JP3512514B2 - Method for reducing deposits in electric smelting furnace - Google Patents
Method for reducing deposits in electric smelting furnaceInfo
- Publication number
- JP3512514B2 JP3512514B2 JP09145195A JP9145195A JP3512514B2 JP 3512514 B2 JP3512514 B2 JP 3512514B2 JP 09145195 A JP09145195 A JP 09145195A JP 9145195 A JP9145195 A JP 9145195A JP 3512514 B2 JP3512514 B2 JP 3512514B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- furnace
- raw material
- slag
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Iron (AREA)
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は、酸化物を主とする原料
を溶解,還元し、生成する溶融金属を精錬して金属を回
収する際、電気製錬炉の炉壁に付着するZn等を主体と
した付着物を低減する方法に関する。BACKGROUND OF THE INVENTION The present invention relates to Zn, etc., which adheres to the furnace wall of an electric smelting furnace when a raw material mainly containing an oxide is dissolved and reduced, and a molten metal produced is refined to recover the metal. The present invention relates to a method of mainly reducing the amount of deposits.
【0002】[0002]
【従来の技術】高炉,電気炉,転炉等が稼動している精
錬所では、原料前処理工程,製錬炉内への原料供給時,
製錬炉の運転中等に金属分を含むダストが多量に発生す
る。また、表面処理ラインを備えた工場では、廃酸,廃
液処理工程や用水再生設備においても多量のスラッジが
発生する。ダスト,スラッジ等を、抵抗加熱型の電極埋
没式電気炉等の電気製錬炉で装入原料として使用し、合
金を溶製することが知られている。この種の電気炉を安
定した条件下で操業するため、たとえば特公昭63−2
5277号公報は、電極外周に絶縁スリーブを取り付
け、炉内方向に電力を供給している。また、特開平4−
61053号公報では、カラミと称される溶融酸化物の
組成を一定範囲内に維持し、アンチモン酸化物を安定条
件下で還元している。更に、特公昭53−33937号
公報では、籾殻を添加することにより装入原料の荷下が
りを安定化させ、原料の棚吊り等を防止している。2. Description of the Related Art In a smelter where blast furnaces, electric furnaces, converters, etc. are in operation, a raw material pretreatment process, at the time of supplying raw materials into the smelting furnace,
A large amount of dust containing metal is generated during operation of the smelting furnace. In addition, in a factory equipped with a surface treatment line, a large amount of sludge is generated in the waste acid / waste liquid treatment process and the water recycling facility. It is known to use dust, sludge or the like as a charging raw material in an electric smelting furnace such as a resistance heating type electrode burying type electric furnace to melt an alloy. In order to operate this type of electric furnace under stable conditions, for example, Japanese Patent Publication No. 63-2
In Japanese Patent No. 5277, an insulating sleeve is attached to the outer circumference of the electrode to supply electric power in the furnace direction. In addition, JP-A-4-
In Japanese Patent No. 61053, the composition of molten oxide called karami is maintained within a certain range, and antimony oxide is reduced under stable conditions. Further, in Japanese Patent Publication No. 53-33937, rice husks are added to stabilize the unloading of the charging raw material and prevent the raw material from hanging.
【0003】[0003]
【発明が解決しようとする課題】製鋼ダストや廃酸スラ
ッジを多量に含むスラグを多量に生成する電気製錬炉で
は、スラグ組成の変動が炉内抵抗に大きく影響する。そ
の結果、電極が浮上した場合、原料装入口付近が局部的
に加熱され、付着物の焼付きや堆積によって原料装入口
が狭められることがある。このような状態が続くと、ま
すます原料装入口の電極から付着物までの距離(以下、
プール幅という)が近くなり、原料の供給が困難にな
る。そのため、操業を中断し、付着物を機械的に除去す
るポーキングによって炉口を広げる作業が必要になり、
生産性を著しく低下させる。悪化した炉況が更に継続す
ると、炉内溶融域への電力供給が不足する。その結果、
炉内の温度が低下傾向を示し、Znを主とする融点の高
い化合物が次第に炉の内壁に付着,堆積していく。その
ため、炉内の有効容積が狭くなり、電気製錬炉が本来も
つ生産能力が発揮できなくなる。本発明は、このような
問題を解消すべく案出されたものであり、電極位置に応
じて電力負荷を制御することにより、付着物を抑制しな
がら、高生産性で電気炉を操業することを目的とする。In an electric smelting furnace that produces a large amount of slag containing a large amount of steelmaking dust and waste acid sludge, fluctuations in the slag composition greatly affect the resistance in the furnace. As a result, when the electrode floats, the vicinity of the raw material inlet may be locally heated, and the raw material inlet may be narrowed due to seizure or deposition of deposits. If such a state continues, the distance from the electrode at the raw material inlet to the deposit (hereinafter,
It becomes difficult to supply the raw material because the pool width) becomes closer. Therefore, it is necessary to suspend the operation and open the furnace opening by poking to mechanically remove the deposits.
Remarkably reduces productivity. If the deteriorated furnace condition continues, the power supply to the melting area in the furnace will be insufficient. as a result,
The temperature in the furnace tends to decrease, and a compound having a high melting point, mainly Zn, gradually adheres to and deposits on the inner wall of the furnace. Therefore, the effective volume in the furnace becomes narrow, and the original production capacity of the electric smelting furnace cannot be exhibited. The present invention has been devised to solve such a problem, and controls an electric load according to the electrode position to operate an electric furnace with high productivity while suppressing deposits. With the goal.
【0004】[0004]
【課題を解決するための手段】本発明は、その目的を達
成するため、製鋼ダスト及び廃酸スラッジを合計で40
%以上含む酸化物原料を溶解・還元してNi,Cr含有
合金を回収する電気製錬炉において、炉の深さをH(m
m),通電開始時と通電終了時の電極先端位置の差をS
とするとき、通電中では電極の先端位置が0.75×H
以下となるように電力負荷を調整し、更に電極の先端位
置が0.75×H以下であるときS≦0.35×Hとな
るように電力負荷を調整することを特徴とする。本発明
に従った電気炉操業では、次のアクションを操業中に1
回又は複数回繰り返すことが好ましい。
・ 電極の先端位置が0.75×H以下に維持できる条
件下で、更に炉底〜電極間の電圧がタップ電圧の35〜
45%となるように電力負荷を調整するアクション
・ ダスト発生量の経時変化がなくなるように電力負荷
を調整するアクション
・ スラグの電気伝導度を測定し、測定結果に基づきス
ラグの電気伝導度が0.8〜1.7Ω-1/cmになるよ
うにスラグ成分含有原料を供給するアクション
・ コークス原単位が250〜320kg/トン−メタ
ルになるように外装コークス供給量を調整するアクショ
ン
本発明は、高炉型電気炉,低炉型電気炉等の電気製錬
炉、特にゼーダベルグ式自焼成電極を備えた電気炉に適
した操業方法である。更に、粉状原料のインジェクショ
ン用羽口を炉体側面の溶融域レベルに備えたシャフトタ
イプの電気炉を使用するとき、効果的である。In order to achieve the object, the present invention provides a total of 40 steelmaking dust and waste acid sludge.
% In an electric smelting furnace for recovering Ni- and Cr-containing alloys by melting and reducing an oxide raw material containing at least 50% of the raw material.
m), the difference between the electrode tip position at the start of energization and at the end of energization is S
And the tip position of the electrode is 0.75 × H during energization.
The electric power load is adjusted so as to be as follows, and further, the electric power load is adjusted so that S ≦ 0.35 × H when the tip position of the electrode is 0.75 × H or less. In the electric furnace operation according to the present invention, the following actions are performed during operation:
It is preferable to repeat one or more times. -Under the condition that the tip position of the electrode can be maintained below 0.75 x H, the voltage between the furnace bottom and the electrode is 35 to 35 of the tap voltage.
Action to adjust the power load so that it becomes 45% Action to adjust the power load so that the amount of dust generation does not change with time Measure the electrical conductivity of the slag, and based on the measurement result, the electrical conductivity of the slag is 0 Action to supply raw material containing slag component so as to be 0.8 to 1.7 Ω −1 / cm Action to adjust external coke supply so that the basic unit of coke is 250 to 320 kg / ton-metal The operation method is suitable for an electric smelting furnace such as a blast furnace type electric furnace and a blast furnace type electric furnace, particularly for an electric furnace equipped with a Zedaberg type self-baking electrode. Further, it is effective when using a shaft type electric furnace in which tuyere for injection of powdery raw material is provided at the melting zone level on the side surface of the furnace body.
【0005】[0005]
【作用】製鋼工場で発生するスクラップの再利用割合が
増加するに伴って、ダストやスラッジに含まれているZ
n等の含有量が増加する。本発明は、これらを原料とす
る電気製錬炉内で付着物が増加する現象を調査する過程
で得られた知見を基にして完成された操業方法である。
付着物増加の原因としては、何らかの操業状態の変化に
よって電極が浮上し、赤熱した電極により原料層上部、
すなわち炉口付近の原料や揮発付着したZn,ダスト等
が加熱によって強度に固化し、棚吊り現象を発生させる
ことが掲げられる。この点では、電力負荷の変更によっ
て電極の位置を強制的に調整することにより電極の浮上
を抑制するとき、付着物の増加が抑制されるものと考え
られる。また、付着物を構成するダストの量を軽減する
ことによっても、付着物の増加が抑制される。一方、電
極の変動は、原料の組成変動等によって炉内抵抗に変化
が生じることに由来するものと推察される。そこで、炉
内抵抗に直接影響するコークスの供給量及びスラグの電
気伝導度を適正範囲に維持することにより、電極の変動
が抑えられる。[Operation] As the recycling rate of scrap generated in steelmaking plants increases, Z contained in dust and sludge increases.
The content of n and the like increases. The present invention is an operating method completed based on the knowledge obtained in the process of investigating the phenomenon that deposits increase in an electric smelting furnace using these as raw materials.
The cause of the increase in the deposits is that the electrode floats due to some change in the operating state, and the red-hot electrode causes the upper part of the raw material layer,
That is, it is mentioned that the raw materials near the furnace mouth, Zn volatilized and adhered, dust, and the like solidify strongly by heating, causing a hanging phenomenon. From this point, it is considered that the increase of deposits is suppressed when the floating of the electrode is suppressed by forcibly adjusting the position of the electrode by changing the power load. Further, by reducing the amount of dust that constitutes the adhered matter, the increase of the adhered matter is suppressed. On the other hand, it is speculated that the variation of the electrode is caused by the variation of the resistance inside the furnace due to the variation of the composition of the raw material. Therefore, by maintaining the supply amount of coke and the electrical conductivity of slag, which directly affect the resistance in the furnace, within appropriate ranges, fluctuations of the electrodes can be suppressed.
【0006】これらの諸要因を系統的に制御することに
より、付着物生成の原因となる電極浮上によるプール加
熱,ダスト発生量の増加,炉内抵抗の不安定化等を防止
し、電気製錬炉の内壁に付着しがちなZn等の付着・堆
積を抑制し、ダスト,スラッジ等の酸化物原料を効率よ
く処理することが可能となる。以下、図1のフローを参
照しながら、本発明をその作用と共に具体的に説明す
る。本発明に従った電気炉操業では、たとえば図2に示
すように、側壁耐火物1及び炉底耐火物2で構築された
電気製錬炉を使用する。炉内には、電極3が配置されて
おり、電極3と炉壁との間に、原料装入口4から原料5
が装入される。原料5が抵抗加熱され、スラグ層6及び
メタル7が生成する。また、メタル7の上部には、還元
に必要なコークスベッド8が設けられる。精錬されたメ
タルは、適宜出銑口9から出銑される。炉壁の上部に
は、Zn等の付着物11が付着・堆積し易く、付着物の
凝着を防止するために冷却設備10を設けている。この
ような電気製錬炉において、メタル層7の底部と炉底耐
火物2の上部との境界を炉底とし、最大限装入した場合
の原料5の上面を原料層上面とする。炉底から原料層上
面位置までが炉の深さHであり、原料装入口の電極3〜
付着物11間の距離をプール幅Wとする。By systematically controlling these various factors, it is possible to prevent pool heating, increase in dust generation, destabilization of in-furnace resistance, etc. due to electrode levitation, which causes deposit formation, and prevent electric smelting. It becomes possible to suppress the adhesion and deposition of Zn, which tends to adhere to the inner wall of the furnace, and to efficiently process oxide raw materials such as dust and sludge. Hereinafter, the present invention will be specifically described together with its operation with reference to the flow chart of FIG. In the electric furnace operation according to the present invention, for example, as shown in FIG. 2, an electric smelting furnace constructed of a sidewall refractory 1 and a bottom refractory 2 is used. An electrode 3 is arranged in the furnace, and a raw material inlet 4 to a raw material 5 are provided between the electrode 3 and the furnace wall.
Is charged. The raw material 5 is resistance-heated, and the slag layer 6 and the metal 7 are produced. In addition, a coke bed 8 necessary for the reduction is provided above the metal 7. The refined metal is tapped from the tap hole 9 as appropriate. On the upper part of the furnace wall, a deposit 11 such as Zn easily deposits and accumulates, and a cooling facility 10 is provided to prevent the deposit from sticking. In such an electric smelting furnace, the boundary between the bottom of the metal layer 7 and the upper part of the furnace bottom refractory 2 is the furnace bottom, and the upper surface of the raw material 5 when charged to the maximum is the upper surface of the raw material layer. The depth H of the furnace is from the bottom of the furnace to the upper surface of the raw material layer.
The distance between the deposits 11 is the pool width W.
【0007】電極3の位置管理に関しては、電極没入深
さが炉底から上方へ75%×Hの高さ位置になるように
設定する。電極先端が75%×Hの高さ位置より上方に
上昇すると、炉内で抵抗加熱されている電極3自体の赤
熱化した電極部からの熱伝導によって、原料層上部の電
極3に近い部分の原料5や付着物11が加熱融着し、棚
吊り状態が発生し易くなる。また、付着物11への通電
によって、付着物11が加熱・焼結され、ポーキング不
能な強固なクラストを生成する場合もある。電極3の位
置が付着物11等に与える影響は、図3に示すように電
極先端位置が75%×H以上になるとプール幅Wの部分
の温度が急激に上昇することからも伺われる。また、通
電終了後のプール幅も、電極先端位置が75%×H以上
になると狭くなってきている。このことから、付着物を
増加させないためには、電極の先端位置を75%×H以
下にする必要があることが判る。電極3の先端が75%
×Hの高さ位置を超える場合には、図1のフローで示す
ように電力負荷を低減させる。電流制御の場合には、タ
ップ電圧の下方切り替えにより電極3を深く没入させる
ことができ、電極3の先端位置を低下することができ
る。Regarding the position management of the electrode 3, the electrode immersion depth is set so as to be located at a height of 75% × H above the furnace bottom. When the tip of the electrode rises above the height of 75% × H, the heat conduction from the red-heated electrode portion of the electrode 3 itself, which is resistance-heated in the furnace, causes a portion of the upper portion of the raw material layer close to the electrode 3 The raw material 5 and the deposit 11 are heated and fused, and the hanging state is likely to occur. Further, the energization of the deposit 11 may heat and sinter the deposit 11 to form a strong crust that cannot be poked. The influence of the position of the electrode 3 on the deposit 11 and the like can also be seen from the fact that the temperature of the pool width W portion sharply rises when the electrode tip position becomes 75% × H or more as shown in FIG. Also, the pool width after the end of energization is becoming narrower when the electrode tip position becomes 75% × H or more. From this, it is understood that the tip position of the electrode needs to be 75% × H or less in order to prevent the increase of the deposit. 75% of the tip of electrode 3
When it exceeds the height position of × H, the power load is reduced as shown in the flow of FIG. In the case of current control, it is possible to deeply immerse the electrode 3 by lowering the tap voltage and lower the tip position of the electrode 3.
【0008】電極3の先端が75%×Hの高さ位置より
低い場合には、次に、1チャージ内における電極位置の
長期的な管理として電極3のストローク管理に進行す
る。なお、ストロークSとは、通電開始時及び通電終了
時における電極3の先端位置の差である。本発明者等の
調査・研究によるとき、ストロークが35%×H以下で
あるとき付着物を軽減した安定操業が可能になることが
判った。通常の操業では、通電開始時に電極3は下限位
置にあり、通電終了時には上限位置にある。そして、通
電時間をTとすると、電極3の上昇速度は通電中に0.
35×H/Tの速度で一定することが理想的である。こ
の条件は、生産性を上げるために最低限必要な電力負荷
の維持、効率を低下させるアーク発生の防止、更にゼー
ダベルグ式自焼成電極では電極ペーストの焼成過程(溶
融域又は反応域に達するまでに生じる軟化,焼成反応に
適切な熱伝導等)を達成する上でも最適条件である。When the tip of the electrode 3 is lower than the height position of 75% × H, the stroke management of the electrode 3 is proceeded as a long-term management of the electrode position within one charge. The stroke S is the difference between the tip positions of the electrodes 3 at the start and end of energization. According to the investigations and studies by the present inventors, it has been found that stable operation with reduced deposits is possible when the stroke is 35% × H or less. In normal operation, the electrode 3 is at the lower limit position at the start of energization and at the upper limit position at the end of energization. When the energization time is T, the ascending speed of the electrode 3 is 0.
Ideally, it should be constant at a speed of 35 × H / T. This condition is to maintain the minimum power load required to improve productivity, to prevent the occurrence of arcs that reduce efficiency, and for the Zedaberg self-baking electrode, the firing process of the electrode paste (before reaching the melting or reaction zone). It is also the optimum condition for achieving the softening that occurs, heat conduction appropriate for the firing reaction, etc.).
【0009】ストロークが35%×H以上になると、操
業中のある時点で電極3の上昇速度が0.35×H/T
より大きくなる。この場合には、炉内に急激な変化が生
じ易くなる。そこで、ストロークが35%×Hより大き
くなると推定されたときには、電力負荷を軽減する。ス
トロークを推定する方法としては、たとえばその時点ま
での電極3の変位と通電時間又は投入電力から電極3の
変動速度を算出し、算出結果に基づいてその操業の目標
通電時間又は目標投入電力時の最終的な変位を推定する
方法がある。電極3の先端位置及びストロークが共に適
正範囲にあるとき、そのままの操業条件を維持し、一定
時間経過後に同様な制御を繰り返す。また、電極位置を
管理すると共に、炉底〜電極間の電圧(以下、炉底間電
圧という)及びダスト発生量を管理し、粉粒状原料の強
度を高めることにより付着物の原因となるダスト発生量
を低減する。一般に、粉粒状原料を製団する場合、その
強度は、揮発物質や水分の含有量,バインダーの効力等
に影響されるが、大半は使用原料の粒度分布によって定
まる。高強度に製団する上では、原料の粒度分布が適度
に広がっていることが好ましい。しかし、本発明が対象
とする原料では、製鋼ダストや廃酸スラッジ等が多いた
め、粒度分布はかなり細かい方に偏ったものになってお
り、高強度のペレット,ブリケット等に製団することが
困難である。When the stroke exceeds 35% × H, the ascending speed of the electrode 3 is 0.35 × H / T at some point during operation.
Get bigger. In this case, a rapid change is likely to occur in the furnace. Therefore, when it is estimated that the stroke is larger than 35% × H, the power load is reduced. As a method of estimating the stroke, for example, the fluctuation speed of the electrode 3 is calculated from the displacement of the electrode 3 and the energization time or the applied power until that time, and the target energization time of the operation or the target applied power is calculated based on the calculation result. There is a method of estimating the final displacement. When both the tip position and the stroke of the electrode 3 are within the proper range, the operating condition is maintained as it is, and the same control is repeated after a lapse of a certain time. In addition to controlling the electrode position, the voltage between the furnace bottom and the electrode (hereinafter referred to as the voltage between the furnace bottom) and the amount of dust generated are also managed, and the strength of the powdery granular material is increased to generate dust that causes deposits. Reduce the amount. Generally, when a powdery or granular raw material is produced, its strength is affected by the contents of volatile substances and water, the potency of the binder, etc., but most of it is determined by the particle size distribution of the raw material used. From the standpoint of high strength production, it is preferable that the particle size distribution of the raw material be appropriately wide. However, in the raw material targeted by the present invention, since there are many steelmaking dusts, waste acid sludges, etc., the particle size distribution is biased toward the finer side, and it is possible to make high strength pellets, briquettes, etc. Have difficulty.
【0010】一般的には、強度向上に有効なバインダー
の選択や高性能製団機の使用等により、ブリケットの熱
間強度を向上させることができる。しかし、ダスト,ス
ラッジ等を原料とする場合、経済的又は設備的な限界か
ら、ブリケットの強度向上だけでダスト発生量を抑制す
ることは困難である。そこで、本発明者等は、操業要因
の一つである炉底間電圧がダスト発生に及ぼす影響に着
目した。炉底間電圧とダスト発生量との関係を示す図4
にみられるように、タップ電圧の35〜45%の範囲内
に炉底間電圧を維持するとき、ダスト発生量を抑えるこ
とができる。炉底間電圧をタップ電圧の35%未満にす
ると、ブリケットの強度にもよるがダスト化の程度があ
まり変わらないものの、電力原単位が急激に悪化(上
昇)する。ブリケットの強度が高い場合、炉底間電圧が
タップ電圧の35〜45%の範囲内でも高い電圧で操業
できるが、強度が低い場合には適度に低い電圧で操業す
る。図4では、ブリケットの強度は、A→B→Cの順に
高くなっている。そこで、そのときのブリケットの強度
に応じ、或いはその時点での付着物の生成状況に応じ
て、生産性を落とさないように最大限印加可能なタップ
電圧に調整する。Generally, the hot strength of the briquette can be improved by selecting a binder effective for improving the strength and using a high-performance brazing machine. However, when dust, sludge, or the like is used as a raw material, it is difficult to suppress the amount of dust generated only by improving the strength of the briquette because of economical or facility limitations. Therefore, the inventors of the present invention focused on the influence of the bottom-bottom voltage, which is one of the operating factors, on dust generation. FIG. 4 showing the relationship between the bottom-bottom voltage and the amount of dust generated.
As can be seen from the above, when the furnace bottom voltage is maintained within the range of 35 to 45% of the tap voltage, the dust generation amount can be suppressed. When the voltage between the furnace bottoms is less than 35% of the tap voltage, although the degree of dust formation does not change so much depending on the strength of the briquette, the power consumption rate rapidly deteriorates (increases). When the strength of the briquette is high, the furnace bottom voltage can be operated at a high voltage even within the range of 35 to 45% of the tap voltage, but when the strength is low, it is operated at an appropriately low voltage. In FIG. 4, the strength of the briquette increases in the order of A → B → C. Therefore, according to the strength of the briquette at that time, or according to the generation state of the deposits at that time, the tap voltage that can be applied to the maximum is adjusted so as not to reduce the productivity.
【0011】何れの場合でも、炉底間電圧がタップ電圧
の45%以上になると、ダスト化が著しく、付着物増加
の原因となるので、電力負荷を低減する。また、一方で
は、実際のダスト発生量を管理しておき、ダスト発生量
が増加傾向にある場合には電力負荷を軽減し、逆にダス
ト発生量が減少傾向にある場合にはブリケットが強度的
に余裕があると判断して能力向上面から電力負荷を増加
する制御を行う。電力負荷の増減幅は、各種管理値の目
標範囲からのズレの程度によって決められる。この制御
は一定時間経過ごとに行われるので、急激な炉況変化を
避けるように、炉況を観察しながら可能な限り少しずつ
変更していくことが好ましい。本発明では、更に不安定
な電極位置変化を防止し、より効果的に電力負荷を制御
するため、スラグの電気伝導度及びコークス供給量を制
御する。In any case, when the voltage between the furnace bottoms is 45% or more of the tap voltage, dusting is remarkable, which causes an increase in deposits, so that the power load is reduced. On the other hand, on the other hand, the actual amount of dust generated is managed, and if the amount of dust generated is increasing, the power load is reduced, and conversely, if the amount of dust generating is decreasing, the briquette is strong. When it is judged that there is a margin, the control to increase the power load is performed from the viewpoint of improving the capacity. The range of increase / decrease in power load is determined by the degree of deviation of various control values from the target range. Since this control is performed at regular time intervals, it is preferable to change the temperature as little as possible while observing the furnace condition so as to avoid a sudden change in the furnace condition. In the present invention, the electrical conductivity of the slag and the coke supply amount are controlled in order to prevent the unstable electrode position change and more effectively control the power load.
【0012】付着物を構成する物質の一つは、吹上げに
よって炉内から飛散したメタルやスラグである。そこ
で、吹上げの原因となる電極の急激な変動をスラグ組成
やコークス供給量の適正化によって安定化するとき、付
着物の生成が抑制される。スラグの電気伝導度は、電気
伝導度の実測値実測に基づきスラグの電気伝導度が0.
8〜1.7Ω-1/cmとなるようにスラグ成分或いはス
ラグ成分含有原料を供給することにより調整される。ほ
ぼ一定の操業条件下においては、スラグの比電導度と炉
壁温度及び吹上げ回数との間に図5に示す関係が成立し
ている。図5から明らかなように、スラグの電気伝導度
を0.8〜1.7Ω-1/cmの範囲に維持するとき、吹
上げ回数が減少し、炉壁温度が低くなっており、付着物
の生成が抑制されることが判る。One of the substances constituting the deposit is metal or slag scattered from the inside of the furnace by blowing up. Therefore, when the abrupt fluctuation of the electrode that causes the blowing up is stabilized by optimizing the slag composition and the coke supply amount, the generation of deposits is suppressed. Regarding the electrical conductivity of the slag, the electrical conductivity of the slag is 0.
It is adjusted by supplying the slag component or the raw material containing the slag component so as to be 8 to 1.7 Ω −1 / cm. Under almost constant operating conditions, the relationship shown in FIG. 5 is established between the specific electric conductivity of slag, the furnace wall temperature, and the number of times of blowing. As is clear from FIG. 5, when the electric conductivity of the slag is maintained in the range of 0.8 to 1.7 Ω −1 / cm, the number of times of blowing up is reduced, the furnace wall temperature is low, and the deposit It can be seen that the generation of is suppressed.
【0013】スラグの電気伝導度が1.7Ω-1/cmよ
り大きくなると、電極が浮上し、原料の棚吊り等が発生
し易くなる。その結果、溶融域に原料が異常落下し、吹
上げが発生し易くなる。また、操業後期では、前述した
電極先端位置を75%×H以下にすることが困難になる
ばかりでなく、抵抗加熱効率の低下によって炉内温度が
下がり、有効な炉内容積の維持が困難になり、電力原単
位を低下させる。このような場合には、電気伝導度を下
げる、換言すれば抵抗を大きくするように、SiO2 や
Al2 O3 等のスラグ成分Bを供給する。その結果、炉
内抵抗が大きくなり、電流制御の場合には一定の電流を
維持するために電極が深く没入することにより、炉況が
回復される。When the electric conductivity of the slag is larger than 1.7 Ω -1 / cm, the electrode floats, and the hanging of the raw material is likely to occur. As a result, the raw material drops abnormally in the melting region, and blowing up is likely to occur. Further, in the latter stage of operation, not only it becomes difficult to set the electrode tip position to 75% × H or less as described above, but also the temperature inside the furnace decreases due to the decrease in resistance heating efficiency, making it difficult to maintain an effective inside volume. And reduce the power consumption rate. In such a case, the slag component B such as SiO 2 or Al 2 O 3 is supplied so as to reduce the electric conductivity, in other words, increase the resistance. As a result, the resistance in the furnace increases, and in the case of current control, the electrodes are deeply immersed in order to maintain a constant current, so that the furnace condition is restored.
【0014】逆に、スラグの電気伝導度が0.8Ω-1/
cmを下回ると、一定の電力負荷を維持する場合には電
極を深く潜り込ませる必要がある。そのため、電極はメ
タル層にかなり接近し、僅かな炉況変化でも吹上げ等が
異常に発生し易くなる。このような場合には、CaO,
CaF2 等のスラグ成分Aを供給して、スラグの電気伝
導度を上げる。これにより、炉内抵抗が低下し、電流制
御の場合には一定の電流を維持するために電極が適度に
浮上し、炉況が回復される。炉内抵抗は、コークス供給
量によっても制御できる。この場合、コークス原単位が
250〜320kg/トン−メタルとなるように、コー
クス供給量を制御する。良好な導電性物質であるコーク
スは、その量が増加すると炉体抵抗を下げる方向に作用
し、電極を浮上させる傾向を呈する。また、コークス量
が少ないと、炉内抵抗を上昇させる方向に作用し、電極
を没入させる傾向を呈する。具体的には、コークス供給
量の増減は、図6に示すように、スラグの電気伝導度と
同様に電極挙動に影響する。On the contrary, the electrical conductivity of the slag is 0.8 Ω -1 /
Below cm, it is necessary to dig deep into the electrode to maintain a constant power load. For this reason, the electrode is very close to the metal layer, and even a slight change in the furnace condition is likely to cause abnormal blow-up. In such cases, CaO,
The slag component A such as CaF 2 is supplied to increase the electric conductivity of the slag. As a result, the resistance in the furnace is lowered, and in the case of current control, the electrode is appropriately floated to maintain a constant current, and the furnace condition is restored. The in-furnace resistance can also be controlled by the amount of coke supplied. In this case, the coke supply amount is controlled so that the basic unit of coke is 250 to 320 kg / ton-metal. Coke, which is a good conductive material, tends to lower the resistance of the furnace body when its amount increases, and tends to float the electrode. Further, when the amount of coke is small, the coke acts in the direction of increasing the resistance in the furnace and tends to immerse the electrode. Specifically, the increase / decrease in the supply amount of coke affects the electrode behavior as well as the electrical conductivity of the slag, as shown in FIG.
【0015】コークスは、炉内に供給した量から炉内で
還元反応に消費された量を引いた量が炉内に存在する。
コークスの残存量が多いと、炉内抵抗が低下した状態に
なり、電極は浮上傾向を示す。逆に残存量が少ないと、
炉内抵抗は上昇した状態になり、電極は没入傾向を示
す。したがって、コークス原単位が250〜320kg
/トン−メタルの範囲から外れるとき、スラグの電気伝
導度による場合と同様に吹上げ頻度や電力効率等に影響
が現れる。そこで、ブリケット内装コークス量及び外装
コークス供給量から算出されるコークス原単位に基づ
き、コークス原単位が250〜320kg/トン−メタ
ルの範囲に維持されるように外装コークスの供給量を調
整する。コークスは、内装及び外装の両法で供給され
る。外装法では、通常の原料装入にみられるように、装
入原料のレベル低下に応じて追装する。使用されるコー
クスは、粉状,粒状,塊状等の種々の形状があるが、炉
の特性や主原料及び副原料の粒度に応じて最適な形状の
コークスを選択する。内装法では、最適な量及び粒度の
コークスをバインダー等と共に酸化物原料に配合して混
練した後、ブリケット,ペレット等に製団したものを使
用する。ブリケット,ペレット等は、必要に応じて乾
燥,焼結等の熱処理が施され、或いは数日間の養生期間
を置いてある程度の強度を確保したものが装入原料とさ
れる。Coke is present in the furnace in an amount obtained by subtracting the amount consumed in the reduction reaction in the furnace from the amount supplied in the furnace.
When the amount of remaining coke is large, the resistance in the furnace is lowered and the electrode tends to float. Conversely, if the remaining amount is small,
The resistance in the furnace rises and the electrodes tend to sink. Therefore, the basic unit of coke is 250 to 320 kg.
When it goes out of the range of / ton-metal, the blowing frequency, the power efficiency, etc. are affected as in the case of the electric conductivity of the slag. Therefore, based on the coke basic unit calculated from the briquette internal coke amount and the external coke supply amount, the external coke supply amount is adjusted so that the coke basic unit is maintained in the range of 250 to 320 kg / ton-metal. Coke is supplied both internally and externally. In the exterior method, additional charging is performed according to the decrease in the level of the charged raw material, as seen in normal charging of raw materials. The coke used has various shapes such as powder, granules, and lumps, and the coke having the optimum shape is selected according to the characteristics of the furnace and the particle sizes of the main and auxiliary raw materials. In the interior method, a coke having an optimum amount and particle size is mixed with an oxide raw material together with a binder and kneaded, and then briquettes, pellets and the like are formed into an aggregate. The briquette, pellets and the like are subjected to heat treatment such as drying and sintering as necessary, or those having a certain degree of strength after a curing period of several days are used as the charging raw material.
【0016】更に、ここで電力負荷制御に戻り、電力負
荷を低減した場合、外装コークス量の低減及び/又は電
気伝導度を低下させるスラグ成分の供給を制御する。そ
して、スラグの電気伝導度及びコークス原単位が適性範
囲になる場合、電極位置管理に進む。すなわち、電力負
荷制御によって電力負荷を低下させた場合、炉の生産性
の面からするとマイナスの方向に炉況が変わっている。
生産性を回復するためには、できるたけ元の電力負荷に
戻す必要がある。そこで、元の電力負荷まで再度増大さ
せても電極位置が適正適性範囲を外れないように、スラ
グの電気伝導度の低下及びコークス供給量の低減によっ
て炉内抵抗を増大させる。したがって、スラグの電気伝
導度及びコークス原単位を調整しても、最終的には図1
に示したように電極位置管理系統に戻り、電極位置を適
正化するために電力負荷が制御される。このようにし
て、本発明では、付着物生成の原因となる炉内抵抗の不
安定化による電極浮上や吹上げ等の急激な炉況変化が防
止され、結果としでプール部の過熱や,ダスト発生量の
増加等が抑制される。Further, returning to the electric power load control here, when the electric power load is reduced, the supply of the slag component that reduces the amount of exterior coke and / or reduces the electrical conductivity is controlled. Then, when the electrical conductivity of the slag and the basic unit of coke are within the appropriate range, the process proceeds to electrode position management. That is, when the electric power load is reduced by the electric power load control, the furnace condition changes in the negative direction from the viewpoint of the productivity of the furnace.
In order to recover productivity, it is necessary to return to the original power load as much as possible. Therefore, the resistance in the furnace is increased by lowering the electrical conductivity of the slag and reducing the coke supply amount so that the electrode position does not deviate from the proper appropriate range even if it is increased again to the original power load. Therefore, even if the electrical conductivity of the slag and the unit of coke are adjusted, the result is as shown in Fig. 1.
As shown in FIG. 6, the electrode load control system is returned to, and the power load is controlled to optimize the electrode position. In this way, according to the present invention, a sudden change in the furnace condition such as electrode floating or blowing due to the instability of the resistance in the furnace that causes the generation of deposits is prevented, and as a result, overheating of the pool portion and dust The increase in the amount generated is suppressed.
【0017】以上の対策によっても、付着物の生成や電
極の浮上が生じることがある。そこで、最終的な手段と
しては、たとえば原料層上部の付着物がポーキングによ
っても除去困難な生成物にならないように、焼結反応を
未然に防止する。最も効果的な方法は、図2に示すよう
に原料層上部の付着物融着帯に相当する電極3と付着物
11の距離が最も狭くなる部分に、炉壁に埋め込まれる
冷却用パイプ等の冷却設備10を設けておく。そして、
付着物11が赤熱化し始める温度(約400℃前後)、
望ましくは350℃に近付いたとき、冷却設備10を作
動させて焼結・固化反応を防止する。これにより、付着
物11を機械的に除去することが容易になる。或いは、
埋め込み式の冷却設備10に替えて、赤熱化し易い部分
に冷却ガスを吹き付けることにより焼結反応を防止する
ことも可能である。このようにして、一度、ポーキング
によって付着物11を除去して炉内を広げておくとき、
付着・成長が進行し難い良好な状態が維持される。Even with the above measures, the deposits may be generated and the electrodes may float. Therefore, as a final measure, for example, the sintering reaction is prevented in advance so that the deposit on the upper part of the raw material layer does not become a product that is difficult to remove even by poking. The most effective method is to use a cooling pipe or the like embedded in the furnace wall at the portion where the distance between the electrode 3 and the deposit 11 corresponding to the deposit fusion zone on the upper part of the raw material layer is the shortest, as shown in FIG. The cooling equipment 10 is provided. And
The temperature at which the deposit 11 begins to turn red (around 400 ° C),
Desirably, when the temperature approaches 350 ° C., the cooling equipment 10 is operated to prevent the sintering / solidification reaction. This facilitates mechanical removal of the deposit 11. Alternatively,
It is also possible to prevent the sintering reaction by spraying a cooling gas to a portion which is easily turned into red heat instead of the embedded cooling equipment 10. In this way, once the deposit 11 is removed and the inside of the furnace is expanded by poking,
A good condition is maintained in which adhesion and growth are difficult to proceed.
【0018】[0018]
実施例1:(チャージNo.10〜12)
各種ステンレス鋼を生産する製鋼工場で発生した電気炉
ダスト,湿式回収した転炉ダスト,スケール等をフィル
タプレスで脱水し、内燃式キルンで乾燥処理した。ま
た、ステンレス鋼帯の焼鈍酸洗によって生じたスケール
及び廃酸処理工程で沈澱凝集させて回収した水酸化物類
を同様に脱水・乾燥処理した。これらの製鋼ダスト及び
廃酸スラッジを合計量で約60%含む酸化物原料にコー
クス及び高分子凝集剤を配合し、混練した後、ブリケッ
トに製団した。得られたブリケットを数日間養生した
後、原料装入レベルに冷却設備を設けたゼーダベルグ式
の電気製錬炉に供給して溶解した。通電中は、一定時間
当りの電極位置の変動幅を管理し、電極の先端位置が
0.75×Hを超えて上昇しないように且つ最終的に通
電開始から終了までの変化量が0.35×H以内に収ま
るように、電力負荷を調整した。ただし、この場合の制
御には、同時に炉底間電圧を管理し、更にダスト発生量
を15分間隔で管理することによる電力負荷の制御も並
行させた。すなわち、タップ電圧の45%を炉底間電圧
が超える場合、又はダスト発生量が増加傾向にある場合
には、タップ電圧を低減する方向に調整した。逆に、タ
ップ電圧の35%を炉底間電圧が下回る場合、又はダス
ト発生量が減少傾向にある場合には、タップ電圧を増加
する方向に調整した。Example 1 (Charge No. 10 to 12) Electric furnace dust generated in a steelmaking factory producing various stainless steels, wet-collected converter dust, scales, etc. were dehydrated by a filter press and dried by an internal combustion kiln. . Further, scales generated by annealing pickling of the stainless steel strip and hydroxides collected by precipitation aggregation in the waste acid treatment step were similarly dehydrated and dried. Coke and a polymer flocculant were mixed with an oxide raw material containing about 60% of the total amount of steelmaking dust and waste acid sludge, and the mixture was kneaded and then briquetted. After curing the obtained briquette for several days, the briquettes were supplied to and melted in a Zedaberg-type electric smelting furnace equipped with a cooling facility at a raw material charging level. During energization, the fluctuation range of the electrode position per constant time is managed so that the tip position of the electrode does not rise beyond 0.75 × H and the amount of change from the start to the end of energization is 0.35. The electric power load was adjusted so that it was within × H. However, in the control in this case, the voltage between the bottoms of the furnaces was controlled at the same time, and further, the control of the electric power load by controlling the dust generation amount at intervals of 15 minutes was performed in parallel. That is, when the furnace bottom voltage exceeds 45% of the tap voltage, or when the dust generation amount tends to increase, the tap voltage is adjusted to be reduced. On the contrary, when the furnace bottom voltage is lower than 35% of the tap voltage or when the dust generation amount tends to decrease, the tap voltage is adjusted to increase.
【0019】チャージNo.10の各種操業状況を、図7
に示す。通電開始から220分及び250分経過した時
点で、0.35×Hを下回る電極ストロークが推定され
たので、タップ電圧を低下した。また、180分経過し
た時点で炉底間電圧が35%以下に、210分経過した
時点で炉底間電圧が45%以上に達したので、それぞれ
の時点でタップ電圧を上昇又は下降させた。更に、23
0分経過時点でダスト発生量が減少し、250分経過時
点でダスト発生量が増加したので、それぞれの時点でタ
ップ電圧を上昇又は下降させた。このような操業条件下
で、3チャージ続けて操業した。その結果、表2に示す
ように、チャージNo.10〜12では、出銑量が8.3
〜8.6トン/チャージ,プール幅が350〜390m
m,電力原単位が1090〜1150KWH/トン−原
料であった。FIG. 7 shows various operating conditions of charge No. 10.
Shown in. At 220 and 250 minutes after the start of energization, an electrode stroke of less than 0.35 × H was estimated, so the tap voltage was lowered. Moreover, since the voltage between the bottoms of the furnace reached 35% or less after 180 minutes, and the voltage between the bottoms of the furnace reached 45% or more after 210 minutes, the tap voltage was increased or decreased at each time. Furthermore, 23
Since the dust generation amount decreased at 0 minutes and the dust generation amount increased at 250 minutes, the tap voltage was increased or decreased at each time. Under these operating conditions, the operation continued for 3 charges. As a result, as shown in Table 2, with the charge No. 10 to 12, the amount of tapped metal was 8.3.
~ 8.6 tons / charge, pool width 350 ~ 390m
m, electric power consumption rate was 1090 to 1150 KWH / ton-raw material.
【0020】実施例2:(チャージNo.13〜15)
基本的には実施例1と同様な電力負荷を制御して操業し
た。ただし、同時にスラグの電気伝導度及びコークス供
給量も制御した。スラグの電気伝導度制御では、15分
ごとに測定用プローブを炉内スラグ層に挿入してスラグ
の電気伝導度を測定し、測定結果から電気伝導度が0.
8〜1.7Ω-1/cmの範囲に収まるようにCaO又は
SiO2を供給した。このとき、電気伝導度の目標値と
測定値の差を塩基度の差異に変換し、そのときに推定さ
れる炉内スラグ量からその塩基度の差異をCaO又はS
iO2量に換算することにより、供給量を決定した。そ
して、15分間で可能な限り均一な供給速度となるよう
に、求められた供給量のCaO又はSiO2をプール幅
部に供給した。コークス供給量の制御では、コークスを
内装したブリケットの供給量及び通電操業中に供給する
外装コークスの量を管理し、常にコークス原単位を算出
し、コークス原単位が250〜320kg/トン−メタ
ルの範囲になるように外装コークスの供給量を決定し
た。Example 2: (Charge Nos. 13 to 15) Basically, the same electric power load as in Example 1 was controlled for operation. However, the electrical conductivity of slag and the amount of coke supplied were also controlled at the same time. In controlling the electrical conductivity of the slag, the measurement probe is inserted into the slag layer in the furnace every 15 minutes to measure the electrical conductivity of the slag.
CaO or SiO 2 was supplied so as to be in the range of 8 to 1.7 Ω −1 / cm. At this time, the difference between the target value and the measured value of the electric conductivity is converted into a difference in basicity, and the difference in basicity is calculated from the amount of slag in the furnace estimated at that time to CaO or S.
The supply amount was determined by converting the amount into iO 2 . Then, the obtained supply amount of CaO or SiO 2 was supplied to the pool width portion so that the supply rate was as uniform as possible in 15 minutes. In the control of the coke supply amount, the supply amount of the briquette containing the coke and the amount of the external coke supplied during the energization operation are managed, and the basic unit of the coke is constantly calculated. The basic unit of the coke is 250 to 320 kg / ton-metal The supply amount of exterior coke was determined so as to be within the range.
【0021】スラグの電気伝導度及びコークス供給量の
制御を、電力負荷の制御と同時に行った操業状況を図8
に示す。通電開始から200分経過した時点で電気伝導
度が1.7Ω-1/cm以上に、265分経過時点で0.
8Ω-1/cm以下になったため、それぞれの時点で電気
伝導度を下降させるようにSiO2 含有原料を、また電
気伝導度を上昇させるようにCaO含有原料を供給し
た。このような操業条件下で、3チャージ続けて操業し
た。その結果、表2に示すように、チャージNo.13〜
15では、出銑量が8.5〜8.7トン/チャージ,プ
ール幅が400〜405mm,電力原単位が1020〜
1040KWH/トン−原料であり、実施例1に比較し
て付着物量が少なくなっていた。FIG. 8 shows an operating condition in which the electric conductivity of the slag and the coke supply amount are controlled simultaneously with the control of the electric power load.
Shown in. The electric conductivity was 1.7 Ω −1 / cm or more at 200 minutes after the start of energization, and became 0.2 at 265 minutes.
Since it became 8 Ω −1 / cm or less, the SiO 2 -containing raw material was supplied so as to decrease the electric conductivity and the CaO-containing raw material was supplied so as to increase the electric conductivity at each time point. Under these operating conditions, the operation continued for 3 charges. As a result, as shown in Table 2, charge No. 13-
In No. 15, the tapping amount is 8.5 to 8.7 tons / charge, the pool width is 400 to 405 mm, and the power consumption rate is 1020 to 1020.
It was 1040 KWH / ton-raw material, and the amount of deposits was smaller than that in Example 1.
【0022】実施例3:(16〜18)
基本的には実施例2と同様な電力負荷を制御し、更にス
ラグの電気伝導度及びコークス供給量を制御しながら操
業した。ただし、実施例3では、電力負荷を低減する指
令を出力したとき、必ず外装コークス量の低減させ、及
び/又はスラグの電気伝導度を低下する成分を供給する
ように制御した。この場合の操業状況を図9に示す。通
電開始から190分,200分及び260分経過した時
点で、それぞれ炉底間電圧の上昇,ダスト発生量の増加
及び電極ストロークの上昇がみられたので、タップ電圧
を下降させた。その際、SiO2含有原料の供給及びコ
ークス供給量の低減を行った後、再びタップ電圧を上昇
させて、高生産性を維持した。実施例3では、実施例2
と同様に電力負荷,スラグの電気伝導度及びコークス供
給量を制御しているが、更に炉内抵抗を低下させるアク
ションを採っているため、電力負荷が高位に安定してい
る。したがって、炉内抵抗が上昇し、再び電力負荷を大
きくしても、電極の浮上,ダスト発生量の増加等が効果
的に抑制されている。その結果、表2にみられるよう
に、出銑量が8.8〜9.0トン/チャージ,プール幅
が410〜420mm,電力原単位が990〜1010
KWH/トン−原料となった。Example 3: (16-18) Basically, the same electric power load as in Example 2 was controlled, and the electric conductivity of the slag and the coke supply amount were also controlled to operate. However, in the third embodiment, when the command to reduce the electric power load is output, the amount of exterior coke is reduced and / or the component that reduces the electrical conductivity of the slag is controlled to be supplied. The operation status in this case is shown in FIG. At 190 minutes, 200 minutes, and 260 minutes after the start of energization, a rise in the bottom-bottom voltage, an increase in dust generation, and an increase in electrode stroke were observed, so the tap voltage was lowered. At that time, after the SiO 2 -containing raw material was supplied and the coke supply amount was reduced, the tap voltage was increased again to maintain high productivity. In the third embodiment, the second embodiment
The electric load, the electrical conductivity of the slag, and the coke supply amount are controlled in the same manner as in, but the electric load is stable at a high level because the action to further reduce the in-furnace resistance is taken. Therefore, even if the resistance in the furnace rises and the electric power load is increased again, the floating of the electrodes and the increase of the dust generation amount are effectively suppressed. As a result, as shown in Table 2, the amount of tapping is 8.8 to 9.0 tons / charge, the pool width is 410 to 420 mm, and the power consumption rate is 990 to 1010.
KWH / tonne-raw material.
【0023】比較例:(チャージNo.19〜22)
実施例と同様な酸化物原料にコークス及び高分子凝集剤
を混合し、混練した後ブリケットに製団した。得られた
ブリケットを数日間養生した後、ゼーダベルグ式の電気
製錬炉に供給して溶解した。操業中は、特に電極没入挙
動に応じて外装コークス,スラグ成分の供給量等を調整
することなく、可能な限り高い負荷条件で操業した。チ
ャージNo.19,20,22では、電極の先端位置が鋼
板で75%×H以上になっている。チャージNo.21で
は、電極の先端位置が75%×H以下に維持されている
ものの、電極位置の変動幅が35%×H以上であった。
また、チャージNo.23では、電極位置の変動幅が35
%×H以下であるものの、電極の先端位置が75%×H
を超えていた。それぞれの操業で、操業中の電極位置を
記録し、出銑後に付着物を含めた壁と電極と間の距離、
すなわちプール幅を測定し、その溶解チャージの出銑量
及び出滓量との対応を記録した。各例の記録結果を、表
1に対比して示す。Comparative Example: (Charge No. 19 to 22) Coke and a polymer coagulant were mixed with the same oxide raw material as in Example, and the mixture was kneaded and then briquetted. The briquettes thus obtained were cured for several days and then fed into a Zedaberg type electric smelting furnace to be melted. During the operation, the operation was performed under the highest possible load condition without adjusting the external coke, the supply amount of the slag component, etc., according to the electrode immersion behavior. In Charge Nos. 19, 20, and 22, the tip position of the electrode is 75% × H or more on the steel plate. In Charge No. 21, the tip position of the electrode was maintained at 75% × H or less, but the fluctuation range of the electrode position was 35% × H or more.
Further, in the case of charge No. 23, the fluctuation range of the electrode position is 35
% × H or less, but the tip position of the electrode is 75% × H
Was exceeded. In each operation, record the electrode position during operation, and the distance between the wall and the electrode including the deposit after tapping,
That is, the pool width was measured, and the correspondence between the amount of tapping and the amount of tapping of the dissolution charge was recorded. The recording results of each example are shown in comparison with Table 1.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【表2】 [Table 2]
【0026】表1にみられるように、実施例1〜3で
は、電極の先端位置が75%×H以下に、電極の変動幅
が35%×H以下になっている。これに対し、比較例で
は、電極の先端位置及び変動幅の何れかが本発明で規定
した範囲を超えており。電極が浮上傾向にあることが判
る。その結果、比較例と比べて実施例1〜3では、投入
電力が原料の溶解等に有効に消費され、表2に示すよう
に何れも高い電力原単位を示している。また、実施例1
〜3では、電極の浮上が防止されたため、プール幅が広
くなることも避けられている。しかし、比較例では、付
着物の成長によって次第にプール幅が狭くなり、電極の
先端位置を適正な範囲に没入させることが困難な状況に
なっていることが判る。この状況が継続すると、プール
幅が更に狭くなり、ここへのダスト等の付着や通電によ
るプール部の抵抗過熱により、一層除去不可能な硬い付
着物が生成し、電極の浮上傾向も強くなる悪循環状態と
なる。この場合、最終的には、原料装入も困難な極めて
悪い操業状態になることが予想される。このような炉況
の悪化は、実施例1〜3にみられるように本発明の実施
によって有効に解決することができる。As shown in Table 1, in Examples 1 to 3, the tip position of the electrode was 75% × H or less, and the fluctuation range of the electrode was 35% × H or less. On the other hand, in the comparative example, either the tip position of the electrode or the fluctuation range exceeds the range specified in the present invention. It can be seen that the electrodes tend to float. As a result, compared with the comparative example, in Examples 1 to 3, the input electric power was effectively consumed for the melting of the raw material, etc., and as shown in Table 2, all show a high electric power consumption rate. In addition, Example 1
In Nos. 3 to 3, the floating of the electrode was prevented, so that the pool width was also prevented from widening. However, in the comparative example, the pool width gradually narrows due to the growth of the deposits, and it is difficult to immerse the tip end position of the electrode in an appropriate range. If this situation continues, the pool width will become narrower, and due to the adhesion of dust and the like and the resistance overheating of the pool part due to energization, hard deposits that cannot be removed will be generated, and the floating tendency of the electrode will become stronger. It becomes a state. In this case, finally, it is expected that an extremely bad operation state in which charging of raw materials is difficult is performed. Such deterioration of the furnace condition can be effectively solved by implementing the present invention as seen in Examples 1 to 3.
【0027】[0027]
【発明の効果】以上に説明したように、本発明において
は、段階的且つ系統的なアクションをとることにより、
最も効果的に原料装入口に付着物が堆積することを抑制
し、電極と炉壁との間の距離が常に広く維持される。そ
のため、炉内への原料の荷下がりも順調に進行し、最適
な電極没入により炉内への集中的な熱供給が可能にな
り、熱ロスの低減や炉内の拡大により生産性が増大す
る。また、仮に付着物が生成しても、強固なものに変化
することが防止されるため、簡易的なポーキングによっ
て理想的な炉況に容易に回復させることができる。ま
た、従来のように付着程度が重くなる前に頻繁に行って
いたポーキング回数も著しく減少し、作業効率の低下も
防止される。As described above, in the present invention, by taking a stepwise and systematic action,
The most effective way is to prevent deposits from accumulating on the raw material inlet, and keep the distance between the electrode and the furnace wall wide at all times. Therefore, the unloading of the raw material into the furnace also progresses smoothly, and it is possible to centrally supply heat to the furnace by optimal immersion of the electrode, and the productivity is increased by reducing heat loss and expanding the furnace. . Further, even if an adhered substance is generated, it is prevented from changing to a strong one, so that it is possible to easily recover the ideal furnace condition by simple poking. In addition, the number of times of poking, which was frequently performed before the degree of adhesion becomes heavy as in the past, is remarkably reduced, and a decrease in work efficiency is prevented.
