JP3598469B2 - Trifluoromethylbenzene derivatives and liquid crystal compositions containing them - Google Patents
Trifluoromethylbenzene derivatives and liquid crystal compositions containing them Download PDFInfo
- Publication number
- JP3598469B2 JP3598469B2 JP34215993A JP34215993A JP3598469B2 JP 3598469 B2 JP3598469 B2 JP 3598469B2 JP 34215993 A JP34215993 A JP 34215993A JP 34215993 A JP34215993 A JP 34215993A JP 3598469 B2 JP3598469 B2 JP 3598469B2
- Authority
- JP
- Japan
- Prior art keywords
- compound
- liquid crystal
- trifluoromethyl
- embedded image
- mmol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000203 mixture Substances 0.000 title claims description 71
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 31
- 150000005226 trifluoromethylbenzenes Chemical class 0.000 title claims description 4
- -1 B A trifluoromethylbenzene derivative Chemical class 0.000 claims description 23
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims description 6
- 125000003545 alkoxy group Chemical group 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 description 137
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 42
- 239000000243 solution Substances 0.000 description 40
- 239000000047 product Substances 0.000 description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- 238000004128 high performance liquid chromatography Methods 0.000 description 28
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 24
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 21
- 239000011541 reaction mixture Substances 0.000 description 21
- 239000000126 substance Substances 0.000 description 21
- 230000008859 change Effects 0.000 description 20
- 238000005259 measurement Methods 0.000 description 20
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 18
- 229910052938 sodium sulfate Inorganic materials 0.000 description 18
- 235000011152 sodium sulphate Nutrition 0.000 description 18
- 238000004458 analytical method Methods 0.000 description 17
- 150000001793 charged compounds Chemical class 0.000 description 17
- 239000002994 raw material Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 230000004044 response Effects 0.000 description 14
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 10
- 239000012300 argon atmosphere Substances 0.000 description 10
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 9
- IRZYGZOFSLLECE-UHFFFAOYSA-N [4-(4-octoxyphenyl)phenyl]boronic acid Chemical compound C1=CC(OCCCCCCCC)=CC=C1C1=CC=C(B(O)O)C=C1 IRZYGZOFSLLECE-UHFFFAOYSA-N 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 9
- KASJWBZAJMURMV-UHFFFAOYSA-N [4-bromo-2-(trifluoromethyl)octoxy]benzene Chemical compound FC(C(COC1=CC=CC=C1)CC(CCCC)Br)(F)F KASJWBZAJMURMV-UHFFFAOYSA-N 0.000 description 8
- 239000004988 Nematic liquid crystal Substances 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000010992 reflux Methods 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 230000007704 transition Effects 0.000 description 7
- JZJSOSKVBYYDHQ-UHFFFAOYSA-N 1-bromo-4-(4-octoxyphenyl)benzene Chemical group C1=CC(OCCCCCCCC)=CC=C1C1=CC=C(Br)C=C1 JZJSOSKVBYYDHQ-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- SLUNEGLMXGHOLY-UHFFFAOYSA-N benzene;hexane Chemical compound CCCCCC.C1=CC=CC=C1 SLUNEGLMXGHOLY-UHFFFAOYSA-N 0.000 description 6
- 239000003480 eluent Substances 0.000 description 6
- 238000010898 silica gel chromatography Methods 0.000 description 6
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 6
- 239000007818 Grignard reagent Substances 0.000 description 5
