[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3505142B2 - Casting method of high clean steel - Google Patents

Casting method of high clean steel

Info

Publication number
JP3505142B2
JP3505142B2 JP2000373945A JP2000373945A JP3505142B2 JP 3505142 B2 JP3505142 B2 JP 3505142B2 JP 2000373945 A JP2000373945 A JP 2000373945A JP 2000373945 A JP2000373945 A JP 2000373945A JP 3505142 B2 JP3505142 B2 JP 3505142B2
Authority
JP
Japan
Prior art keywords
molten steel
stirring
mold
thrust
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000373945A
Other languages
Japanese (ja)
Other versions
JP2002178106A (en
Inventor
泰寿 日向野
潤二 中島
正 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000373945A priority Critical patent/JP3505142B2/en
Publication of JP2002178106A publication Critical patent/JP2002178106A/en
Application granted granted Critical
Publication of JP3505142B2 publication Critical patent/JP3505142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は清浄性に優れた鋼材
を製造するための鋳片を製造する連鋳操業技術に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting operation technique for producing a slab for producing a steel material having excellent cleanliness.

【0002】[0002]

【従来の技術】近年、自動車外板用板や表面処理鋼板等
には、優れた加工性を有する、Cが0.04%以下かつ
Ti添加を行なった極低炭素鋼が広く用いられている。
これらの超深絞り加工材料に要求される特性は、r値や
伸び等の機械的特性値が優れている事だけでなく、清浄
性、特に従来から要求されていた表層の清浄性に加え、
加工時の割れの起点となる鋳片内部清浄性が優れている
ことが求められている。
2. Description of the Related Art In recent years, ultra-low carbon steel having excellent workability and containing C of 0.04% or less and containing Ti has been widely used for automobile outer plates, surface-treated steel plates and the like. .
The properties required for these ultra deep drawn materials are not only excellent in mechanical property values such as r value and elongation, but also in addition to cleanliness, especially the cleanliness of the surface layer that has been conventionally required,
It is required that the internal slab cleanliness, which is the starting point of cracks during processing, be excellent.

【0003】従来の鋳片表層清浄性向上の手段として、
例えば特開平6−000606号公報に示す、電磁力を
用いた鋳片表層清浄性向上技術が報告されている。鋳型
内溶鋼と凝固シェルとの界面に浸漬ノズルからの吐出流
と独立に均一な溶鋼流動を付与してやることにより表層
清浄性は向上する。しかしながら、加工性の厳しい薄板
材の場合には、単に表層の清浄性を向上させ、疵の発生
を防止するだけでなく、鋳片内部の清浄性を向上させ、
加工時の割れの起点となる、鋳片内部、特に曲げ型およ
び垂直曲げ型連続鋳造設備の上面集積部の清浄性を向上
させる事が重要である。
As a conventional means for improving the surface cleanliness of a cast slab,
For example, a technique for improving the surface cleanliness of a slab using an electromagnetic force has been reported, as disclosed in Japanese Patent Laid-Open No. 6-000606. Surface cleanliness is improved by imparting a uniform molten steel flow to the interface between the molten steel in the mold and the solidified shell independently of the discharge flow from the immersion nozzle. However, in the case of a thin plate material with severe workability, it not only improves the cleanability of the surface layer and prevents the occurrence of flaws, but also improves the cleanability of the inside of the slab,
It is important to improve the cleanliness of the inside of the slab, which is the starting point of cracks during processing, especially the upper surface integrated part of the bending die and vertical bending die continuous casting equipment.

【0004】[0004]

【発明が解決しようとする課題】鋳片内部の清浄性を向
上させるには、電磁ブレーキ設備を設け、介在物が鋳片
内部に浸透することを防止したり、鋳造速度に上限を設
けて浮上時間を長くする等の対策が有効であるが、電磁
ブレーキによる溶鋼流動制御には新たな設備投資が必要
なこと、鋳造速度制限を行なえば当然ながら生産性が悪
化し、内部清浄性は向上しても表層の清浄性が向上しな
い場合がある等の問題があった。本発明は上述したよう
な問題点を解消するものであって、鋳片表層清浄性に優
れ、かつ、鋳片内部清浄性にも優れた鋳片を製造する連
鋳操業技術を提供することを目的としている。
In order to improve the cleanliness of the inside of the slab, electromagnetic brake equipment is provided to prevent inclusions from penetrating into the inside of the slab, or the upper limit of the casting speed is set to levitate. Countermeasures such as lengthening the time are effective, but new equipment investment is required for molten steel flow control by the electromagnetic brake, and if the casting speed is limited, productivity will naturally deteriorate and internal cleanliness will improve. However, there is a problem that the cleanliness of the surface layer may not be improved. The present invention is to solve the above-mentioned problems, excellent slab surface layer cleanliness, and to provide a continuous casting operation technology for producing a slab excellent in slab internal cleanability. Has an aim.