【図1】 本発明に従った制御フローFIG. 1 Control flow according to the present invention
【図2】 電気製錬炉の内部[Fig. 2] Inside of electric smelting furnace
【図3】 電極の先端位置がプール幅部及びプール幅部
の温度に及ぼす影響FIG. 3 Influence of tip position of electrode on pool width and temperature of pool width
【図4】 炉底間電圧がダスト発生率及び電力原単位に
及ぼす影響[Fig. 4] Effect of bottom-bottom voltage on dust generation rate and power consumption rate
【図5】 スラグの比電導度が吹上げ回数及び炉内壁温
度に及ぼす影響[Fig. 5] Effects of the specific conductivity of slag on the number of times of blowing and the temperature of the inner wall of the furnace
【図6】 コークス原単位が吹上げ回数及び炉内壁温度
に及ぼす影響Fig. 6 Effect of coke intensity on the number of times of blowing and the temperature of the inner wall of the furnace
【図7】 実施例1におけるチャージNo.10の操業状
況FIG. 7: Operation status of Charge No. 10 in Example 1
【図8】 実施例2におけるチャージNo.13の操業状
況[Fig. 8] Operation status of Charge No. 13 in Example 2
【図9】 実施例3におけるチャージNo.16の操業状
況[Fig. 9] Operation status of Charge No. 16 in Example 3
【符号の説明】
1:側壁耐火物 2:炉底耐火物 3:電極
4:原料装入口 5:原料 6:スラグ層 7:
メタル 8:コークスベッド 9:出銑口
10:冷却設備 11:付着物
H:炉の深さ W:プール幅[Explanation of Codes] 1: Refractory on side wall 2: Refractory on bottom of furnace 3: Electrode
4: Raw material charging port 5: Raw material 6: Slag layer 7:
Metal 8: Coke bed 9: Iron tap 10: Cooling equipment 11: Adhesion H: Furnace depth W: Pool width
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−193212(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21B 11/10 C22B 4/06 C22B 7/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-8-193212 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21B 11/10 C22B 4/06 C22B 7 / 04
Claims (5)
0%以上含む酸化物原料を溶解・還元してNi,Cr含
有合金を回収する電気製錬炉において、炉の深さをH
(mm),通電開始時と通電終了時の電極先端位置の差
をSとするとき、通電中では電極の先端位置が0.75
×H以下となるように電力負荷を調整し、更に電極の先
端位置が0.75×H以下であるときS≦0.35×H
となるように電力負荷を調整することを特徴とする電気
製錬炉の付着物低減方法。1. Steelmaking dust and waste acid sludge in total of 4
In an electric smelting furnace that dissolves and reduces an oxide raw material containing 0% or more to recover an alloy containing Ni and Cr, the depth of the furnace is set to H.
(Mm), where S is the difference between the electrode tip positions at the start of energization and at the end of energization, the tip position of the electrode is 0.75 during energization.
The power load is adjusted so that it is below × H, and when the tip position of the electrode is below 0.75 × H, S ≦ 0.35 × H
A method for reducing deposits in an electric smelting furnace, which comprises adjusting the electric power load so that
持できる条件下で、更に炉底〜電極間の電圧がタップ電
圧の35〜45%となるように電力負荷を調整するアク
ションを操業中に1回又は複数回繰り返す請求項1記載
の電気製錬炉の付着物低減方法。2. Under the condition that the tip position of the electrode can be maintained at 0.75 × H or less, further action is taken to adjust the power load so that the voltage between the furnace bottom and the electrode becomes 35 to 45% of the tap voltage. The method for reducing deposits in an electric smelting furnace according to claim 1, wherein the method is repeated once or a plurality of times during operation.
に電力負荷を調整するアクションを操業中に少なくとも
1回又は複数回繰り返す請求項2記載の電気製錬炉の付
着物低減方法。3. The method for reducing deposits in an electric smelting furnace according to claim 2, wherein the action of adjusting the electric power load is repeated at least once or a plurality of times during operation so that the amount of dust generation does not change with time.
に基づきスラグの電気伝導度が0.8〜1.7Ω-1/c
mになるようにスラグ成分含有原料を供給するアクショ
ンを操業中に少なくとも1回又は複数回繰り返す請求項
1〜3の何れかに記載の電気製錬炉の付着物低減方法。4. The electrical conductivity of the slag is measured, and the electrical conductivity of the slag is 0.8 to 1.7 Ω −1 / c based on the measurement result.
The method for reducing deposits in an electric smelting furnace according to any one of claims 1 to 3, wherein the action of supplying the slag component-containing raw material so as to be m is repeated at least once or a plurality of times during operation.
トン−メタルになるように外装コークス供給量を調整す
るアクションを操業中に少なくとも1回又は複数回繰り
返す請求項1〜3の何れかに記載の電気製錬炉の付着物
低減方法。5. Coke basic unit is 250 to 320 kg /
The method for reducing deposits in an electric smelting furnace according to any one of claims 1 to 3, wherein the action of adjusting the amount of external coke supply so as to obtain ton-metal is repeated at least once or a plurality of times during operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09145195A JP3512514B2 (en) | 1995-03-24 | 1995-03-24 | Method for reducing deposits in electric smelting furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09145195A JP3512514B2 (en) | 1995-03-24 | 1995-03-24 | Method for reducing deposits in electric smelting furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08260014A JPH08260014A (en) | 1996-10-08 |
JP3512514B2 true JP3512514B2 (en) | 2004-03-29 |
Family
ID=14026736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09145195A Expired - Fee Related JP3512514B2 (en) | 1995-03-24 | 1995-03-24 | Method for reducing deposits in electric smelting furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3512514B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4757829B2 (en) * | 2007-03-29 | 2011-08-24 | 日本冶金工業株式会社 | Electrical smelting method for efficiently recovering valuable metals from steel by-products |
JP4757846B2 (en) * | 2007-06-28 | 2011-08-24 | 日本冶金工業株式会社 | Electrical smelting method for efficiently recovering valuable metals from steel by-products |
-
1995
- 1995-03-24 JP JP09145195A patent/JP3512514B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08260014A (en) | 1996-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104039987B (en) | Steel slag reduction method | |
AU2003261814B2 (en) | Method for producing titanium oxide containing slag | |
KR100270635B1 (en) | Process for producing foudry iron | |
US6503289B2 (en) | Process for manufacturing molten metal iron | |
JP2003105415A (en) | Method and device for producing molten metal | |
CN106929631A (en) | The dross method that high-titanium blast furnace slag carbonization is smelted | |
EP2210959A1 (en) | Process for producing molten iron | |
JP3512514B2 (en) | Method for reducing deposits in electric smelting furnace | |
US3843352A (en) | Method for melting sponge metal using gas plasma in a cooled metal crucible | |
JP5408417B2 (en) | Operation method of electric furnace for ferronickel smelting | |
US4160661A (en) | Process for the production of ferromolybdenum in an electric arc furnace | |
JPS5819740B2 (en) | Electric arc furnace operating method | |
JP3560677B2 (en) | Operating method of electric smelting furnace with reduced electrode consumption | |
JP3510367B2 (en) | Operating method of electric smelting furnace with improved desulfurization ability | |
EP0216618A2 (en) | Recovery of volatile metal values from metallurgical slags | |
US3522356A (en) | Electric furnace corona melting process | |
CN115572787B (en) | Process method for reducing thermal state slag through slag splashing protection | |
JPS5953217B2 (en) | Manufacturing method of molten iron oxide | |
JP2008088538A (en) | Method for charging zinc-containing raw material into blast furnace | |
JP2003293024A (en) | Method for operating electric furnace | |
JPH08120354A (en) | Operation of electric smelting furnace | |
SU1254046A1 (en) | Method of melting ferrosilicium with barium | |
US790393A (en) | Process of smelting iron ores and producing ferrochromium. | |
JPS635671B2 (en) | ||
JP2002327211A (en) | Method for melting cold iron source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040107 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090116 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100116 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |