[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3500176B2 - Optical prism and optical device thereof - Google Patents

Optical prism and optical device thereof

Info

Publication number
JP3500176B2
JP3500176B2 JP33852693A JP33852693A JP3500176B2 JP 3500176 B2 JP3500176 B2 JP 3500176B2 JP 33852693 A JP33852693 A JP 33852693A JP 33852693 A JP33852693 A JP 33852693A JP 3500176 B2 JP3500176 B2 JP 3500176B2
Authority
JP
Japan
Prior art keywords
prism
light
optical
incident
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33852693A
Other languages
Japanese (ja)
Other versions
JPH0777602A (en
Inventor
良博 今野
嘉仁 葛西
行彦 三上
平道 佐藤
伸夫 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd, Adamant Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP33852693A priority Critical patent/JP3500176B2/en
Publication of JPH0777602A publication Critical patent/JPH0777602A/en
Application granted granted Critical
Publication of JP3500176B2 publication Critical patent/JP3500176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信機器および光計
測装置等の広範な光学分野に適用できる光学プリズムお
よび光学プリズムを包含する光学装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical prism and an optical device including the optical prism applicable to a wide range of optical fields such as optical communication equipment and optical measuring devices.

【0002】[0002]

【従来の技術および課題】光通信機器等に利用される光
学装置において、長距離光通信網における光増幅システ
ムを装荷した光伝送技術が急速に発展し、大容量の信号
伝送が瞬時に世界中に分配することが実現されようとし
ている。すでに初期段階の技術的な困難さは実験室規模
ではほぼ解決されたが、実際の量産を考慮したポンプ光
源の合波、分波器や、光ファイバ間に配置する偏波無依
存型光アイソレータなどの光受動部品を実装する場合
は、個々の構成部品の仕上り度合いや、形状交差が組立
精度、組立の容易性に直接反映される。
2. Description of the Related Art In optical devices used for optical communication equipment and the like, optical transmission technology equipped with an optical amplification system in a long-distance optical communication network has been rapidly developed, and large-capacity signal transmission can be instantly performed all over the world. It is about to be distributed. Almost all the technical difficulties in the early stages have been solved on a laboratory scale, but in consideration of actual mass production, multiplexing of pump light sources, demultiplexers, and polarization-independent optical isolators placed between optical fibers are considered. In the case of mounting an optical passive component such as, the finish degree and shape intersection of each component are directly reflected in the assembly accuracy and the ease of assembly.

【0003】従ってそれらの光学部品が簡単に高精度で
組み立てられる構造であることが必要条件である。例え
ば、光ファイバ間に、ある機能をもったデバイスを挿入
し、レンズを介して光学結合をはかるとき、光線軸に対
して光線伝播方向をz軸、直交する方向にx軸、y軸と
定めても、伝播光線結合軸調整(以下、軸合わせと呼称
する)はこれらz・x・y3方向だけでなく、z軸を中
心軸とする経線方向をθ軸、経線に直交する方向をφ軸
とする角度調整も必要である。
Therefore, it is a necessary condition that those optical parts are structured to be easily assembled with high precision. For example, when a device having a certain function is inserted between optical fibers and optical coupling is achieved through a lens, the light beam propagation direction is defined as the z axis and the orthogonal direction is defined as the x axis and the y axis. However, the adjustment of the propagating ray coupling axis (hereinafter referred to as axis alignment) is not limited to these z, x, y3 directions, but the meridian direction centered on the z axis is the θ axis, and the direction orthogonal to the meridian is the φ axis. It is also necessary to adjust the angle.

【0004】すなわち理想的には、軸合わせは空間的に
5方向の調整を行なわねばならないが、限られた空間に
関連システムを凝縮しなければならない通信用交換器等
の分野では、光アイソレータ等の光受動部品に割り当て
られる厚みはおよそ8mm、あるいは8mm以下に制限され
ており、個々の部品を自由に調整し軸合わせが行えるよ
うな空間は望めない。したがって構成部品の自由度を予
め減らすことが要求される。
That is, ideally, the axis alignment should be spatially adjusted in five directions, but in the field of a communication switch or the like in which related systems must be condensed in a limited space, an optical isolator, etc. The thickness allotted to the passive optical components is limited to about 8 mm or less than 8 mm, and it is impossible to expect a space where individual components can be freely adjusted and aligned. Therefore, it is required to reduce the degree of freedom of components in advance.

【0005】一方、光増幅システム等では、信号光線の
送信、受信システムの原価低減も当然実施されるべき事
項であるが、現状は例えば図12(1992年電子情報通信
学会春季大会開演番号C-262)に示されるような構造が
試みられており、それぞれの部品が独立した直列光学経
路を構成しているため、システム全体では部品点数が増
え、経済的にも高価な設備とならざるを得ない。たとえ
ば図12では信号入力ポート1A、同出力ポート2Aの光
結合ファイバ間に挿入するインライン型無偏波光アイソ
レータ3A、光合波器4A、光励起用ポンプ光源5A・
6A、波長選別フィルタ7A、モニタ光取出し用無偏光
ビームスプリッタ8A等が、それぞれ独立もしくは接着
剤で接合された状態で配置されており、光結合効率や光
吸収損失等の光学特性はもちろんのこと、製造上の煩雑
性、部品点数の削減化等に問題が残されている。
On the other hand, in the optical amplification system and the like, cost reduction of the signal beam transmission / reception system should be carried out as a matter of course, but the present situation is, for example, as shown in FIG. The structure shown in Fig. 262) has been attempted, and since each component constitutes an independent serial optical path, the number of components in the entire system increases, and the facility must be economically expensive. Absent. For example, in FIG. 12, an in-line type non-polarization optical isolator 3A, an optical multiplexer 4A, an optical pumping pump light source 5A, which is inserted between the optical coupling fibers of the signal input port 1A and the output port 2A,
6A, a wavelength selection filter 7A, a non-polarizing beam splitter 8A for extracting monitor light, etc. are arranged independently or in a state where they are bonded with an adhesive, and of course the optical characteristics such as optical coupling efficiency and optical absorption loss However, there remain problems in manufacturing complexity, reduction in the number of parts, and the like.

【0006】一方、本発明に言及されているような光線
方向を直角に偏向する光学部品はすでに多数あり、それ
ぞれ用途に応じて使用されている。たとえば図13はその
一例のペンタプリズムである。本発明と同様に入射光線
の90度偏向はできるが、たとえば本発明が提案するよ
うな波長合分波器として用いるときは、透過光の入射光
に対する平行度も極めて重要な構造的利点であるが、図
から容易に認められるように、透過光の平行が維持でき
ないという問題点がある。
On the other hand, there are already a large number of optical components for deflecting the light beam direction at right angles as referred to in the present invention, and they are used according to their respective applications. For example, FIG. 13 shows an example of the penta prism. The incident light can be deflected by 90 degrees as in the present invention, but when used as a wavelength multiplexer / demultiplexer as proposed by the present invention, the parallelism of the transmitted light with respect to the incident light is also a very important structural advantage. However, as is easily recognized from the figure, there is a problem that the parallelism of transmitted light cannot be maintained.

【0007】また、合分波器として三角プリズムの中間
に誘電体多層膜を形成し、同形の三角プリズムを貼り合
わせる構成もあるが、その場合光線が45度入射とな
り、入射光線偏光ベクトルのs波とp波の間に、透過波
長特性(分散特性)の大きな差異があり、しかも光増幅
システムに用いる場合、貼り合わせ面が長期信頼性を阻
害する要因と考えられる。そこで光合分波器として、図
14のような平行平板の一面に合分波膜を形成した構造
もあり、透過光線の入射光線に対する平行性は維持され
ているが、この場合図中に示されるように平板の入射光
線に対する角度変動が出射光線方向の大きな変動にな
り、合波もしくは分波光線方向の位置合わせが困難とな
る欠点が生じ、本発明が達成しようと考えている用途に
は利用できないという問題点がある。
There is also a structure in which a dielectric multilayer film is formed in the middle of a triangular prism as a multiplexer / demultiplexer and the triangular prisms of the same shape are bonded together. In that case, the light beam is incident at 45 degrees, and the incident light polarization vector s There is a large difference in the transmission wavelength characteristic (dispersion characteristic) between the wave and the p-wave, and when used in an optical amplification system, the bonding surface is considered to be a factor that impairs long-term reliability. Therefore, as an optical multiplexer / demultiplexer, there is also a structure in which a multiplexer / demultiplexer film is formed on one surface of a parallel plate as shown in FIG. 14, and the parallelism of the transmitted light with respect to the incident light is maintained, but in this case it is shown in the drawing. As described above, the angle variation of the flat plate with respect to the incident light ray causes a large variation in the outgoing light ray direction, and there arises a disadvantage that it becomes difficult to align the combined or demultiplexed light ray directions, and thus it is used for the application intended to be achieved by the present invention. There is a problem that you cannot do it.

【0008】この発明は、上記問題点を解決するために
なされたもので、光の合波と分波が容易に行なえる光学
プリズムと該光学プリズムを用いた組立簡単な光学装置
を提供することを目的とする。
The present invention has been made in order to solve the above problems, and provides an optical prism which can easily combine and demultiplex light and an optical device which is easy to assemble using the optical prism. With the goal.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の発明は断面が長方形もしくは正方形
である角柱体の斜向いに位置する二稜線側部分がプリズ
ム面としての角柱側面に対して45度をなす互に平行な
斜面となるプリズム面に形成され、断面形状が六角形と
なる構成とした。
In order to solve the above-mentioned problems, the invention according to claim 1 is such that a portion of a prismatic body having a rectangular cross section or a square cross-section on the side of two ridges located obliquely is a prismatic side surface as a prism surface. On the other hand, it is formed on prism surfaces that are inclined surfaces that are parallel to each other and form 45 degrees, and the cross-sectional shape is hexagonal.

【0010】この光学プリズムにおいて、1のプリズム
面から入射される第1の入射光と前記1のプリズム面に
対し90度ずれた他のプリズム面から入射される第2の
入射光とそれら第1、第2のそれぞれの出射光と直交す
る偏光の楕円率が100〜90%とすると好ましい。
In this optical prism, the first incident light incident from the one prism surface and the second incident light incident from the other prism surface deviated from the first prism surface by 90 degrees and the first incident light It is preferable that the ellipticity of the polarized light orthogonal to each of the second outgoing lights is 100 to 90%.

【0011】また、請求項2に記載したように、この光
学プリズムにおいて、1のプリズム面から入射される第
1の入射光と前記1のプリズム面に対し90度ずれた他
のプリズム面から入射される第2の入射光によって合成
された出射光の偏光の楕円率が100〜90%となるよ
うにしてもよい。
According to a second aspect of the present invention, in this optical prism, the first incident light incident from one prism surface and the other incident prism surface shifted by 90 degrees with respect to the first prism surface. The ellipticity of the polarization of the outgoing light combined by the second incident light may be 100 to 90%.

【0012】又、この光学プリズムにおいて、プリズム
面のうちの一組の平行なプリズム面に反射ミラーを設け
てもよい。
Further, in this optical prism, a reflecting mirror may be provided on a pair of parallel prism surfaces among the prism surfaces.

【0013】また、請求項6記載の発明は、断面が長方
形もしくは正方形である角柱体の斜向いに位 置する二
稜線側部分がプリズム面としての角柱側面に対して45
度をなす互に平行な斜面となるプリズム面に形成され、
相互に平行な第1、第2のプリズム面に対して、これら
第2、第1のプリズム面にそれぞれ隣接する互いに平行
な第3、第4のプリズム面から入射角が0〜10度以内
でそれぞれ第1の光線を入射させ、これら第1の光線の
波長における前記第1、第2のプリズム面の反射角が臨
界角+(0〜0.2度)の範囲となるよう光学プリズム
の角度を調整して全反射させ、それら全反射させた第1
の光線を更に他の互いに平行な第5、第6のプリズム面
において反射角が0〜10度以内で反射させ、それら第
5、第6のプリズム面に対向する第6、第5のプリズム
面よりそれら第1の光線を出射させるとき、それら第1
の光線を、第5と第6のプリズム面から入射されて第
6、第5のプリズム面から出射される第2の光線に第
5、第6のプリズム面を結ぶ光軸上で重ね合わされる断
面形状六角形の光学プリズムを備えた光学装置としても
よい。
According to a sixth aspect of the present invention, the two-ridge-line-side portions located diagonally to the prismatic body having a rectangular or square cross section have a prism surface of 45 to the prismatic side surface.
It is formed on the prism surface which is a slope that is parallel to each other at a certain degree,
With respect to the first and second prism surfaces that are parallel to each other, the incident angle is within 0 to 10 degrees from the third and fourth prism surfaces that are parallel to each other and are adjacent to the second and first prism surfaces, respectively. The angle of the optical prism is made such that the first light ray is made incident and the reflection angles of the first and second prism surfaces at the wavelength of the first light ray are in the range of the critical angle + (0 to 0.2 degree). Adjust the total reflection to adjust the total reflection first.
Light rays are reflected by the other parallel fifth and sixth prism surfaces within a reflection angle of 0 to 10 degrees, and the sixth and fifth prism surfaces are opposed to the fifth and sixth prism surfaces. When emitting those first rays more, those first rays
Light ray is incident on the fifth and sixth prism surfaces and is superposed on the second light ray emitted from the sixth and fifth prism surfaces on the optical axis connecting the fifth and sixth prism surfaces. An optical device including an optical prism having a hexagonal cross section may be used.

【0014】請求項7記載の発明は、断面が長方形もし
くは正方形である角柱体の斜向いに位置する二稜線側部
分がプリズム面としての角柱側面に対して45度をなす
互に平行な斜面となるプリズム面に形成され、相互に平
行な第1、第2のプリズム面に対して、これら第2、第
1のプリズム面にそれぞれ隣接する互いに平行な第3、
第4のプリズム面から入射角が0〜10度以内でそれぞ
れ第1の光線を入射させ、これら第1の光線の波長にお
ける前記第1、第2のプリズム面の反射角が臨界角+
(0〜0.2度)の範囲となるよう光学プリズムの角度
を調整して全反射させ、それら全反射させた第1の光線
を更に他の互いに平行な第5、第6のプリズム面におい
て反射角が0〜10度以内で反射させ、それら第5、第
6のプリズム面に対向する第6、第5のプリズム面より
それら第1の光線を出射させる一方、第6、第5のプリ
ズム面に反射させた残りの第1の光線を前記第1の光線
を前記第1、第2の側面に全反射させてから前記第3、
第4のプリズム面から出射させる断面形状六角形の光学
プリズムを備えた光学装置とした。
According to a seventh aspect of the present invention, the two ridge-side portions located diagonally to the prismatic body having a rectangular or square cross section form mutually parallel slopes forming 45 degrees with respect to the prismatic side surface as the prism surface. The first and second prism surfaces parallel to each other, which are formed on the prism surface of
The first light ray is made incident from the fourth prism surface within an incident angle of 0 to 10 degrees, and the reflection angles of the first and second prism surfaces at the wavelength of the first light ray are the critical angle +
The angle of the optical prism is adjusted so as to be in the range of (0 to 0.2 degrees), and total reflection is performed, and the first reflected total rays are further parallel to each other on the fifth and sixth prism surfaces. The reflection angle is within 0 to 10 degrees, and the first light rays are emitted from the sixth and fifth prism surfaces facing the fifth and sixth prism surfaces, while the sixth and fifth prisms are emitted. The remaining first light ray reflected on the surface is totally reflected on the first and second side surfaces, and then the third light ray.
The optical device is provided with an optical prism having a hexagonal cross section that is emitted from the fourth prism surface.

【0015】請求項8記載の発明は断面が長方形又は正
方形である角柱体の一稜線側部分がプリズム面としての
角柱側面に対して45度をなす斜面となるプリズム面に
形成されることによって断面形状が五角形となり、その
1のプリズム面から入射される1の入射光と前記1のプ
リズム面に対し90度ずれた他のプリズム面から入射さ
れる2の入射光によって合成された出射光の偏光の楕円
率が100〜90%である構成とした。
According to an eighth aspect of the present invention, a section of one side of the prism having a rectangular or square cross section on the ridgeline side is formed as a prism surface which is an inclined surface forming an angle of 45 degrees with respect to the side surface of the prism as a prism surface. A pentagonal shape, and the polarization of the outgoing light combined by one incident light incident from the one prism surface and two incident light incident from the other prism surface which is shifted by 90 degrees with respect to the one prism surface. The ellipticity of was set to 100 to 90%.

【0016】請求項9記載の発明は、断面が長方形又は
正方形である角柱体の一稜線側部分がプリズム面として
の角柱側面に対して45度をなす斜面となるプリズム面
に形成されることによって断面形状が五角形となり、そ
の1のプリズム面から入射される入射光が該光学プリズ
ムの2のプリズム面で反射されて3のプリズム面から出
射される第1の出射光と前記3のプリズム面で更に反射
されて4のプリズム面から出射される第2の出射光それ
ぞれの偏光の楕円率が100〜90%である構成とし
た。
According to a ninth aspect of the present invention, one ridge line side portion of a prismatic body having a rectangular or square cross section is formed into a prism surface which is an inclined surface forming an angle of 45 degrees with respect to the prismatic side surface as a prism surface. The cross-sectional shape is a pentagon, and the incident light incident from the first prism surface is reflected by the second prism surface of the optical prism and the first outgoing light emitted from the third prism surface and the third prism surface. Furthermore, the ellipticity of the polarization of each of the second outgoing lights that are reflected and emitted from the fourth prism surface is 100 to 90%.

【0017】請求項8の発明において、前記斜面となる
プリズム面に対し、このプリズム面に隣接しない他のプ
リズム面から入射角0〜10度以内で光線を入射させ、
この光線の波長における前記斜面となるプリズム面の反
射角が臨界角+(0〜0.2度)の範囲となるよう光学
プリズムの角度を調整して全反射させ、その全反射させ
た光線の一部を別のプリズム面から出射させる一方、こ
の別のプリズム面において反射角が0〜10度以内で更
に反射させた残りの光線をその別のプリズム面と対向す
るプリズム面から出射させる光学プリズムを備えた光学
装置としてもよい。
In the invention of claim 8, a ray of light is made incident on the inclined prism surface from another prism surface not adjacent to this prism surface within an incident angle of 0 to 10 degrees,
The angle of the optical prism is adjusted so that the reflection angle of the prism surface serving as the inclined surface at the wavelength of this light ray is in the range of the critical angle + (0 to 0.2 degree), and the total reflection is performed. An optical prism in which a part of the light is emitted from another prism surface, while the remaining light rays that are further reflected within the reflection angle of 0 to 10 degrees on the other prism surface are emitted from the prism surface facing the other prism surface. It may be an optical device provided with.

【0018】 請求項10記載の発明は、断面が長方形
又は正方形である角柱体の一稜線側部分がプリズム面と
しての角柱側面に対して45度をなす斜面となるプリズ
ム面に形成されることによって断面形状が五角形とな
り、その1のプリズム面から入射される1の入射光と前
記1のプリズム面に対し90度ずれた他のプリズム面か
ら入射される2の入射光によって合成された出射光の偏
光の楕円率が100〜90%で、斜面となるプリズム面
に対し、このプリズム面に隣接しない他のプリズム面か
ら入射角が0〜10度以内で光線を入射させ、この光線
の波長における前記斜面となるプリズム面の反射角が臨
界角+(0〜0.2度)の範囲となるよう光学プリズム
の角度を調整して全反射させ、その全反射させた光線を
更に別のプリズム面において反射角が0〜10度以内で
反射させ、前記別のプリズム面と対向するプリズム面よ
り更にその反射させた光線を出射させるとき、この出射
光線を、その出射面と対向するプリズム面から入射され
てその出射面から出射される光線にその対向するプリズ
ム面を結ぶ光軸上で重ね合わされる断面形状五角形の光
学プリズムを備えた光学装置にしてもよい。
According to a tenth aspect of the present invention, the one ridge line side portion of the prismatic body having a rectangular or square cross section is formed into a prism surface which is an inclined surface forming an angle of 45 degrees with respect to the prismatic side surface as a prism surface. The cross-sectional shape is a pentagon, and one of the incident light that is incident from the one prism surface and the emitted light that is combined by the two incident light that is incident from the other prism surface that is deviated by 90 degrees from the one prism surface are combined. The ellipticity of polarized light is 100 to 90%, and a light ray is incident on a prism surface that is an inclined surface within an angle of incidence of 0 to 10 degrees from another prism surface that is not adjacent to this prism surface. The angle of the optical prism is adjusted so that the reflection angle of the prism surface, which is an inclined surface, is within the range of the critical angle + (0 to 0.2 degree), and the light is totally reflected and the reflected light beam is further reflected on another prism surface. When the reflected light is reflected within a reflection angle of 0 to 10 degrees and the reflected light ray is further emitted from the prism surface facing the other prism surface, the emitted light ray is incident from the prism surface facing the output surface. An optical device may be provided with an optical prism having a pentagonal cross-section that is superposed on the optical axis connecting the opposite prism surfaces with the light beam emitted from the emission surface.

【0019】 請求項11の発明は請求項1、4、5記
載の光学プリズムを直方体容器に収納し、この直方体容
器の壁面を基準にレンズを介して光学結合する構成とす
るとともに、直方体容器に偏光に依存しない光アイソレ
ータを収納し、直方体壁面に配置する第1のレンズ付コ
ネクタから波長λ 1 の光線1を導入し、第1のレンズ付
コネクタと対向する第2のレンズ付コネクタに出射さ
れ、第1のレンズ付コネクタと対向する第2のレンズ付
コネクタに出射され、第1のレンズ付コネクタ及び第2
のレンズ付コネクタに直光する第3のレンズ付コネクタ
もしくは第4のレンズ付コネクタのいずれか一方から波
長λ 2 (λ 2 <λ 1 )の光線2を導入し、光学プリズムの
プリズム面に形成された反射ミラー、波長選択フィルタ
の作用によって第1のレンズ付コネクタもしくは第2の
レンズ付コネクタからの光線1と合波され、かつ第3の
レンズ付コネクタもしくは第4のレンズ付コネクタから
光線1の光強度検出のためのモニタが得られる構成とし
た。
The eleventh aspect of the present invention is configured such that the optical prism according to the first, fourth, and fifth aspects is housed in a rectangular parallelepiped container and is optically coupled through a lens with the wall surface of the rectangular parallelepiped container as a reference .
In addition, the rectangular parallelepiped container has an optical isolator that does not depend on polarization.
The first lens-equipped connector that houses the data and is placed on the rectangular parallelepiped wall surface.
Introduces ray 1 of wavelength λ 1 from the nectar and attaches the first lens
The light is emitted to the second connector with a lens that faces the connector.
With a second lens facing the first connector with a lens
The light is emitted to the connector, and the first connector with a lens and the second connector
Third lens connector that directly illuminates the lens connector
Or wave from either one of the 4th connector with lens.
Introduce a ray 2 of long λ 2 2 1 ) and
Reflection mirror and wavelength selection filter formed on the prism surface
By the action of the first connector with a lens or the second
The light beam 1 from the connector with a lens is multiplexed and
From the connector with lens or the fourth connector with lens
A monitor for detecting the light intensity of the light beam 1 is obtained.
It was

【0020】[0020]

【0021】[0021]

【作用】請求項1記載の光学プリズムによれば、他の4
面に対して45度の傾斜角になるようにプリズム面を形
成した六角形形状に形成することによって、光強度レベ
ルを帰還する分離機構を形成するので、同時に光強度を
モニタすることが可能になり、また、プリズムの配置角
度が変動しても光線は平行もしくは直角にしか変動しな
いので、簡易な構成で光の合波が極めて容易となる。
According to the optical prism described in claim 1, the other four
By forming the prism surface so that the prism surface has an inclination angle of 45 degrees with respect to the surface, a separation mechanism for returning the light intensity level is formed, so that it is possible to monitor the light intensity at the same time. Further, even if the arrangement angle of the prism changes, the light rays change only in parallel or at right angles, so that combining of the light becomes extremely easy with a simple configuration.

【0022】請求項2記載の光学プリズムによれば、第
1の入射光と第2の入射光によって合成された出射光の
偏光の楕円率を100〜90%にすることにより、光の
合波がより効果的に行なえる。
According to the optical prism of the second aspect, the ellipticity of the polarization of the emitted light combined by the first incident light and the second incident light is set to 100 to 90%, thereby combining the lights. Can be done more effectively.

【0023】請求項3記載の光学プリズムによれば、1
のプリズム面から入射されて、相互に90度ずれたプリ
ズム面から出射される第1の出射光と、第2の出射光そ
れぞれの楕円率が100〜90%にすることにより、光
の分波がより効果的に行われる。
According to the optical prism of claim 3, 1
When the ellipticity of each of the first outgoing light and the second outgoing light, which are incident from the prism surface of the first and exit from the prism surfaces that are deviated from each other by 90 degrees, are set to 100 to 90%, the demultiplexing of the light is performed. Is done more effectively.

【0024】請求項4の光学プリズムによれば、平行な
一対のプリズム面に設けられた反射ミラーにより、これ
ら反射ミラーに向けて入射される光が全反射されるの
で、光の合波と分波がより効果的に行なえる。
According to the optical prism of the fourth aspect, the light incident on these reflecting mirrors is totally reflected by the reflecting mirrors provided on the pair of parallel prism surfaces. The waves can be done more effectively.

【0025】請求項5記載の発明によれば、1対の平行
なプリズム面以外の4つのプリズム面に設けられた波長
選択フィルタにより、選択された光のみが入射される。
According to the fifth aspect of the invention, only the selected light is made incident by the wavelength selection filters provided on the four prism surfaces other than the pair of parallel prism surfaces.

【0026】請求項6記載の発明によれば、入射角が0
〜10度以内で入射される光線を反射させるプリズム面
が臨界角+(0〜0.2度)の範囲となって全反射する
ように調整されているので、それら反射面に反射ミラー
を設けなくてもその入射光線を全反射させて他の入射光
と光の合波を効果的に行うことができる。
According to the invention of claim 6, the incident angle is 0.
Since the prism surface that reflects the light rays that are incident within 10 degrees is adjusted to achieve total reflection within the range of the critical angle + (0 to 0.2 degrees), reflection mirrors are provided on those reflection surfaces. Even if it does not exist, the incident light beam can be totally reflected to effectively combine the light beam with other incident light beams.

【0027】請求項7記載の発明によれば、入射角が0
〜10度以内で入射される光線を反射させるプリズム面
が臨界角+(0〜0.2度)の範囲となって全反射する
ように調整されているので、それら反射面に反射ミラー
を設けなくてもその入射光線を全反射させて光の分波を
効果的に行うことができる。
According to the invention of claim 7, the incident angle is 0.
Since the prism surface that reflects the light rays that are incident within 10 degrees is adjusted to achieve total reflection within the range of the critical angle + (0 to 0.2 degrees), reflection mirrors are provided on those reflection surfaces. Even if it does not exist, the incident light beam can be totally reflected to effectively split the light beam.

【0028】請求項8記載の発明によれば、五角形の光
学プリズムにおいても相互に90度ずれたプリズム面か
ら入射される第1の入射光と第2の入射光によって合成
された出射光の偏光の楕円率を100〜90%によるこ
とにより、光結合がより効果的に行なえる。
According to the invention described in claim 8, even in the pentagonal optical prism, the polarization of the outgoing light combined by the first incident light and the second incident light which are incident from the prism surfaces which are mutually shifted by 90 degrees. By setting the ellipticity of 100 to 90%, optical coupling can be performed more effectively.

【0029】請求項9記載の発明によれば、1のプリズ
ム面から入射されて、相互に90度ずれたプリズム面か
ら出射される第1の出射光と、第2の出射光それぞれの
楕円率が100〜90%にすることにより、光の分波が
より効果的に行われる。
According to the ninth aspect of the present invention, the ellipticity of each of the first outgoing light and the second outgoing light that are incident from one prism surface and are emitted from the prism surfaces that are mutually offset by 90 degrees. Is 100 to 90%, the demultiplexing of light is more effectively performed.

【0030】[0030]

【0031】 請求項10記載の発明によれば、五角形
の光学プリズムにおいても、斜面となるプリズム面の反
射角が臨界角+(0〜0.2度)の範囲となるよう光学
プリズムの角度を調整して入射光を全反射させ、その全
反射させた光を別のプリズム面にてもう一度反射させて
出射させる場合に、その入射光の入射角度と全反射の反
射角度を0〜10度にし、その出射光線を、その出射面
と対抗するプリズム面から入射されてその出射面から出
射される光線にその対向するプリズム面を結ぶ光軸上で
重ね合わされるので、光の合波がより効果的に行える。
According to the tenth aspect of the present invention, even in the pentagonal optical prism, the angle of the optical prism is adjusted so that the reflection angle of the prism surface which is an inclined surface falls within the range of the critical angle + (0 to 0.2 degree). When the incident light is adjusted to be totally reflected, and the totally reflected light is reflected again on another prism surface to be emitted, the incident angle of the incident light and the reflection angle of the total reflection are set to 0 to 10 degrees. , The output light ray is superposed on the optical axis that connects the opposing prism surface with the light ray that is incident from the prism surface that opposes the output surface and that is output from the output surface, so that the light combining is more effective. Can be done

【0032】 請求項11記載の発明によれば、請求項
1、4、5記載の光学プリズム用を用いて光の合波と分
波を効果的に行えるとともに、光アイソレータおよび光
学プリズムを収納した光学装置に、波長の異なる光線を
導入すると、反射ミラーと波長選択フィルタの作用によ
って、他のプリズム面から入射される光線と合波され、
前記他のプリズム面から入射される光線の光強度検出の
ためのモニタが得られる。
According to the eleventh aspect of the present invention, by using the optical prism for the first, fourth, and fifth aspects, it is possible to effectively combine and demultiplex light, and to use the optical isolator and the light.
The light with different wavelengths is placed in the optical device that houses the prism.
Introduced, the action of the reflection mirror and wavelength selection filter
Then, it is combined with the light rays incident from other prism surfaces,
For detecting the light intensity of the light beam incident from the other prism surface
To get a monitor for.

【0033】[0033]

【0034】[0034]

【実施例】【Example】

〈第1実施例〉図1はこの発明の実施例に係る六角形の
光学プリズムの全体斜視図、図2はこの光学プリズムの
側面から光線を入射した場合の透過、反射光の光路を示
した平面図である。
<First Embodiment> FIG. 1 is an overall perspective view of a hexagonal optical prism according to an embodiment of the present invention, and FIG. 2 shows optical paths of transmitted and reflected light when light rays are incident from the side surface of the optical prism. It is a top view.

【0035】この光学プリズム1は断面が長方形もしく
は正方形のガラスなどからなる透明(半透明も含む。)
な角柱体10の斜向いの二側稜線11と12側部分が、
角柱体10のプリズム面としての側面1a、1bに対し
てそれぞれθ(=45゜)をなす互いに平行なプリズム
面としての側面16、17に形成されることにより、そ
の横断面が六角形に作られている。
The optical prism 1 is transparent (including translucent) made of glass or the like having a rectangular or square cross section.
The diagonal two-sided ridge lines 11 and 12 of the rectangular prism 10 are
By forming side faces 16 and 17 as prism faces parallel to each other, which are θ (= 45 °) with respect to the side faces 1a and 1b as prism faces of the prismatic body 10, the cross-section is hexagonal. Has been.

【0036】六つのプリズム面としての側面1a〜1
d、16、17をもつこの光学プリズム1において、例
えば、側面1cから信号光Aを入射させると、側面1d
から光路変位δ1分だけ変移した状態で出射されるが、
その出射光は入射光Aに対して平行移動するだけで角度
ブレは生じない。
Side surfaces 1a to 1 as six prism surfaces
In this optical prism 1 having d, 16 and 17, for example, when the signal light A is incident from the side surface 1c, the side surface 1d
Is emitted with a displacement of δ1 from the optical path,
The emitted light only moves parallel to the incident light A, and no angular blur occurs.

【0037】ここで、側面1c、1dの外側に信号光
の、側面1a、1bの外側に合波光(ポンプ光)の反射
防止膜をそれぞれ形成し、側面16、17に内向きの反
射ミラーを形成する。そうすれば、側面1cに光増幅部
をもつ後方励起型合波モジュールに、側面1bから合波
光(ポンプ光)を導入しそれを側面17の内向きの反射
ミラーに反射させることで、信号光、ポンプ光とも側面
1dから出射する前方励起モジュールとなって相対位置
ずれがないので、設計的自由度が大きくなり、調整でき
る。
Here, an antireflection film for signal light is formed outside the side surfaces 1c and 1d, and an antireflection film for combined light (pump light) is formed outside the side surfaces 1a and 1b, and inward reflection mirrors are formed on the side surfaces 16 and 17, respectively. Form. Then, by introducing the combined light (pump light) from the side surface 1b into the backward pumping type multiplexing module having the optical amplification section on the side surface 1c and reflecting it by the inward reflecting mirror of the side surface 17, Since both the pump light and the pump light are forward excitation modules that are emitted from the side surface 1d and there is no relative positional deviation, the degree of freedom in design is increased and adjustment is possible.

【0038】しかも、互いに平行でない側面、例えば1
cから光学プリズム1内に入射した透過光と側面1aお
よび1bから光学プリズム1内に入射する光線同士は相
互に直交である一方、相互に平行な側面、例えば1c、
1dの一方から入る入射光線と他方から出た出射光線と
は平行なので、光学結合上の優位性は保存されている。
Moreover, side surfaces which are not parallel to each other, for example, 1
The transmitted light entering the optical prism 1 from c and the light rays entering the optical prism 1 from the side surfaces 1a and 1b are orthogonal to each other, while the side surfaces parallel to each other, for example, 1c,
Since the incident light beam entering from one side of 1d and the outgoing light beam emerging from the other side are parallel, the superiority in optical coupling is preserved.

【0039】図2において、側面1cに対してθiの角
度から信号光が入射しており、この信号光と直交する方
向から側面1bにθpiの角度で励起光を導入するとき
には、この光分波プリズム1の幾何学的形状から当然 (数1)θi=θpi であり、かつ (数2)θi=θ0 となることは容易に推測できる。
In FIG. 2, the signal light is incident on the side surface 1c at an angle of θi, and when the pump light is introduced to the side surface 1b at an angle of θpi from the direction orthogonal to the signal light, this optical demultiplexing is performed. From the geometrical shape of the prism 1, it can be easily estimated that (Equation 1) θi = θpi and (Equation 2) θi = θ 0 .

【0040】側面1cから入射した光線は、該側面1c
に対してαの角度で屈折され、側面1dにおける反射角
も同様にαとなる。
The light rays incident from the side surface 1c are
The light is refracted at an angle of α with respect to, and the reflection angle at the side surface 1d is also α.

【0041】ここで、空気中の屈折率をn0、ガラスの
屈折率をnとすれば、スネルの法則から (数3)α=sin-1(n 0/n・sinθi) 45度傾斜面では、その幾何学的構造から (数4)β=45゜−α で、側面1aから出射されるときの側面1aとの角度γ
および出射後の側面1aとの角度φは (数5)γ=180゜−{ 45゜+90゜+β} =45゜−β (数6)φ=sin-1(n /n 0・sinγ) となり、これらの関係から (数7)φ=θi すなわちプリズムの直角度が正確に形成されてあればま
ったく誤差なく、直角もしくは平行な光線が出射され、
この関係は光線方向に対するプリズム設置角が変動して
もなんら変化しない。
Here, assuming that the refractive index in air is n 0 and the refractive index of glass is n, from Snell's law (Formula 3) α = sin −1 (n 0 / n · sin θi) 45 ° inclined surface , (4) β = 45 ° -α due to its geometrical structure, and the angle γ with the side surface 1a when emitted from the side surface 1a.
And the angle φ with the side surface 1a after emission is (Equation 5) γ = 180 °-{45 ° + 90 ° + β} = 45 ° -β (Equation 6) φ = sin -1 (n / n 0 · sinγ) From these relationships, (Equation 7) φ = θi, that is, if the squareness of the prism is accurately formed, there is no error and a right-angled or parallel light beam is emitted.
This relationship does not change even if the prism installation angle with respect to the ray direction changes.

【0042】また側面1dが反射防止膜を施さない裸の
ガラス面とし、側面1cに長波長透過フィルタ(LP
F)を、側面1aにも同じくLPF、側面1bをポンプ
光用反射防止膜、側面16および側面17に内向き反射
ミラーを形成すれば、側面1dにて信号光および励起光
の約4%が側面1aに達するが、側面1aはLPFだか
ら信号光のみ透過し、その出射光レベルをモニタすれ
ば、信号光強度が帰還できることになる。しかも図2で
記述したように、一の側面から入射した光学プリズム1
内の光線と一の側面と90度ずれた側面から入射する光
線同士は全て直交しているし、相互に平行な側面の一方
から入る入射光線と他方から出た出射光線とは光路変位
δ1分だけずれているが相互に平行となる。
The side surface 1d is a bare glass surface without an antireflection film, and the side surface 1c has a long wavelength transmission filter (LP).
If F) is formed on the side surface 1a similarly, the side surface 1b is an antireflection film for pump light, and the inward reflection mirrors are formed on the side surfaces 16 and 17, about 4% of the signal light and the excitation light are generated on the side surface 1d. Although it reaches the side surface 1a, since the side surface 1a is an LPF, only the signal light is transmitted, and the signal light intensity can be returned by monitoring the output light level. Moreover, as described in FIG. 2, the optical prism 1 is incident from one side surface.
All the light rays that are incident from one side surface and the side surface that is 90 degrees apart are orthogonal to each other, and the incident light ray that enters from one side surface and the exit light ray that exits from the other side surface are the optical path displacement δ1 minutes. However, they are parallel to each other.

【0043】ここで、この実施例の光学プリズム1によ
って行なわれる光の分波と合波について説明する。先
ず、分波とは、相互に平行な第1、第2の側面16、1
7に対して、これら第2、第1の側面17、16にそれ
ぞれ隣接する互いに平行な第3、第4の側面1a、1b
から第1の光線を入射させ、これら入射した第1の光線
を第1、第2の側面16、17に反射させ、これら反射
させた第1の光線を更に他の互いに平行な第5、第6の
側面1c、1dにおいて反射角が0〜10度以内で反射
させ、それら第5、第6の側面1c、1dに対向する第
6、第5の側面1d、1cよりそれら第1の光線の一部
を出射させる一方、第6、第5の側面1d、1cに反射
させた残りの第1の光線を前記第1、第2の側面16、
17に反射させてから前記第3、第4の側面1a、1b
から出射させることをいう。
Here, the demultiplexing and combining of the light performed by the optical prism 1 of this embodiment will be described. First, the demultiplexing means the first and second side surfaces 16 and 1 which are parallel to each other.
7, the third and fourth side faces 1a, 1b parallel to each other and adjacent to the second and first side faces 17, 16 respectively.
From the first and second side surfaces 16 and 17, and the reflected first light ray is reflected by the fifth and fifth parallel rays. The angle of reflection is 6 to 10 degrees on the side surfaces 1c and 1d of the six side surfaces of the sixth and fifth side surfaces 1d and 1c facing the fifth and sixth side surfaces 1c and 1d. While partially emitting the remaining first light ray reflected by the sixth and fifth side surfaces 1d and 1c, the first and second side surfaces 16,
17 and then the third and fourth side faces 1a, 1b
It means to emit from.

【0044】次に合波とは相互に平行な第1、第2の側
面16、17に対して、これら第2、第1の側面17、
16にそれぞれ隣接する互いに平行な第3、第4の側面
1a、1bから第1の光線を入射させ、これら入射した
第1の光線を第1、第2の側面16、17に反射させ、
これら反射させた第1の光線を更に他の互いに平行な第
5、第6の側面1c、1dにおいて反射角が0〜10度
以内で反射させ、それら第1の光線を、それら第5、第
6の側面1c、1dに対向する第6、第5の側面1d、
1cより出射させるとき、それら第1の光線を、第5と
第6の側面1c、1dから入射されて第6、第5の側面
1d、1cから出射される第2の光線に第5、第6のプ
リズム面を結ぶ光軸上で重ね合わされることをいう。
Next, with respect to the first and second side surfaces 16 and 17 which are parallel to each other with the multiplexing, the second and first side surfaces 17 and 17,
16. The first light ray is made incident from the parallel third and fourth side surfaces 1a, 1b adjacent to 16, respectively, and the incident first light ray is reflected by the first and second side surfaces 16, 17,
These reflected first light rays are reflected on the other parallel fifth and sixth side surfaces 1c and 1d within a reflection angle of 0 to 10 degrees, and the first light rays are reflected on the fifth and sixth side surfaces 1c and 1d. Sixth and fifth side faces 1d facing the six side faces 1c, 1d,
When it is emitted from 1c, the first ray is changed to the second ray that is incident from the fifth and sixth side faces 1c and 1d and is emitted from the sixth and fifth side faces 1d and 1c. It means that they are superposed on the optical axis connecting the prism surfaces of 6.

【0045】ここで、ガラスを使った場合の偏光面によ
る反射率の楕円比を考慮し、光学プリズム1をどのよう
な状態で使っかたら好ましいか、又、どのような状態で
光学装置に適用したら良いかについて検討する。
Here, in consideration of the ellipticity of the reflectance due to the polarization plane when glass is used, in what state it is preferable to use the optical prism 1, and in what state it is applied to an optical device. Consider what to do.

【0046】ここで、空気中からガラス板に入射された
光線のフレネル反射率の計算式を基に入射角と反射率と
の関係のグラフ(図4、図5)を描き、これらグラフに
基づいて偏光面による反射率の楕円比を表わすグラフ
(図6)を描いてみる。
Here, a graph (FIGS. 4 and 5) of the relationship between the incident angle and the reflectance is drawn based on the calculation formula of the Fresnel reflectance of the light ray incident on the glass plate from the air, and based on these graphs. Then, draw a graph (FIG. 6) showing the ellipticity of the reflectance by the plane of polarization.

【0047】先ず、前提として、入射光の波長が150
0nmのとき、ガラスとしてホウケイクラウン(BK−
7)を用いると、その屈折率nは1.5となる。そし
て、空気中の屈折率を1として、入射面に平行な偏波面
の反射率をRp、入射面に垂直な偏波面の反射率をRs
とする。
First, as a premise, the wavelength of incident light is 150
At 0 nm, borosilicate crown (BK-
When 7) is used, the refractive index n becomes 1.5. Then, assuming that the refractive index in air is 1, the reflectance of the plane of polarization parallel to the plane of incidence is Rp, and the reflectance of the plane of polarization perpendicular to the plane of incidence is Rs.
And

【0048】また、入射角(空気中からガラス板への入
射角)θin=in(deg)、in=0〜90度と
し、入射角θinをラジアン(rad.)で表わした値
をα1とすると、 (数8)α1=π・i/180 (rad.) となる。そして、出射角(ガラス板内への出射角)をβ
iとすると、 (数9)βi=asin(n1・sinα1/n2) となり、 (数10) Rpi=(sin(α11)/sin(α11))2・100 (%) (数11) Rsi=(tan(α11)/tan(α11))2・100 (%) と、なる。
Further, the incident angle (incident angle from the air to the glass plate) θin = in (deg), in = 0 to 90 degrees, and the incident angle θin expressed in radian (rad.) Is α1. , (Equation 8) α 1 = π · i / 180 (rad.). Then, let the exit angle (the exit angle into the glass plate) be β
Let i be (Equation 9) βi = asin (n1 · sinα 1 / n2), and (Equation 10) Rpi = (sin (α 1 −β 1 ) / sin (α 1 + β 1 )) 2 · 100 ( %) (Equation 11) Rsi = (tan (α 11 ) / tan (α 1 + β 1 )) 2 · 100 (%).

【0049】これらの式から入射角;θinの値(0〜
90度)に応じて反射率Rp、Rsを求め、入射角θi
nを横軸、反射率Rpi、Rsiを縦軸にとってグラフに
表わすと、図4のようになる。図5にはθin=0〜1
5度における図4の拡大したグラフを示す。
From these equations, the incident angle; the value of θin (0 to
90 degrees), the reflectances Rp and Rs are calculated, and the incident angle θi
FIG. 4 is a graph in which n is the horizontal axis and reflectances Rpi and Rsi are the vertical axes. In FIG. 5, θin = 0 to 1
5 shows an enlarged graph of FIG. 4 at 5 degrees.

【0050】これらのグラフ(図4、図5)から偏光面
による反射率の楕円比を求めて、入射角θjを横軸、楕
円比Rsi/Rpiを縦軸としたグラフに表わすと、図6
のようになる。
From these graphs (FIGS. 4 and 5), the ellipticity ratio of the reflectance due to the polarization plane is obtained and shown in the graph with the incident angle θj as the abscissa and the ellipticity ratio Rsi / Rpi as the ordinate.
become that way.

【0051】図6のグラフから見ると、入射角が0〜1
0度のときに楕円率((Rsi/Rpi)×100%)が
100〜90%となる。
From the graph of FIG. 6, the incident angle is 0 to 1
The ellipticity ((Rsi / Rpi) × 100%) is 100 to 90% at 0 degree.

【0052】一方、ガラス板から空気中に入射された光
線のフレネル反射率の計算式を基に入射角と反射率との
関係グラフ(図7、図8)を描き、これらグラフに基づ
いて偏向面による反射率の楕円比を表わすグラフ(図
9、図10)を描いて見る。
On the other hand, a relational graph (FIGS. 7 and 8) between the incident angle and the reflectance is drawn based on the calculation formula of the Fresnel reflectance of the light beam entering the air from the glass plate, and the deflection is performed based on these graphs. Draw and see graphs (FIGS. 9 and 10) showing the ellipticity of the reflectance by the surface.

【0053】先ず、その前提として、反射光の波長が1
500nmのとき、ガラスとしてホウケイクラウン(B
K−7)を用いると、その屈折率n1=1.5となる。
そして、空気中の屈折率をn1とし、入射面に平行な偏
波面の反射率Rp、入射面に垂直な偏波面の反射率をR
sとする。
First, as the premise, the wavelength of the reflected light is 1
At 500 nm, borosilicate crown (B
When K-7) is used, its refractive index n1 = 1.5.
Then, the refractive index in the air is n1, the reflectance Rp of the polarization plane parallel to the incident plane, and the reflectance Rp of the polarization plane perpendicular to the incidence plane are R
Let s.

【0054】また、入射角(ガラス板から空気中への入
射角)θim=im(deg)、im=0〜90度と
し、入射角θimラジアン(rad.)で表わした値を
α1とすると、 (数12)α1=π・i/180 (rad.) となる。そして、出射角(空気中の出射角)をβiする
と、 (数13)βi=asin(n1・sinα1/n2) となり、 (数14) Rpi=(sin(α11)/sin(α11))2・100 (%) (数15) Rsi=(tan(α11)/tan(α11))2・100 (%) となる。
When the incident angle (incident angle from the glass plate into the air) θim = im (deg) and im = 0 to 90 degrees, and the value represented by the incident angle θim radian (rad.) Is α1, (Equation 12) α 1 = π · i / 180 (rad.). When the emission angle (emission angle in air) is βi, (Equation 13) βi = asin (n1 · sinα 1 / n2), and (Equation 14) Rpi = (sin (α 11 ) / sin ( α 1 + β 1 )) 2 · 100 (%) (Equation 15) Rsi = (tan (α 1 −β 1 ) / tan (α 1 + β 1 )) 2 · 100 (%).

【0055】これらの式から入射角θimの値(0〜9
0度)に応じて反射率Rp、Rsを求め、入射角θim
を横軸、反射率Rp、Rsを縦軸にとってグラフに表わ
すと、図7のようになる。図8にはθi=0〜15度に
おける図7の拡大したグラフを示す。
From these equations, the value of the incident angle θim (0-9
The reflectances Rp and Rs are calculated according to (0 degree), and the incident angle θim
Is plotted on the horizontal axis and the reflectances Rp and Rs are plotted on the vertical axis. FIG. 8 shows an enlarged graph of FIG. 7 at θi = 0 to 15 degrees.

【0056】これらグラフ(図7、図8)から偏光面に
よる反射率の楕円比を求めて、入射角θjを横軸とした
グラフに表わすと、図9のようになる。そして、その図
9の一部(θj=41.5〜42度)を拡大したグラフ
は図10のようになる。
From these graphs (FIGS. 7 and 8), the ellipticity of the reflectance due to the plane of polarization is obtained and expressed in a graph with the incident angle θj as the horizontal axis, as shown in FIG. A graph obtained by enlarging a part (θj = 41.5 to 42 degrees) of FIG. 9 is shown in FIG. 10.

【0057】ここで、n1>n2であるから入射角θj
が臨界角以上ではP波、S波とも全反射となる。
Here, since n1> n2, the incident angle θj
Is greater than the critical angle, both P and S waves are totally reflected.

【0058】臨界角θcは (数16)θc=asin(n2・n1)/π・180 の式から41.81となる。The critical angle θc is (Equation 16) θc = asin (n2 ・ n1) / π ・ 180 It becomes 41.81 from the formula.

【0059】そして、図10のグラフから臨界角41.
81度から42.01度の範囲まで偏波無依存で全反射
が可能となる。
From the graph of FIG. 10, the critical angle 41.
Total reflection is possible in the range of 81 degrees to 42.01 degrees without polarization dependency.

【0060】以上のことから考えると、第1実施例の光
学プリズム1を使用したり、光学装置に適用するにあた
っては、次のように用いるのが望ましいといえる。
In view of the above, when using the optical prism 1 of the first embodiment or applying it to an optical device, it can be said that it is desirable to use it as follows.

【0061】例えば、側面1b(1a)から入射される
入射光が側面17で反射されて側面1c(1d)から出
射される第1の出射光と前記側面1c(1d)で更に反
射されて側面1d(1c)から出射される第2の出射光
それぞれの偏光の楕円率を100〜90%にすれば、光
の分波がより効果的に行える。
For example, the incident light incident from the side surface 1b (1a) is reflected by the side surface 17 and emitted from the side surface 1c (1d), and further reflected by the side surface 1c (1d). If the ellipticity of the polarization of each of the second outgoing lights emitted from 1d (1c) is set to 100 to 90%, the demultiplexing of the light can be more effectively performed.

【0062】光学プリズム1の相互に平行な第1、第2
の側面16,17に対して、これら第2、第1の側面1
7,16にそれぞれ隣接する互いに平行な第3,第4の
側面1a、1bから入射角が0〜10度以内でそれぞれ
第1の光線の波長における前記第1,第2の側面16,
17の反射角が偏波無依存の角度(臨界角θc+(0〜
0.2度))となるよう光学プリズム1の角度調整して
全反射させ、それら全反射させた第1の光線を更に他の
互いに平行な第5,第6の側面1c、1dより、それら
第1の光線を出射させるとき、それら第6、第5の側面
1d、1cから出射される第2の光線に第5,第6の側
面1c、1dを結ぶ光軸上で重ね合わせるようにすれ
ば、第1、第2の側面に反射ミラーを形成しなくても光
の合波がより効果的に行なえる。
First and second optical prisms 1 parallel to each other
The second and the first side surface 1 with respect to the side surfaces 16 and 17 of
The first and second side surfaces 16 at the wavelength of the first light ray with an incident angle of 0 to 10 degrees from the parallel third and fourth side surfaces 1a and 1b adjacent to 7 and 16, respectively.
The angle at which the reflection angle of 17 is polarization independent (critical angle θc + (0 to
The angle of the optical prism 1 is adjusted so as to be 0.2 degrees)), and the total reflection of the first light rays is performed by the other fifth and sixth side surfaces 1c and 1d parallel to each other. When the first light ray is emitted, it is necessary to superimpose the second light ray emitted from the sixth and fifth side surfaces 1d and 1c on the optical axis connecting the fifth and sixth side surfaces 1c and 1d. In this case, the light can be combined more effectively without forming the reflection mirror on the first and second side surfaces.

【0063】また、光学プリズム1の相互に平行な第
1,第2の側面1c、1dに対して、これら第2,第1
の側面1d、1cにそれぞれ隣接する互いに平行な第
3,第4の側面1a,1bから入射角0〜10度以内で
それぞれ第1の光線を入射させ、これら第1の光線の波
長における前記第1,第2の側面16,17の反射角が
偏波無依存の角度(臨界角θc+(0〜0.2度))と
なるよう光学プリズム1の角度を調整して全反射させ、
それら全反射させた第1の光線の一部を更に他の互いに
平行な第5,第6の側面1c,1dにおいて反射角が0
〜10度以内で反射させ、それら第5,第6の側面1
c,1dに対向する第6,第5の側面1d,1cよりそ
れら第1の光線を出射させる一方、第6,第5の側面1
d,1cに反射させた残りの第1の光線を前記第1,第
2の側面に全反射させてから前記第3,第4の側面1
c,1dから出射させるようにすれば、効果的に光の分
波を行うことができる。
For the first and second side faces 1c and 1d of the optical prism 1 which are parallel to each other, these second and first side faces are formed.
From the parallel third and fourth side faces 1a, 1b adjacent to the side faces 1d, 1c, respectively, into the first light beam within an incident angle of 0 to 10 degrees, and the first light beam at the wavelength of the first light beam is incident. 1, the angle of the optical prism 1 is adjusted so that the reflection angles of the second side surfaces 16 and 17 are polarization independent angles (critical angle θc + (0 to 0.2 degrees)), and total reflection is performed.
A part of the totally reflected first light ray has a reflection angle of 0 on the other parallel fifth and sixth side surfaces 1c and 1d.
The light is reflected within 10 degrees, and the fifth and sixth side surfaces 1
While the first light rays are emitted from the sixth and fifth side faces 1d, 1c facing the c, 1d, the sixth and fifth side faces 1
d and 1c, the remaining first light rays are totally reflected by the first and second side surfaces, and then the third and fourth side surfaces 1
If the light is emitted from c and 1d, the light can be effectively demultiplexed.

【0064】〈第2実施例〉図3には断面を五角形にし
た光学プリズムの第3実施例の平面図を示す。
<Second Embodiment> FIG. 3 shows a plan view of a third embodiment of an optical prism having a pentagonal cross section.

【0065】この光学プリズム100は断面が長方形も
しくは正方形のガラスなどからなる透明(半透明も含
む。)な角柱体110の一稜線111側部分がプリズム
面としての角柱側面120cに対して45度をなす斜面
となるプリズム面としての側面121に形成されること
によって断面形状が五角形に形成されている。
In this optical prism 100, a portion of one side of one ridgeline 111 of a transparent prismatic body 110 made of glass or the like having a rectangular or square cross section forms an angle of 45 degrees with respect to a prismatic prism side surface 120c. By forming it on the side surface 121 as a prism surface which is an inclined surface, the cross-sectional shape is formed into a pentagon.

【0066】この光学プリズム100は、第一実施例に
おけると同様、その1の側面120aから入射される1
の入射光と前記1の側面120aに対し90度ずれた他
の側面120dから入射される2の入射光によって合成
された出射光の楕円率が100〜90%の範囲内で使用
すれば,光の合波と分波がより効果的に行なえる。
In this optical prism 100, as in the case of the first embodiment, the light incident from the side surface 120a of one side 1
When the ellipticity of the emitted light combined with the incident light of 2 and the incident light of 2 incident from the other side surface 120d which is deviated by 90 degrees with respect to the side surface 120a of 100 to 90% is used, The multiplexing and demultiplexing of can be performed more effectively.

【0067】例えば、側面120dから入射される入射
光が側面121で反射されて側面120bから出射され
る第1の出射光と該側面120bで更に反射されて側面
120aから出射される第2の出射光それぞれの偏光の
楕円率が100〜90%にすれば、光の分波をより効果
的に行うことができる。
For example, incident light incident from the side surface 120d is reflected by the side surface 121 and emitted from the side surface 120b, and second emitted light is further reflected by the side surface 120b and emitted from the side surface 120a. If the ellipticity of each polarization of the emitted light is 100 to 90%, the light can be more effectively demultiplexed.

【0068】また、この光学プリズム100は,第1実
施例におけると同様斜面となるプリズム面としての側面
121に対し、この側面121に隣接しない他の側面1
21から入射角が0〜10度以内で光線を入射させ、こ
の光線の波長における前記斜面となる側面121の反射
角が臨界角(0〜+0.2度)となるよう光学プリズム
100の角度を調整して全反射させ、その全反射させた
光線の一部を別の側面120bから出射させる一方、こ
の別の側面121bにおいて反射角が0〜10度以内で
更に反射させた残りの光線をその別の側面120bと対
向する更に別の側面120aから出射させると、より効
果的に分波機能を果たす。
Further, in the optical prism 100, the side surface 121 as a prism surface which is an inclined surface as in the first embodiment is different from the side surface 121 which is not adjacent to the side surface 121.
A light ray is made incident from 21 within an angle of incidence of 0 to 10 degrees, and the angle of the optical prism 100 is set so that the reflection angle of the side surface 121 which is the inclined surface at the wavelength of this light ray becomes a critical angle (0 to +0.2 degree). It is adjusted to be totally reflected, and a part of the totally reflected light is emitted from the other side surface 120b, while the remaining light rays further reflected within the reflection angle of 0 to 10 degrees on the other side surface 121b. When the light is emitted from another side surface 120a facing the other side surface 120b, the demultiplexing function is more effectively achieved.

【0069】また、この光学プリズム100は、第1実
施例におけると同様、斜面となるプリズム面としての側
面121に対し、このプリズム面に隣接しない他の側面
120dから入射角0〜10度以内で光線を入射させ、
この光線の波長における前記斜面となる側面121の反
射角が臨界角(0〜0.2度)となうよう光学プリズム
100の角度を調整して全反射させ、その全反射させた
光線を別の側面120bにおいて反射角が0〜10度以
内で反射させ、前記別の側面120bと対向する側面1
20aより更にその反射させた光線を出射させるとき、
この出射光線を、その出射面と対向する側面120bか
ら入射されてその出射面から出射される光線にその対向
する側面120aを結ぶ光軸上で重ね合わせるようにす
ると、より効果的に光の合波を行なうことができる。
Also, in the optical prism 100, as in the first embodiment, the angle of incidence is within 0 to 10 degrees with respect to the side surface 121 as a prism surface which is an inclined surface from another side surface 120d not adjacent to this prism surface. Inject a ray,
The angle of the optical prism 100 is adjusted so that the reflection angle of the side surface 121 which is the inclined surface at the wavelength of this light ray becomes a critical angle (0 to 0.2 degree), and the totally reflected light ray is separated. The side surface 120b of the other side surface 120b which is reflected within a reflection angle of 0 to 10 degrees and faces the other side surface 120b.
When the reflected light beam is further emitted from 20a,
If this emitted light ray is superposed on the optical axis that joins the facing side surface 120a with the light ray that is incident from the side surface 120b facing the output surface and is emitted from the output surface, the light combining will be more effective. Can make waves.

【0070】〈第3実施例〉実施例1の光学プリズムを
図11のような光学装置20に用いて、その効果が顕著
に現せられる。偏波面方向に依存しない光アイソレータ
21を直方体形の容器30内に光軸に水平に配置し、本
発明の光学プリズム1をその前方に配置する。この場
合、容器30の水平面が光線ずれを生じるので、容器床
面32は厳密に直角度がでており、かつ隣接する直方体
壁面同士は、90度が確保されてなければならない。も
ちろん加工交差として±5分以内に仕上がっていれば、
それほど大きな光学結合損失を生じない。
<Third Embodiment> When the optical prism of the first embodiment is used in the optical device 20 as shown in FIG. 11, the effect is remarkably exhibited. The optical isolator 21 that does not depend on the polarization plane direction is arranged horizontally in the container 30 in the shape of a rectangular parallelepiped, and the optical prism 1 of the present invention is arranged in front of it. In this case, since the horizontal plane of the container 30 causes a light beam shift, the container floor surface 32 must have a strict right angle, and the adjacent rectangular parallelepiped wall surfaces must ensure 90 degrees. Of course, if it is finished within ± 5 minutes as a processing intersection,
It does not cause much optical coupling loss.

【0071】次に六角プリズムの設置は簡単で、±5分
ぐらいのずれは原理的にまったく問題ない。なぜならば
信号光を考えるとき出射点では六角プリズムの設置ずれ
は、光線の平行移動を誘起するだけなので、結合レンズ
付コネクタP1から入った信号光を結合レンズ付コネク
タP2で結合するとき結合レンズ位置を平面(直方体壁
面)内で移動することから、最適位置が易に見いだせる
ことに起因する。
Next, installation of the hexagonal prism is simple, and a deviation of about ± 5 minutes causes no problem in principle. This is because when considering the signal light, the displacement of the hexagonal prism at the exit point only induces the parallel movement of the light beam. Therefore, when the signal light entering from the connector P1 with the coupling lens is coupled with the connector P2 with the coupling lens, the position of the coupling lens is changed. This is due to the fact that the optimum position can be easily found because the object moves in a plane (a rectangular parallelepiped wall surface).

【0072】また結合レンズ付コネクタP3から入力さ
れる励起光は、直方体壁面を作動させ、平面的に最適位
置を見いだす操作だけで、無駄なく結合レンズ付コネク
タP4ポートから信号光強度をモニタできる。いずれの
光学結合も六角柱プリズムの設置方位に関係なく第1実
施例で説明した直交性、平行性が保存されているため、
極めて簡単な結合行程によって効果率の光学結合を実現
できる。
The excitation light input from the connector P3 with the coupling lens can monitor the signal light intensity from the port P4 with the coupling lens without waste by only operating the rectangular parallelepiped wall surface to find the optimum position in a plane. In any optical coupling, the orthogonality and parallelism described in the first embodiment are preserved regardless of the installation orientation of the hexagonal prism,
An optical coupling with a high efficiency can be realized by a very simple coupling process.

【0073】また、直方体壁面に配置する第1の結合レ
ンズ付コネクタP1から波長λ1 の光線1を導入し、第
1の結合レンズ付コネクタP1と対向する第2の結合レ
ンズ付コネクタP2に出射され、第1の結合レンズ付コ
ネクタP1と対向する第2の結合レンズ付コネクタP2
に出射され、第1の結合レンズ付コネクタP1及び第2
の結合レンズ付コネクタP2に直光する第3の結合レン
ズ付コネクタP3もしくは第4の結合レンズ付コネクタ
P4のいずれか一方から波長λ2(λ2<λ1)の光線2
を導入し、光学プリズム1のプリズム面に形成された反
射ミラー、波長選択フィルタの作用によって第1の結合
レンズ付コネクタP1もしくは第2の結合レンズ付コネ
クタP2からの光線1と合波され、かつ第3の結合レン
ズ付コネクタP3もしくは第4の結合レンズ付コネクタ
P4から光線1の光強度検出のためのモニタが得られる
ようになっているので、この光学装置に、波長の異なる
光線を導入すると、反射ミラーと波長選択フィルタの作
用によって、他のプリズム面から入射される光線と合波
され、前記他のプリズム面から入射される光線の光強度
検出のためのモニタが得られる。
[0073] Also, emitted from the first coupling lens with connector P1 to place the parallelepiped wall introducing light 1 of the wavelength lambda 1, the second coupling lens with connector P2 opposite to the first coupling lens with connector P1 And a second connector P2 with a coupling lens facing the first connector P1 with a coupling lens.
To the first connector P1 with the coupling lens and the second
Ray 2 of wavelength λ 221 ) from either the third connector P3 with a coupling lens or the fourth connector P4 with a coupling lens that directly irradiates the connector P2 with the coupling lens.
And is combined with the light beam 1 from the connector P1 with the first coupling lens or the connector P2 with the second coupling lens by the action of the reflection mirror and the wavelength selection filter formed on the prism surface of the optical prism 1, and Since a monitor for detecting the light intensity of the light ray 1 can be obtained from the third connector P3 with a coupling lens or the fourth connector P4 with a coupling lens, when light rays having different wavelengths are introduced into this optical device. By the action of the reflection mirror and the wavelength selection filter, a monitor for detecting the light intensity of the light beam incident from the other prism surface after being combined with the light beam incident from the other prism surface can be obtained.

【0074】[0074]

【発明の効果】請求項1記載の光学プリズムによれば、
他の4面に対して45度の傾斜角になるようにプリズム
面を形成した六角形形状に形成することによって、光強
度レベルを帰還する分離機構を形成するので、同時に光
強度をモニタすることが可能になり、また、プリズムの
配置角度が変動しても光線は平行もしくは直角にしか変
動しないので、光の合波が極めて容易に行なえる。
According to the optical prism of the first aspect,
By forming a hexagonal shape in which a prism surface is formed with an inclination angle of 45 degrees with respect to the other four surfaces, a separation mechanism for returning the light intensity level is formed, so that the light intensity can be monitored at the same time. Moreover, even if the arrangement angle of the prism changes, the light rays change only in parallel or at right angles, so that the light can be combined very easily.

【0075】請求項2記載の光学プリズムによれば、相
互の90度ずれたプリズム面から入射された第1の入射
光と第2の入射光によって合成された出射光の偏光の楕
円率を100〜90%にすることにより、光の合波がよ
り効果的に行なえる。
According to the optical prism of the second aspect, the ellipticity of the polarization of the outgoing light combined by the first incident light and the second incident light which are incident from the prism surfaces which are deviated from each other by 90 degrees is 100. By setting the ratio to 90%, the light can be more effectively combined.

【0076】請求項3記載の光学プリズムによれば、1
のプリズム面から入射されて、相互に90度ずれたプリ
ズム面から出射される第1の出射光と、第2の出射光そ
れぞれの楕円率が100〜90%にすることにより、光
の分波がより効果的に行われる。
According to the optical prism of claim 3, 1
When the ellipticity of each of the first outgoing light and the second outgoing light, which are incident from the prism surface of the first and exit from the prism surfaces that are deviated from each other by 90 degrees, are set to 100 to 90%, the demultiplexing of the light is performed. Is done more effectively.

【0077】請求項4の光学プリズムによれば、平行な
一対のプリズム面に設けられた反射ミラーにより、これ
ら反射ミラーに向けて入射される光が全反射されるの
で、光の合波と分波がより効果的に行なえる。
According to the optical prism of the fourth aspect, since the light incident on these reflecting mirrors is totally reflected by the reflecting mirrors provided on the pair of parallel prism surfaces, the light is combined with the split light. The waves can be done more effectively.

【0078】請求項5記載の発明によれば、1対の平行
なプリズム面以外の4つのプリズム面に設けられた波長
選択フィルタにより、選択された光のみが入射される。
According to the fifth aspect of the invention, only the selected light is made incident by the wavelength selection filters provided on the four prism surfaces other than the pair of parallel prism surfaces.

【0079】請求項6記載の発明によれば、入射角が0
〜10度以内で入射される光線を反射させるプリズム面
が臨界角+(0〜0.2度)の範囲となるように調整さ
れているので、それら反射面に反射ミラーを設けなくて
もその入射光線を全反射させて他の入射光と光の合波を
効果的入射に行うことができる。
According to the invention of claim 6, the incident angle is 0.
Since the prism surface that reflects the light rays that are incident within 10 degrees is adjusted to be within the range of the critical angle + (0 to 0.2 degrees), even if a reflection mirror is not provided on those reflection surfaces, It is possible to totally reflect the incident light and effectively combine the light with other incident light.

【0080】請求項7記載の発明によれば、入射角が0
〜10度以内で入射される光線を反射させるプリズム面
が臨界角+(0〜0.2度)の範囲となるように調整さ
れているので、それら反射面に反射ミラーを設けなくて
もその入射光線を全反射させて光の分波を効果的に行う
ことができる。
According to the invention of claim 7, the incident angle is 0.
Since the prism surface that reflects the light rays that are incident within 10 degrees is adjusted to be within the range of the critical angle + (0 to 0.2 degrees), even if a reflection mirror is not provided on those reflection surfaces, The incident light beam can be totally reflected to effectively split the light beam.

【0081】請求項8記載の発明によれば、五角形の光
学プリズムにおいても第1の入射光と第2の入射光によ
って合成された出射光の直交する偏光の楕円率を100
〜90%によることにより、光の合波がより効果的に行
なえる。
According to the eighth aspect of the present invention, also in the pentagonal optical prism, the ellipticity of orthogonal polarization of the outgoing light combined by the first incident light and the second incident light is 100.
By combining 90%, the light can be combined more effectively.

【0082】請求項9記載の発明によれば、1のプリズ
ム面から入射されて、相互に90度ずれたプリズム面か
ら出射される第1の出射光と、第2の出射光それぞれの
楕円率が100〜90%にすることにより、光の分波が
より効果的に行われる。
According to the invention described in claim 9, the ellipticity of each of the first outgoing light and the second outgoing light which are incident from one prism surface and are emitted from the prism surfaces which are shifted from each other by 90 degrees. Is 100 to 90%, the demultiplexing of light is more effectively performed.

【0083】[0083]

【0084】 請求項10記載の発明によれば、五角形
の光学プリズムにおいても、斜面となるプリズム面の反
射角が臨界角+(0〜0.2度)の範囲となるよう光学
プリズムの角度を調整して入射光を全反射させ、その全
反射させた光を別のプリズム面にてもう一度反射させて
出射させる場合に、その入射光の入射角度と全反射の反
射角度を0〜10度にし、その出射光線を、その出射面
と対抗するプリズム面から入射されてその出射面から出
射される光線にその対向するプリズム面を結ぶ光軸上で
重ね合わされるので、光の合波がより効果的に行える。
According to the tenth aspect of the present invention, even in the pentagonal optical prism, the angle of the optical prism is set so that the reflection angle of the prism surface, which is an inclined surface, falls within the range of the critical angle + (0 to 0.2 degree). When the incident light is adjusted to be totally reflected, and the totally reflected light is reflected again on another prism surface to be emitted, the incident angle of the incident light and the reflection angle of the total reflection are set to 0 to 10 degrees. , The output light ray is superposed on the optical axis that connects the opposing prism surface with the light ray that is incident from the prism surface that opposes the output surface and that is output from the output surface, so that the light combining is more effective. Can be done

【0085】 請求項11記載の発明によれば、請求項
1、4、5記載の光学プリズム用を用いて光の合波と分
波を効果的に行えるとともに、光アイソレータおよび光
学プリズムを収納した光学装置に、波長の異なる光線を
導入すると、反射ミラーと波長選択フィルタの作用によ
って、他のプリズム面から入射される光線と合波され、
前記他のプリズム面から入射される光線の光強度検出の
ためのモニタが得られる。
According to the eleventh aspect of the present invention, by using the optical prism for the first, fourth, and fifth aspects, it is possible to effectively combine and demultiplex light, and to use the optical isolator and the optical
The light with different wavelengths is placed in the optical device that houses the prism.
Introduced, the action of the reflection mirror and wavelength selection filter
Then, it is combined with the light rays incident from other prism surfaces,
For detecting the light intensity of the light beam incident from the other prism surface
To get a monitor for.

【0086】[0086]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る六角形の光学プリズムの
斜視図
FIG. 1 is a perspective view of a hexagonal optical prism according to an embodiment of the present invention.

【図2】光学プリズムに光線を入射したときの透過、反
射光の光路を表示した平面図
FIG. 2 is a plan view showing the optical paths of transmitted and reflected light when a light ray is incident on the optical prism.

【図3】五角形の光学プリズムに光線を入射させたとき
の透過、反射光の光路を表示した平面図
FIG. 3 is a plan view showing optical paths of transmitted and reflected light when a light ray is incident on a pentagonal optical prism.

【図4】空気中からガラス板に光線を入射したときの入
射角に対する反射率の関係を示すグラフ
FIG. 4 is a graph showing the relationship between the incident angle and the reflectance when a light ray is incident on a glass plate from the air.

【図5】図4の拡大図5 is an enlarged view of FIG.

【図6】図4のグラフに基づいて求めた偏光面による反
射率の楕円比を現わしたグラフ
6 is a graph showing the ellipticity of the reflectance by the polarization plane obtained based on the graph of FIG.

【図7】ガラス板から空気中に光軸を出射させたときの
入射角に対する反射率の関係を示すグラフ
FIG. 7 is a graph showing the relationship between the incident angle and the reflectance when an optical axis is emitted from a glass plate into the air.

【図8】図7の拡大図FIG. 8 is an enlarged view of FIG.

【図9】図7のグラフに基づいて求めた偏光面による反
射率の楕円比を現わしたグラフ
9 is a graph showing the ellipticity of the reflectance by the polarization plane obtained based on the graph of FIG.

【図10】拡大図FIG. 10 Enlarged view

【図11】六角柱光学プリズムを用いた光学結合装置の
構成概略図
FIG. 11 is a schematic configuration diagram of an optical coupling device using a hexagonal prism optical prism.

【図12】従来の光増幅システムの概略図FIG. 12 is a schematic diagram of a conventional optical amplification system.

【図13】従来のペンタプリズムの平面図FIG. 13 is a plan view of a conventional pentaprism.

【図14】平行平板型合分波器の側面図である。FIG. 14 is a side view of a parallel plate type multiplexer / demultiplexer.

【符号の説明】[Explanation of symbols]

1 六角形の光学プリズム 1a 側面(プリズム面) 1b 側面(プリズム面) 1c 側面(プリズム面) 1d 側面(プリズム面) 10 角柱体 11 稜線 12 稜線 16 側面(プリズム面) 17 側面(プリズム面) θ0 出射角(入射角) θi 入射角(入射角) θPi 入射角 20 光学装置 30 容器 31 容器床面 32 容器側面 P1、P2、P3、P4 コネクタ 100 五角形の光学プリズム 110 角柱 111 稜線 120a 側面(プリズム面) 120b 側面(プリズム面) 120c 側面(プリズム面) 120d 側面(プリズム面) 121 側面(プリズム面) 1 Hexagonal optical prism 1a Side surface (prism surface) 1b Side surface (prism surface) 1c Side surface (prism surface) 1d Side (prism surface) 10 prismatic body 11 ridge 12 ridges 16 Sides (prism surface) 17 Sides (prism surface) θ0 Exit angle (incident angle) θi incident angle (incident angle) θPi incident angle 20 Optical device 30 containers 31 Container floor 32 container side P1, P2, P3, P4 connectors 100 pentagonal optical prism 110 prism 111 ridge 120a side surface (prism surface) 120b Side surface (prism surface) 120c side surface (prism surface) 120d side surface (prism surface) 121 Side surface (prism surface)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 平道 東京都足立区新田3丁目8番22号 並木 精密宝石株式会社内 (72)発明者 今泉 伸夫 東京都足立区新田3丁目8番22号 並木 精密宝石株式会社内 (56)参考文献 実開 平2−35332(JP,U) (58)調査した分野(Int.Cl.7,DB名) G02B 5/04 G02B 27/10 G02B 6/28 G02B 27/28 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Heiichi Sato 3-8-22 Nitta, Adachi-ku, Tokyo Namiki Precision Gem Co., Ltd. (72) Nobuo Imaizumi 3-8-22 Nitta, Adachi-ku, Tokyo No. Namiki Seimitsu Gem Co., Ltd. (56) Bibliographical Report 2-35332 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) G02B 5/04 G02B 27/10 G02B 6 / 28 G02B 27/28

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 断面が長方形もしくは正方形である角柱
体の斜向いに位置する二稜線側部分がプリズム面として
の角柱側面に対して45度をなす互に平行な斜面となる
プリズム面に形成され、断面形状が六角形となることを
特徴とする光学プリズム。
1. A prism face having a rectangular or square cross section, which is diagonally positioned on the two ridge lines, is formed on prism faces which are slopes parallel to each other and forming 45 degrees with respect to the prism side faces as prism faces. , An optical prism having a hexagonal cross section.
【請求項2】 請求項1記載の光学プリズムにおいて、
1のプリズム面から入射される第1の入射光と前記1の
プリズム面に対し90度ずれた他のプリズム面から入射
される第2の入射光によって合成された出射光の偏光の
楕円率が100〜90%であることを特徴とする光学プ
リズム。
2. The optical prism according to claim 1, wherein
The ellipticity of the polarization of the outgoing light combined by the first incident light incident from the first prism surface and the second incident light incident from the other prism surface that is shifted by 90 degrees with respect to the first prism surface is An optical prism characterized by being 100 to 90%.
【請求項3】 請求項1記載の光学プリズムにおいて、
1のプリズム面から入射される入射光が該光学プリズム
の2のプリズム面で反射されて3のプリズム面から出射
される第1の出射光と前記3のプリズム面で更に反射さ
れて4のプリズム面から出射される第2の出射光それぞ
れの偏光の楕円率が100〜90%であることを特徴と
する光学プリズム。
3. The optical prism according to claim 1, wherein
Incident light incident from the first prism surface is reflected by the second prism surface of the optical prism and first emitted light emitted from the third prism surface and further reflected by the third prism surface, and the fourth prism An optical prism, wherein the ellipticity of the polarization of each of the second outgoing lights emitted from the surface is 100 to 90%.
【請求項4】 請求項1記載の光学プリズムにおいて、
前記プリズム面のうちの一対の平行なプリズム面に反射
ミラーを設けたことを特徴とする光学プリズム。
4. The optical prism according to claim 1, wherein
An optical prism characterized in that a reflecting mirror is provided on a pair of parallel prism surfaces of the prism surfaces.
【請求項5】 請求項1、2記載の光学プリズムにおい
て、1組の平行なプリズム面以外の4つのプリズム面に
波長選択フィルタを設けたことを特徴とする光学プリズ
ム。
5. The optical prism according to claim 1, wherein a wavelength selection filter is provided on four prism surfaces other than a pair of parallel prism surfaces.
【請求項6】 断面が長方形もしくは正方形である角柱
体の斜向いに位置する二稜線側部分がプリズム面として
の角柱側面に対して45度をなす互に平行な斜面となる
プリズム面に形成され、相互に平行な第1、第2のプリ
ズム面に対して、これら第2、第1のプリズム面にそれ
ぞれ隣接する互いに平行な第3、第4のプリズム面から
入射角が0〜10度以内でそれぞれ第1の光線を入射さ
せ、これら第1の光線の波長における前記第1、第2の
プリズム面の反射角が臨界角+(0〜0.2度)の範囲
となるよう光学プリズムの角度を調整して全反射させ、
それら全反射させた第1の光線を更に他の互いに平行な
第5、第6のプリズム面において反射角が0〜10度以
内で反射させ、それら第5、第6のプリズム面に対向す
る第6、第5のプリズム面よりそれら第1の光線を出射
させるとき、それら第1の光線を、第5と第6のプリズ
ム面から入射されて第6、第5のプリズム面から出射さ
れる第2の光線に第5、第6のプリズム面を結ぶ光軸上
で重ね合わされる断面形状六角形の光学プリズムを備え
た光学装置。
6. A prism surface having a rectangular or square cross-section, which is obliquely positioned on the side of two ridges, is formed on prism surfaces which are parallel to each other and form an angle of 45 degrees with respect to a prism side surface as a prism surface. , With respect to the mutually parallel first and second prism surfaces, the incident angle is within 0 to 10 degrees from the mutually parallel third and fourth prism surfaces adjacent to the second and first prism surfaces, respectively. At the wavelength of these first light rays so that the reflection angles of the first and second prism surfaces fall within the range of the critical angle + (0 to 0.2 degree). Adjust the angle to cause total reflection,
The totally reflected first light rays are reflected by the other parallel fifth and sixth prism surfaces within a reflection angle of 0 to 10 degrees, and the first and second prism surfaces are opposed to the fifth and sixth prism surfaces. 6, when the first light rays are emitted from the fifth prism surface, the first light rays are incident from the fifth and sixth prism surfaces and are emitted from the sixth and fifth prism surfaces. An optical device provided with an optical prism having a hexagonal cross section, which is superposed on the light beam of 2 on the optical axis connecting the fifth and sixth prism surfaces.
【請求項7】 断面が長方形もしくは正方形である角柱
体の斜向いに位置する二稜線側部分がプリズム面として
の角柱側面に対して45度をなす互に平行な斜面となる
プリズム面に形成され、相互に平行な第1、第2のプリ
ズム面に対して、これら第2、第1のプリズム面にそれ
ぞれ隣接する互いに平行な第3、第4のプリズム面から
入射角が0〜10度以内でそれぞれ第1の光線を入射さ
せ、これら第1の光線の波長における前記第1、第2の
プリズム面の反射角が臨界角+(0〜0.2度)の範囲
となるよう光学プリズムの角度を調整して全反射させ、
それら全反射させた第1の光線を更に他の互いに平行な
第5、第6のプリズム面において反射角が0〜10度以
内で反射させ、それら第5、第6のプリズム面に対向す
る第6、第5のプリズム面よりそれら第1の光線を出射
させる一方、第6、第5のプリズム面に反射させた残り
の第1の光線を前記第1、第2の側面に全反射させてか
ら前記第3、第4のプリズム面から出射させる断面形状
六角形の光学プリズムを備えた光学装置。
7. A prism face having a rectangular or square cross section, the two ridge-side portions of which are obliquely positioned, are formed on prism faces which are slopes parallel to each other and forming an angle of 45 degrees with respect to the prism side faces as prism faces. , With respect to the mutually parallel first and second prism surfaces, the incident angle is within 0 to 10 degrees from the mutually parallel third and fourth prism surfaces adjacent to the second and first prism surfaces, respectively. At the wavelength of these first light rays so that the reflection angles of the first and second prism surfaces fall within the range of the critical angle + (0 to 0.2 degree). Adjust the angle to cause total reflection,
The totally reflected first light rays are reflected by the other parallel fifth and sixth prism surfaces within a reflection angle of 0 to 10 degrees, and the first and second prism surfaces are opposed to the fifth and sixth prism surfaces. 6, while the first light rays are emitted from the fifth prism surface, the remaining first light rays reflected by the sixth and fifth prism surfaces are totally reflected by the first and second side surfaces. An optical device including an optical prism having a hexagonal cross-section for emitting light from the third and fourth prism surfaces.
【請求項8】 断面が長方形又は正方形である角柱体の
一稜線側部分がプリズム面としての角柱側面に対して4
5度をなす斜面となるプリズム面に形成されることによ
って断面形状が五角形となり、その1のプリズム面から
入射される1の入射光と前記1のプリズム面に対し90
度ずれた他のプリズム面から入射される2の入射光によ
って合成された出射光の偏光の楕円率が100〜90%
であることを特徴とする光学プリズム。
8. A portion of one side of a prism having a rectangular or square cross section on one edge line is 4 with respect to a prism side surface as a prism surface.
By forming the prism surface as an inclined surface forming 5 degrees, the cross-sectional shape becomes a pentagon, and one incident light incident from the one prism surface and 90 degrees with respect to the one prism surface.
The ellipticity of the polarization of the emitted light combined by the two incident lights incident from the other prism surface with a deviation of 100 to 90%
Is an optical prism.
【請求項9】 断面が長方形又は正方形である角柱体の
一稜線側部分がプリズム面としての角柱側面に対して4
5度をなす斜面となるプリズム面に形成されることによ
って断面形状が五角形となり、その1のプリズム面から
入射される入射光が該光学プリズムの2のプリズム面で
反射されて3のプリズム面から出射される第1の出射光
と前記3のプリズム面で更に反射されて4のプリズム面
から出射される第2の出射光それぞれの偏光の楕円率が
100〜90%であることを特徴とする光学プリズム。
9. A prismatic body having a rectangular or square cross section, one edge side portion being 4 with respect to a prismatic prism side surface.
By being formed on the prism surface which is an inclined surface forming 5 degrees, the cross-sectional shape becomes a pentagon, and the incident light incident from the prism surface of 1 is reflected by the prism surface of 2 of the optical prism and is reflected from the prism surface of 3. The ellipticity of polarization of each of the first emitted light emitted and the second emitted light further reflected by the third prism surface and emitted from the fourth prism surface is 100 to 90%. Optical prism.
【請求項10】 断面が長方形又は正方形である角柱体
の一稜線側部分がプリズム面としての角柱側面に対して
45度をなす斜面となるプリズム面に形成されることに
よって断面形状が五角形となり、その1のプリズム面か
ら入射される1の入射光と前記1のプリズム面に対し9
0度ずれた他のプリズム面から入射される2の入射光に
よって合成された出射光の直交する偏光の楕円率が10
0〜90%であって、前記斜面となるプリズム面に対
し、このプリズム面に隣接しない他のプリズム面から入
射角が0〜10度以内で光線を入射させ、この光線の波
長における前記斜面となるプリズム面の反射角が臨界角
となるよう光学プリズムの角度を調整して全反射させ、
その全反射させた光線を更に別のプリズム面において反
射角が0〜10度以内で反射させ、前記別のプリズム面
と対向するプリズム面より更にその反射させた光線を出
射させるとき、この出射光線を、その出射面と対向する
プリズム面から入射されてその出射面から出射される光
線にその対向するプリズム面を結ぶ光軸上で重ね合わさ
れる断面形状五角形の光学プリズムを備えた光学装置。
10. A prismatic surface having a rectangular or square cross section, one edge side portion of which is formed on a prism surface which is an inclined surface forming an angle of 45 degrees with respect to the prismatic prism side surface, thereby forming a pentagonal sectional shape. One incident light incident from the one prism surface and 9 to the one prism surface
The ellipticity of the orthogonal polarizations of the outgoing light combined by the two incident lights entering from the other prism surface deviated by 0 degree is 10
0 to 90%, a ray of light is incident on the prism surface that is the inclined surface at an incident angle of 0 to 10 degrees or less from another prism surface that is not adjacent to this prism surface. Adjust the angle of the optical prism so that the reflection angle of the prism surface becomes a critical angle,
When the totally reflected light ray is reflected on a further prism surface within a reflection angle of 0 to 10 degrees and the reflected light ray is further emitted from the prism surface facing the other prism surface, the emitted light ray Is an optical device having a pentagonal optical prism in cross section, which is superposed on a light beam incident from a prism surface facing the emission surface and emitted from the emission surface on an optical axis connecting the opposing prism surfaces.
【請求項11】 請求項1、4、5記載の光学プリズム
を直方体容器に収納し、この直方体容器の壁面を基準に
レンズを介して光学結合し、 前記 直方体容器に偏光に依存しない光アイソレータを収
納し、直方体壁面に配置する第1のレンズ付コネクタか
ら波長λ1の光線1を導入し、第1のレンズ付コネクタ
と対向する第2のレンズ付コネクタに出射され、第1の
レンズ付コネクタ及び第2のレンズ付コネクタに直光す
る第3のレンズ付コネクタもしくは第4のレンズ付コネ
クタのいずれか一方から波長λ2(λ2<λ1)の光線2
を導入し、光学プリズムのプリズム面に形成された反射
ミラー、波長選択フィルタの作用によって第1のレンズ
付コネクタもしくは第2のレンズ付コネクタからの光線
1と合波され、かつ第3のレンズ付コネクタもしくは第
4のレンズ付コネクタから光線1の光強度検出のための
モニタが得られることを特徴とする光学装置。
11. An optical prism according to claim 1, 4, or 5.
Is stored in a rectangular parallelepiped container, and the wall surface of this rectangular parallelepiped container is used as a reference.
Lens optically coupled through said optical isolator that is not dependent on the polarization housed in a rectangular container, introducing a light beam 1 having a wavelength lambda 1 from a first lens with connectors arranged in rectangular wall, with the first lens connector
From the third connector with a lens or the fourth connector with a lens, which is emitted to the second connector with a lens and which directly emits light to the first connector with a lens and the connector with a second lens. Ray 2 of 221 )
Is introduced and combined with the light ray 1 from the connector with the first lens or the connector with the second lens by the action of the reflection mirror and the wavelength selection filter formed on the prism surface of the optical prism, and with the third lens. An optical device, wherein a monitor for detecting the light intensity of the light beam 1 is obtained from the connector or the fourth connector with a lens.
JP33852693A 1993-07-14 1993-12-28 Optical prism and optical device thereof Expired - Fee Related JP3500176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33852693A JP3500176B2 (en) 1993-07-14 1993-12-28 Optical prism and optical device thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19689593 1993-07-14
JP5-196895 1993-07-14
JP33852693A JP3500176B2 (en) 1993-07-14 1993-12-28 Optical prism and optical device thereof

Publications (2)

Publication Number Publication Date
JPH0777602A JPH0777602A (en) 1995-03-20
JP3500176B2 true JP3500176B2 (en) 2004-02-23

Family

ID=26510055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33852693A Expired - Fee Related JP3500176B2 (en) 1993-07-14 1993-12-28 Optical prism and optical device thereof

Country Status (1)

Country Link
JP (1) JP3500176B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839438B1 (en) 2008-12-09 2018-03-16 데쿠세리아루즈 가부시키가이샤 Optical body and window material provided with the optical body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904579B (en) * 2021-01-28 2022-03-04 中国人民解放军国防科技大学 Compact fiber laser beam expanding and collimating system
CN113671679A (en) * 2021-08-04 2021-11-19 深圳市深光谷科技有限公司 Compact optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839438B1 (en) 2008-12-09 2018-03-16 데쿠세리아루즈 가부시키가이샤 Optical body and window material provided with the optical body

Also Published As

Publication number Publication date
JPH0777602A (en) 1995-03-20

Similar Documents

Publication Publication Date Title
US4671613A (en) Optical beam splitter prism
US5689360A (en) Polarization independent optical isolator
US5299056A (en) Optical passive component assembly
US6088153A (en) Multi-functional optical isolator
US7206479B2 (en) Polarization beam separator and combiner
JPH0954283A (en) Polarization independent type optical isolator device
JPH10253927A (en) Three port optical circulator and its manufacture
EP1726983B1 (en) Optical device comprising an optical isolator
CA2185608A1 (en) Optical passive device for an optical fiber amplifier and the optical amplifier
JP3500176B2 (en) Optical prism and optical device thereof
JP3368209B2 (en) Reflective optical circulator
JP3403457B2 (en) Optical prism and its coupling device
CN215264115U (en) Reflective optical circulator
CN218866147U (en) Polarization-maintaining beam splitting and combining device
JPH05181035A (en) Optical demultiplexing and branching device
JP2002296544A (en) 3-port miniaturized optical circulator
JPH0357459B2 (en)
US6624938B1 (en) Optical circulator
JPH0792429A (en) Optical circulator
JPS6111683Y2 (en)
JP2611814B2 (en) Optical splitter / combiner
JPH04331929A (en) Module for optical amplification
JPS6232455B2 (en)
JPS63304214A (en) Laser diode module containing optical isolator
JPS63284518A (en) Optical isolator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031111

LAPS Cancellation because of no payment of annual fees