【0005】[0005]

【課題を解決するための手段】(1)鋳型内電磁撹拌装
置が搭載された連続鋳造設備を用いて溶鋼を鋳造するに
当り、鋳型内溶鋼への電磁力の攪拌条件を、次式にて求
まる単位時間当り及び単位推力当りの溶鋼分配容器から
鋳型内への溶鋼注入量指数(Qc)が0.45より小さ
い場合は電磁力印加時間(T1)と印加停止時間(T
2)との関係がT1/(T1+T2)≧0.7である間
欠攪拌、0.45以上の場合は交番攪拌とすることを特
徴とする溶鋼の連続鋳造方法。ここで溶鋼比重は7.0
[t/m3]、撹拌推力は銅版表面から内部15mm位
置での撹拌推力としている。 Qc=[単位時間当りの溶鋼分配容器から鋳型内への溶
鋼注入量(t/min)]/[電磁撹拌装置の撹拌推力
(kN/m3)] (2)鋳型内電磁撹拌装置が搭載された連続鋳造設備を
用いて溶鋼を鋳造するに当り、鋳型内溶鋼への電磁力の
攪拌条件を、次式にて求まる単位時間当り及び単位推力
当りの溶鋼分配容器から鋳型内への溶鋼注入量指数(Q
c)が0.45より小さい場合は間欠攪拌、0.45以
上の場合は電磁力の交番時間間隔(T3)を3秒以上1
5秒以下で交番攪拌とすることを特徴とする溶鋼の連続
鋳造方法。ここで溶鋼比重は7.0[t/m3]、撹拌
推力は銅版表面から内部15mm位置での撹拌推力とし
ている。 Qc=[単位時間当りの溶鋼分配容器から鋳型内への溶
鋼注入量(t/min)]/[電磁撹拌装置の撹拌推力
(kN/m3)]
[Means for Solving the Problems] (1) When casting molten steel using a continuous casting facility equipped with an electromagnetic stirring device in a mold, the stirring condition of electromagnetic force to the molten steel in the mold is expressed by the following formula. When the molten steel injection amount index (Qc) into the mold from the molten steel distribution container per unit time and unit thrust obtained is smaller than 0.45, the electromagnetic force application time (T1) and the application stop time (T
2. A continuous casting method for molten steel, characterized in that intermittent stirring with a relationship of 2) with T1 / (T1 + T2) ≧ 0.7, and alternating stirring with 0.45 or more. Here, the specific gravity of molten steel is 7.0
[T / m 3 ] and the stirring thrust is the stirring thrust at a position 15 mm inside from the copper plate surface. Qc = [amount of molten steel injected per unit time from molten steel distribution container (t / min)] / [stirring thrust of electromagnetic stirrer (kN / m 3 )] (2) In-mold electromagnetic stirrer is installed When casting molten steel using the continuous casting equipment described above, the amount of molten steel injected into the mold from the molten steel distribution container per unit time and unit thrust is calculated by Index (Q
If c) is less than 0.45, intermittent stirring is performed. If c) is 0.45 or more, the alternating time interval (T3) of electromagnetic force is 3 seconds or more 1
A continuous casting method for molten steel, characterized in that alternating stirring is performed for 5 seconds or less. Here, the molten steel specific gravity is 7.0 [t / m 3 ] and the stirring thrust is the stirring thrust at a position 15 mm inside from the copper plate surface. Qc = [amount of molten steel injected from the molten steel distribution container into the mold per unit time (t / min)] / [stirring thrust of the electromagnetic stirrer (kN / m 3 )]

【0006】[0006]

【発明の実施の形態】以下に本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.

【0007】本発明の鋳造方法において、所定の組成に
溶製した溶鋼を連続鋳造設備により鋳造するに当り、溶
鋼の容器から耐火物の注入管によりタンディッシュ等の
溶鋼配分容器を経て、耐火物の浸漬ノズルにより水冷銅
鋳型内に溶鋼を供給する。
In the casting method of the present invention, when casting a molten steel melted to a predetermined composition by a continuous casting facility, a refractory material is passed from a molten steel container through a molten steel distribution container such as a tundish through a refractory injection pipe. The molten steel is supplied into the water-cooled copper mold by the immersion nozzle of.

【0008】一般に、鋳型内溶鋼に電磁力を印加しない
場合には鋳型内溶鋼は、図1に示すような流れとなる。
この状態に電磁力を印加することで、鋳型内に浸漬ノズ
ル1から供給される溶鋼の吐出流5とは独立に外力を加
え、溶鋼流動を発生させ、連続回転させることができ、
鋳型3内の溶鋼は図2に示すような均一な流れとなっ
て、溶鋼流動による介在物除去効果で、表層清浄性は向
上する。しかしながら、均一な旋回流が短片に衝突し、
定常的な下向きの流れ7となり、下向きの流れの到達深
さ11が増大し、介在物の浮上が阻害されることがわか
った。
Generally, when no electromagnetic force is applied to the molten steel in the mold, the molten steel in the mold has a flow as shown in FIG.
By applying an electromagnetic force to this state, an external force is applied to the mold independently of the molten steel discharge flow 5 supplied from the immersion nozzle 1, a molten steel flow is generated, and continuous rotation is possible,
The molten steel in the mold 3 has a uniform flow as shown in FIG. 2, and the surface layer cleanliness is improved by the inclusion removing effect by the molten steel flow. However, a uniform swirl flow collides with the short piece,
It was found that the steady downward flow 7 was obtained, the reaching depth 11 of the downward flow was increased, and the floating of inclusions was hindered.

【0009】そこで、本発明者らが研究を進めたとこ
ろ、その根本的な解決策として、図3に示すように、電
磁撹拌装置10により鋳型3内に浸漬ノズル1から供給
される溶鋼の吐出流とは独立に外力を加え、溶鋼流動9
を発生させ、連続回転させる際に、連続的に電磁力を印
加するのではなく、図4に示すように間欠的に電磁力を
印加することにより表層清浄性の向上に必要な凝固界面
の流速を確保しつつ、下向き流れの到達深さ11を低減
し、鋳片内部の清浄性を向上することが可能であること
を見出した。
Then, the inventors of the present invention conducted research, and as a fundamental solution thereof, as shown in FIG. 3, discharge of molten steel supplied from the immersion nozzle 1 into the mold 3 by the electromagnetic stirring device 10 was performed. Flow of molten steel 9
Flow rate at the solidification interface necessary for improving surface cleanliness by applying electromagnetic force intermittently as shown in FIG. It was found that it is possible to reduce the reaching depth 11 of the downward flow and improve the cleanliness of the inside of the slab while ensuring the above.

【0010】しかしながら、単位時間当り及び単位推力
当りの溶鋼分配容器から鋳型内への溶鋼注入量が大きく
なると連続撹拌時と間欠撹拌時の下向き流れの到達深さ
は同等となり、図6に示すように間欠攪拌による鋳片内
部清浄性向上効果が見られなくなる。ここで鋳片内部清
浄性指数とは,該鋳片内部介在物個数を連続攪拌時の鋳
片内部介在物個数で割った値である。これは単位時間当
り及び単位推力当りの溶鋼分配容器から鋳型内への溶鋼
注入量が大きくなるにつれて、単位時間当りに溶鋼に付
与される電磁力が小さくなり、電磁力の変化が溶鋼流動
に及ぼす影響が小さくなるためである。そこで、本研究
者らがさらに研究を進めたところ、電磁力を図5に示す
ように印加することにより、単位時間当り及び単位推力
当りの溶鋼分配容器から鋳型内への溶鋼注入量が大きい
場合でも、下向き流れの到達深さは小さくなり、図6に
示すように連続撹拌及び間欠攪拌に比べ鋳片内部清浄性
が向上することがわかった。これは連続攪拌と間欠攪拌
はともに攪拌方向が一方向のみであるのに対し、交番攪
拌は攪拌方向を反転させることから、鋳型内の流動が異
なるからであり、さらに攪拌方向が反転することにより
短辺衝突流速が連続印加時や間欠印加時に比べて著しく
小さくなるため、それから発生する下向きの流れが小さ
くなるためである。
However, when the amount of molten steel injected into the mold from the molten steel distribution container per unit time and unit thrust becomes large, the reaching depth of the downward flow during continuous stirring becomes the same as that during intermittent stirring, as shown in FIG. Therefore, the effect of improving the internal cleanliness of the cast slab due to the intermittent stirring is not observed. Here, the slab internal cleanliness index is a value obtained by dividing the number of slab internal inclusions by the number of slab internal inclusions during continuous stirring. This is because the electromagnetic force applied to molten steel per unit time decreases as the amount of molten steel injected from the molten steel distribution container into the mold per unit time and thrust increases, and changes in electromagnetic force affect molten steel flow. This is because the effect is small. Therefore, when the present researchers proceeded with further research, when an electromagnetic force was applied as shown in Fig. 5, when the molten steel injection amount per unit time and per unit thrust from the molten steel distribution container into the mold was large. However, it was found that the reaching depth of the downward flow was small, and as shown in FIG. 6, the internal cleanability of the slab was improved as compared with continuous stirring and intermittent stirring. This is because both continuous stirring and intermittent stirring have only one stirring direction, whereas alternating stirring reverses the stirring direction, and therefore the flow in the mold is different. This is because the short-side collision flow velocity is significantly smaller than that during continuous application or intermittent application, and thus the downward flow generated therefrom is small.

【0011】一方、鋳片表層清浄性と鋳型幅方向平均及
び時間平均メニスカス流速の関係は、図7に示すように
10cm/s以上であれば鋳片表層清浄性は確保され
る。ここで線状疵発生率とは該線状疵発生指数(線状疵
発生指数は線状疵1個を1mとしコイル総長で割った
値)を鋳型幅方向平均及び時間平均メニスカス流速が0
m/minの時の線状疵発生指数で割った値である。図
8に示すように,単位時間当り及び単位推力当りの溶鋼
分配容器から鋳型内への溶鋼注入量が小さいときに交番
攪拌とすると、鋳型幅方向平均及び時間平均メニスカス
流速が10cm/s以下となり、鋳片表層の清浄性が品
質上問題のない水準に確保することが困難となってしま
う。ここで連続攪拌時の時間平均は任意の時間平均,間
欠攪拌時の時間平均とは(T1+T2)の時間平均,交
番攪拌時の時間平均とはT3の時間平均である。
On the other hand, the relationship between the surface cleanliness of the slab and the average and time-averaged meniscus flow velocity in the width direction of the mold is 10 cm / s or more, and the surface cleanliness of the slab is secured. Here, the linear flaw occurrence rate is the linear flaw occurrence index (the linear flaw occurrence index is a value obtained by dividing one linear flaw by 1 m and dividing by the total coil length), and the mold width direction average and time average meniscus flow velocity are 0.
It is a value divided by the linear flaw generation index at m / min. As shown in FIG. 8, when alternating injection stirring is performed when the molten steel injection amount per unit time and per unit thrust from the molten steel distribution container is small, the mold width direction average and time average meniscus flow velocity become 10 cm / s or less. However, it becomes difficult to secure the cleanliness of the surface layer of the cast slab to a level at which there is no problem in terms of quality. Here, the time average during continuous stirring is an arbitrary time average, the time average during intermittent stirring is the time average of (T1 + T2), and the time average during alternating stirring is the time average of T3.

【0012】そこで単位時間当り及び単位推力当りの溶
鋼分配容器から鋳型内への溶鋼注入量に依らず、常に表
層清浄性と内部清浄性が共に優れた鋳片を製造するため
に、単位時間当り及び単位撹拌推力当りの溶鋼注入量指
数Qcが0.45以下では間欠攪拌を、0.45以上で
は交番攪拌にすることとした。これにより鋳片表層及び
内部の高清浄化の両立が可能であることを見出した。
Therefore, in order to always produce a slab having excellent surface cleanliness and internal cleanliness regardless of the molten steel injection amount per unit time and thrust into the mold from the molten steel distribution container, In addition, when the molten steel injection amount index Qc per unit stirring thrust is 0.45 or less, intermittent stirring is performed, and when it is 0.45 or more, alternating stirring is performed. It was found that this makes it possible to achieve both high cleanliness of the surface layer of the slab and the inside.

【0013】間欠攪拌の際は、電磁力を印加しない時間
が生じることによる表層清浄性の悪化が懸念されたが、
本発明者らの研究によれば、同一鋳造条件であれば、印
加時間;T1と停止時間;T2との比を、下記(2)式
に示す範囲内に制御すれば、鋳型幅方向平均及び時間平
均メニスカス流速はある程度低下するものの、図9,1
0に示すように、鋳片表面の清浄性を確保しつつ、鋳片
内部の清浄性も確保できることを見出した。ここで鋳片
表層清浄性指数とは該鋳片表層介在物個数を連続攪拌時
の鋳片表層介在物個数で割った値である。 T1/(T1+T2)≧0.7…(2) 尚、この場合、T1は、長過ぎると連続撹拌的に撹拌し
た時と同じ状態になり、溶鋼の下向き到達深さは深くな
るので、10秒以下が望ましい。また、T2は、短すぎ
ると電磁撹拌を停止して定常流れを形成させることを防
止する効果がなくなり、下降流速低減効果がなくなるの
で1秒以上とすることが望ましい。
At the time of intermittent stirring, there was a concern that the surface cleanliness would deteriorate due to the absence of electromagnetic force.
According to the study by the present inventors, under the same casting conditions, if the ratio of the application time; T1 and the stop time; T2 is controlled within the range shown in the following formula (2), the average in the mold width direction and Although the time-averaged meniscus flow velocity decreases to some extent,
As shown in 0, it was found that the cleanliness of the inside of the slab can be ensured while ensuring the cleanliness of the surface of the slab. Here, the slab surface layer cleanliness index is a value obtained by dividing the number of slab surface layer inclusions by the number of slab surface layer inclusions during continuous stirring. T1 / (T1 + T2) ≧ 0.7 (2) In this case, if T1 is too long, it will be in the same state as when continuously stirring and stirring, and the downward reaching depth of the molten steel becomes deep, so 10 seconds The following is desirable. If T2 is too short, the effect of stopping the electromagnetic stirring to prevent the formation of a steady flow is lost, and the descending flow velocity reducing effect is lost.

【0014】交番印加の際は、攪拌方向反転直後は慣性
流があるため、図11に示すように交番攪拌周期T3が
3秒未満の場合には周期が短すぎて鋳型幅方向平均及び
時間平均メニスカス流速10cm/s以上が得られな
い。一方15秒超では表面流速は連続攪拌した時と同じ
状態になり下向き到達深さは深くなり、図12に示すよ
うに鋳片内部清浄性が悪化してしまう。そこで交番攪拌
周期T3を3秒以上15秒以下とすることにより、鋳片
表面の清浄性を確保しつつ、鋳片内部の清浄性も確保で
きることを見出した。
During alternating application, since there is an inertial flow immediately after reversing the stirring direction, as shown in FIG. 11, when the alternating stirring cycle T3 is less than 3 seconds, the cycle is too short and the average in the mold width direction and the time average are obtained. A meniscus flow rate of 10 cm / s or more cannot be obtained. On the other hand, if it exceeds 15 seconds, the surface flow velocity will be the same as when continuously stirring, and the reaching depth will be deeper, and as shown in FIG. 12, the internal cleanability of the slab will deteriorate. Therefore, it has been found that by setting the alternating stirring cycle T3 to 3 seconds or more and 15 seconds or less, the cleanliness of the inside of the slab can be ensured while ensuring the cleanliness of the surface of the slab.

【0015】実機にて印加条件の変更を行なう際には,
電磁力の立上り時間・立下り時間等の追従遅れ時間が考
えられるが,これらの時間が定常的に起きている限り,
本発明ではこれらの時間をT1およびT3に含めても何
ら問題はない。
When changing the application conditions in an actual machine,
The following delay times such as rise time and fall time of electromagnetic force can be considered, but as long as these times occur steadily,
In the present invention, there is no problem even if these times are included in T1 and T3.

【0016】[0016]

【実施例】以下実施例に基づき本発明を更に詳細に説明
する。自動車用のTi添加極低炭素鋼を製造するため
に、転炉にて溶製した溶鋼300トンを、RHにて表1
に示す所定の成分組成に調整し、垂直曲げ型連続鋳造設
備にて鋳造した。その結果を表2に示す。
The present invention will be described in more detail based on the following examples. In order to produce Ti-added ultra-low carbon steel for automobiles, 300 tons of molten steel was melted in a converter and RH was used.
The composition was adjusted to the predetermined composition shown in (1) and cast in a vertical bending continuous casting facility. The results are shown in Table 2.

【0017】表2より明らかなように、本発明の条件に
て製造した鋳片の場合、表層の介在物量は、連続撹拌と
同等の表層清浄性を維持しつつ、鋳片内部の清浄性にも
優れた鋳片を得ることができた。これらの鋳片を常法の
熱間圧延、冷間圧延した後の冷延板では、表2に示すよ
うに、目視で判定した介在物に起因する線状疵で評価し
ても連続撹拌の場合と同程度の表面品位が得られた。ま
た、連続攪拌の冷延板に比べて、介在物が起点となっ
て、割れが発生する率が大幅に低下することが確認され
た。
As is clear from Table 2, in the case of the cast product produced under the conditions of the present invention, the amount of inclusions in the surface layer is equivalent to that of continuous stirring while maintaining the cleanliness of the surface layer, while maintaining the cleanliness inside the cast product. It was possible to obtain an excellent slab. As shown in Table 2, in the cold-rolled sheet after hot-rolling or cold-rolling these slabs by a conventional method, continuous stirring was performed even if evaluated by linear flaws caused by inclusions visually determined. A surface quality similar to that of the case was obtained. It was also confirmed that the rate of cracking caused by inclusions was significantly lower than that of the continuously stirred cold-rolled sheet.

【0018】また、本実施例では自動車用の薄鋼板用の
鋳片製造に当っての例で述べたが、本技術の本質とする
ところは、鋳型内電磁撹拌付与法を適正化することによ
り、鋳型内溶鋼流動を最適化することであり、厚板、鋼
管など他の鋼種の鋳片を製造する場合にも有効であり、
適用鋼種になんら制約を受けるものではない。
Further, in the present embodiment, an example of producing a slab for a thin steel sheet for an automobile has been described, but the essence of the present technique is to optimize the electromagnetic stirring application method in the mold. , Is to optimize the flow of molten steel in the mold, and is also effective when manufacturing slabs of other steel types such as thick plates and steel pipes.
There is no restriction on the type of applied steel.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】以上述べてきたように本発明に依れば、
成形性がよく、かつ、鋼材中の介在物に起因する線状疵
の発生が少ない良加工性薄鋼鈑を製造するための鋼材を
提供できる。本鋼材を用いて冷延鋼鈑を製造できるのは
勿論のこと、焼鈍後に電気亜鉛メッキや合金化溶融亜鉛
メッキ鋼鈑として、またさらに、有機被膜銅鋼鈑の原板
を製造することもできる。また、連続焼鈍条件が満たさ
れる限り連続焼鈍溶融亜鉛メッキ合金化溶融亜鉛メッキ
用鋼鈑用鋼材としても使用可能である。従って、家庭電
気製品や自動車用の広い用途に適用できるため,産業上
に与える効果はきわめて大きい。
As described above, according to the present invention,
It is possible to provide a steel material having good formability and capable of producing a good workable thin steel plate in which linear defects due to inclusions in the steel material are less likely to occur. Not only can the cold rolled steel sheet be manufactured using the present steel material, but it is also possible to produce an electrogalvanized or galvannealed steel sheet after annealing, and further to manufacture a base plate of an organic coated copper steel sheet. Further, as long as the continuous annealing conditions are satisfied, it can be used as a steel material for continuous annealing hot-dip galvanizing alloy hot-dip galvanizing steel plate. Therefore, since it can be applied to a wide range of household appliances and automobiles, the effect on the industry is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳型内電磁攪拌なしの時の溶鋼の流れを示した
正面図(a)と平面図(b)。
FIG. 1 is a front view (a) and a plan view (b) showing a flow of molten steel without electromagnetic stirring in a mold.

【図2】鋳型内電磁攪拌ありの時の溶鋼の流れを示した
正面図(a)と平面図(b)。
FIG. 2 is a front view (a) and a plan view (b) showing a flow of molten steel when electromagnetic stirring is performed in a mold.

【図3】間欠攪拌時の溶鋼の流れを示した正面図(a)
と平面図(b)。
FIG. 3 is a front view showing the flow of molten steel during intermittent stirring (a).
And a plan view (b).

【図4】間欠攪拌の印加パターンを示した図。FIG. 4 is a diagram showing an application pattern of intermittent stirring.

【図5】交番攪拌の印加パターンを示した図。FIG. 5 is a diagram showing an application pattern of alternating stirring.

【図6】電磁攪拌の印加パターンと鋳片内部清浄性指数
との関係を示した図。鋳片内部清浄性指数とは,鋳片内
部介在物個数を連続攪拌時の鋳片内部介在物個数で割っ
た値である。
FIG. 6 is a view showing a relationship between an electromagnetic stirring application pattern and a cast slab internal cleanliness index. The slab internal cleanliness index is a value obtained by dividing the number of slab internal inclusions by the number of slab internal inclusions during continuous stirring.

【図7】鋳型幅方向平均及び時間平均メニスカス流速と
線状疵発生率との関係を示した図。線状疵発生率とは線
状疵発生指数(線状疵発生指数は線状疵1個を1mとし
コイル総長で割った値)を鋳型幅方向平均及び時間平均
メニスカス流速が0m/minの時の線状疵発生指数で
割った値である。
FIG. 7 is a graph showing the relationship between the average widthwise and time-averaged meniscus flow velocity in the mold and the linear flaw occurrence rate. The linear flaw occurrence rate is the linear flaw occurrence index (the linear flaw occurrence index is a value obtained by dividing one linear flaw by 1 m and dividing by the total coil length) when the mold width direction average and time average meniscus flow velocity are 0 m / min. It is the value divided by the linear flaw generation index of.

【図8】単位時間当り及び単位推力当りの溶鋼注入量指
数と鋳型幅方向平均及び時間平均メニスカス流速との関
係を示した図。連続攪拌時の時間平均は任意の時間平
均,間欠攪拌時の時間平均とは(T1+T2)の時間平
均,交番攪拌時の時間平均とはT3の時間平均である。
FIG. 8 is a diagram showing a relationship between a molten steel injection amount index per unit time and a unit thrust, and a mold width direction average and a time average meniscus flow velocity. The time average during continuous stirring is an arbitrary time average, the time average during intermittent stirring is the time average of (T1 + T2), and the time average during alternating stirring is the time average of T3.

【図9】間欠攪拌時の印加パターンと鋳片内部清浄性指
数との関係を示した図。
FIG. 9 is a diagram showing a relationship between an applied pattern at the time of intermittent stirring and a slab internal cleanliness index.

【図10】間欠攪拌時の印加パターンと鋳片表層清浄性
指数との関係を示した図。鋳片表層清浄性指数とは鋳片
表層介在物個数を連続攪拌時の鋳片表層介在物個数で割
った値である。
FIG. 10 is a view showing a relationship between an applied pattern at the time of intermittent stirring and a slab surface layer cleanliness index. The slab surface layer cleanliness index is a value obtained by dividing the number of slab surface layer inclusions by the number of slab surface layer inclusions during continuous stirring.

【図11】交番攪拌周期と鋳型幅方向平均及び時間平均
メニスカス流速との関係を示した図。
FIG. 11 is a diagram showing the relationship between the alternating stirring cycle and the mold width direction average and time average meniscus flow velocity.

【図12】交番攪拌周期と鋳片内部清浄性指数との関係
を示した図。
FIG. 12 is a view showing a relationship between an alternating stirring cycle and a cast slab internal cleanliness index.

【符号の説明】[Explanation of symbols]

1 浸漬ノズル 2 モールドパウダー 3 鋳型 4 メニスカス反転流 5 短辺側上昇流 6 溶鋼 7 下降流 8 上昇流 9 溶鋼流 10 電磁攪拌装置 11 下向き流れの到達深さ T1 間欠攪拌する際の電磁力印加時間 T2 間欠攪拌する際の印加停止時間 T3 交番攪拌する際の電磁力の交番時間間隔 1 immersion nozzle 2 Mold powder 3 molds 4 Meniscus reversal flow 5 Short side upflow 6 Molten steel 7 Downflow 8 updraft 9 Molten steel flow 10 Electromagnetic stirrer 11 Depth of reaching downward flow T1 Electromagnetic force application time for intermittent stirring T2 Application stop time for intermittent stirring T3 Alternating time interval of electromagnetic force during alternating stirring

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−249496(JP,A) 特開 平10−85914(JP,A) 特開 平8−71716(JP,A) 特開 平7−9099(JP,A) 国際公開99/029452(WO,A1) (58)調査した分野(Int.Cl.7,DB名) B22D 11/00 B22D 11/04 311 B22D 11/115 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-10-249496 (JP, A) JP-A-10-85914 (JP, A) JP-A-8-71716 (JP, A) JP-A-7- 9099 (JP, A) International publication 99/029452 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) B22D 11/00 B22D 11/04 311 B22D 11/115

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋳型内電磁撹拌装置が搭載された連続鋳
造設備を用いて溶鋼を鋳造するに当り、鋳型内溶鋼への
電磁力の攪拌条件を、次式にて求まる単位時間当り及び
単位推力当りの溶鋼分配容器から鋳型内への溶鋼注入量
指数(Qc)が0.45より小さい場合は電磁力印加時
間(T1)と印加停止時間(T2)との関係がT1/
(T1+T2)≧0.7である間欠攪拌、0.45以上
の場合は交番攪拌とすることを特徴とする溶鋼の連続鋳
造方法。ここで溶鋼比重は7.0[t/m3]、撹拌推
力は銅版表面から内部15mm位置での撹拌推力として
いる。 Qc=[単位時間当りの溶鋼分配容器から鋳型内への溶
鋼注入量(t/min)]/[電磁撹拌装置の撹拌推力
(kN/m3)]
1. When casting molten steel using a continuous casting facility equipped with an in-mold electromagnetic stirrer, the stirring conditions of electromagnetic force to the molten steel in the mold are calculated by the following equations per unit time and unit thrust. When the molten steel injection amount index (Qc) from the molten steel distribution container per mold to the mold is less than 0.45, the relationship between the electromagnetic force application time (T1) and the application stop time (T2) is T1 /
A continuous casting method for molten steel, characterized in that intermittent stirring with (T1 + T2) ≧ 0.7 and alternating stirring with 0.45 or more are carried out. Here, the molten steel specific gravity is 7.0 [t / m 3 ] and the stirring thrust is the stirring thrust at a position 15 mm inside from the copper plate surface. Qc = [amount of molten steel injected from the molten steel distribution container into the mold per unit time (t / min)] / [stirring thrust of the electromagnetic stirrer (kN / m 3 )]
【請求項2】 鋳型内電磁撹拌装置が搭載された連続鋳
造設備を用いて溶鋼を鋳造するに当り、鋳型内溶鋼への
電磁力の攪拌条件を、次式にて求まる単位時間当り及び
単位推力当りの溶鋼分配容器から鋳型内への溶鋼注入量
指数(Qc)が0.45より小さい場合は間欠攪拌、
0.45以上の場合は電磁力の交番時間間隔(T3)を
3秒以上15秒以下で交番攪拌とすることを特徴とする
溶鋼の連続鋳造方法。ここで溶鋼比重は7.0[t/m
3]、撹拌推力は銅版表面から内部15mm位置での撹
拌推力としている。 Qc=[単位時間当りの溶鋼分配容器から鋳型内への溶
鋼注入量(t/min)]/[電磁撹拌装置の撹拌推力
(kN/m3)]
2. When casting molten steel using a continuous casting facility equipped with an electromagnetic stirring device in a mold, the stirring conditions of the electromagnetic force to the molten steel in the mold are calculated by the following formulas per unit time and unit thrust. If the molten steel injection quantity index (Qc) from the molten steel distribution container to the mold is less than 0.45, intermittent stirring,
In the case of 0.45 or more, a continuous casting method for molten steel, characterized in that the alternating time interval (T3) of electromagnetic force is 3 seconds or more and 15 seconds or less to perform alternating stirring. Here, the specific gravity of molten steel is 7.0 [t / m
3 ], the stirring thrust is the stirring thrust at a position 15 mm inside from the copper plate surface. Qc = [amount of molten steel injected from the molten steel distribution container into the mold per unit time (t / min)] / [stirring thrust of the electromagnetic stirrer (kN / m 3 )]
JP2000373945A 2000-12-08 2000-12-08 Casting method of high clean steel Expired - Fee Related JP3505142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000373945A JP3505142B2 (en) 2000-12-08 2000-12-08 Casting method of high clean steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000373945A JP3505142B2 (en) 2000-12-08 2000-12-08 Casting method of high clean steel

Publications (2)

Publication Number Publication Date
JP2002178106A JP2002178106A (en) 2002-06-25
JP3505142B2 true JP3505142B2 (en) 2004-03-08

Family

ID=18843229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000373945A Expired - Fee Related JP3505142B2 (en) 2000-12-08 2000-12-08 Casting method of high clean steel

Country Status (1)

Country Link
JP (1) JP3505142B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661548B2 (en) * 2005-11-25 2011-03-30 株式会社ジェイテック Method for producing partially reinforced metal matrix composite
JP4705515B2 (en) * 2006-05-15 2011-06-22 新日本製鐵株式会社 Continuous casting method

Also Published As

Publication number Publication date
JP2002178106A (en) 2002-06-25

Similar Documents

Publication Publication Date Title
EP2500120A1 (en) Method of continuous casting of steel
JP6129435B1 (en) Continuous casting method
JP5604946B2 (en) Steel continuous casting method
CN1096900C (en) Amorphous or glassy alloy surfaced rolls for continuous casting of metal strip
JP3505142B2 (en) Casting method of high clean steel
JP3456311B2 (en) Continuous casting method of multilayer slab
EP3597328B1 (en) Continuous casting method for steel
JP3502830B2 (en) Casting method of aluminum deoxidized steel
WO1993005907A1 (en) Method of continuously casting steel slabs by use of electromagnetic field
JPH09192802A (en) Method for continuously casting extra-low carbon steel slab
JP3643305B2 (en) Method for continuous casting of molten metal
JP5413277B2 (en) Continuous casting method for steel slabs
JP5125663B2 (en) Continuous casting method of slab slab
JP5044981B2 (en) Steel continuous casting method
JP2003025048A (en) Method for continuously casting steel
JP2010099704A (en) Continuous casting method for steel cast slab
JP2005152996A (en) Method for continuously casting steel
JP2960288B2 (en) Manufacturing method of multilayer steel sheet by continuous casting
JP4432263B2 (en) Steel continuous casting method
JP2010227944A (en) Continuous casting method for steel cast slab
JP5458779B2 (en) Continuous casting method for steel slabs
JP4830240B2 (en) Method and apparatus for continuous casting of steel
JP5304297B2 (en) Continuous casting method for steel slabs
JP2005074460A (en) Continuous casting method of slab of extremely low carbon steel
JP3238090B2 (en) Continuous casting method of steel slab

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031212

R151 Written notification of patent or utility model registration

Ref document number: 3505142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees