ることもできる。このようにして得られた粗酵素液は、
さらに硫安分画法、有機溶媒分画法、透析、等電点沈殿
法またはカラムクロマトグラフィーなどの通常の酵素精
製法を単独または組み合わせて用いることにより、精製
することもできる。また、市販のタンパク質精製システ
ム、たとえばIMPACT(商品名)−CN(商品名、
ニューイングランドBioLabs(登録商標)社
製)、を用いて精製してもよい。After completion of the culture, a crude enzyme solution in which insoluble matters such as cell walls of cells are removed from the culture solution can be obtained by a usual method such as centrifugation, filtration or coprecipitation. Alternatively, a concentrated solution of the crude enzyme solution can be obtained by means known to those skilled in the art. The crude enzyme solution thus obtained is
Further, it can be purified by using a usual enzyme purification method such as ammonium sulfate fractionation method, organic solvent fractionation method, dialysis, isoelectric focusing method or column chromatography, alone or in combination. In addition, a commercially available protein purification system such as IMPACT (trade name) -CN (trade name,
New England BioLabs (registered trademark)) may be used for purification.
【0030】なお、本発明において、遺伝子増幅に用い
たオリゴヌクレオチドの塩基配列は、配列番号9に示し
た酸化還元酵素遺伝子の塩基配列をもとにして設定した
ものであり、当該酸化還元酵素遺伝子の塩基配列は、本
発明者らの先願である特願2000−257829に記
載のとおり、以下の手順で決定された。In the present invention, the nucleotide sequence of the oligonucleotide used for gene amplification is set based on the nucleotide sequence of the oxidoreductase gene shown in SEQ ID NO: 9. Was determined by the following procedure as described in Japanese Patent Application No. 2000-257829, which is a prior application of the present inventors.
【0031】すなわち、バチラス セリウスFERM
P−14210菌株の菌体を溶菌し、公知の方法で染色
体DNAを回収する。得られた染色体DNAを制限酵素
Sau3AIで消化した後、アガロースゲル電気泳動法
により2〜4kbのDNA断片混合物を得た。当該DN
A断片は、2つ以上の挿入断片によるライゲーションを
防ぐ目的で、DNAの突出末端の一部をクレノウフラグ
メント(Klenow fragment)を用いて埋めた。That is, Bacillus Celius FERM
The bacterial cells of the P-14210 strain are lysed, and the chromosomal DNA is recovered by a known method. The obtained chromosomal DNA was digested with the restriction enzyme Sau3AI and then a 2-4 kb DNA fragment mixture was obtained by agarose gel electrophoresis. The DN
In the A fragment, a part of the protruding end of the DNA was filled with Klenow fragment for the purpose of preventing ligation by two or more insert fragments.
【0032】ついで、予め制限酵素SalIで完全に消
化しクレノウフラグメントで前処理して得たベクターp
UC19と前記DNA断片混合物とを混合し、公知のラ
イゲーションを行うことにより組換えベクターを得た。Then, the vector p obtained by digestion with the restriction enzyme SalI in advance and pretreatment with Klenow fragment was obtained.
A recombinant vector was obtained by mixing UC19 and the above-mentioned DNA fragment mixture and performing known ligation.
【0033】このようにして得た組換えベクターを、常
法(Methods Enzymol.、第204号、63〜113頁、1991年)
にしたがい大腸菌に形質転換した。The recombinant vector thus obtained was prepared by a conventional method (Methods Enzymol., No. 204, 63-113, 1991).
E. coli was transformed accordingly.
【0034】つぎに、ベンジルを含む寒天培地上に形質
転換体のコロニーを形成させ、コロニーの周囲に形成さ
れるハローによって酸化還元酵素遺伝子DNAを含む形
質転換体を選択した。Next, a transformant colony was formed on an agar medium containing benzyl, and a transformant containing the oxidoreductase gene DNA was selected by the halo formed around the colony.
【0035】このようにして選択された形質転換体から
組換えベクター(本発明者らは、当該組換えベクターを
pUC−BC−B1と命名した)を回収し、ついで同ベ
クターに含まれるバチラス セリウス染色体DNA断片
の塩基配列を、市販のキットEZ::TN(商品名)<
KAN−1>Insertion Kit(商品名、エ
ピセンターテクノロジーズ社(Epicentre Technologies
Corporation)製)を用い、ジデオキシ法で決定した。A recombinant vector (the inventors named the recombinant vector pUC-BC-B1) was recovered from the transformant selected in this manner, and then the Bacillus cerius contained in the vector was recovered. The nucleotide sequence of the chromosomal DNA fragment is obtained by using the commercially available kit EZ :: TN (trade name) <
KAN-1> Insertion Kit (trade name, Epicenter Technologies
Corporation)) and the dideoxy method.
【0036】当該塩基配列から考えられる数個のORF
それぞれについてのアミノ酸配列を、DDBJ/EMB
L/GenBank国際塩基配列データベースのアミノ
酸データベースにおいて既知のアミノ酸配列との相同性
を検索した。その結果、249残基からなるアミノ酸配
列が、セピアプテリン還元酵素に類似性を有するバチラ
ス ズブチルスのyueD遺伝子がコードするアミノ酸
配列、およびサッカロミセス セレビシエのORF Y
IR036Cがコードするアミノ酸配列に対して、それ
ぞれ40%および30%の類似性を有するという知見を
得た。一方、前記のキットEZ::TN(商品名)<K
AN−1>Insertion Kitを用いるトラン
スポゾンの挿入により、前記の249アミノ酸残基をコ
ードするORF中にトランスポゾンが挿入された場合に
は、ハローが形成されなくなったことから、該ORFが
目的の酸化還元酵素をコードしていると考えられる。配
列番号9に示した塩基配列は、終止コドンを含めた当該
ORFの塩基配列を示したものである。Several ORFs considered from the base sequence
The amino acid sequences for each are shown in DDBJ / EMB
The amino acid database of the L / GenBank international nucleotide sequence database was searched for homology with known amino acid sequences. As a result, an amino acid sequence consisting of 249 residues was encoded by the yueD gene of Bacillus subtilis, which has similarity to sepiapterin reductase, and ORF Y of Saccharomyces cerevisiae.
It was found that they have 40% and 30% similarity, respectively, to the amino acid sequence encoded by IR036C. On the other hand, the kit EZ :: TN (trade name) <K
When the transposon was inserted into the ORF encoding the 249 amino acid residue by the insertion of the transposon using AN-1> Insertion Kit, the halo was not formed. It is thought to encode an enzyme. The base sequence shown in SEQ ID NO: 9 shows the base sequence of the ORF including the stop codon.
【0037】[0037]
【実施例】本発明を以下に実施例をあげて説明するが、
本発明は本実施例に限定されるものではない。The present invention will be described with reference to the following examples.
The present invention is not limited to this embodiment.
【0038】実施例1
配列番号9の塩基配列における5´および3´末端側の
塩基配列に基づいて、2種のオリゴヌクレオチドを設計
し、亜リン酸−トリエステル法により合成した。合成し
たオリゴヌクレオチドの配列は、5´−GGCGAAG
CTTGCGCTACGTTATCATAACAG−3
´(配列番号2)および5´−CGCGGATCCTA
TTCATCAATTCTAATAAC−3´(配列番
号4)である。配列番号2に示した塩基配列におけるA
AGCTT、および配列番号4に示した塩基配列におけ
るGGATCCは、各々制限酵素の認識配列である。Example 1 Two kinds of oligonucleotides were designed based on the nucleotide sequences on the 5'and 3'terminal sides in the nucleotide sequence of SEQ ID NO: 9 and synthesized by the phosphite-triester method. The sequence of the synthesized oligonucleotide is 5'-GGCGAAG
CTTGCGCTACGTTTATATAACAG-3
'(SEQ ID NO: 2) and 5'-CGCGGATCTCTA
TTCATCAATTTCTAATAAC-3 '(SEQ ID NO: 4). A in the base sequence shown in SEQ ID NO: 2
AGCTT and GGATCC in the nucleotide sequence shown in SEQ ID NO: 4 are restriction enzyme recognition sequences, respectively.
【0039】実施例2
(1)酸化還元酵素遺伝子の組換えベクターの調製
pUC−BC−B1により形質転換された大腸菌DH5
α株を1.5mlのLB培地(培地の組成:トリプトン
10g/l、酵母エキス10g/l、塩化ナトリウム5
g/l、pH7.0)に接種し、37℃で24時間振と
う培養した。培養後、菌液を遠心して集菌し、市販のプ
ラスミドDNA調製キットであるFlexiPrep
(商品名)Kit(商品名、アマシャムファルマシアバ
イオテク社製)を用いてプラスミドDNAを精製した。
すなわち、培養後に菌体を回収し、該菌体に溶液I(1
00mMトリス−塩酸(pH7.5)、10mM ED
TA、400μg/ml RNaseI)200μlを
添加し、ボルテックスにて懸濁する。ついで、溶液II
(1M 水酸化ナトリウム、5.3%(重量/容量)S
DS)200μlを添加し穏かに混和した後、溶液II
I(3Mカリウム、5M酢酸)200μlを添加し混和
した。遠心して得た上清に対しイソプロパノール沈澱を
行った後、遠心によりDNAの沈澱を得た。Sepha
glas(商品名)FP(7Mグアニジン−塩酸、50
mMトリス−塩酸(pH7.5)、10mM EDT
A)150μlを添加して懸濁し、該DNAを溶解させ
た。ついで遠心して上清を除き、洗浄緩衝液(20mM
トリス−塩酸(pH7.5)、2mM EDTA、20
0mM塩化ナトリウム、60%エタノール)200μl
を添加して懸濁し、再び遠心により沈澱を得た。該沈殿
に70%エタノール300μlを添加し、ボルテックス
にて軽く撹拌した。再び遠心して沈澱を得、ボルテック
スにて軽く撹拌し、沈澱を室内で10分間乾燥させた。
ついで、TE緩衝液で溶出することによりDNAを回収
し、さらにイソプロパノール沈澱法によりDNAを濃縮
した。Example 2 (1) Preparation of recombinant vector of oxidoreductase gene Escherichia coli DH5 transformed with pUC-BC-B1
α strain was added to 1.5 ml of LB medium (medium composition: tryptone 10 g / l, yeast extract 10 g / l, sodium chloride 5
(g / l, pH 7.0), and shake-cultured at 37 ° C. for 24 hours. After culturing, the bacterial solution was centrifuged to collect the cells, and FlexiPrep, a commercially available plasmid DNA preparation kit, was used.
(Trade name) Kit (trade name, manufactured by Amersham Pharmacia Biotech) was used to purify the plasmid DNA.
That is, the bacterial cells are collected after culturing and the solution I (1
00 mM Tris-hydrochloric acid (pH 7.5), 10 mM ED
200 μl of TA, 400 μg / ml RNase I) is added and suspended by vortex. Then solution II
(1M sodium hydroxide, 5.3% (weight / volume) S
DS) (200 μl) and gently mixed, and then solution II
200 μl of I (3M potassium, 5M acetic acid) was added and mixed. Isopropanol precipitation was performed on the supernatant obtained by centrifugation, and then DNA precipitation was obtained by centrifugation. Sepha
glass (trade name) FP (7M guanidine-hydrochloric acid, 50
mM Tris-hydrochloric acid (pH 7.5), 10 mM EDT
A) 150 μl was added and suspended to dissolve the DNA. Then, centrifuge to remove the supernatant and wash buffer (20 mM
Tris-hydrochloric acid (pH 7.5), 2 mM EDTA, 20
0 mM sodium chloride, 60% ethanol) 200 μl
Was added to suspend, and the precipitate was obtained by centrifugation again. 300 μl of 70% ethanol was added to the precipitate, and the mixture was gently stirred with a vortex. Centrifugation again gave a precipitate, vortexed briefly and the precipitate dried in the room for 10 minutes.
Then, the DNA was recovered by elution with TE buffer, and the DNA was further concentrated by the isopropanol precipitation method.
【0040】(2)酸化還元酵素遺伝子の増幅および挿
入断片の調製
実施例1において作製した2種のオリゴヌクレオチドを
プライマーとして用い、酸化還元酵素遺伝子を増幅し
た。すなわち、(1)で調製した試料20ng、2mM
のdNTP5μl、5μMのプライマー各4μl、KO
D DNA polymerase(商品名、東洋紡績
株式会社製)2ユニットおよび10倍濃縮KOD DN
A polymerase PCR緩衝液5μlに純水
を加えて全量50μlとし、PCRを行った。PCR
は、94℃で1分間インキュベーションしたのち、98
℃で15秒間、65℃で2秒間および74℃で30秒間
を1サイクルとしてこれを5サイクル、さらに98℃で
15秒間、60℃で2秒間および74℃で30秒間を1
サイクルとしてこれを10サイクル、その上さらに98
℃で15秒間、55℃で2秒間および74℃で30秒間
を1サイクルとしてこれを10サイクル行い、最後に7
4℃で30秒間インキュベーションして実施した。(2) Amplification of oxidoreductase gene and preparation of insert fragment The oxidoreductase gene was amplified using the two kinds of oligonucleotides prepared in Example 1 as primers. That is, 20 ng of the sample prepared in (1), 2 mM
DNTP 5 μl, 5 μM primer 4 μl each, KO
D DNA polymerase (trade name, manufactured by Toyobo Co., Ltd.) 2 units and 10 times concentrated KOD DN
PCR was carried out by adding pure water to 5 μl of the A polymerase PCR buffer to make the total volume 50 μl. PCR
Was incubated at 94 ° C for 1 minute, then 98
5 cycles of 15 seconds at 65 ° C., 2 seconds at 65 ° C. and 30 seconds at 74 ° C. for 5 cycles, 1 second at 98 ° C. for 15 seconds, 60 ° C. for 2 seconds and 74 ° C. for 30 seconds
10 cycles of this as a cycle, plus 98 more
10 cycles of 15 seconds at ℃, 2 seconds at 55 ℃ and 30 seconds at 74 ℃, and finally 7 cycles.
The incubation was carried out at 4 ° C. for 30 seconds.
【0041】PCR終了後、反応液を1.5%のアガロ
ースゲルを用いた電気泳動により展開し、酸化還元酵素
遺伝子のPCR産物含有画分をゲルから切り出して、P
rep−A−Gene DNA Purificati
on(商品名、バイオラッド社製)によりPCR産物を
回収した。すなわち、DNA断片を含むアガロースゲル
をPrep−A−Gene結合緩衝液1mlに溶解し、
Prep−A−Geneのマトリックス20μlにDN
Aを吸着させた。ついで、Prep−A−Gene洗浄
液600μlで2回洗浄した後、TE緩衝液30μl中
で50℃で5分間インキュベートし、DNA断片を溶出
して回収した。After completion of PCR, the reaction solution was developed by electrophoresis using a 1.5% agarose gel, the PCR product-containing fraction of the oxidoreductase gene was cut out from the gel, and P
rep-A-Gene DNA Purificati
On (trade name, manufactured by Bio-Rad), the PCR product was recovered. That is, an agarose gel containing a DNA fragment was dissolved in 1 ml of Prep-A-Gene binding buffer,
DN in 20 μl of Prep-A-Gene matrix
A was adsorbed. Then, after washing twice with 600 μl of Prep-A-Gene washing solution, it was incubated in 30 μl of TE buffer at 50 ° C. for 5 minutes to elute and collect the DNA fragment.
【0042】ついで、該PCR産物0.5μg、制限酵
素HindIIIとBamHIを各20ユニット、およ
び緩衝液(200mM トリス塩酸(pH8.5)、1
00mM 塩化マグネシウム、5mM ジチオトレイト
ール、660mM 酢酸カリウム)5μlに純水を加え
て全量50μlとする。この反応溶液を37℃で2時間
インキュベートすることにより、該PCR産物を消化し
た。ついで、該PCR産物をさらに1.5%のアガロー
スゲルを用いた電気泳動により展開し、目的のDNA断
片を含む画分をゲルから切りだして、前記Prep−A
−Gene DNA Purification(商品
名、バイオラッド社製)を用いてDNAを精製した。Then, 0.5 μg of the PCR product, 20 units each of restriction enzymes HindIII and BamHI, and a buffer solution (200 mM Tris-HCl (pH 8.5), 1
Pure water is added to 5 μl of 00 mM magnesium chloride, 5 mM dithiothreitol, 660 mM potassium acetate to make a total volume of 50 μl. The PCR product was digested by incubating the reaction solution at 37 ° C. for 2 hours. Then, the PCR product was further developed by electrophoresis using 1.5% agarose gel, and the fraction containing the DNA fragment of interest was cut out from the gel, and the Prep-A was prepared.
-The DNA was purified using Gene DNA Purification (trade name, manufactured by Bio-Rad).
【0043】(3)ベクターの調製
次に、2μgのpUC19DNA(宝酒造株式会社
製)、制限酵素BamHIおよびHindIIIを各2
0ユニット、緩衝液(200mM トリス塩酸(pH
8.5)、100mM 塩化マグネシウム、5mM ジ
チオトレイトール、660mM 酢酸カリウム)5μl
および大腸菌由来のアルカリホスファターゼ(宝酒造株
式会社製)0.4ユニットに純水を加えて全量50μl
とし、37℃で2時間反応させることにより該ベクター
を消化した。ついでフェノール処理およびエタノール沈
澱を行い、該ベクターを調製した。(3) Preparation of vector Next, 2 μg each of pUC19 DNA (manufactured by Takara Shuzo Co., Ltd.), the restriction enzymes BamHI and HindIII were used for each 2
0 unit, buffer (200 mM Tris-HCl (pH
8.5), 100 mM magnesium chloride, 5 mM dithiothreitol, 660 mM potassium acetate) 5 μl
And pure water was added to 0.4 unit of alkaline phosphatase derived from Escherichia coli (Takara Shuzo Co., Ltd.) to make a total volume of 50 μl.
And the vector was digested by reacting at 37 ° C. for 2 hours. Then, phenol treatment and ethanol precipitation were performed to prepare the vector.
【0044】(4)PCR産物とpUC19ベクターと
のライゲーション
(2)で調製したPCR産物と(3)で調製したpUC
19を2:1のモル比で混合し、DNA Ligati
on Kit Ver.1(商品名、宝酒造株式会社
製)の緩衝液AをDNA溶液に対して4倍量添加し、さ
らに酵素液BをDNA溶液と等量添加する。16℃で1
時間ライゲーションを行い、組換えベクターを得た。(4) Ligation of PCR product and pUC19 vector PCR product prepared in (2) and pUC prepared in (3)
19 in a 2: 1 molar ratio and mixed with DNA Ligati
on Kit Ver. 1 (trade name, manufactured by Takara Shuzo Co., Ltd.) buffer A is added in an amount 4 times that of the DNA solution, and the enzyme solution B is added in the same amount as the DNA solution. 1 at 16 ° C
Ligation was performed for a time to obtain a recombinant vector.
【0045】(5)酸化還元酵素遺伝子含有形質体の製
法
(4)にて作製した組換えベクターで大腸菌DH5α株
(ギブコビーアールエルライフテクノロジーズ社(Gibc
oBRL Life Technologies)製)のコンピテント細胞を形
質転換させた(Methods Enzymol.、第204号、63〜
113頁、1991年)。すなわち、組換えベクターを
含むライゲーション液10μlとDH5α株のコンピテ
ント細胞200μlとを穏かに混和した後、氷中で30
分間放置した。ついで、42℃で60秒間インキュベー
トし、氷中で1〜2分間冷却して形質転換体を得た。(5) Escherichia coli DH5α strain (Gibco BRL Life Technologies, Inc. (Gibc)
oBRL Life Technologies)) were transformed (Methods Enzymol., No. 204, 63-).
113, 1991). That is, 10 μl of the ligation solution containing the recombinant vector and 200 μl of competent cells of the DH5α strain were gently mixed, and then 30
Let stand for a minute. Then, it was incubated at 42 ° C. for 60 seconds and cooled in ice for 1-2 minutes to obtain a transformant.
【0046】(6)酸化還元酵素の製造方法
(5)にて得た形質転換体にSOC培地(培地組成:ト
リプトン20g/l、酵母エキス5g/l、10mM塩
化ナトリウム、2.5mM塩化カリウム、10mM塩化
マグネシウム、10mM硫酸マグネシウム、20mMグ
ルコース)を1ml加え、37℃で1時間インキュベー
トした。インキュベート後、該形質転換体の菌体溶液を
アンピシリン含有LB寒天培地(培地の組成:トリプト
ン10g/l、酵母エキス5g/l、塩化ナトリウム1
0g/l、寒天15g/l、pH7.4)に蒔き、37
℃で一晩培養し、酸化還元酵素遺伝子含有形質転換体の
コロニーを得た。当該コロニーを、アンピシリン含有L
B液体培地にて37℃で一晩振とう培養した。培養後、
遠心して集菌した菌体を超音波で破砕し、再び遠心し
た。上清を硫酸アンモニウムで分画し、タンパク質の含
まれている画分を透析することにより、当該酸化還元酵
素を得た。(6) SOC medium (medium composition: tryptone 20 g / l, yeast extract 5 g / l, 10 mM sodium chloride, 2.5 mM potassium chloride) was added to the transformant obtained in the method (5) for producing oxidoreductase. 1 ml of 10 mM magnesium chloride, 10 mM magnesium sulfate, 20 mM glucose) was added, and the mixture was incubated at 37 ° C. for 1 hour. After incubation, the microbial cell solution of the transformant was treated with ampicillin-containing LB agar medium (medium composition: tryptone 10 g / l, yeast extract 5 g / l, sodium chloride 1
0 g / l, agar 15 g / l, pH 7.4)
The cells were cultured overnight at 0 ° C. to obtain colonies of transformants containing the oxidoreductase gene. The colony was treated with ampicillin-containing L
It was shake-cultured in a liquid medium B at 37 ° C. overnight. After culturing,
The cells collected by centrifugation were disrupted by ultrasonic waves and centrifuged again. The supernatant was fractionated with ammonium sulfate, and the protein-containing fraction was dialyzed to obtain the oxidoreductase.
【0047】実施例3
(1)IFO3001菌株の染色体DNAの調製
バチラス セリウスIFO3001菌株のシングルコロ
ニーを、10mlのPNE培地(培地の組成:ポリペプ
トン10g/l、カツオ魚肉エキス10g/l、塩化ナ
トリウム2g/l、pH7.4)に接種し、37℃で2
4時間振とう培養した。培養終了後、当該菌体に酵母・
グラム陽性菌用Genとるくん(商品名、宝酒造株式会
社製)を用いて菌体の染色体DNAを回収した。すなわ
ち、培養終了後、遠心分離により上清を除いて菌体を
得、当該菌体にGenとるくん(商品名、宝酒造株式会
社製)のGenTLE溶液I180μlを添加後、直ち
に20秒間ボルテックスにて強く撹拌した。ついで、G
enTLE溶液II20μlを添加して5秒間ボルテッ
クスにて撹拌し、70℃で10〜15分間インキュベー
トして溶菌させた後、GenTLE溶液III100μ
lを添加してよく混和した。氷中で5分間放置した後遠
心し、上清を別のチューブに移して等量のイソプロパノ
ールを加え、よく混和した。その後、さらに遠心して上
清を除き、沈殿を70%エタノールで洗浄し、数秒間軽
く遠心して上清を除いた。沈殿をTE緩衝液(10mM
トリス塩酸、1mM エチレンジニトロロ四酢酸、pH
7.5)300μlに溶解し、7.5M酢酸アンモニウ
ム150μlとエタノール450μlを加えて混和し、
糸状のDNA沈殿をピペットチップの先で絡め取り、T
E緩衝液300μlに溶解した。Example 3 (1) Preparation of chromosomal DNA of IFO3001 strain A single colony of Bacillus cerius IFO3001 strain was mixed with 10 ml of PNE medium (medium composition: polypeptone 10 g / l, skipjack fish meat extract 10 g / l, sodium chloride 2 g / l). l, pH 7.4) and incubate at 37 ° C for 2
It was shake-cultured for 4 hours. After culturing, yeast
The chromosomal DNA of the bacterial cells was recovered using Gen Torukun for Gram-positive bacteria (trade name, manufactured by Takara Shuzo Co., Ltd.). That is, after the completion of the culture, the supernatant was removed by centrifugation to obtain bacterial cells, and 180 μl of GenTLE solution I of Gen Torukun (trade name, manufactured by Takara Shuzo Co., Ltd.) was added to the bacterial cells and immediately vortexed for 20 seconds. It was stirred. Then, G
20 μl of enTLE solution II was added, and the mixture was vortexed for 5 seconds, incubated at 70 ° C. for 10 to 15 minutes to lyse, and then GenTLE solution III 100 μm
1 was added and mixed well. After allowing to stand in ice for 5 minutes, the mixture was centrifuged, the supernatant was transferred to another tube, an equal amount of isopropanol was added, and well mixed. Then, the mixture was further centrifuged to remove the supernatant, the precipitate was washed with 70% ethanol, and briefly centrifuged for a few seconds to remove the supernatant. Precipitate with TE buffer (10 mM
Tris-hydrochloric acid, 1 mM ethylenedinitrolotetraacetic acid, pH
7.5) Dissolve in 300 μl, add 150 μl of 7.5 M ammonium acetate and 450 μl of ethanol and mix,
Twist the filamentous DNA precipitate with the tip of the pipette tip, and
It was dissolved in 300 μl of E buffer.
【0048】(2)PCRによる遺伝子の増幅および挿
入断片の調製
実施例1で合成した2種のオリゴヌクレオチドをプライ
マーとして用い、PCRを行った。すなわち、(1)で
調製した染色体DNA1μg、2.5mMのdNTP4
μl、5μMのプライマー各4μl、5U/μlのTa
KaRa ExTaq(商品名、宝酒造株式会社製)
0.4μl、10倍濃縮Ex Taq緩衝液10μlお
よび1mg/mlのanti−Taq high(商品
名、東洋紡績株式会社製)0.4μlに純水を加えて全
量100μlとし、PCRを行った。PCRは、94℃
で1分間インキュベーションしたのち、94℃で1分
間、72℃で3分間を1サイクルとしてこれを10サイ
クル、さらに94℃で1分間、65℃で2分間および7
2℃で1分間を1サイクルとしてこれを15サイクル、
その上さらに94℃で1分間、60℃で2分間および7
2℃で1分間を1サイクルとしてこれを10サイクル行
い、最後に72℃で1分間インキュベーションして実施
した。(2) Amplification of gene by PCR and preparation of insert fragment PCR was carried out using the two kinds of oligonucleotides synthesized in Example 1 as primers. That is, 1 μg of chromosomal DNA prepared in (1) and 2.5 mM dNTP4
μl, 5 μM primer 4 μl each, 5 U / μl Ta
KaRa ExTaq (trade name, manufactured by Takara Shuzo Co., Ltd.)
0.4 μl, 10-fold concentrated Ex Taq buffer 10 μl and 1 mg / ml anti-Taq high (trade name, manufactured by Toyobo Co., Ltd.) 0.4 μl were added with pure water to make 100 μl, and PCR was performed. PCR is 94 ℃
After 1 minute incubation at 94 ° C. for 1 minute, 72 ° C. for 3 minutes as 1 cycle, this is repeated for 10 cycles, 94 ° C. for 1 minute, 65 ° C. for 2 minutes and 7 cycles.
15 cycles for 1 minute at 2 ° C as 1 cycle,
Furthermore, 94 ° C for 1 minute, 60 ° C for 2 minutes and 7
This was carried out 10 times by setting 1 minute at 2 ° C as one cycle, and finally, incubation was performed at 72 ° C for 1 minute.
【0049】(3)組換えべクターの作製
pUC19(宝酒造株式会社製)を実施例2(3)と同
様に処理し、ベクターを調製した。ついで、(2)にて
得られたPCR産物と該pUC19を2:1のモル比で
混合し、該DNA溶液の半分量のLigtion hi
gh(商品名、東洋紡績株式会社製)を加え、16度に
てライゲーションすることにより、組換えベクターを得
た。(3) Preparation of recombinant vector pUC19 (Takara Shuzo Co., Ltd.) was treated in the same manner as in Example 2 (3) to prepare a vector. Then, the PCR product obtained in (2) and the pUC19 were mixed at a molar ratio of 2: 1 to obtain half the amount of the light hi of the DNA solution.
gh (trade name, manufactured by Toyobo Co., Ltd.) was added and ligated at 16 ° to obtain a recombinant vector.
【0050】(4)形質転換体の作製およびPCR産物
の塩基配列決定
組換えベクターとして(3)にて作製した組換えベクタ
ーを用いたほかは実施例2(5)と同様にして、形質転
換体を得た。当該形質転換体にSOC培地を1ml加
え、37℃で1時間インキュベートした。インキュベー
ト後、該形質転換体の菌体溶液をアンピシリン含有LB
寒天培地に蒔いて、37℃で一晩培養し、酸化還元酵素
遺伝子含有形質転換体のコロニーを得た。ついで、当該
コロニーをアンピシリン含有LB液体培地にて37℃で
一晩振とう培養した。培養後、遠心操作により菌体を回
収した。ついで、FlexiPrep(商品名)Kit
(アマシャムファルマシアバイオテク社製)を用い、菌
体として当該菌体を用いたほかは実施例2(1)と同様
にして、該菌体からプラスミドDNAを調製した。(4) Preparation of Transformant and Determination of Nucleotide Sequence of PCR Product Transformation was carried out in the same manner as in Example 2 (5) except that the recombinant vector prepared in (3) was used. Got the body 1 ml of SOC medium was added to the transformant and incubated at 37 ° C. for 1 hour. After the incubation, the bacterial cell solution of the transformant was treated with LB containing ampicillin.
The seeds were plated on an agar medium and cultured overnight at 37 ° C. to obtain colonies of transformants containing an oxidoreductase gene. Then, the colony was cultured in an LB liquid medium containing ampicillin at 37 ° C. overnight with shaking. After culturing, cells were collected by centrifugation. Next, FlexiPrep (trade name) Kit
(Amersham Pharmacia Biotech) was used, and a plasmid DNA was prepared from the cells in the same manner as in Example 2 (1) except that the cells were used as the cells.
【0051】該遺伝子の塩基配列は、M13 Prim
er RV(商品名、宝酒造株式会社製)およびABI
PRIZM(商品名) BigDye(商品名) T
erminator Cycle Sequencin
g Ready Reaction Kit(商品名、
ピーイーアプライドバイオシステムズ社製)を用いたジ
デオキシ法により、当該遺伝子の5´側から決定した。
また、M13 Primer M4(商品名、宝酒造株
式会社製)および該キットを用いたジデオキシ法によ
り、当該遺伝子の3´側からも塩基配列を決定した。そ
の結果、これら両側から決定した塩基配列は同じである
ことを確認した。The nucleotide sequence of the gene is M13 Prim
er RV (trade name, manufactured by Takara Shuzo Co., Ltd.) and ABI
PRIZM (product name) BigDye (product name) T
erminator Cycle Sequence
g Ready Reaction Kit (trade name,
It was determined from the 5'side of the gene by the dideoxy method using PEE Applied Biosystems.
The nucleotide sequence was also determined from the 3'side of the gene by the dideoxy method using M13 Primer M4 (trade name, manufactured by Takara Shuzo Co., Ltd.) and the kit. As a result, it was confirmed that the nucleotide sequences determined from these two sides are the same.
【0052】IFO3001株におけるPCR産物の塩
基配列は750bpであった。IFO3001株由来の
塩基配列を配列番号5に、また推定アミノ酸配列を配列
番号6に示す。The base sequence of the PCR product in the IFO3001 strain was 750 bp. The nucleotide sequence derived from the IFO3001 strain is shown in SEQ ID NO: 5, and the deduced amino acid sequence is shown in SEQ ID NO: 6.
【0053】実施例4
(1)IFO15305菌株の染色体DNAの調製
バチラス セリウスIFO15305を菌株として用い
たほかは実施例3(1)と同様にして、菌体の染色体D
NAを調製した。Example 4 (1) Preparation of chromosomal DNA of IFO15305 strain As in Example 3 (1) except that Bacillus cerius IFO15305 was used as the strain, chromosome D of the bacterial cell was obtained.
NA was prepared.
【0054】(2)PCRによる遺伝子の増幅および挿
入断片の調製
(1)で調製した染色体DNA1μgを試料として用い
たほかは実施例2(2)と同様にして、制限酵素処理さ
れたPCR産物を得た。(2) Amplification of Gene by PCR and Preparation of Insertion Fragment A PCR product treated with a restriction enzyme was prepared in the same manner as in Example 2 (2) except that 1 μg of the chromosomal DNA prepared in (1) was used as a sample. Obtained.
【0055】(3)組換えべクターの作製
pUC19を実施例2(3)と同様に処理し、ベクター
を調製した。ついで、(2)にて得られたPCR産物を
PCR産物として用いたほかは実施例2(4)と同様に
ライゲーションし、組換えベクターを得た。(3) Preparation of recombinant vector pUC19 was treated in the same manner as in Example 2 (3) to prepare a vector. Then, ligation was performed in the same manner as in Example 2 (4) except that the PCR product obtained in (2) was used as a PCR product to obtain a recombinant vector.
【0056】(4)形質転換体の作製およびPCR産物
の塩基配列決定
(3)にて得られた組換えベクターを組換えベクターと
して用いたほかは実施例3(4)と同様にして、形質転
換体を作製した。また、当該形質転換体を形質転換体と
して用いたほかは実施例3(4)と同様にして、PCR
産物の塩基配列を決定した。(4) Preparation of Transformant and Determination of Nucleotide Sequence of PCR Product The procedure of Example 3 (4) was repeated except that the recombinant vector obtained in (3) was used as a recombinant vector. A transformant was prepared. PCR was performed in the same manner as in Example 3 (4) except that the transformant was used as a transformant.
The base sequence of the product was determined.
【0057】その結果、IFO15305株におけるP
CR産物の塩基配列は750bpであることが判明し
た。IFO15305株由来の塩基配列を配列番号7
に、また推定アミノ酸配列を配列番号8に示す。As a result, P in IFO15305 strain
The base sequence of the CR product was found to be 750 bp. The nucleotide sequence derived from the IFO15305 strain is represented by SEQ ID NO: 7.
And the deduced amino acid sequence is shown in SEQ ID NO: 8.
【0058】実施例5〜7
(1)菌株の染色体DNAの調製
バチラス セリウスIFO3003、IFO3563ま
たはIFO13597を菌株として用いたほかは実施例
3(1)と同様にして、菌体の染色体DNAを調製し
た。Examples 5 to 7 (1) Preparation of chromosomal DNA of bacterial strain Chromosomal DNA of bacterial cells was prepared in the same manner as in Example 3 (1) except that Bacillus cerius IFO3003, IFO3563 or IFO13597 was used as the bacterial strain. .
【0059】(2)PCRによる遺伝子の増幅および挿
入断片の調製
(1)で調製した染色体DNA1μgを試料として用い
たほかは実施例2(2)と同様の操作をそれぞれに対し
て行い、制限酵素処理されたPCR産物を得た。(2) Amplification of Gene by PCR and Preparation of Insertion Fragment The same operation as in Example 2 (2) was performed except that 1 μg of the chromosomal DNA prepared in (1) was used as a sample, and the restriction enzyme was added. A processed PCR product was obtained.
【0060】(3)組換えべクターの作製
pUC19を実施例2(3)と同様に処理し、ベクター
を調製した。ついで、(2)にて得られたPCR産物を
PCR産物として用いたほかは実施例2(4)と同様に
ライゲーションし、それぞれの組換えベクターを得た。(3) Preparation of recombinant vector pUC19 was treated in the same manner as in Example 2 (3) to prepare a vector. Then, ligation was performed in the same manner as in Example 2 (4) except that the PCR product obtained in (2) was used as a PCR product to obtain each recombinant vector.
【0061】(4)形質転換体の作製およびPCR産物
の塩基配列決定
(3)にて得られた組換えベクターを組換えベクターと
して用いたほかは実施例3(4)と同様にして、それぞ
れの形質転換体を作製した。また、当該形質転換体を形
質転換体として用いたほかは実施例3(4)と同様にし
て、それぞれのPCR産物の塩基配列を決定した。(4) Preparation of Transformant and Determination of Nucleotide Sequence of PCR Product The procedure of Example 3 (4) was repeated except that the recombinant vector obtained in (3) was used as a recombinant vector. The transformant was prepared. In addition, the nucleotide sequence of each PCR product was determined in the same manner as in Example 3 (4) except that the transformant was used as a transformant.
【0062】IFO3003の塩基配列を配列番号1
0、IFO3563の塩基配列を配列番号12およびI
FO13597の塩基配列を配列番号14に示す。ま
た、IFO3003の推定アミノ酸配列を配列番号1
1、IFO3563の推定アミノ酸配列を配列番号13
およびIFO13597の推定アミノ酸配列を配列番号
15に示す。The base sequence of IFO3003 is SEQ ID NO: 1.
0, the base sequence of IFO3563 is SEQ ID NO: 12 and I
The nucleotide sequence of FO13597 is shown in SEQ ID NO: 14. The deduced amino acid sequence of IFO3003 is shown in SEQ ID NO: 1.
1, the deduced amino acid sequence of IFO3563 is SEQ ID NO: 13
And the deduced amino acid sequence of IFO13597 is shown in SEQ ID NO: 15.
【0063】実施例8
(1)IAM1029菌株の染色体DNAの調製
バチラス セリウスIAM1029を菌株として用いた
ほかは実施例3(1)と同様にして、菌体の染色体DN
Aを調製した。Example 8 (1) Preparation of chromosomal DNA of IAM1029 strain As in Example 3 (1) except that Bacillus cerius IAM1029 was used as the strain, chromosome DN of the bacterial cell was obtained.
A was prepared.
【0064】(2)PCRによる遺伝子の増幅および挿
入断片の調製
実施例1において作製した2種のオリゴヌクレオチドを
用い、酸化還元酵素遺伝子を増幅した。すなわち、
(1)で調製した試料2μg、2mMのdNTP5μ
l、5μMのプライマー各5μl、KOD plus
DNA polymerase(商品名、東洋紡績株式
会社製)1ユニット、25mMの硫酸マグネシウム2μ
lおよびKOD plus DNA polymera
seの10倍濃縮緩衝液5μlに純水を加えて全量50
μlとし、PCRを行った。PCRは、94℃で2分間
インキュベーションしたのち、94℃で15秒間、60
℃で30秒間および68℃で1分間を1サイクルとして
これを10サイクル、さらに94℃で15秒間、55℃
で20秒間および68℃で1分間を1サイクルとしてこ
れを10サイクル、その上さらに94℃で15秒間、5
0℃で10秒間および68℃で1分間を1サイクルとし
てこれを10サイクル行い、最後に68℃で1分間イン
キュベーションして実施した。(2) Amplification of Gene by PCR and Preparation of Insertion Fragment The oxidoreductase gene was amplified using the two kinds of oligonucleotides prepared in Example 1. That is,
Sample prepared in (1) 2 μg, 2 mM dNTP 5 μ
1, 5 μM each of 5 μl, KOD plus
DNA polymerase (trade name, manufactured by Toyobo Co., Ltd.) 1 unit, 25 mM magnesium sulfate 2 μ
l and KOD plus DNA polymer
The total volume is 50 by adding pure water to 5 μl of 10 times concentrated buffer of SE.
PCR was performed using 1 μl. PCR was carried out by incubating at 94 ° C for 2 minutes and then at 94 ° C for 15 seconds for 60 seconds.
1 cycle of 30 seconds at 68 ° C and 1 minute at 68 ° C for 10 cycles, and then at 94 ° C for 15 seconds at 55 ° C.
10 cycles of 20 seconds at 68 ° C. for 1 minute at 68 ° C. and 5 seconds at 94 ° C. for 5 seconds
This was carried out by 10 cycles of 1 cycle of 0 ° C. for 10 seconds and 68 ° C. for 1 minute, and finally incubation at 68 ° C. for 1 minute.
【0065】(3)組換えべクターの作製
pUC19を実施例2(3)と同様に処理し、ベクター
を調製した。ついで、(2)にて得られたPCR産物を
PCR産物として用いたほかは実施例2(4)と同様に
ライゲーションすることにより、組換えベクターを得
た。(3) Preparation of recombinant vector pUC19 was treated in the same manner as in Example 2 (3) to prepare a vector. Then, a ligation was carried out in the same manner as in Example 2 (4) except that the PCR product obtained in (2) was used as a PCR product to obtain a recombinant vector.
【0066】(4)形質転換体の作製およびPCR産物
の塩基配列決定
(3)にて得られた組換えベクターを組換えベクターと
して用いたほかは実施例3(4)と同様にして、形質転
換体を作製した。また、当該形質転換体を形質転換体と
して用いたほかは実施例3(4)と同様にして、PCR
産物の塩基配列を決定した。(4) Preparation of Transformant and Determination of Nucleotide Sequence of PCR Product The procedure of Example 3 (4) was repeated except that the recombinant vector obtained in (3) was used as a recombinant vector. A transformant was prepared. PCR was performed in the same manner as in Example 3 (4) except that the transformant was used as a transformant.
The base sequence of the product was determined.
【0067】IAM1029の塩基配列を配列番号16
に、推定アミノ酸配列を配列番号17に示す。The nucleotide sequence of IAM1029 is shown in SEQ ID NO: 16.
The deduced amino acid sequence is shown in SEQ ID NO: 17.
【0068】実施例9
(1)菌株の染色体DNAの調製
バチラス セリウスIFO3132を菌株として用いた
ほかは実施例3(1)と同様にして、菌体の染色体DN
Aを調製した。Example 9 (1) Preparation of chromosomal DNA of bacterial strain Chromosome DN of bacterial cells was carried out in the same manner as in Example 3 (1) except that Bacillus cerius IFO3132 was used as the bacterial strain.
A was prepared.
【0069】(2)PCRによる遺伝子の増幅および挿
入断片の調製
実施例1において作製した2種のオリゴヌクレオチドを
用い、酸化還元酵素遺伝子を増幅した。すなわち、
(1)で調製した試料1μg、2.5mMのdNTP4
μl、10μMのプライマー各5μl、Pyrobes
t(商品名)DNApolymerase(商品名、宝
酒造株式会社製)1.25ユニットおよびPyrobe
st(商品名)DNA polymeraseの10倍
緩衝液10μlに純水を加えて全量100μlとし、P
CRを行った。PCRは、94℃で1分間インキュベー
ションしたのち、94℃で1分間および72℃で3分間
を1サイクルとしてこれを10サイクル、さらに94℃
で1分間、65℃で2分間および72℃で1分間を1サ
イクルとしてこれを15サイクル、その上さらに94℃
で1分間、60℃で2分間および72℃で1分間を1サ
イクルとしてこれを10サイクル行い、最後に72℃で
1分間インキュベーションして実施した。(2) Amplification of Gene by PCR and Preparation of Insert Fragment The oxidoreductase gene was amplified using the two kinds of oligonucleotides prepared in Example 1. That is,
1 μg of the sample prepared in (1), 2.5 mM dNTP4
μl, 5 μl of 10 μM each, Pyrobes
t (trade name) DNA polymerase (trade name, manufactured by Takara Shuzo Co., Ltd.) 1.25 units and Pyrobe
st (trade name) 10 times buffer of 10 times DNA polymerase was added with pure water to make the total volume 100 μl.
CR was performed. PCR was carried out by incubating at 94 ° C for 1 minute, and then 10 cycles at 94 ° C for 1 minute and 72 ° C for 3 minutes, and then at 94 ° C.
1 cycle at 65 ° C. for 2 minutes and 72 ° C. for 1 minute as 15 cycles, then 94 ° C.
1 cycle for 1 minute, 60 ° C. for 2 minutes, and 72 ° C. for 1 minute as 10 cycles, and finally incubation at 72 ° C. for 1 minute.
【0070】(3)組換えべクターの作製
pUC19を実施例2(3)と同様に処理し、ベクター
を調製した。(2)記載のPCR産物をPCR産物とし
て用いたほかは実施例2(4)と同様にライゲーション
することにより、組換えベクターを得た。(3) Preparation of recombinant vector pUC19 was treated in the same manner as in Example 2 (3) to prepare a vector. A recombinant vector was obtained by ligation in the same manner as in Example 2 (4) except that the PCR product described in (2) was used as the PCR product.
【0071】(4)形質転換体の作製およびPCR産物
の塩基配列決定
(3)にて得られた組換えベクターを組換えベクターと
して用いたほかは実施例3(4)と同様にして、形質転
換体を作製した。また、当該形質転換体を形質転換体と
して用いたほかは実施例3(4)と同様にして、PCR
産物の塩基配列を決定した。(4) Preparation of Transformant and Determination of Nucleotide Sequence of PCR Product PCR was carried out in the same manner as in Example 3 (4) except that the recombinant vector obtained in (3) was used as a recombinant vector. A transformant was prepared. PCR was performed in the same manner as in Example 3 (4) except that the transformant was used as a transformant.
The base sequence of the product was determined.
【0072】IFO3132の塩基配列を配列番号18
に、推定アミノ酸配列を配列番号19に示す。The base sequence of IFO3132 is SEQ ID NO: 18
The deduced amino acid sequence is shown in SEQ ID NO: 19.
【0073】実施例10
(1)IAM1110菌株の染色体DNAの調製
バチラス セリウスIAM1110を菌株として用いた
ほかは実施例3(1)と同様にして、菌体の染色体DN
Aを調製した。Example 10 (1) Preparation of chromosomal DNA of IAM1110 strain As in Example 3 (1) except that Bacillus cerius IAM1110 was used as the strain, chromosome DN of the bacterial cell was obtained.
A was prepared.
【0074】(2)PCRによる遺伝子の増幅および挿
入断片の調製
(1)で調製した染色体DNA1μgを試料として用い
たほかは実施例15(2)と同様の操作をそれぞれに対
して行い、制限酵素処理されたPCR産物を得た。(2) Amplification of Gene by PCR and Preparation of Insertion Fragment The same procedure as in Example 15 (2) was performed except that 1 μg of the chromosomal DNA prepared in (1) was used as a sample, and the restriction enzyme was added. A processed PCR product was obtained.
【0075】(3)組換えべクターの作製
pUC19を実施例2(3)と同様に処理し、ベクター
を調製した。ついで、(2)にて得られたPCR産物を
PCR産物として用いたほかは実施例2(4)と同様に
ライゲーションし、それぞれの組換えベクターを得た。(3) Preparation of recombinant vector pUC19 was treated in the same manner as in Example 2 (3) to prepare a vector. Then, ligation was performed in the same manner as in Example 2 (4) except that the PCR product obtained in (2) was used as a PCR product to obtain each recombinant vector.
【0076】(4)形質転換体の作製およびPCR産物
の塩基配列決定
(3)にて得られた組換えベクターを組換えベクターと
して用いたほかは実施例3(4)と同様にして、それぞ
れの形質転換体を作製した。また、当該形質転換体を形
質転換体として用いたほかは実施例3(4)と同様にし
て、PCR産物の塩基配列を決定した。(4) Preparation of Transformant and Determination of Nucleotide Sequence of PCR Product The procedure of Example 3 (4) was repeated except that the recombinant vector obtained in (3) was used as a recombinant vector. The transformant was prepared. The nucleotide sequence of the PCR product was determined in the same manner as in Example 3 (4) except that the transformant was used as the transformant.
【0077】IAM1110の塩基配列を配列番号20
に、推定アミノ酸配列を配列番号21に示す。The base sequence of IAM1110 is SEQ ID NO: 20.
The deduced amino acid sequence is shown in SEQ ID NO: 21.
【0078】実施例11
(1)オリゴヌクレオチドの合成
公知の亜リン酸−トリエステル法により、2種のオリゴ
ヌクレオチドを合成した。合成したオリゴヌクレオチド
の配列はGGTGGTTGCTCTTCCAACATG
CGCTACGTTATCATAAC(配列番号22)
およびCGGCTGCAGTTATTCATCAATT
CTAATAAC(配列番号23)である。配列番号2
2におけるGCTCTTC、および配列番号23におけ
るCTGCAGは、各々制限酵素の識別配列である。Example 11 (1) Synthesis of oligonucleotides Two kinds of oligonucleotides were synthesized by a known phosphorous acid-triester method. The sequence of the synthesized oligonucleotide is GGTGGTTGCTCTTCCAACATG.
CGCTACGTTATCATAAC (SEQ ID NO: 22)
And CGGCTGCAGTTATTCATCATCAATT
CTAATAAC (SEQ ID NO: 23). Sequence number 2
GCTCTTC in 2 and CTGCAG in SEQ ID NO: 23 are identification sequences of restriction enzymes, respectively.
【0079】(2)酸化還元酵素遺伝子の増幅
(1)で作製した2種類のオリゴヌクレオチドをプライ
マーとして用いたほかは実施例2(2)と同様にして、
PCRを行った。ついで、当該PCR産物をPCR産物
として用いたほかは実施例2(2)と同様にして、PC
R産物を回収した。当該PCR産物0.5μg、Pst
I 10ユニットおよびNEBuffer3(商品名、
ニューイングランドBioLabs社製)(1M 塩化
ナトリウム、500mM トリス塩酸(pH7.9)、
100mM 塩化マグネシウム、10mM ジチオトレ
イトール)5μlに純水を加えて全量50μlとした。
該反応溶液を37℃で2時間インキュベートすることに
より、該PCR産物を消化した。制限酵素処理後、該P
CR産物をフェノール抽出法およびエタノール沈澱法に
より精製して回収した。回収したPCR産物に、Sap
I 9ユニットおよびNEBuffer4(商品名、ニ
ューイングランドBioLabs社製)(500mM
酢酸カリウム、200mM トリス酢酸(pH7.
9)、100mM酢酸マグネシウム、10mM ジチオ
トレイトール)5μlを加え、さらに純水を加えて全量
50μlとした。該反応溶液を37℃で2時間インキュ
ベートすることにより、該PCR産物を消化した。Sa
pIによる制限酵素処理後、該反応液を1.5%のアガ
ロースゲルを用いた電気泳動により展開し、目的のDN
A断片を含む画分をゲルから切りだした。ついで、当該
画分を用いたほかは実施例2(2)と同様にして、Pr
ep−A−Gene DNA Purificatio
n(商品名、バイオラッド社製)により、DNAを精製
した。(2) Amplification of oxidoreductase gene The procedure of Example 2 (2) was repeated except that the two kinds of oligonucleotides prepared in (1) were used as primers.
PCR was performed. Then, a PC was prepared in the same manner as in Example 2 (2) except that the PCR product was used as a PCR product.
The R product was recovered. 0.5 μg of the PCR product, Pst
I 10 unit and NEBuffer3 (trade name,
New England BioLabs) (1M sodium chloride, 500 mM Tris-HCl (pH 7.9),
Pure water was added to 5 μl of 100 mM magnesium chloride and 10 mM dithiothreitol to make a total volume of 50 μl.
The PCR product was digested by incubating the reaction solution at 37 ° C. for 2 hours. After the restriction enzyme treatment, the P
The CR product was purified and recovered by the phenol extraction method and the ethanol precipitation method. Sap was added to the recovered PCR product.
I 9 unit and NEBuffer4 (trade name, manufactured by New England BioLabs) (500 mM
Potassium acetate, 200 mM trisacetic acid (pH 7.
9), 100 mM magnesium acetate, 10 mM dithiothreitol) (5 μl) were added, and pure water was further added to make a total volume of 50 μl. The PCR product was digested by incubating the reaction solution at 37 ° C. for 2 hours. Sa
After the restriction enzyme treatment with pI, the reaction solution was developed by electrophoresis using 1.5% agarose gel to obtain the desired DN.
Fractions containing the A fragment were excised from the gel. Then, Pr was used in the same manner as in Example 2 (2) except that the fraction was used.
ep-A-Gene DNA Purificatio
n (trade name, manufactured by Bio-Rad) was used to purify the DNA.
【0080】(3)ベクターの調製
(2)のPCR産物0.5μgのかわりにIMPACT
(商品名)−CN(ニューイングランドBioLabs
(登録商標)社製)キット中のpTYB−11ベクター
2μgを用いたほかは(2)と同様にして、該ベクター
を消化した。当該反応液をアガロースゲルを用いた電気
泳動により展開し、目的のDNA断片を含む画分をゲル
から切りだした。ついで、当該画分を用いたほかは実施
例2(2)と同様にして、Prep−A−Gene D
NA Purification(商品名、バイオラッ
ド社製)により、当該ベクターを調製した。(3) Preparation of vector Instead of 0.5 μg of the PCR product of (2), IMPACT was used.
(Product Name) -CN (New England BioLabs
The vector was digested in the same manner as (2) except that 2 μg of pTYB-11 vector in the kit (registered trademark) was used. The reaction solution was developed by electrophoresis using agarose gel, and the fraction containing the target DNA fragment was cut out from the gel. Then, Prep-A-Gene D was performed in the same manner as in Example 2 (2) except that the fraction was used.
The vector was prepared by NA Purification (trade name, manufactured by Bio-Rad).
【0081】(4)形質転換体の作製
PCR産物として(2)で調製したPCR産物を、また
ベクターとして(3)で調製したpTYB−11ベクタ
ーを用いたほかは実施例2(4)と同様にしてライゲー
ションを行い、組換えベクターを得た。つぎに、当該組
換えベクターを組換えベクターとして、またIMPAC
T(商品名)−CNキット中の大腸菌ER2566株を
宿主として用いたほかは実施例2(5)と同様にして、
形質転換体を得た。該形質転換体にSOC培地を1ml
加え、37℃で1時間インキュベートした。インキュベ
ート後、該形質転換体の菌体溶液をアンピシリン含有L
B寒天培地に蒔き、37℃で一晩培養し、酸化還元酵素
遺伝子含有形質転換体のコロニーを得た。ついで、60
0nmの吸光度が5になるまで、当該コロニーをアンピ
シリン含有LB液体培地にて37℃で振とう培養した。
培養後、集めた菌体を超音波で破砕し、再び遠心して上
清を得た。ついで、キチンアフィニティーカラム(ニュ
ーイングランドBioLabs(登録商標)社製)をカ
ラム緩衝液(20mM トリス塩酸(pH8.0)、5
00mM 塩化ナトリウム、1mMエチレンジニトロロ
四酢酸)で平衡化し、該上清をカラムにかけ、カラム内
でインテイン−キチン複合体を形成させた。ついでカラ
ム緩衝液により洗浄した後、インテインの自己スプラシ
ングを誘導するための30mMジチオトレイトールを含
む緩衝液(20mM トリス塩酸(pH8.0)、50
0mM 塩化ナトリウム、1mM エチレンジニトロロ
四酢酸、50mM ジチオトレイトール)中で4℃で一
晩インキュベートすることにより、酸化還元酵素のタン
パク質をインテインから切り離した。翌日、酵素タンパ
ク質のみを溶出し、精製タンパク質を得た。(4) Preparation of transformant Same as Example 2 (4) except that the PCR product prepared in (2) was used as the PCR product and the pTYB-11 vector prepared in (3) was used as the vector. Was ligated to obtain a recombinant vector. Next, using the recombinant vector as a recombinant vector,
In the same manner as in Example 2 (5) except that the E. coli ER2566 strain in the T (trade name) -CN kit was used as a host,
A transformant was obtained. 1 ml of SOC medium to the transformant
In addition, it incubated at 37 degreeC for 1 hour. After incubation, the bacterial cell solution of the transformant was treated with ampicillin-containing L
The cells were plated on B agar medium and cultured overnight at 37 ° C. to obtain colonies of transformants containing an oxidoreductase gene. Then, 60
The colony was shake-cultured in an LB liquid medium containing ampicillin at 37 ° C. until the absorbance at 0 nm became 5.
After culturing, the collected bacterial cells were disrupted by ultrasonic waves and centrifuged again to obtain a supernatant. Then, a chitin affinity column (New England BioLabs (registered trademark)) was applied to a column buffer (20 mM Tris-HCl (pH 8.0), 5
Equilibrated with 00 mM sodium chloride, 1 mM ethylenedinitrorotetraacetic acid), the supernatant was applied to a column, and an intein-chitin complex was formed in the column. Then, after washing with a column buffer, a buffer solution containing 20 mM dithiothreitol (20 mM Tris-HCl (pH 8.0), 50
The oxidoreductase protein was cleaved from the intein by incubation overnight at 4 ° C. in 0 mM sodium chloride, 1 mM ethylenedinitrorotetraacetic acid, 50 mM dithiothreitol. The next day, only the enzyme protein was eluted to obtain a purified protein.
【0082】実施例12
実施例2(5)にて得た形質転換体を、アンピシリン含
有LB液体培地200mlに接種し、600nmの吸光
度が5になるまで37℃で培養した。ついで、イソプロ
ピルチオガラクトシド(IPTG)および基質のベンジ
ルを、最終濃度が各々0.5mMおよび1mMとなるよ
うに添加した後、さらに37℃で24時間培養した。培
養終了後、培養液に酢酸エチル40mlを加えて撹拌
し、遠心により酢酸エチルの層を分離した。当該操作を
さらに2回繰り返し、得られた酢酸エチル層120ml
を濃縮した。得られた生成物を、ヘキサン:エーテル:
酢酸(容量比45:5:1)を展開溶媒としたシリカゲ
ルのカラムにかけて、ベンゾインの画分を分取した。さ
らに、逆層高速液体クロマトグラフィーにかけ、ベンゾ
インを高度に精製した。収率は80%、光学純度は88
%eeであった。Example 12 The transformant obtained in Example 2 (5) was inoculated into 200 ml of ampicillin-containing LB liquid medium and cultured at 37 ° C. until the absorbance at 600 nm reached 5. Next, isopropylthiogalactoside (IPTG) and benzyl as a substrate were added so that the final concentrations were 0.5 mM and 1 mM, respectively, and the mixture was further incubated at 37 ° C. for 24 hours. After the completion of the culture, 40 ml of ethyl acetate was added to the culture solution, the mixture was stirred, and the ethyl acetate layer was separated by centrifugation. This operation was repeated twice more, and the resulting ethyl acetate layer 120 ml
Was concentrated. The resulting product was hexane: ether:
A column of silica gel using acetic acid (volume ratio of 45: 5: 1) as a developing solvent was applied to collect a benzoin fraction. In addition, benzoin was highly purified by reverse phase high performance liquid chromatography. 80% yield, 88 optical purity
% Ee.
【0083】参考例1
(1)菌体からの染色体DNA回収方法
バチラス セリウスFERM P−14210菌株のシ
ングルコロニーを10mlのPNE培地に接種し、37
℃で24時間振とう培養した。培養終了後、当該菌体に
Genとるくん(商品名、宝酒造株式会社製)を用いて
染色体DNAを回収した。回収した染色体DNAは、3
00μlのTE緩衝液に溶解した。得られたDNA量
は、数回分を合わせて220μgであった。Reference Example 1 (1) Method for recovering chromosomal DNA from bacterial cells A single colony of Bacillus cerius FERM P-14210 strain was inoculated into 10 ml of PNE medium, and 37
The cells were shake-cultured at 24 ° C for 24 hours. After the culture was completed, chromosomal DNA was recovered using Gen Torukun (trade name, manufactured by Takara Shuzo Co., Ltd.) on the cells. The recovered chromosomal DNA is 3
It was dissolved in 00 μl of TE buffer. The amount of DNA obtained was 220 μg in several batches.
【0084】(2)染色体DNA挿入断片の調製
(1)で調製した染色体DNAに、制限酵素Sau3A
I(宝酒造株式会社製)を作用させることにより、該染
色体DNAを部分消化した。ついで、部分消化した反応
液のフェノール抽出後、イソプロパノール沈澱を2回行
って、DNA断片を純化した。(2) Preparation of Chromosomal DNA Insertion Fragment The chromosomal DNA prepared in (1) was digested with the restriction enzyme Sau3A.
The chromosomal DNA was partially digested by applying I (Takara Shuzo Co., Ltd.). Then, the partially digested reaction solution was extracted with phenol and then subjected to isopropanol precipitation twice to purify the DNA fragment.
【0085】前記の方法で得たDNA断片に、クレノウ
フラグメント(宝酒造株式会社製)を作用させて、Sa
u3AIによる消化で生じた5´突出末端の半分を埋め
た。したがって該染色体DNA断片においては、GAが
5´突出末端となる。ついで、該DNA断片をアガロー
スゲル電気泳動することにより、2〜4kbのDNA断
片を含む画分をゲルから切り出して、Prep−A−G
ene DNA Purification(商品名、
バイオラッド社製)によりDNA断片を回収した。The Klenow fragment (Takara Shuzo Co., Ltd.) is allowed to act on the DNA fragment obtained by the above method to produce Sa.
Half of the 5'overhangs generated by digestion with u3AI were filled in. Therefore, in the chromosomal DNA fragment, GA becomes a 5 ′ protruding end. Then, the DNA fragment is subjected to agarose gel electrophoresis to cut out a fraction containing the DNA fragment of 2 to 4 kb from the gel, and Prep-A-G
ene DNA Purification (trade name,
The DNA fragment was recovered by Bio-Rad).
【0086】(3)ベクターの調製
次に、pUC19DNA(宝酒造株式会社製)に、制限
酵素SalI(宝酒造株式会社製)作用させることによ
り該ベクターを消化した。ついで、該ベクターにクレノ
ウフラグメントを作用させ、SalIによる消化で生じ
た5´突出末端の半分を埋めた。したがって該pUC1
9における5´突出末端は、TCである。(3) Preparation of vector Next, pUC19 DNA (Takara Shuzo Co., Ltd.) was digested with the restriction enzyme SalI (Takara Shuzo Co., Ltd.). Then, Klenow fragment was allowed to act on the vector to fill in half of the 5'protruding end generated by digestion with SalI. Therefore, the pUC1
The 5'overhang in 9 is TC.
【0087】(4)挿入断片とベクターとのライゲーシ
ョン
GAが5´突出末端である該染色体DNAおよびTCが
5´突出末端である該pUC19DNAを2:1のモル
比で混合し、DNA Ligation Kit Ve
r.1(商品名、宝酒造株式会社製)用いてライゲーシ
ョンを行った。これにより、バチラス セリウスの染色
体DNAライブラリーを完成させた。該ライブラリーを
25ng用いて、常法にしたがい作製した大腸菌DH5
α株(ギブコBRLライフテクノロジーズ社(GibcoBRL Li
fe Technologies)製)のコンピテント細胞を形質転換
させた(Methods Enzymol.、第204号、63〜113
頁、1991年)。(4) Ligation of Insertion Fragment with Vector The chromosomal DNA having 5'protruding ends of GA and the pUC19 DNA having 5'protruding ends of TC were mixed at a molar ratio of 2: 1 to prepare a DNA Ligation Kit Ve.
r. 1 (trade name, manufactured by Takara Shuzo Co., Ltd.) was used for ligation. This completed the chromosomal DNA library of Bacillus serius. Escherichia coli DH5 prepared by a conventional method using 25 ng of the library
α strain (Gibco BRL Life Technologies
fe Technologies)) were transformed (Methods Enzymol., No. 204, 63-113).
P., 1991).
【0088】(5)酸化還元酵素遺伝子のスクリーニン
グ
形質転換した大腸菌を、ジメチルスルホキシドに溶解し
た0.1Mベンジル溶液をプレート1枚あたり40μl
塗布したアンピシリン含有LB寒天培地に蒔き、37℃
で一晩培養したところ、2710個のコロニーが観察さ
れた。さらに室温に放置し、ハロー形成を待った。すな
わち、大腸菌のコロニーの周辺のベンジルが還元されて
ベンゾインが生成されると、溶解度が上がり、ハローが
形成される現象を利用して、ベンジル還元酵素を持つク
ローンのスクリーニングの指標とした。その結果、ハロ
ー形成したコロニーは7個あり、最も早いものでは、形
質転換した菌液を蒔いてから30時間でハローを形成し
た。(5) Screening for oxidoreductase gene [0110] Transformed Escherichia coli was dissolved in dimethyl sulfoxide, and a 0.1 M benzyl solution was added to each plate in an amount of 40 μl.
Plate on LB agar medium containing ampicillin, 37 ℃
After overnight culture at 2710 colonies, 2710 colonies were observed. Furthermore, it was left to stand at room temperature and waited for halo formation. That is, when benzyl around the colony of E. coli is reduced to produce benzoin, the solubility is increased and a halo is formed, which is used as an index for screening a clone having a benzyl reductase. As a result, there were seven colonies that formed halos, and the earliest colonies formed halos 30 hours after plating the transformed bacterial solution.
【0089】得られた7個のコロニーを液体培養LB培
地2mlに接種して、37℃で12時間振とう培養し
た。基質の0.1Mベンジルを20μl(最終濃度1m
M)添加した後、さらに24時間培養した。酢酸エチル
で菌液から基質と生成物を抽出し、ヘキサン:エーテ
ル:酢酸(容量比45:5:1)を溶媒とした薄層クロ
マトグラフィーで展開し、ベンジル還元活性を再確認し
た。その結果、活性を示したのは、最も早くハローを形
成した菌体のみであった。そこで本発明者らは、この菌
体が有する組換えベクターをpUC−BC−B1と命名
した。The thus obtained 7 colonies were inoculated into 2 ml of a liquid culture LB medium and cultured at 37 ° C. for 12 hours with shaking. 20 μl of 0.1 M benzyl substrate (final concentration 1 m
After the addition of M), the cells were further cultured for 24 hours. The substrate and product were extracted from the bacterial solution with ethyl acetate and developed by thin layer chromatography using hexane: ether: acetic acid (volume ratio 45: 5: 1) as a solvent to reconfirm the benzyl reduction activity. As a result, it was only the bacterial cells that formed the earliest halo that showed activity. Therefore, the present inventors named the recombinant vector possessed by this bacterium as pUC-BC-B1.
【0090】(6)酸化還元酵素遺伝子の塩基配列決定
pUC−BC−B1の挿入断片の塩基配列決定は、E
Z::TN(商品名)<KAN−1>Insertio
n Kit(商品名、エピセンターテクノロジーズ社
製)を用いて行った。この決定により、pUC−BC−
B1の挿入断片は2438bpであることが判明した。
つぎに、当該DNA断片の塩基配列をDDBJ/EMB
L/GenBank国際塩基配列データベースの塩基配
列データベースにおいて既知の塩基配列との相同性を検
索したが、当該塩基配列と高い相同性を有する塩基配列
は得られなかった。そこで、考えられるORF毎に、そ
のORFがコードするアミノ酸配列をDDBJ/EMB
L/GenBank国際塩基配列データベースのアミノ
酸配列データベースにて相同検索したところ、配列番号
2に示した249残基からなるアミノ配列が、バチラス
ズブチルスのyueD遺伝子でコードされるアミノ酸
配列(243アミノ酸残基)と40%の相同性を有して
いた。該YueDタンパク質の機能は不明であるが、そ
のアミノ酸配列はセピアプテリン(sepiapterin)還元
酵素に高い相同性を有していた。(6) Determination of nucleotide sequence of oxidoreductase gene The nucleotide sequence of the insert of pUC-BC-B1 was determined by E
Z :: TN (trade name) <KAN-1> Insertio
n Kit (trade name, manufactured by Epicenter Technologies, Inc.) was used. By this decision, pUC-BC-
The insert of B1 was found to be 2438 bp.
Next, the nucleotide sequence of the DNA fragment is set to DDBJ / EMB.
A homology with a known base sequence was searched in the base sequence database of the L / GenBank international base sequence database, but a base sequence having high homology with the base sequence was not obtained. Therefore, for each possible ORF, the amino acid sequence encoded by that ORF is set to DDBJ / EMB.
A homology search was performed on the amino acid sequence database of the L / GenBank international nucleotide sequence database, and as a result, the amino acid sequence consisting of 249 residues shown in SEQ ID NO: 2 was encoded by the yueD gene of Bacillus subtilis (243 amino acid residues). With 40% homology. Although the function of the YueD protein is unknown, its amino acid sequence had high homology to sepiapterin reductase.
【0091】また、サッカロミセス セレビシエのOR
F YIR036Cでコードされるアミノ酸配列とも3
0%の類似性を有するという知見も得た。このYIR0
36Cタンパク質の機能は不明であるが、そのアミノ酸
配列は酸化還元酵素の1種である短鎖アルコール脱水素
酵素に類似性を有していることが知られている。In addition, OR of Saccharomyces cerevisiae
3 with the amino acid sequence encoded by FYIR036C
The finding was also found to have 0% similarity. This YIR0
Although the function of the 36C protein is unknown, it is known that its amino acid sequence has similarity to a short-chain alcohol dehydrogenase, which is a type of oxidoreductase.
【0092】YueDタンパク質から推定した当該OR
Fが酸化還元機能を有することを確かめるために、塩基
配列を決定する過程において該ORF上にトランスポゾ
ンが挿入されたpUC−BC−B1を、ベンジルを塗っ
たアンピシリン含有寒天プレートにて25℃で36〜4
8時間培養した。培養後に観察したところ、ハローを形
成したコロニーはみられなかった。したがって、該OR
Fがベンジル還元酵素をコードしていると判断した。終
止コドンを含めた該ORFを、配列番号9に示す。The OR inferred from the Yue D protein
In order to confirm that F has a redox function, pUC-BC-B1 having a transposon inserted on the ORF was subjected to 36 ° C. at 25 ° C. on an agar plate containing ampicillin coated with benzyl in the process of determining the nucleotide sequence. ~ 4
It was cultured for 8 hours. When observed after culture, no halo-forming colonies were found. Therefore, the OR
It was determined that F codes for benzyl reductase. The ORF including the stop codon is shown in SEQ ID NO: 9.
【0093】[0093]
【発明の効果】本発明は、新規オリゴヌクレオチド、同
オリゴヌクレオチドをプライマーとして用いる新規酸化
還元酵素遺伝子の増幅・クローニング法、同遺伝子を含
有する組換えベクター、同組換えベクターにより形質転
換された形質転換体、および同形質転換体による酸化還
元酵素の製造方法を提供した。本発明のプライマーを用
いれば、未知のバチラス セリウス種の酸化還元酵素遺
伝子を単離することができる。また、本発明の遺伝子を
用いれば、芳香族ジケトン化合物に対し不斉還元能を示
す新規酸化還元酵素を容易にクローニングすることがで
き、さらに種々の宿主細胞で発現させることができる。INDUSTRIAL APPLICABILITY The present invention provides a novel oligonucleotide, a novel oxidoreductase gene amplification / cloning method using the oligonucleotide as a primer, a recombinant vector containing the gene, and a trait transformed by the recombinant vector. Provided are a transformant and a method for producing an oxidoreductase by the transformant. Using the primer of the present invention, an oxidoreductase gene of an unknown Bacillus serius species can be isolated. Further, by using the gene of the present invention, a novel oxidoreductase capable of asymmetrically reducing an aromatic diketone compound can be easily cloned and can be expressed in various host cells.
【0094】[0094]
配列番号1:合成オリゴヌクレオチド。 配列番号2:合成オリゴヌクレオチド。 配列番号3:合成オリゴヌクレオチド。 配列番号4:合成オリゴヌクレオチド。 SEQ ID NO: 1: Synthetic oligonucleotide. SEQ ID NO: 2: Synthetic oligonucleotide. SEQ ID NO: 3: Synthetic oligonucleotide. SEQ ID NO: 4: Synthetic oligonucleotide.
【0095】[0095]
【配列表】 SEQUENCE LISTING <110> Arakawakagakukougyoukabushikigaisha <120> oxido-reductase genes, Cloning the genes and Preparing the enzymes <130> JP-12297 <140> <141> <160> 23 <170> PatentIn Ver. 2.0 <210> 1 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:synthetic oligonucleotide <400> 1 tgcgctacgt tatcataaca g 21 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:synthetic oligonucleotide <400> 2 ggcgaagctt gcgctacgtt atcataacag 30 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:synthetic oligonucleotide <400> 3 tattcatcaa ttctaataac 20 <210> 4 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:synthetic oligonucleotide <400> 4 cgcggatcct attcatcaat tctaataac 29 <210> 5 <211> 750 <212> DNA <213> Bacillus cereus <400> 5 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggctat tgccacacaa 60 ttgttagaaa aaaatacaac tgtcatctct atttctagaa gagaaaataa agagcttacg 120 aaactcgcag aacaatataa tagcaattgt gttctccact ccttagatct tcaagatgta 180 cataatttag aaacgaactt taacaaaatc atttcatcta ttcaagaaga cagtgtatct 240 tctattcatt taattaataa tgcgggtacg gttgctccta tgaagccaat tgaaaaagca 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattctcacc 360 tccactttca tgaaacatac gaaagaatgg aaagtagata aacgtgttat aaacatttca 420 tctggtgcag gaaaaaatcc atacttcgga tggggcgctt attgtacaac gaaagctggc 480 gtaaatatgt ttacacagtg cgtagcaacc gaagaagcag caaaagaatt tccagtaaaa 540 atcgtcgctt ttgcacctgg cgttgttgat acaaatatgc aagcacaaat tcgggaaaca 600 aatagagaag acttcacaaa tttagatcga ttcatcgcat taaaagaaga aggaaggcta 660 ttatcacccg aatacgttgc gaaagctatt cgtaacttac tagaaactga agacttccct 720 caaggcgagg ttattagaat tgatgaatag 750 <210> 6 <211> 249 <212> PRT <213> Bacillus cereus <400> 6 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Lys Asn Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Lys Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Val Leu His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Asn Lys Ile Ile Ser Ser Ile Gln Glu Asp Ser Val Ser 65 70 75 80 Ser Ile His Leu Ile Asn Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Glu Trp Lys Val Asp Lys Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Gly 145 150 155 160 Val Asn Met Phe Thr Gln Cys Val Ala Thr Glu Glu Ala Ala Lys Glu 165 170 175 Phe Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ala Gln Ile Arg Glu Thr Asn Arg Glu Asp Phe Thr Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Arg Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Asp Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 7 <211> 750 <212> DNA <213> Bacillus cereus <400> 7 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggcaat cgctacgcaa 60 ttattagaaa aaaatacaac tgtcatctct atttctagaa gagaaaatca agagcttaca 120 aaacttgcag agcaatataa cagcaattgc atttttcatt ccctagatct tcaagatgta 180 cataacttag agactaactt taaagagatc atttcatcta ttaaaaaaga caatgtatcc 240 tctattcatt taattagtaa cgcgggtaca gttgcaccta tgaagccaat tgaaaaagct 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattcttaca 360 tctacattta tgaaacatac gaaagactgg aaagtaggtg aacgcgttat taacatttca 420 tctggtgcag gaaaaaaccc ttactttggc tggggcgctt attgtacaac gaaagctagt 480 gtaaatgtgt ttacacagtg cgtagcaact gaagaagtgg aaaaagaata tccagtaaaa 540 atcgtcgctt ttgcacctgg cgttgttgat acaaatatgc aatcacaaat tcgcgaaaca 600 aataaagaag atttcataaa tttggaccgc ttcattgcat taaaggaaga aggaaaacta 660 ttatcacctg aatatgttgc gaaagctatt cgtaacttac tagaaactga ggacttccct 720 caaggcgagg ttattagaat tgatgaatag 750 <210> 8 <211> 249 <212> PRT <213> Bacillus cereus <400> 8 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Lys Asn Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Gln Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Ile Phe His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Lys Glu Ile Ile Ser Ser Ile Lys Lys Asp Asn Val Ser 65 70 75 80 Ser Ile His Leu Ile Ser Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Asp Trp Lys Val Gly Glu Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Ser 145 150 155 160 Val Asn Val Phe Thr Gln Cys Val Ala Thr Glu Glu Val Glu Lys Glu 165 170 175 Tyr Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ser Gln Ile Arg Glu Thr Asn Lys Glu Asp Phe Ile Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Lys Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Asp Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 9 <211> 750 <212> DNA <213> Bacillus cereus <400> 9 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggctat tgccactcaa 60 ttgttagaag aaagtacaac tgtcatctct atttctagaa gagaaaataa agaacttact 120 aaacttgcag agcaatataa cagcaattgc atttttcatt ccttagatct tcaagatgta 180 cataacttag aaactaactt taaagaaatc atttcatcca ttaaagaaga caatgtatcc 240 tctattcatt taattaataa tgcaggtaca gttgcaccta tgaagccgat tgaaaaagca 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattcttaca 360 tctacgttta tgaaacatac gaaagaatgg aaagtagata aacgcgttat aaatatttca 420 tctggtgcag gaaaaaatcc ttatttcgga tggggcgctt attgtacgac gaaagctggt 480 gtaaatatgt ttacacaatg cgtagcaact gaagaagtgg aaaaagaata tccagtaaaa 540 atcgtcgctt ttgcccccgg tgttgttgat acaaatatgc aagcacaaat tcgtgaaaca 600 gctaaagaag acttcacaaa tttagaccgc ttcattgcat taaaagaaga aggaaagcta 660 ttatcacctg aatatgttgc gaaagctatt cgtaacttac tagaaactga ggaattccct 720 caaggcgagg ttattagaat tgatgaataa 750 <210> 10 <211> 750 <212> DNA <213> Bacillus cereus <400> 10 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggctat tgccacacaa 60 ttgttagaga aaaatacaac tgtcatctct atttctagaa gagaaaataa agagcttacg 120 aaactcgcag aacaatataa tagcaattgt gttctccact ccttagatct tcaagatgta 180 cataatttag aaacgaactt taacaaaatc atttcatcta ttcaagaaga cagtgtatct 240 tctattcatt taattaataa tgcgggtacg gttgctccta tgaagccaat tgaaaaagca 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattctcacc 360 tccactttca tgaaacatac gaaagaatgg aaagtagata aacgtgttat aaacatttca 420 tctggtgcag gaaaaaatcc atacttcgga tggggcgctt attgtacaac gaaagctggc 480 gtaaatatgt ttacacagtg cgtagcaacc gaagaagcag taaaagaatt tccagtaaaa 540 atcgtcgctt ttgcacctgg tgttgttgat acaaatatgc aagcacaaat tcgggaaaca 600 aatagagaag acttcgcaaa tttagatcga ttcatcgcat taaaagaaga aggaaagcta 660 ttatcacccg aatacgttgc gaaagctatt cgtaacttac tagaaactga agacttccct 720 caaggcgagg ttattagaat tgatgaataa 750 <210> 11 <211> 249 <212> PRT <213> Bacillus cereus <400> 11 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Lys Asn Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Lys Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Val Leu His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Asn Lys Ile Ile Ser Ser Ile Gln Glu Asp Ser Val Ser 65 70 75 80 Ser Ile His Leu Ile Asn Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Glu Trp Lys Val Asp Lys Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Gly 145 150 155 160 Val Asn Met Phe Thr Gln Cys Val Ala Thr Glu Glu Ala Val Lys Glu 165 170 175 Phe Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ala Gln Ile Arg Glu Thr Asn Arg Glu Asp Phe Ala Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Lys Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Asp Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 12 <211> 750 <212> DNA <213> Bacillus cereus <400> 12 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggctat tgccactcag 60 ttgttagaag aaagtacaac tgtcatctct atttctagaa gagaaaataa agaacttact 120 aaacttgcag agcaatataa cagcaattgc atttttcatt ccttagatct tcaagatgta 180 cataacttag aaactaactt taaagaaatc atttcatcca ttaaagaaga caatgtatcc 240 tctattcatt taattaataa tgcaggtaca gttgcaccta tgaagccgat tgaaaaagca 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattcttaca 360 tctacgttta tgaaacatac gaaagaatgg aaagtagata aacgcgttat aaatatttca 420 tctggtgcag gaaaaaatcc ttatttcgga tggggcgctt attgtacgac gaaagctggt 480 gtaaatatgt ttacacaatg cgtagcaact gaagaagtgg aaaaagaata tccagtaaaa 540 atcgtcgctt ttgcccccgg tgttgttgat acaaatatgc aagcacaaat tcgtgaaaca 600 gctaaagaag acttcacaaa tttagaccgc ttcattgcat taaaagaaga aggaaagcta 660 ttatcacctg aatatgttgc gaaagctatt cgtaacttac tagaaactga ggaattccct 720 caaggcgagg ttattagaat tgatgaataa 750 <210> 13 <211> 249 <212> PRT <213> Bacillus cereus <400> 13 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Glu Ser Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Lys Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Ile Phe His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Lys Glu Ile Ile Ser Ser Ile Lys Glu Asp Asn Val Ser 65 70 75 80 Ser Ile His Leu Ile Asn Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Glu Trp Lys Val Asp Lys Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Gly 145 150 155 160 Val Asn Met Phe Thr Gln Cys Val Ala Thr Glu Glu Val Glu Lys Glu 165 170 175 Tyr Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ala Gln Ile Arg Glu Thr Ala Lys Glu Asp Phe Thr Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Lys Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Glu Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 14 <211> 750 <212> DNA <213> Bacillus cereus <400> 14 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggctat tgccactcaa 60 ttgttagaag aaagtacaac tgtcatctct atttctagaa gagaaaatag agaacttact 120 aaacttgcag agcaatataa cagcaattgc atttttcatt ccctagatct tcaagatgta 180 cataacttag aaactaactt taaagagatc atttcatcta ttaaaaaaga caatgtatcc 240 tctattcatt taattaataa tgcgggtaca gttgcaccta tgaagccaat cgaaaaagct 300 gaaagcgaac aattcattac gaacgttcac attaatttac ttgcacctat gattcttaca 360 tctacattta tgaaacatac gaaagaatgg aaagtagata aacgcgttat aaatatttca 420 tctggtgcag gaaaaaatcc ttatttcgga tggggcgctt attgtacgac gaaagctggt 480 gtaaatatgt ttacacaatg cgtagcaact gaagaagtgg aaaaagagtg tccagtaaaa 540 atcgtcgctt ttgcccccgg tgttgttgat acaaatatgc aagcacaaat tcgtgaaaca 600 aataaagaag acttcacaaa tttagaccgc ttcattgcat taaaagaaga aggaaagcta 660 ttatcacctg aatatgttgc gaaagctatt cgtaacttac tagaaactga ggaattccct 720 caaggcgagg ttattagaat tgatgaataa 750 <210> 15 <211> 249 <212> PRT <213> Bacillus cereus <400> 15 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Glu Ser Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Arg Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Ile Phe His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Lys Glu Ile Ile Ser Ser Ile Lys Lys Asp Asn Val Ser 65 70 75 80 Ser Ile His Leu Ile Asn Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Glu Trp Lys Val Asp Lys Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Gly 145 150 155 160 Val Asn Met Phe Thr Gln Cys Val Ala Thr Glu Glu Val Glu Lys Glu 165 170 175 Cys Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ala Gln Ile Arg Glu Thr Asn Lys Glu Asp Phe Thr Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Lys Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Glu Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 16 <211> 750 <212> DNA <213> Bacillus cereus <400> 16 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggctat tgccactcaa 60 ttgttagaag aaagtacaac tgtcatctct atttctagaa gagaaaataa agaacttact 120 aaacttgcag agcaatataa cagcaattgc atttttcatt ccttagatct tcaagatgta 180 cataacttag aaactaactt taaagaaatc atttcatcca ttaaagaaga caatgtatcc 240 tctattcatt taattaataa tgcaggtaca gttgcaccta tgaagccgat tgaaaaagca 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattcttaca 360 tctacgttta tgaaacatac gaaagaatgg aaagtagata aacgcgttat aaatatttca 420 tctggtgcag gaaaaaatcc ttatttcgga tggggcgctt attgtacgac gaaagctggt 480 gtaaatatgt ttacacaatg cgtagcaact gaagaagtgg aaaaaggata tccagtaaaa 540 atcgtcgctt ttgcccccgg tgttgttgat acaaatatgc aagcacaaat tcgtgaaaca 600 gctaaagaag acttcacaaa tttagaccgc ttcattgcat taaaagaaga aggaaagcta 660 ttatcacctg aatatgttgc gaaagctatt cgtaacttac tagaaactga ggaattccct 720 caaggcgagg ttattagaat tgatgaataa 750 <210> 17 <211> 249 <212> PRT <213> Bacillus cereus <400> 17 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Glu Ser Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Lys Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Ile Phe His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Lys Glu Ile Ile Ser Ser Ile Lys Glu Asp Asn Val Ser 65 70 75 80 Ser Ile His Leu Ile Asn Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Glu Trp Lys Val Asp Lys Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Gly 145 150 155 160 Val Asn Met Phe Thr Gln Cys Val Ala Thr Glu Glu Val Glu Lys Gly 165 170 175 Tyr Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ala Gln Ile Arg Glu Thr Ala Lys Glu Asp Phe Thr Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Lys Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Glu Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 18 <211> 750 <212> DNA <213> Bacillus cereus <400> 18 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggcaat cgctacgcaa 60 ttattagaaa aaaatacaac tgtcatctct atttctagaa gagaaaatca agagcttaca 120 aaacttgcag agcaatataa cagcaattgc atttttcatt ccctagatct tcaagatgta 180 cataacttag aaactaactt taaagagatc atttcatcta ttaaaaaaga caatgtatcc 240 tctattcatt taattaataa tgcgggtaca gttgcaccta tgaagccaat tgaaaaagct 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattcttaca 360 tctacattta tgaaacatac gaaagactgg aaagtagata aacgcgttat taacatttca 420 tctggtgcag gaaaaaaccc ttactttggc tggggcgctt attgtacaac gaaagctggt 480 gtaaatatgt ttacacagtg cgtagcaact gaagaagtgg aaaaagaata tccagtaaaa 540 atcgtcgctt ttgcacctgg cgttgttgat acaaatatgc aatcacaaat tcgcgaaaca 600 aataaagaag atttcataaa tttggaccgc ttcattgcat taaaagaaga aggaaaacta 660 ttatcacctg aatatgttgc gaaagctatt cgtaacttac tagaaactga ggacttccct 720 caaggcgagg ttattagaat tgatgaataa 750 <210> 19 <211> 249 <212> PRT <213> Bacillus cereus <400> 19 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Lys Asn Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Gln Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Ile Phe His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Lys Glu Ile Ile Ser Ser Ile Lys Lys Asp Asn Val Ser 65 70 75 80 Ser Ile His Leu Ile Asn Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Asp Trp Lys Val Asp Lys Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Gly 145 150 155 160 Val Asn Met Phe Thr Gln Cys Val Ala Thr Glu Glu Val Glu Lys Glu 165 170 175 Tyr Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ser Gln Ile Arg Glu Thr Asn Lys Glu Asp Phe Ile Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Lys Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Asp Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 20 <211> 750 <212> DNA <213> Bacillus cereus <400> 20 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggctat tgccacacaa 60 ttgttagaaa aaaatacaac tgtcatctct atttctagaa gagaaaataa agagcttacg 120 aaactcgcag aacaatataa tagcaattgt gttctccact ccttagatct tcaagatgta 180 cataatttag aaacgaactt taacaaaatc atttcatcta ttcaagaaga cagtgtatct 240 tctattcatt taattaataa tgcgggtacg gttgctccta tgaagccaat tgaaaaagca 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattctcacc 360 tccactttca tgaaacatac gaaagaatgg aaagtagata aacgtgttat aaacatttca 420 tctggtgcag gaaaaaatcc atacttcgga tggggcgctt attgtacaac gaaagctggc 480 gtaaatatgt ttacacagtg cgtagcaacc gaagaagcag caaaagaatt tccagtaaaa 540 atcgtcgctt ttgcacctgg tgttgttgat acaaatatgc aagcacaaat tcgggaaaca 600 aatagagaag acttcacaaa tttagatcga ttcatcgcat taaaagaaga aggaaagcta 660 ttatcacccg aatacgttgc gaaagctatt cgtaacttac tagaaactga agacttccct 720 caaggcgagg ttattagaat tgatgaataa 750 <210> 21 <211> 249 <212> PRT <213> Bacillus cereus <400> 21 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Lys Asn Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Lys Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Val Leu His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Asn Lys Ile Ile Ser Ser Ile Gln Glu Asp Ser Val Ser 65 70 75 80 Ser Ile His Leu Ile Asn Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Glu Trp Lys Val Asp Lys Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Gly 145 150 155 160 Val Asn Met Phe Thr Gln Cys Val Ala Thr Glu Glu Ala Ala Lys Glu 165 170 175 Phe Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ala Gln Ile Arg Glu Thr Asn Arg Glu Asp Phe Thr Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Lys Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Asp Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 22 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:synthetic oligonucleotide <400> 22 ggtggttgct cttccaacat gcgctacgtt atcataac 38 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:synthetic oligonucleotide <400> 23 cggctgcagt tattcatcaa ttctaataac 30[Sequence list] SEQUENCE LISTING <110> Arakawakagakukougyoukabushikigaisha <120> oxido-reductase genes, Cloning the genes and Preparing the enzymes <130> JP-12297 <140> <141> <160> 23 <170> PatentIn Ver. 2.0 <210> 1 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic oligonucleotide <400> 1 tgcgctacgt tatcataaca g 21 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic oligonucleotide <400> 2 ggcgaagctt gcgctacgtt atcataacag 30 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic oligonucleotide <400> 3 tattcatcaa ttctaataac 20 <210> 4 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic oligonucleotide <400> 4 cgcggatcct attcatcaat tctaataac 29 <210> 5 <211> 750 <212> DNA <213> Bacillus cereus <400> 5 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggctat tgccacacaa 60 ttgttagaaa aaaatacaac tgtcatctct atttctagaa gagaaaataa agagcttacg 120 aaactcgcag aacaatataa tagcaattgt gttctccact ccttagatct tcaagatgta 180 cataatttag aaacgaactt taacaaaatc atttcatcta ttcaagaaga cagtgtatct 240 tctattcatt taattaataa tgcgggtacg gttgctccta tgaagccaat tgaaaaagca 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattctcacc 360 tccactttca tgaaacatac gaaagaatgg aaagtagata aacgtgttat aaacatttca 420 tctggtgcag gaaaaaatcc atacttcgga tggggcgctt attgtacaac gaaagctggc 480 gtaaatatgt ttacacagtg cgtagcaacc gaagaagcag caaaagaatt tccagtaaaa 540 atcgtcgctt ttgcacctgg cgttgttgat acaaatatgc aagcacaaat tcgggaaaca 600 aatagagaag acttcacaaa tttagatcga ttcatcgcat taaaagaaga aggaaggcta 660 ttatcacccg aatacgttgc gaaagctatt cgtaacttac tagaaactga agacttccct 720 caaggcgagg ttattagaat tgatgaatag 750 <210> 6 <211> 249 <212> PRT <213> Bacillus cereus <400> 6 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Lys Asn Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Lys Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Val Leu His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Asn Lys Ile Ile Ser Ser Ile Gln Glu Asp Ser Val Ser 65 70 75 80 Ser Ile His Leu Ile Asn Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Glu Trp Lys Val Asp Lys Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Gly 145 150 155 160 Val Asn Met Phe Thr Gln Cys Val Ala Thr Glu Glu Ala Ala Lys Glu 165 170 175 Phe Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ala Gln Ile Arg Glu Thr Asn Arg Glu Asp Phe Thr Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Arg Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Asp Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 7 <211> 750 <212> DNA <213> Bacillus cereus <400> 7 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggcaat cgctacgcaa 60 ttattagaaa aaaatacaac tgtcatctct atttctagaa gagaaaatca agagcttaca 120 aaacttgcag agcaatataa cagcaattgc atttttcatt ccctagatct tcaagatgta 180 cataacttag agactaactt taaagagatc atttcatcta ttaaaaaaga caatgtatcc 240 tctattcatt taattagtaa cgcgggtaca gttgcaccta tgaagccaat tgaaaaagct 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattcttaca 360 tctacattta tgaaacatac gaaagactgg aaagtaggtg aacgcgttat taacatttca 420 tctggtgcag gaaaaaaccc ttactttggc tggggcgctt attgtacaac gaaagctagt 480 gtaaatgtgt ttacacagtg cgtagcaact gaagaagtgg aaaaagaata tccagtaaaa 540 atcgtcgctt ttgcacctgg cgttgttgat acaaatatgc aatcacaaat tcgcgaaaca 600 aataaagaag atttcataaa tttggaccgc ttcattgcat taaaggaaga aggaaaacta 660 ttatcacctg aatatgttgc gaaagctatt cgtaacttac tagaaactga ggacttccct 720 caaggcgagg ttattagaat tgatgaatag 750 <210> 8 <211> 249 <212> PRT <213> Bacillus cereus <400> 8 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Lys Asn Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Gln Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Ile Phe His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Lys Glu Ile Ile Ser Ser Ile Lys Lys Asp Asn Val Ser 65 70 75 80 Ser Ile His Leu Ile Ser Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Asp Trp Lys Val Gly Glu Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Ser 145 150 155 160 Val Asn Val Phe Thr Gln Cys Val Ala Thr Glu Glu Val Glu Lys Glu 165 170 175 Tyr Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ser Gln Ile Arg Glu Thr Asn Lys Glu Asp Phe Ile Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Lys Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Asp Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 9 <211> 750 <212> DNA <213> Bacillus cereus <400> 9 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggctat tgccactcaa 60 ttgttagaag aaagtacaac tgtcatctct atttctagaa gagaaaataa agaacttact 120 aaacttgcag agcaatataa cagcaattgc atttttcatt ccttagatct tcaagatgta 180 cataacttag aaactaactt taaagaaatc atttcatcca ttaaagaaga caatgtatcc 240 tctattcatt taattaataa tgcaggtaca gttgcaccta tgaagccgat tgaaaaagca 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattcttaca 360 tctacgttta tgaaacatac gaaagaatgg aaagtagata aacgcgttat aaatatttca 420 tctggtgcag gaaaaaatcc ttatttcgga tggggcgctt attgtacgac gaaagctggt 480 gtaaatatgt ttacacaatg cgtagcaact gaagaagtgg aaaaagaata tccagtaaaa 540 atcgtcgctt ttgcccccgg tgttgttgat acaaatatgc aagcacaaat tcgtgaaaca 600 gctaaagaag acttcacaaa tttagaccgc ttcattgcat taaaagaaga aggaaagcta 660 ttatcacctg aatatgttgc gaaagctatt cgtaacttac tagaaactga ggaattccct 720 caaggcgagg ttattagaat tgatgaataa 750 <210> 10 <211> 750 <212> DNA <213> Bacillus cereus <400> 10 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggctat tgccacacaa 60 ttgttagaga aaaatacaac tgtcatctct atttctagaa gagaaaataa agagcttacg 120 aaactcgcag aacaatataa tagcaattgt gttctccact ccttagatct tcaagatgta 180 cataatttag aaacgaactt taacaaaatc atttcatcta ttcaagaaga cagtgtatct 240 tctattcatt taattaataa tgcgggtacg gttgctccta tgaagccaat tgaaaaagca 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattctcacc 360 tccactttca tgaaacatac gaaagaatgg aaagtagata aacgtgttat aaacatttca 420 tctggtgcag gaaaaaatcc atacttcgga tggggcgctt attgtacaac gaaagctggc 480 gtaaatatgt ttacacagtg cgtagcaacc gaagaagcag taaaagaatt tccagtaaaa 540 atcgtcgctt ttgcacctgg tgttgttgat acaaatatgc aagcacaaat tcgggaaaca 600 aatagagaag acttcgcaaa tttagatcga ttcatcgcat taaaagaaga aggaaagcta 660 ttatcacccg aatacgttgc gaaagctatt cgtaacttac tagaaactga agacttccct 720 caaggcgagg ttattagaat tgatgaataa 750 <210> 11 <211> 249 <212> PRT <213> Bacillus cereus <400> 11 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Lys Asn Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Lys Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Val Leu His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Asn Lys Ile Ile Ser Ser Ile Gln Glu Asp Ser Val Ser 65 70 75 80 Ser Ile His Leu Ile Asn Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Glu Trp Lys Val Asp Lys Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Gly 145 150 155 160 Val Asn Met Phe Thr Gln Cys Val Ala Thr Glu Glu Ala Val Lys Glu 165 170 175 Phe Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ala Gln Ile Arg Glu Thr Asn Arg Glu Asp Phe Ala Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Lys Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Asp Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 12 <211> 750 <212> DNA <213> Bacillus cereus <400> 12 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggctat tgccactcag 60 ttgttagaag aaagtacaac tgtcatctct atttctagaa gagaaaataa agaacttact 120 aaacttgcag agcaatataa cagcaattgc atttttcatt ccttagatct tcaagatgta 180 cataacttag aaactaactt taaagaaatc atttcatcca ttaaagaaga caatgtatcc 240 tctattcatt taattaataa tgcaggtaca gttgcaccta tgaagccgat tgaaaaagca 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattcttaca 360 tctacgttta tgaaacatac gaaagaatgg aaagtagata aacgcgttat aaatatttca 420 tctggtgcag gaaaaaatcc ttatttcgga tggggcgctt attgtacgac gaaagctggt 480 gtaaatatgt ttacacaatg cgtagcaact gaagaagtgg aaaaagaata tccagtaaaa 540 atcgtcgctt ttgcccccgg tgttgttgat acaaatatgc aagcacaaat tcgtgaaaca 600 gctaaagaag acttcacaaa tttagaccgc ttcattgcat taaaagaaga aggaaagcta 660 ttatcacctg aatatgttgc gaaagctatt cgtaacttac tagaaactga ggaattccct 720 caaggcgagg ttattagaat tgatgaataa 750 <210> 13 <211> 249 <212> PRT <213> Bacillus cereus <400> 13 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Glu Ser Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Lys Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Ile Phe His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Lys Glu Ile Ile Ser Ser Ile Lys Glu Asp Asn Val Ser 65 70 75 80 Ser Ile His Leu Ile Asn Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Glu Trp Lys Val Asp Lys Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Gly 145 150 155 160 Val Asn Met Phe Thr Gln Cys Val Ala Thr Glu Glu Val Glu Lys Glu 165 170 175 Tyr Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ala Gln Ile Arg Glu Thr Ala Lys Glu Asp Phe Thr Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Lys Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Glu Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 14 <211> 750 <212> DNA <213> Bacillus cereus <400> 14 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggctat tgccactcaa 60 ttgttagaag aaagtacaac tgtcatctct atttctagaa gagaaaatag agaacttact 120 aaacttgcag agcaatataa cagcaattgc atttttcatt ccctagatct tcaagatgta 180 cataacttag aaactaactt taaagagatc atttcatcta ttaaaaaaga caatgtatcc 240 tctattcatt taattaataa tgcgggtaca gttgcaccta tgaagccaat cgaaaaagct 300 gaaagcgaac aattcattac gaacgttcac attaatttac ttgcacctat gattcttaca 360 tctacattta tgaaacatac gaaagaatgg aaagtagata aacgcgttat aaatatttca 420 tctggtgcag gaaaaaatcc ttatttcgga tggggcgctt attgtacgac gaaagctggt 480 gtaaatatgt ttacacaatg cgtagcaact gaagaagtgg aaaaagagtg tccagtaaaa 540 atcgtcgctt ttgcccccgg tgttgttgat acaaatatgc aagcacaaat tcgtgaaaca 600 aataaagaag acttcacaaa tttagaccgc ttcattgcat taaaagaaga aggaaagcta 660 ttatcacctg aatatgttgc gaaagctatt cgtaacttac tagaaactga ggaattccct 720 caaggcgagg ttattagaat tgatgaataa 750 <210> 15 <211> 249 <212> PRT <213> Bacillus cereus <400> 15 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Glu Ser Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Arg Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Ile Phe His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Lys Glu Ile Ile Ser Ser Ile Lys Lys Asp Asn Val Ser 65 70 75 80 Ser Ile His Leu Ile Asn Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Glu Trp Lys Val Asp Lys Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Gly 145 150 155 160 Val Asn Met Phe Thr Gln Cys Val Ala Thr Glu Glu Val Glu Lys Glu 165 170 175 Cys Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ala Gln Ile Arg Glu Thr Asn Lys Glu Asp Phe Thr Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Lys Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Glu Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 16 <211> 750 <212> DNA <213> Bacillus cereus <400> 16 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggctat tgccactcaa 60 ttgttagaag aaagtacaac tgtcatctct atttctagaa gagaaaataa agaacttact 120 aaacttgcag agcaatataa cagcaattgc atttttcatt ccttagatct tcaagatgta 180 cataacttag aaactaactt taaagaaatc atttcatcca ttaaagaaga caatgtatcc 240 tctattcatt taattaataa tgcaggtaca gttgcaccta tgaagccgat tgaaaaagca 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattcttaca 360 tctacgttta tgaaacatac gaaagaatgg aaagtagata aacgcgttat aaatatttca 420 tctggtgcag gaaaaaatcc ttatttcgga tggggcgctt attgtacgac gaaagctggt 480 gtaaatatgt ttacacaatg cgtagcaact gaagaagtgg aaaaaggata tccagtaaaa 540 atcgtcgctt ttgcccccgg tgttgttgat acaaatatgc aagcacaaat tcgtgaaaca 600 gctaaagaag acttcacaaa tttagaccgc ttcattgcat taaaagaaga aggaaagcta 660 ttatcacctg aatatgttgc gaaagctatt cgtaacttac tagaaactga ggaattccct 720 caaggcgagg ttattagaat tgatgaataa 750 <210> 17 <211> 249 <212> PRT <213> Bacillus cereus <400> 17 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Glu Ser Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Lys Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Ile Phe His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Lys Glu Ile Ile Ser Ser Ile Lys Glu Asp Asn Val Ser 65 70 75 80 Ser Ile His Leu Ile Asn Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Glu Trp Lys Val Asp Lys Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Gly 145 150 155 160 Val Asn Met Phe Thr Gln Cys Val Ala Thr Glu Glu Val Glu Lys Gly 165 170 175 Tyr Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ala Gln Ile Arg Glu Thr Ala Lys Glu Asp Phe Thr Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Lys Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Glu Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 18 <211> 750 <212> DNA <213> Bacillus cereus <400> 18 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggcaat cgctacgcaa 60 ttattagaaa aaaatacaac tgtcatctct atttctagaa gagaaaatca agagcttaca 120 aaacttgcag agcaatataa cagcaattgc atttttcatt ccctagatct tcaagatgta 180 cataacttag aaactaactt taaagagatc atttcatcta ttaaaaaaga caatgtatcc 240 tctattcatt taattaataa tgcgggtaca gttgcaccta tgaagccaat tgaaaaagct 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattcttaca 360 tctacattta tgaaacatac gaaagactgg aaagtagata aacgcgttat taacatttca 420 tctggtgcag gaaaaaaccc ttactttggc tggggcgctt attgtacaac gaaagctggt 480 gtaaatatgt ttacacagtg cgtagcaact gaagaagtgg aaaaagaata tccagtaaaa 540 atcgtcgctt ttgcacctgg cgttgttgat acaaatatgc aatcacaaat tcgcgaaaca 600 aataaagaag atttcataaa tttggaccgc ttcattgcat taaaagaaga aggaaaacta 660 ttatcacctg aatatgttgc gaaagctatt cgtaacttac tagaaactga ggacttccct 720 caaggcgagg ttattagaat tgatgaataa 750 <210> 19 <211> 249 <212> PRT <213> Bacillus cereus <400> 19 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Lys Asn Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Gln Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Ile Phe His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Lys Glu Ile Ile Ser Ser Ile Lys Lys Asp Asn Val Ser 65 70 75 80 Ser Ile His Leu Ile Asn Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Asp Trp Lys Val Asp Lys Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Gly 145 150 155 160 Val Asn Met Phe Thr Gln Cys Val Ala Thr Glu Glu Val Glu Lys Glu 165 170 175 Tyr Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ser Gln Ile Arg Glu Thr Asn Lys Glu Asp Phe Ile Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Lys Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Asp Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 20 <211> 750 <212> DNA <213> Bacillus cereus <400> 20 atgcgctacg ttatcataac aggaacttca caaggtttag gtgaggctat tgccacacaa 60 ttgttagaaa aaaatacaac tgtcatctct atttctagaa gagaaaataa agagcttacg 120 aaactcgcag aacaatataa tagcaattgt gttctccact ccttagatct tcaagatgta 180 cataatttag aaacgaactt taacaaaatc atttcatcta ttcaagaaga cagtgtatct 240 tctattcatt taattaataa tgcgggtacg gttgctccta tgaagccaat tgaaaaagca 300 gaaagtgaac aattcattac gaacgttcac attaatttac ttgcacctat gattctcacc 360 tccactttca tgaaacatac gaaagaatgg aaagtagata aacgtgttat aaacatttca 420 tctggtgcag gaaaaaatcc atacttcgga tggggcgctt attgtacaac gaaagctggc 480 gtaaatatgt ttacacagtg cgtagcaacc gaagaagcag caaaagaatt tccagtaaaa 540 atcgtcgctt ttgcacctgg tgttgttgat acaaatatgc aagcacaaat tcgggaaaca 600 aatagagaag acttcacaaa tttagatcga ttcatcgcat taaaagaaga aggaaagcta 660 ttatcacccg aatacgttgc gaaagctatt cgtaacttac tagaaactga agacttccct 720 caaggcgagg ttattagaat tgatgaataa 750 <210> 21 <211> 249 <212> PRT <213> Bacillus cereus <400> 21 Met Arg Tyr Val Ile Ile Thr Gly Thr Ser Gln Gly Leu Gly Glu Ala 1 5 10 15 Ile Ala Thr Gln Leu Leu Glu Lys Asn Thr Thr Val Ile Ser Ile Ser 20 25 30 Arg Arg Glu Asn Lys Glu Leu Thr Lys Leu Ala Glu Gln Tyr Asn Ser 35 40 45 Asn Cys Val Leu His Ser Leu Asp Leu Gln Asp Val His Asn Leu Glu 50 55 60 Thr Asn Phe Asn Lys Ile Ile Ser Ser Ile Gln Glu Asp Ser Val Ser 65 70 75 80 Ser Ile His Leu Ile Asn Asn Ala Gly Thr Val Ala Pro Met Lys Pro 85 90 95 Ile Glu Lys Ala Glu Ser Glu Gln Phe Ile Thr Asn Val His Ile Asn 100 105 110 Leu Leu Ala Pro Met Ile Leu Thr Ser Thr Phe Met Lys His Thr Lys 115 120 125 Glu Trp Lys Val Asp Lys Arg Val Ile Asn Ile Ser Ser Gly Ala Gly 130 135 140 Lys Asn Pro Tyr Phe Gly Trp Gly Ala Tyr Cys Thr Thr Lys Ala Gly 145 150 155 160 Val Asn Met Phe Thr Gln Cys Val Ala Thr Glu Glu Ala Ala Lys Glu 165 170 175 Phe Pro Val Lys Ile Val Ala Phe Ala Pro Gly Val Val Asp Thr Asn 180 185 190 Met Gln Ala Gln Ile Arg Glu Thr Asn Arg Glu Asp Phe Thr Asn Leu 195 200 205 Asp Arg Phe Ile Ala Leu Lys Glu Glu Gly Lys Leu Leu Ser Pro Glu 210 215 220 Tyr Val Ala Lys Ala Ile Arg Asn Leu Leu Glu Thr Glu Asp Phe Pro 225 230 235 240 Gln Gly Glu Val Ile Arg Ile Asp Glu 245 <210> 22 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic oligonucleotide <400> 22 ggtggttgct cttccaacat gcgctacgtt atcataac 38 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic oligonucleotide <400> 23 cggctgcagt tattcatcaa ttctaataac 30
フロントページの続き (72)発明者 丸山 励治 富山市寺町けや木台52 つかさハイツ寺 町203号 (72)発明者 糸井 泰 大阪府大東市南新田1丁目21−502 (56)参考文献 特開2002−65267(JP,A) Gene, 1997, Vol.189, p.213−219 J.Bacteriol., 1991, Vol.173, No.17, p. 5385−5395 Chemistry Letter s, 1988, Vol.7, p.1191 −1192 Chemistry Letter s, 1985, Vol.8, p.1111 −1112 (58)調査した分野(Int.Cl.7,DB名) C12N 15/00 - 15/90 C12N 9/02 SwissProt/PIR/GeneS eq GenBank/EMBL/DDBJ/G eneSeq BIOSIS/WPI(DIALOG)Front page continuation (72) Inventor Maruyama Reiji 52 Teramachi Keya Kidai, Toyama City No. 203 Tsukasa Heights Teramachi (72) Inventor Yasushi Itoi 1-21-502 Minamishinda, Daito City, Osaka Prefecture (56) References JP 2002 -65267 (JP, A) Gene, 1997, Vol. 189, p. 213-219 J. Bacteriol. , 1991, Vol. 173, no. 17, p. 5385-5395 Chemistry Letters, 1988, Vol. 7, p. 1191 -1192 Chemistry Letters, 1985, Vol. 8, p. 1111 -1112 (58) Fields investigated (Int.Cl. 7 , DB name) C12N 15/00-15/90 C12N 9/02 SwissProt / PIR / GeneSeq GenBank / EMBL / DDBJ / GeneSeq BIOSIS / WPI (DIALOG) )
Claims (16)
示した塩基配列からなるオリゴヌクレオチド。[Claim 1] comprising the nucleotide sequence shown in SEQ ID NO: 1, 2, 3 or 4 of the Sequence Listing oligonucleotide.
ドから選ばれた少なくとも1つのオリゴヌクレオチドを
プライマーとして、試料に含まれる標的酸化還元酵素遺
伝子を増幅し、 (b)増幅された当該遺伝子をベクターに挿入して組換
えベクターを調製した後、 (c)当該ベクターにより形質転換された形質転換体を
得ることを特徴とする酸化還元酵素遺伝子含有形質転換
体の製法。2. A target oxidoreductase gene contained in a sample is amplified using (a) at least one oligonucleotide selected from the oligonucleotides according to claim 1 as a primer, and (b) the amplified gene is amplified. A method for producing a transformant containing an oxidoreductase gene, which comprises inserting the vector into a vector to prepare a recombinant vector, and then obtaining a transformant transformed with the vector.
ラス属に属する菌株から得られた染色体DNA、当該染
色体のDNAライブラリー、cDNAライブラリーまた
は当該遺伝子を含む組換えベクターであることを特徴と
する請求項2記載の酸化還元酵素遺伝子含有形質転換体
の製法。3. A sample containing a redox gene is a chromosomal DNA obtained from a strain belonging to the genus Bacillus, a DNA library of the chromosome, a cDNA library or a recombinant vector containing the gene. The method for producing a transformant containing an oxidoreductase gene according to claim 2 .
ラス セリウスから得られた染色体DNA、当該染色体
のDNAライブラリー、cDNAライブラリーまたは当
該遺伝子を含む組換えベクターであることを特徴とする
請求項2記載の酸化還元酵素遺伝子含有形質転換体の製
法。 4. The sample containing a redox gene is a chromosomal DNA obtained from Bacillus serius, a DNA library of the chromosome, a cDNA library or a recombinant vector containing the gene. 2. The method for producing a transformant containing an oxidoreductase gene according to 2 .
のオリゴヌクレオチドをプライマーとして用いることを
特徴とする請求項2、3または4記載の酸化還元酵素遺
伝子含有形質転換体の製法。5. The method for producing a oxidoreductase gene-containing transformant according to claim 2, 3 or 4 , wherein the two kinds of oligonucleotides shown in SEQ ID NOS: 2 and 4 of the Sequence Listing are used as primers.
とを特徴とする請求項2、3、4または5記載の酸化還
元酵素遺伝子含有形質転換体の製法。6. The method for producing a transformant containing an oxidoreductase gene according to claim 2, 3, 4, or 5 , wherein the host cell to be transformed is a microorganism.
する宿主細胞が大腸菌であることを特徴とする請求項
2、3、4または5記載の酸化還元酵素遺伝子含有形質
転換体の製法。7. The vector is pUC19, and the host cell to be transformed is Escherichia coli.
A method for producing a transformant containing an oxidoreductase gene according to 2, 3, 4 or 5 .
選ばれた少なくとも1つのオリゴヌクレオチドをプライ
マーとして用いたポリメラーゼ連鎖反応により得られ、
配列表の配列番号5、7、10、12、14、16、1
8または20に示した塩基配列からなる酸化還元酵素遺
伝子。8. obtained by polymerase chain reaction using at least one oligonucleotide selected from claims 1 Symbol placement of oligonucleotides as primers,
SEQ ID NO: 5, 7, 10, 12, 14, 16, 1 in the sequence listing
Oxidoreductase gene having the nucleotide sequence shown in 8 or 20.
選ばれた少なくとも1つのオリゴヌクレオチドをプライ
マーとして用いたポリメラーゼ連鎖反応により得られ、
配列表の配列番号6、8、11、13、15、17、1
9または21に示したアミノ酸配列をコードする酸化還
元酵素遺伝子。9. obtained by polymerase chain reaction using at least one oligonucleotide selected from claims 1 Symbol placement of oligonucleotides as primers,
Sequence ID Nos. 6, 8, 11, 13, 15, 17, 1 in the sequence listing
An oxidoreductase gene encoding the amino acid sequence shown in 9 or 21.
ドされた酸化還元酵素。 10. Coat the gene according to claim 8 or 9
De redox enzyme.
する組換えベクター。11. A recombinant vector containing the gene according to claim 8 or 9 .
1記載の組換えベクター。12. The method of claim 1 vector is pUC19
The recombinant vector according to 1 .
クターにより形質転換された形質転換体。13. transformant transformed with the recombinant vector of claim 11 or 12 wherein.
載の形質転換体。14. The transformant according to claim 13 , wherein the host cell is a microorganism.
の形質転換体。15. The transformant according to claim 13 , wherein the microorganism is Escherichia coli.
載の方法で得られる酸化還元酵素遺伝子含有形質転換体
を培養し、培養物から酸化還元酵素を採取することを特
徴とする酸化還元酵素の製造方法。16. The oxidoreductase gene-containing transformant obtained by the method according to claim 2 , 3 , 4 , 5 , 6 or 7 is cultured, and the oxidoreductase is collected from the culture. Method for producing oxidoreductase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000306503A JP3518501B2 (en) | 2000-10-05 | 2000-10-05 | Oxidoreductase gene, cloning of the gene and method for producing the enzyme |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000306503A JP3518501B2 (en) | 2000-10-05 | 2000-10-05 | Oxidoreductase gene, cloning of the gene and method for producing the enzyme |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002112783A JP2002112783A (en) | 2002-04-16 |
JP3518501B2 true JP3518501B2 (en) | 2004-04-12 |
Family
ID=18787186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000306503A Expired - Fee Related JP3518501B2 (en) | 2000-10-05 | 2000-10-05 | Oxidoreductase gene, cloning of the gene and method for producing the enzyme |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3518501B2 (en) |
-
2000
- 2000-10-05 JP JP2000306503A patent/JP3518501B2/en not_active Expired - Fee Related
Non-Patent Citations (4)
Title |
---|
Chemistry Letters, 1985, Vol.8, p.1111−1112 |
Chemistry Letters, 1988, Vol.7, p.1191−1192 |
Gene, 1997, Vol.189, p.213−219 |
J.Bacteriol., 1991, Vol.173, No.17, p.5385−5395 |
Also Published As
Publication number | Publication date |
---|---|
JP2002112783A (en) | 2002-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11514530A (en) | (2.5-DKG) Various improved variants of reductase | |
US6242234B1 (en) | Mutants of formate dehydrogenase from Candida boidinii, new gene sequences encoding these and use of the new formate dehydrogenases | |
EP1174499B1 (en) | Novel amidase gene | |
JP3518501B2 (en) | Oxidoreductase gene, cloning of the gene and method for producing the enzyme | |
JP4880859B2 (en) | Novel carbonyl reductase, its gene, and its use | |
JPH0587234B2 (en) | ||
JP2003502021A (en) | Epoxide hydrolase of Aspergillus origin | |
IE912083A1 (en) | An oxido reductase enzyme system obtainable from p.¹chrysogenum, the set of genes encoding the same and the use¹of oxido reductase enzyme systems or genes encoding the same¹for increasing antibiotic production | |
US7198932B1 (en) | Gdp-4-keto-6-deoxy-d-mannose-3,5-epimerase-4-reductase gene derived from arabidopsis thaliana | |
JPH07108225B2 (en) | D-amino acid oxidase gene | |
JP3496640B2 (en) | Oxidoreductase, gene encoding the enzyme, transformant containing the enzyme gene, and method for producing the enzyme | |
JP3549551B2 (en) | S. DNA compound encoding riboflavin synthetase activity of cerevisiae and recombinant DNA expression vector | |
JP2002345469A (en) | Method for producing coenzyme q10 | |
JP3468216B2 (en) | Oxidoreductase, gene encoding the enzyme and cloning of the gene | |
US6214590B1 (en) | 2-aminothiazoline-4-carboxylate racemase and gene encoding therefor | |
JP2999954B2 (en) | Enzymatic production of 4-carbamoyl-1-β-D-ribofuranosyl-imidazolium-5-oleate | |
JPH02501260A (en) | Method for producing porcine growth hormone in yeast cells using synthetic genes | |
JP2023527107A (en) | Biocatalysts as core components of enzymatic catalytic redox systems for the biocatalytic reduction of cystine. | |
JP4069129B2 (en) | Novel amidase gene | |
JP3473985B2 (en) | Method for producing D-proline | |
JP4485081B2 (en) | DNA involved in the production of pravastatin and use thereof | |
JPH06253854A (en) | Production of nucleoside-phosphorylase according to recombinant dna technique | |
JPS63269986A (en) | Gene regulating unit and cloning developing system | |
JPH08103269A (en) | Base sequence of carbonyl reductase gene and method for utilizing the same | |
JP2003339385A (en) | New 3-hydroxybutyric acid dehydrogenase gene, method for producing the same enzyme, method for measuring ketone body by using the same enzyme and composition for measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040119 |
|
LAPS | Cancellation because of no payment of annual fees |