- 239000012954 diazonium Substances 0.000 description 5
- 150000001989 diazonium salts Chemical class 0.000 description 5
- 150000004795 grignard reagents Chemical class 0.000 description 5
- 239000012046 mixed solvent Substances 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 230000002269 spontaneous effect Effects 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 239000004990 Smectic liquid crystal Substances 0.000 description 4
- KWCXERQPSOZMRY-UHFFFAOYSA-N [4-(4-heptylphenyl)phenyl]boronic acid Chemical compound C1=CC(CCCCCCC)=CC=C1C1=CC=C(B(O)O)C=C1 KWCXERQPSOZMRY-UHFFFAOYSA-N 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 description 4
- 238000012827 research and development Methods 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- VMKOFRJSULQZRM-UHFFFAOYSA-N 1-bromooctane Chemical compound CCCCCCCCBr VMKOFRJSULQZRM-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- PHXGKHTWEOPCEW-UHFFFAOYSA-N 4-bromo-2-(trifluoromethyl)aniline Chemical compound NC1=CC=C(Br)C=C1C(F)(F)F PHXGKHTWEOPCEW-UHFFFAOYSA-N 0.000 description 3
- PDPGERGWEOJVDC-UHFFFAOYSA-N 4-bromo-2-(trifluoromethyl)phenol Chemical compound OC1=CC=C(Br)C=C1C(F)(F)F PDPGERGWEOJVDC-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- FTTGQUFWKPAFRR-UHFFFAOYSA-N FC(C=1C=C(C=CC1C#CCCCCCC)C=1C(=CC(=CC1)OCCCCCCCC)C1=CC=CC=C1)(F)F Chemical group FC(C=1C=C(C=CC1C#CCCCCCC)C=1C(=CC(=CC1)OCCCCCCCC)C1=CC=CC=C1)(F)F FTTGQUFWKPAFRR-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- JFESOTHKCUMHGA-UHFFFAOYSA-N [4-(4-pentylcyclohexyl)phenyl]boronic acid Chemical compound C1CC(CCCCC)CCC1C1=CC=C(B(O)O)C=C1 JFESOTHKCUMHGA-UHFFFAOYSA-N 0.000 description 3
- QNNYZPYIECQGGK-UHFFFAOYSA-N [4-bromo-3-(trifluoromethyl)octoxy]benzene Chemical compound FC(C(CCOC1=CC=CC=C1)C(CCCC)Br)(F)F QNNYZPYIECQGGK-UHFFFAOYSA-N 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- NIQQIJXGUZVEBB-UHFFFAOYSA-N methanol;propan-2-one Chemical compound OC.CC(C)=O NIQQIJXGUZVEBB-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 3
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000004904 shortening Methods 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 235000010288 sodium nitrite Nutrition 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- WABZSVITXOJJKH-UHFFFAOYSA-N (4-octoxyphenyl)boronic acid Chemical compound CCCCCCCCOC1=CC=C(B(O)O)C=C1 WABZSVITXOJJKH-UHFFFAOYSA-N 0.000 description 2
- GETTZEONDQJALK-UHFFFAOYSA-N (trifluoromethyl)benzene Chemical group FC(F)(F)C1=CC=CC=C1 GETTZEONDQJALK-UHFFFAOYSA-N 0.000 description 2
- 0 *c(cc1C(F)(F)F)ccc1O Chemical compound *c(cc1C(F)(F)F)ccc1O 0.000 description 2
- FEWLNYSYJNLUOO-UHFFFAOYSA-N 1-Piperidinecarboxaldehyde Chemical compound O=CN1CCCCC1 FEWLNYSYJNLUOO-UHFFFAOYSA-N 0.000 description 2
- CYNYIHKIEHGYOZ-UHFFFAOYSA-N 1-bromopropane Chemical compound CCCBr CYNYIHKIEHGYOZ-UHFFFAOYSA-N 0.000 description 2
- ZBPWRNXIPZZCKH-UHFFFAOYSA-N 2-bromo-6-oct-1-ynyl-6-(trifluoromethyl)cyclohexa-1,3-diene Chemical compound FC(C1(CC=CC(=C1)Br)C#CCCCCCC)(F)F ZBPWRNXIPZZCKH-UHFFFAOYSA-N 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 2
- VOWPIDJSINRFPZ-UHFFFAOYSA-N 4-bromo-3-(trifluoromethyl)phenol Chemical compound OC1=CC=C(Br)C(C(F)(F)F)=C1 VOWPIDJSINRFPZ-UHFFFAOYSA-N 0.000 description 2
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- FIWDDJZUVARAIO-KESTWPANSA-N C(CCCC)[C@@H]1CC[C@H](CC1)C1=CC=C(C=C1)C1=C(C=C(C=C1)CO)C(F)(F)F Chemical group C(CCCC)[C@@H]1CC[C@H](CC1)C1=CC=C(C=C1)C1=C(C=C(C=C1)CO)C(F)(F)F FIWDDJZUVARAIO-KESTWPANSA-N 0.000 description 2
- SFRGGMBBMSLOFN-IYARVYRRSA-N C(CCCC)[C@@H]1CC[C@H](CC1)C1=CC=C(C=C1)C1=C(C=C(C=C1)O)C(F)(F)F Chemical group C(CCCC)[C@@H]1CC[C@H](CC1)C1=CC=C(C=C1)C1=C(C=C(C=C1)O)C(F)(F)F SFRGGMBBMSLOFN-IYARVYRRSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- NRHPXTGOOSLMHY-UHFFFAOYSA-N FC(C=1C=C(C=CC=1OCCCCCCCC)C=1C(=CC=CC=1)C1=CC=C(C=C1)OCCCCCCCC)(F)F Chemical group FC(C=1C=C(C=CC=1OCCCCCCCC)C=1C(=CC=CC=1)C1=CC=C(C=C1)OCCCCCCCC)(F)F NRHPXTGOOSLMHY-UHFFFAOYSA-N 0.000 description 2
- 229910010084 LiAlH4 Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- DBDYXLZXTNHAFI-UHFFFAOYSA-N [4-(4-pentoxyphenyl)phenyl]boronic acid Chemical compound C1=CC(OCCCCC)=CC=C1C1=CC=C(B(O)O)C=C1 DBDYXLZXTNHAFI-UHFFFAOYSA-N 0.000 description 2
- QRZCEXCQSFQDMG-UHFFFAOYSA-N [4-(4-pentylphenyl)phenyl]boronic acid Chemical compound C1=CC(CCCCC)=CC=C1C1=CC=C(B(O)O)C=C1 QRZCEXCQSFQDMG-UHFFFAOYSA-N 0.000 description 2
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 210000002858 crystal cell Anatomy 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012280 lithium aluminium hydride Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- VWKFJAOCLPPQGR-UHFFFAOYSA-N 1,4-dibromo-2-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC(Br)=CC=C1Br VWKFJAOCLPPQGR-UHFFFAOYSA-N 0.000 description 1
- RWXUNIMBRXGNEP-UHFFFAOYSA-N 1-bromo-2-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=CC=C1Br RWXUNIMBRXGNEP-UHFFFAOYSA-N 0.000 description 1
- RJQRJLCQHIMUQO-UHFFFAOYSA-N 1-bromo-4-(4-heptylphenyl)benzene Chemical group C1=CC(CCCCCCC)=CC=C1C1=CC=C(Br)C=C1 RJQRJLCQHIMUQO-UHFFFAOYSA-N 0.000 description 1
- QUWHOIKFJBTGHZ-UHFFFAOYSA-N 1-bromo-4-(4-pentylcyclohexyl)benzene Chemical compound C1CC(CCCCC)CCC1C1=CC=C(Br)C=C1 QUWHOIKFJBTGHZ-UHFFFAOYSA-N 0.000 description 1
- VXJTWTJULLKDPY-UHFFFAOYSA-N 1-bromo-4-(4-pentylphenyl)benzene Chemical group C1=CC(CCCCC)=CC=C1C1=CC=C(Br)C=C1 VXJTWTJULLKDPY-UHFFFAOYSA-N 0.000 description 1
- UCCUXODGPMAHRL-UHFFFAOYSA-N 1-bromo-4-iodobenzene Chemical compound BrC1=CC=C(I)C=C1 UCCUXODGPMAHRL-UHFFFAOYSA-N 0.000 description 1
- UVBFFPZGOOKWNR-UHFFFAOYSA-N 1-bromo-4-octoxybenzene Chemical compound CCCCCCCCOC1=CC=C(Br)C=C1 UVBFFPZGOOKWNR-UHFFFAOYSA-N 0.000 description 1
- PKJBWOWQJHHAHG-UHFFFAOYSA-N 1-bromo-4-phenylbenzene Chemical group C1=CC(Br)=CC=C1C1=CC=CC=C1 PKJBWOWQJHHAHG-UHFFFAOYSA-N 0.000 description 1
- MNDIARAMWBIKFW-UHFFFAOYSA-N 1-bromohexane Chemical compound CCCCCCBr MNDIARAMWBIKFW-UHFFFAOYSA-N 0.000 description 1
- ANOOTOPTCJRUPK-UHFFFAOYSA-N 1-iodohexane Chemical compound CCCCCCI ANOOTOPTCJRUPK-UHFFFAOYSA-N 0.000 description 1
- IAMPNKHALGYNNB-UHFFFAOYSA-N 1-octoxy-4-phenylbenzene Chemical group C1=CC(OCCCCCCCC)=CC=C1C1=CC=CC=C1 IAMPNKHALGYNNB-UHFFFAOYSA-N 0.000 description 1
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 1
- OXPDQFOKSZYEMJ-UHFFFAOYSA-N 2-phenylpyrimidine Chemical class C1=CC=CC=C1C1=NC=CC=N1 OXPDQFOKSZYEMJ-UHFFFAOYSA-N 0.000 description 1
- FTIZUXGKTNJZEG-UHFFFAOYSA-N 4-bromo-1-iodo-2-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC(Br)=CC=C1I FTIZUXGKTNJZEG-UHFFFAOYSA-N 0.000 description 1
- YGNISOAUPSJDJE-UHFFFAOYSA-N 4-bromo-3-(trifluoromethyl)aniline Chemical compound NC1=CC=C(Br)C(C(F)(F)F)=C1 YGNISOAUPSJDJE-UHFFFAOYSA-N 0.000 description 1
- UIQFZOMNPLYIRB-UHFFFAOYSA-N C(CCCC)C1(C(CCCC1)=O)C1CCCCC1 Chemical compound C(CCCC)C1(C(CCCC1)=O)C1CCCCC1 UIQFZOMNPLYIRB-UHFFFAOYSA-N 0.000 description 1
- RNEKCMQKRAVPRF-KESTWPANSA-N C(CCCC)[C@@H]1CC[C@H](CC1)C1=CC=C(C=C1)C1=C(C=C(C=C1)C=O)C(F)(F)F Chemical group C(CCCC)[C@@H]1CC[C@H](CC1)C1=CC=C(C=C1)C1=C(C=C(C=C1)C=O)C(F)(F)F RNEKCMQKRAVPRF-KESTWPANSA-N 0.000 description 1
- RMJHGSVOJKFWQI-WGSAOQKQSA-N C(CCCC)[C@@H]1CC[C@H](CC1)C1=CC=C(C=C1)C1=C(C=CC=C1)C(F)(F)F Chemical group C(CCCC)[C@@H]1CC[C@H](CC1)C1=CC=C(C=C1)C1=C(C=CC=C1)C(F)(F)F RMJHGSVOJKFWQI-WGSAOQKQSA-N 0.000 description 1
- YIDVENAIOAPYIN-JWSDMNKESA-N C(CCCC)[C@@H]1CC[C@H](CC1)C1CC=C(CC1)C1=CC=CC=C1 Chemical compound C(CCCC)[C@@H]1CC[C@H](CC1)C1CC=C(CC1)C1=CC=CC=C1 YIDVENAIOAPYIN-JWSDMNKESA-N 0.000 description 1
- NMSQFHNDIYTZML-IYARVYRRSA-N C1C[C@@H](CCCCC)CC[C@@H]1C1=CC=C(C=2C(=CC(Br)=CC=2)C(F)(F)F)C=C1 Chemical group C1C[C@@H](CCCCC)CC[C@@H]1C1=CC=C(C=2C(=CC(Br)=CC=2)C(F)(F)F)C=C1 NMSQFHNDIYTZML-IYARVYRRSA-N 0.000 description 1
- QHXNWEQZGLIKTR-UHFFFAOYSA-N CCCCCCCCC#CCc(cc1)c(C)cc1-c(cc1)ccc1-c(cc1)ccc1OC Chemical compound CCCCCCCCC#CCc(cc1)c(C)cc1-c(cc1)ccc1-c(cc1)ccc1OC QHXNWEQZGLIKTR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- YJOZULZMRYGYBP-UHFFFAOYSA-N FC(C1(C(=CC=CC1)C1=CC=C(C=C1)OCCCCCCCC)C1=CC=C(C=C1)OCCCCCCCC)(F)F Chemical group FC(C1(C(=CC=CC1)C1=CC=C(C=C1)OCCCCCCCC)C1=CC=C(C=C1)OCCCCCCCC)(F)F YJOZULZMRYGYBP-UHFFFAOYSA-N 0.000 description 1
- VBBBYWMWJCCZQQ-UHFFFAOYSA-N FC(C=1C=C(C=CC1OCCCCCC)C=1C(=CC=CC1)C1=CC=C(C=C1)OCCCCC)(F)F Chemical group FC(C=1C=C(C=CC1OCCCCCC)C=1C(=CC=CC1)C1=CC=C(C=C1)OCCCCC)(F)F VBBBYWMWJCCZQQ-UHFFFAOYSA-N 0.000 description 1
- ONXLAJQDJUYLBO-UHFFFAOYSA-N FC(C=1C=C(C=CC1OCCCCCCCC)C1=CC=C(C=C1)OCCCCCCCC)(F)F Chemical group FC(C=1C=C(C=CC1OCCCCCCCC)C1=CC=C(C=C1)OCCCCCCCC)(F)F ONXLAJQDJUYLBO-UHFFFAOYSA-N 0.000 description 1
- WMHABMNNEKYGOS-KKFOSYPRSA-N FC(C=1C=C(C=CC1OCCCCCCCC)C1=CCC(CC1)[C@@H]1CC[C@H](CC1)CCCCC)(F)F Chemical compound FC(C=1C=C(C=CC1OCCCCCCCC)C1=CCC(CC1)[C@@H]1CC[C@H](CC1)CCCCC)(F)F WMHABMNNEKYGOS-KKFOSYPRSA-N 0.000 description 1
- DSSPNIGGJZFZKE-UHFFFAOYSA-N FC(C=1C=C(C=CC1OCCCCCCCC)C=1C(=CC=CC1)C1=CC=C(C=C1)CCCCCCC)(F)F Chemical group FC(C=1C=C(C=CC1OCCCCCCCC)C=1C(=CC=CC1)C1=CC=C(C=C1)CCCCCCC)(F)F DSSPNIGGJZFZKE-UHFFFAOYSA-N 0.000 description 1
- QOHYGWAUAJLFAH-UHFFFAOYSA-N FC(F)(F)C1=C(C=CC=C1)OCCCC(CCCC)Br Chemical compound FC(F)(F)C1=C(C=CC=C1)OCCCC(CCCC)Br QOHYGWAUAJLFAH-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- OOTOZYSAYSYLKI-UHFFFAOYSA-N [4-bromo-2-(trifluoromethyl)hexoxy]benzene Chemical compound FC(C(COC1=CC=CC=C1)CC(CC)Br)(F)F OOTOZYSAYSYLKI-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 150000001347 alkyl bromides Chemical class 0.000 description 1
- 208000003464 asthenopia Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 230000031709 bromination Effects 0.000 description 1
- 238000005893 bromination reaction Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003098 cholesteric effect Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- 238000007333 cyanation reaction Methods 0.000 description 1
- 150000001935 cyclohexenes Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- UMIPWJGWASORKV-UHFFFAOYSA-N oct-1-yne Chemical compound CCCCCCC#C UMIPWJGWASORKV-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000819 phase cycle Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Liquid Crystal Substances (AREA)
Description
【0001】
【技術分野】
本発明は、新規な液晶性化合物並びにこれらの液晶性化合物の少なくとも1種を含有することを特徴とする液晶組成物に関する。更に詳しく言えば本発明は強誘電性液晶組成物並びにネマチック液晶組成物に関し、その組成成分として有用で且つ化学的安定性に優れた新規なトリフルオロメチルベンゼン骨格を有する液晶性化合物並びに、それらの新規なトリフルオロメチルベンゼン骨格を有する液晶性化合物の少なくとも1種を含有することを特徴とする液晶組成物に関する。
【0002】
【背景技術】
時計、電卓、パーソナルワープロ、ポケットテレビ用等の表示素子として、液晶表示素子は広く用いられている。これは受光型で目が疲れない、消費電力が少ない、薄型である等の優れた特徴を有しているためであるが、ネマチック液晶組成物においては応答速度が遅い、メモリー性がない等から応用面において制限があった。応用面の拡大を図るため、従来用いられていたツイステッドネマチック(TN)型表示方式を改良したスーパーツイステッドネマチック(STN)型表示方式等も見いだされている。さらに、TFTやMIMのようなトランジスターやダイオードを用いて駆動させる等によりCRTに近づきつつある。しかし、未だCRTと比較して、応答速度が遅い、視野角が十分でないことから、液晶表示素子の研究は活発に行われ、その1つに強誘電性液晶〔R.B.Meyerら;Physique,36 L−69(1975)〕を利用した表示方式〔N.A.Clarkら;Applied Phys.lett.,36,899(1980)〕が提案されている。この方式は従来方式に比べて100〜1,000倍もの高速応答であること、及びメモリー性があること等の優れた特徴を有しているため、液晶表示素子の用途拡大が期待されている。強誘電性液晶は液晶分子長軸が層法線方向とある角度を有する一連のスメクチック液晶を指すが、実用的にはカイラルSmC相が用いられる。
【0003】
表示素子作成用の強誘電性液晶は、(1)種々のカイラルSmC相を有する化合物同士、又は、(2)種々のSmC相を有する化合物と光学活性化合物とを混合して得られる液晶組成物とする2つの方式がある。強誘電性液晶表示素子の研究開発は、当初(1)の方式で得られる液晶組成物を用いていたが、研究開発が進展し、SmC相を有する化合物に光学活性化合物を添加することにより強誘電性液晶が得られることが判明して以来、(2)の方式で得られる組成物を用いる方向にある。特に、SmC化合物を混合して得られるSmC組成物(SmCホスト)に1種〜数種の光学活性化合物(カイラルSmC相を有している方が良いが、必ずしも有していなくともよい化合物でキラルドーパントと称される)を添加して強誘電性液晶組成物とする研究開発が主流となってきている。
【0004】
これは(2)の方が表示素子用として要求される種々の特性(動作温度範囲、応答速度、自発分極、ラセンピッチ、化学的安定性等)を調整しやすいこと、又はカイラルSmC化合物に比べてSmC化合物は安価に合成できること等から(2)が有利と考えられているためである。
【0005】
強誘電性液晶における応答時間は式τ=η/E・Ps(τ=応答時間 η=粘性、E=電界、Ps=自発分極)で表され、Psを大、ηを低くすればτを短くすることができる。しかし、実用的には応答時間の他に、動作温度範囲、視野角、コントラスト等の種々の特性を最適化する必要があり、そのため、多種多数の化合物を混合し、個々の化合物が有している特長を生かすことで最適化を計ることが試みられている。前記(2)の方式における強誘電性液晶組成物中の大部分はSmCホスト成分であり、SmCホスト成分が強誘電性液晶組成物の特性に大きな影響を与える。
【0006】
従って、表示素子用としての強誘電性液晶組成物の最適化を計るためには優れたSmCホストが必要であり、例えば、SmC温度範囲が広い、低粘性、キラルドーパント添加時にチルト角が22.5°また層構造がブックシェルフあるいはシェブロン型である等である。しかし未だ実用に供せられるまでに至っておらず、強誘電性液晶組成物作成の際に有用な成分と成りうる種々の化合物の開発が望まれている。
【0007】
本発明者らは、前記観点からSmCホストを作成する際に必要な液晶性化合物に着目し、強誘電性液晶組成物作成の際に有効な液晶性化合物を得ることを目的とし、また、同時にネマチック液晶組成物を作成する際の諸物性を向上させる材料としての有用性についても検討した。
【0008】
分子長軸側方に電子吸引性の強いトリフルオロメチル基を導入することにより分子長軸に対する垂直方向の誘電率が大きくなる化合物をデザインし、合成した。
【0009】
その結果、チルト角を大きくし、応答時間を短くできる、又、高視野角、高コントラスト表示が可能な高周波重畳法による強誘電性液晶表示(J.M.Geary,SID’85,Digest(1985)128,Y.Sato,et al,SID’86,Digest(1986)348)用の材料としてまたネマチック液晶組成物作成の際にそのしきい値(Vth)、屈折率異方性(△n)等を調整する材料として有用である新規なトリフルオロメチルベンゼン誘導体を合成することに成功した。
【0010】
【発明の開示】
本発明は、一般式(I)
【化7】
(式中、R 1 は炭素原子数1から14のアルキル基、アルコキシ基あるいはアルコキシアルキル基を表し、R 2 は炭素原子数5から14のアルキル基、アルコキシ基あるいはアルコキシアルキル基を表し、
【化8】
を表し、m並びにnはそれぞれ独立に0あるいは1を表す。
【0011】
ただし、mとnとは同時に0であることはなく、mとnとが同時に1であるときは、AとBとはいずれも
【化9】
を表わす)で表されるトリフルオロメチルベンゼン誘導体、並びに、この誘導体の少なくとも1種を含有することを特徴とする液晶組成物を提供するものである。
【0012】
本発明に係わる新規化合物は、単独ではSmC相を有しているものと有していないものとがあるが、いずれも強誘電性液晶組成物あるいは、ネマチック液晶組成物を作成する際に使用できる有効な化合物である。
【0013】
これらの化合物の合成方法の例について合成経路1〜5として概略を説明し、さらに、本発明の実施例を掲げて詳細を説明する。以下に示す合成経路は、その一例であり、これらにより本発明は特定されない。各実施例で合成した化合物の相転移温度の測定結果を表4に掲載する。なお、これらの結果は測定機器、測定方法の違い、あるいは純度により影響されるため、その数値に多少の異同が認められることは理解されよう。
【0014】
〔合成経路〕
以下の合成経路中、Rは炭素原子数1〜14のアルキル基を表し、J,k,p,qはそれぞれ1〜13の整数を表し、他の記号は特許請求範囲の項で表されている定義を有する。
【0015】
【化10】
【0016】
経路1(前駆体合成経路−1)
【化11】
【0017】
経路2(前駆体合成経路−2)
【化12】
【0018】
経路3(標記化合物合成経路−1)
【化13】
【0019】
【化14】
経路4(前駆体合成経路−3)
【化15】
【0020】
経路5(標記化合物合成経路−2)
【化16】
【0021】
以下に前記合成経路について概略説明する。
経路1について:
一般式(1)〜(5)で表される化合物は市販されており、一般式(6)〜(9)で表される化合物は(6−1),(7−1),(9−1)を出発原料として得ることができる。
【0022】
化合物(6−1)をRONa(ナトリウムアルコキサイド)でエーテル化して得られる化合物(6−2)を臭素を用いて臭素化すれば一般式(6)で表される化合物が得られる。
【0023】
化合物(7−1)をシアン化カリウムでシアノ化し、次いで酸加水分解して得られる化合物(7−3)をLiAlH4で還元反応して化合物(7−4)が得られる。これを臭化水素酸で臭素化し、化合物(7−5)が得られる。化合物(7−5)を前記(7−1)に替えて用い、シアノ化、加水分解、還元、臭素化し、得られた臭素化物を用いて一連の反応を繰り返し任意に行うことにより一般式(7−6)で表される化合物が得られる。
【0024】
一般式(7−6)で表される化合物をRONa(ナトリウムアルコキサイド)でエーテル化すれば一般式(7)で表される化合物が得られる。一般式(8)の化合物はp−ブロムヨードベンゼンと一般式(7)で表される化合物から誘導されるボロン酸化合物とのカップリング反応により合成することができる。
【0025】
化合物(9−1)をLiAlH4で還元して得られる化合物(9−2)を臭化水素酸で臭素化することにより化合物(9−3)が得られる。化合物(9−3)を用いて、前記した化合物(7−1)から化合物(7−6)を得る方法と同様にして一般式(9−8)で表される化合物が得られる。一般式(9−8)で表される化合物を臭素を用いて臭素化し、次いでRONa(ナトリウムアルコキサイド)でエーテル化することにより一般式(9)で表される化合物が得られる。
【0026】
市販の一般式(1)〜(5)で表される化合物並びに前記方法で得られる一般式(6)〜(9)で表される化合物をそれぞれMgと反応させてグリニヤール試薬を調製し、これにトリメチルボレート〔B(OCH3)3〕を作用させ、次いで加水分解して一般式(P−1)或いは(P−2)で表される化合物を得ることができる。
【0027】
経路2について:
市販の化合物(10−1)と亜硝酸ソーダを反応させてジアゾニウム塩を調製し、これを硫酸で加熱分解して化合物(10−2)が、ヨウ化銅(Cul)と反応させて化合物(11−1)が、又、化合物(11−1)をシアン化銅〔Cu(CN)2〕と反応させて化合物(14−1)がそれぞれ得られる。
【0028】
一般式(10)で表される化合物は化合物(10−2)とアルキルブロマイド(RBr)との常法によるエーテル化反応により合成することができる。一般式(11)および(13)で表される化合物は化合物(11−1)と経路1に記載の化合物(3)及び(1)のボロン酸とをそれぞれカップリング反応させることにより得られる。
【0029】
前述の方法で得られる化合物(14−1)を用い、経路1において化合物(7−1)から一般式(7)及び(8)で表される化合物を得るのと同様の方法で一般式(14)及び(15)で表される化合物が得られる。又、この経路中の化合物(14−3)をトシルクロライドでトシル化し、これにアルキルマグネシウムブロマイド(RMgBr)を作用させれば一般式(12)で表される化合物を得ることができる。
このようにして、一般式(P−3)あるいは(P−4)で表される化合物が得られる。
【0030】
経路3について:
経路1並びに経路2で得られる一般式(P−1)で表される化合物と一般式(P−4)で表される化合物或いは一般式(P−2)で表される化合物と一般式(P−3)で表される化合物をテトラキストリフェニルホスフィンパラジウム〔Pd(PPh3)4〕存在下にカップリング反応させることにより、本発明化合物である一般式(I)で表される化合物が得られる。
【0031】
経路4について:
一般式(16−1)で表される化合物を硫酸水素カリウム(KHSO4)等の酸化剤を用いて酸化反応することにより一般式(16)で表される化合物を得ることができる。
【0032】
経路1において一般式(6)で表される化合物から得られるボロン酸誘導体を過酸化水素を用いて酸化反応することにより、一般式(17−1)で表される化合物が得られる。これをパラジウムカーボン(Pd/C)触媒下に核水添して得られる一般式(17−2)で表される化合物を硫酸水素カリウム(KHSO4)等の酸化剤を用いて酸化反応することにより、一般式(17)で表される化合物を得ることができる。
【0033】
経路5について:
経路2で得られる一般式(P−3)あるいは(P−4)で表される化合物とマグネシウムを反応させてグリニヤール試薬を調製し、これらと経路4で得られる一般式(P−6)あるいは(P−5)で表される化合物とをそれぞれカップリング反応させることによって得られるシクロヘキセン誘導体をPd/C存在下に水素添加すれば、本発明化合物である一般式(I)で表される化合物を得ることができる。
【0034】
以下に実施例により更に詳しく説明するが、本明細書中に記載の略記号は下記の意味を有する。
GTO: ガラスチューブオーブン
GC: ガスクロマトグラフィー
HPLC: 高速液体クロマトグラフィー
IR: 赤外線吸収スペクトル
Mass: 質量スペクトル
GC−Ms: ガスクロマトグラフィ−質量スペクトル
b.p.: 沸点
C: 結晶
Sx: Sc,SA以外のスメクチック相
SmC,Sc: スメクチックC相
SA: スメクチックA相
Ch: コレステリック相
Ne: ネマチック相
I: 等方性液体
?: 温度不明
【0035】
【実施例】
実施例1
【化17】
2−アミノ−5−ブロモベンゾトリフルオリド20g(83.3mmol)に濃硫酸24ccの水60cc溶液を加え、析出物が生じた。この析出物を溶かすためにさらに酢酸60ccを加えた。この溶液を5℃以下に冷却した後、亜硝酸ナトリウム6.68g(96.8mmol)の水20cc溶液を滴下し、氷片、尿素0.5g及び酢酸120ccを加え5℃以下にて放置してジアゾニウム塩溶液を放置した。一方、硫酸ナトリウム31.2g、濃硫酸24cc及び水20ccから成るけん濁液を130〜135℃に加熱した後、先に調整したジアゾニウム塩溶液を徐々に滴下し生成するフェノール体を水蒸気と一緒に留出させた。この留出液をエーテルで抽出、飽和食塩水で洗浄、硫酸ナトリウムで乾燥後溶媒を留去し、残留物を減圧下、GTOにて蒸留し2−トリフルオロメチル−4−ブロモフェノール15.3g(76.5%)を得た。b.p.105℃/30torr、GC92.2%、GC−Ms240(M−1),242(M+1)
【0036】
【化18】
(a)で得た2−トリフルオロメチル−4−ブロモフェノール5g(20.7mmol)、n−オクチルブロマイド4.8g(24.8mmol)、炭酸カリウム8.6g(62.1mmol)及びメチルエチルケトン50ccから成る混合物を還流下にて10時間撹拌した。反応混合物から吸引ろ過により不溶物を除き、そのろ液を濃縮し、ベンゼンで抽出、水洗を行い、硫酸ナトリウムで乾燥後溶媒を留去し、残留分を減圧下、GTOにて蒸留し2−トリフルオロメチル−4−ブロモオクチルオキシベンゼン5.9g(80.8%)を得た。b.p.125℃/1.5torr,GC94.4%,GC−Ms 352(M−1),354(M+1)
【0037】
【化19】
アルゴン雰囲気下、ヨウ素により活性化したマグネシウム1.85g(76.2mmol)に4−オクチルオキシ−4′−ブロモビフェニル25g(69.3mmol)のテトラヒドロフラン100cc溶液の1/5量を加え加熱した。反応開始後、残りの溶液を滴下しさらに還流下で2時間撹拌して、グリニヤール試薬を調整した。一方、アルゴン雰囲気下、ホウ酸トリメチル6g(57.7mmol)のテトラヒドロフラン20cc溶液を0℃に冷却した後、先に調整したグリニヤール試薬を滴下して、徐々に室温に戻し3時間撹拌した。この反応混合物に氷冷した10%硫酸水溶液を加えて加水分解を行い、ベンゼンで抽出、水洗、硫酸ナトリウムで乾燥後溶媒を留去し、残留分をヘキサンで再結晶して4−オクチルオキシビフェニル−4′−ボロン酸13,7g(60.6%)を得た。HPLC95.9%
【0038】
【化20】
アルゴン雰囲気下、Pd〔PPh3)4〔テトラキス(トリフェニルホスフィン)パラジウム(0)〕0.2g、(b)で得た2−トリフルオロメチル−4−ブロモオクチルオキシベンゼン1,24g(3.5mmol)のベンゼン20cc溶液、(c)で得た4−オクチルオキシビフェニル−4′−ボロン酸1.24g(3.8mmol)のエタノール25ccけん濁液及び2M炭酸ナトリウム水溶液5ccから成る混合物を還流下で6時間撹拌した。反応混合物を水に注加し、ベンゼンで抽出、水洗、硫酸ナトリウムで乾燥後溶液を留去し、残留分をヘキサン−ベンゼン(15:1〜5:1)を溶出液としたシリカゲルカラムクロマトグラフィーで精製し次いでアセトンで再結晶を行い3−トリフルオロメチル−4,4″−ジオクチルオキシターフェニル0.85g(43.6%)を得た。
【0039】
この物の純度はHPLCで98.9%であり、TLCで1スポットであった。又IR測定の結果及びMass分析で554に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0040】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察した。その結果を表4に示す。
【0041】
実施例2
【化21】
実施例1−(c)において4−オクチルオキシ−4′−ブロモビフェニル25gに替えて4−ヘプチル−4′−ブロモビフェニル22.9gを用い、他は実施例1−(c)と同様に操作し4−ヘプチルビフェニル−4′−ボロン酸14g(68.3%)を得た。HPLC93.8%
【0042】
【化22】
実施例1−(d)において4−オクチルオキシビフェニル−4′−ボロン酸1.24gに替えて(a)で得られた4−ヘプチルビフェニル−4′−ボロン酸1.14gを用い、他は実施例1−(d)と同様に操作し3−トリフルオロメチル−4−オクチルオキシ−4″−ヘプチルターフェニル1.25g(67.9%)を得た。
【0043】
この物の純度はHPLCで99.4%であり、TLCで1スポットであった。又、IR測定の結果及びMass分析で524に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0044】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察した。その結果を表4に示す。
【0045】
実施例3
【化23】
実施例1−(b)においてn−オクチルブロマイド4.8gに替えてn−ヘキシルブロマイド4.1gを用い、他は実施例1−(b)と同様に操作して2−トリフルオロメチル−4−ブロモヘキシルオキシベンゼン5.1g(92.7%)を得た。b.p.110℃/1.5torr,GC94.7%,GC−Ms 324(M−1)326(M+1)
【0046】
【化24】
実施例1−(c)において4−オクチルオキシ−4′−ブロモビフェニル25gに替えて4−ペンチルオキシ−4′−ブロモビフェニル22.1gを用い、他は実施例1−(c)と同様に操作し4−ペンチルオキシビフェニル−4′−ボロン酸10.5g(53.3%)を得た。HPLC96.8%
【0047】
【化25】
実施例1−(d)において2−トリフルオロメチル−4−ブロモオクチルオキシベンゼン1.24g並びに4−オクチルオキシビフェニル−4′−ボロン酸1.24gに替えて、(a)で得た2−トリフルオロメチル−4−ブロモヘキシルオキシベンゼン1.14g並びに(b)で得た4−ペンチルオキシビフェニル−4′−ボロン酸1.08gを用い、他は実施例1−(d)と同様に操作して3−トリフルオロメチル−4−ヘキシルオキシ−4″−ペンチルオキシターフェニル1.07g(62.9%)を得た。
【0048】
この物の純度はHPLCで99.4%であり、TLCで1スポットであった。又、IR測定の結果及びMass分析で484に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0049】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察した。その結果を表4に示す。
【0050】
実施例4
【化26】
実施例1−(c)において4−オクチルオキシ−4′−ブロモビフェニル25gに替えて4−ペンチル−4′−ブロモビフェニル21gを用い、他は実施例1−(c)と同様に操作し4−ペンチルビフェニル−4′−ボロン酸10.9g58.6%)を得た。HPLC 96.4%
【0051】
【化27】
実施例1−(d)において2−トリフルオロメチル−4−ブロモオクチルオキシベンゼン1.24g並びに4−オクチルオキシビフェニル−4′−ボロン酸1.24gに替えて、実施例3−(a)で得た2−トリフルオロメチル−4−ブロモヘキシルオキシベンゼン1.14g並びに(a)で得た4−ペンチルビフェニル−4′−ボロン酸1.01gを用い、他は実施例1−(d)と同様に操作して3−トリフルオロメチル−4−ヘキシルオキシ−4″−ペンチルターフェニル1.03g(62.8%)を得た。
【0052】
この物の純度はHPLCで99.8%であり、TLCで1スポットであった。又、IR測定の結果及びMass分析で468に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0053】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察した。その結果を表4に示す。
【0054】
実施例5
【化28】
実施例1−(d)において4−オクチルオキシビフェニル−4′−ボロン酸1.24gに替えて実施例4−(a)で得た4−ペンチルビフェニル−4′−ボロン酸1.01gを用い、他は実施例1−(d)と同様に操作し3−トリフルオロメチル−4−オクチルオキシ−4″−ペンチルターフェニル1.16g(67.8%)を得た。
【0059】
この物の純度はHPLCで99.8%であり、TLCで1スポットであった。又、IR測定の結果及びMass分析で496に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0060】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察した。その結果を表4に示す。
【0061】
実施例6
【化29】
実施例1−(c)において4−オクチルオキシ−4′−ブロモビフェニル25gに替えて4−(トランス−4−ペンチルシクロヘキシル)ブロモベンゼン21.4gを用い、他は実施例1−(c)と同様に操作して4−(トランス−4−ペンチルシクロヘキシル)フェニルボロン酸9.5g(50.1%)を得た。HPLC99.7%
【0062】
【化30】
実施例1−(d)において4−オクチルオキシビフェニル−4′−ボロン酸1.24gに替えて(a)で得た4−(トランス−4−ペンチルシクロヘキシル)フェニルボロン酸1.04gを用い、他は実施例1−(d)と同様に操作し4−(トランス−4−ペンチルシクロヘキシル)−3′−トリフルオロメチル−4′−オクチルオキシビフェニル0.93g(53.1%)を得た。
【0063】
この物の純度はHPLCで99.2%であり、TLCで1スポットであった。
又、IR測定の結果及びMaSs分析で502に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0064】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察した。その結果を表4に示す。
【0065】
実施例7
【化31】
実施例1−(a)において2−アミノ−5−ブロモベンゾトリフルオリド20gに替えて5−アミノ−2−ブロモベンゾトリフルオリド20gを用い、他は実施例1−(a)と同様に操作し3−トリフルオロメチル−4−ブロモフェノール14.3g(71.5%)を得た。b.p.140℃/35torr,GC98.1%,GC−Ms 240(M−1)242(M+1)
【0066】
【化32】
実施例1−(b)において2−トリフルオロメチル−4−ブロモフェノール5gに替えて(a)で得た3−トリフルオロメチル−4−ブロモフェノール5gを用い、他は実施例1−(b)と同様に操作し3−トリフルオロメチル−4−ブロモオクチルオキシベンゼン5.82g(79.5%)を得た。b.p.115℃/0.9torr,GC96.1%,GC−Ms352(M−1)354(M+1)
【0067】
【化33】
実施例1−(d)において2−トリフルオロメチル−4−ブロモオクチルオキシベンゼン1.24gに替えて(b)で得た3−トリフルオロメチル−4−ブロモオクチルオキシベンゼン1.24gを用い、他は実施例1−(d)と同様に操作し2−トリフルオロメチル−4,4″−ジオクチルオキシターフェニル1.63g(83.6%)を得た。
【0068】
この物の純度はHPLCで99.6%であり、TLCで1スポットであった。
又、IR測定の結果及びMass分析で554に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した
【0069】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察した。その結果を表4に示す。
【0070】
実施例8
【化34】
実施例1−(d)において2−トリフルオロメチル−4−ブロモオクチルオキシベンゼン1.24g並びに4−オクチルオキシビフェニル−4′−ボロン酸1.24gに替えて、実施例7−(b)で得た3−トリフルオロメチル−4−ブロモオクチルオキシベンゼン1.24g並びに実施例2−(a)で得た4−ヘプチルビフェニル−4′−ボロン酸1.14gを用い、他は実施例1−(d)と同様に操作して2−トリフルオロメチル−4−オクチルオキシ−4″−ヘプチルターフェニル0.92g(50%)を得た。
【0071】
この物の純度はHPLCで99.9%であり、TLCで1スポットであった。又、IR測定の結果及びMass分析で524に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0072】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察した。その結果を表4に示す。
【0073】
実施例9
【化35】
実施例1−(c)において4−オクチルオキシ−4′−ブロモビフェニル25gに替えて4−ブロモオクチルオキシベンゼン19.8gを用い、他は実施例1−(c)と同様に操作し4−オクチルオキシフェニルボロン酸8.9g(51.1%)を得た。HPLC93.0%
【0074】
【化36】
アルゴン雰囲気下、Pd〔PPh3)40.4g、(a)で得た4−オクチルオキシフェニルボロン酸2.97g(11.9mmol)のエタノール30cc溶液、2,5−ジブロモベンゾトリフルオリド1.6g(5.4mmol)のベンゼン30cc溶液及び2M炭酸ナトリウム水溶液15ccから成る混合物を還流下で12時間撹拌した。反応混合物を水に注加し、ベンゼンで抽出、水洗を行い、硫酸ナトリウムで乾燥後溶媒を留去し、残留分をヘキサン−ベンゼン(10:1〜1:1)を溶出液としたシリカゲルカラムクロマトグラフィーで精製し、次いでアセトンで再結晶を行い2′−トリフルオロメチル−4,4″−ジオクチルオキシターフェニル1.62g(55.5%)を得た。
【0075】
この物の純度はHPLCで99.9%であり、TLCで1スポットであった。又、IR測定の結果及びMass分析で554に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0076】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察した。その結果を表4に示す。
【0077】
実施例10
【化37】
2−アミノ−5−ブロモベンゾトリフルオリド15g(62.5mmol)に濃硫酸75cc及び酢酸100ccを加え、加熱して析出物を溶かした。この溶液を0℃以下に冷却した後、撹拌下亜硝酸ナトリウム5.28g(76.5mmol)の水30cc溶液を滴下し、さらに0℃で30分間放置してジアゾニウム塩溶液を調製した。
【0078】
このジアゾニウム塩溶液にシクロヘキサン75cc及びヨウ化カリウム21.5g(129.5mmol)の水75cc溶液を順次0℃以下にて滴下し、室温で一昼夜撹拌した。
【0079】
反応混合物を水に注加し、エーテルにて抽出、ピロ亜硫酸ナトリウム水溶液にて洗浄、次いで水洗を行い、硫酸ナトリウムで乾燥後溶媒を留去し、残留分を減圧下、GTOにて蒸留し、5−ブロモ−2−ヨウドベンゾトリフルオリド18.7g(85.4%)を得た。b.p.120〜125℃/19torr、GC 95.4%、GC−Ms 350(M−1),352(M+1)
【0080】
【化38】
アルゴン雰囲気下、1.6M n−ブチルリチウム/ヘキサン溶液10.5cc(16.8mmol)を−10℃で、1−オクチン1.64g(14.9mmol)のテトラヒドロフラン7cc溶液に滴下し、同温度で20分間撹拌した。さらに塩化亜鉛2.28g(16.8mmol)とテトラヒドロフラン15ccから成るけん濁液を加え−10℃で30分間撹拌した後に、(a)で得た5−ブロモ−2−ヨウドベンゾトリフルオリド5g(14.2mmol)のテトラヒドロフラン15cc溶液及びPd〔PPh3〕40.82gのテトラヒドロフラン15cc溶液を順次滴下した。次いで徐々に室温に戻し、一昼夜撹拌した。
【0081】
反応混合物を希塩酸水溶液に注加し、エーテルにて抽出、水洗、飽和炭酸水素ナトリウム水溶液にて洗浄、再度水洗を行い、硫酸ナトリウムで乾燥後溶媒を留去し、残留分を減圧下、GTOにて蒸留し2−トリフルオロメチル−4−ブロモ−(オクト−1−イニル)ベンゼン3g(63.3%)を得た。b.p.95〜100℃/2torr、GC96.5%、GC−Ms332(M−1),334(M+1)
【0082】
【化39】
実施例1−(d)において2−トリフルオロメチル−4−ブロモオクチルオキシベンゼン1.24gに替えて(b)で得た2−トリフルオロメチル−4−ブロモ−(オクト−1−イニル)1.16gを用い、他は実施例1−(d)と同様に操作して3−トリフルオロメチル−4−(オクト−1−イニル)−4′−オクチルオキシターフェニル1.52g(81.7%)を得た。HPLC99.1%、Mass 534(M)、尚、この物の相変化は下記のようであった。
【0083】
【化40】
(c)で得た3−トリフルオロメチル−4−(オクト−1−イニル)−4′−オクチルオキシターフェニル0.51g(0.96mmol)、10%パラジウムカーボン0.05g及び酢酸エチル20ccから成る混合物を2時間水素添加した
【0084】
反応混合物をろ過してパラジウムカーボンを除き、溶媒を留去した後、残留分をアセトン−メタノール混合溶媒で再結晶し、3−トリフルオロメチル−4−オクチル−4′−オクチルオキシターフェニル0.48g(94.1%)を得た。
【0085】
この物の純度はHPLCで99.1%であり、TLCで1スポットであった。又、IR測定の結果及びMass分析で538に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0086】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察した。その結果を表4に示す。
【0087】
実施例11
【化41】
実施例1−(d)において2−トリフルオロメチル−4−ブロモオクチルオキシベンゼン1.24g並びに4−オクチルオキシビフェニル−4′−ボロン酸1.24gに替えて、実施例10−(b)で得た2−トリフルオロメチル−4−ブロモ−(オクト−1−イニル)ベンゼン1.16g並びに実施例2−(a)で得た4−ヘプチルビフェニル−4′−ボロン酸1.14gを用い、他は実施例1−(d)と同様に操作して3−トリフルオロメチル−4−(オクト−1−イニル)−4′−ヘプチルターフェニル0.87g(49.4%)を得た。
HPLC 99.1%、Mass 504(M)、尚、この物の相変化は下記のようであった。
【0088】
【化42】
実施例10−(d)において3−トリフルオロメチル−4−(オクト−1−イニル)−4′−オクチルオキシターフェニル0.51gに替えて、(a)で得た3−トリフルオロメチル−4−(オクト−1−イニル)−4′−ヘプチルターフェニル0.48gを用い、他は実施例10−(d)と同様に操作して3−トリフルオロメチル−4−オクチル−4′−ヘプチルターフェニル0.38g(79.2%)を得た。
【0089】
この物の純度はHPLCで99.0%であり、TLCで1スポットであった。又、IR測定の結果及びMass分析で508に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察した。その結果を表4に示す。
【0090】
参考例1
【化43】
アルゴン雰囲気下、Pd(PPh3)45g、2−ブロモ−ベンゾトリフルオリド18.7g(83.1mmol)のベンゼン200cc溶液及び実施例6−(a)で得られる4−(トランス−4−ペンチルシクロヘキシル)フェニルボロン酸25g(91.2mmol)のエタノール200cc溶液及び2M炭酸ナトリウム水溶液90ccから成る混合物を還流下で24時間撹拌した。
【0091】
反応混合物を水に注加し、ベンゼンにて抽出、水洗を行い、硫酸ナトリウムで乾燥後溶媒を留去し、残留分をヘキサンを溶出液としたシリカゲルカラムクロマトグラフィーで精製し、次いでアセトンで再結晶を行い4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチルビフェニル27.4g(88.1%)を得た。GC98.9%、Mass374(M)
【0092】
【化44】
氷冷下、臭素9.1g(56.9mmol)の塩化メチレン5cc溶液を(a)で得た4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチルビフェニル19g(50.8mmol)硝酸タリウム(II)3水和物2.0g及び塩化メチレン100ccから成る混合物に滴下し、3時間撹拌した。
【0093】
反応混合物を希水酸化ナトリウム水溶液に注加し、塩化メチレンにて抽出、水洗を行い硫酸ナトリウムで乾燥後溶媒を留去し、残留分をアセトン−メタノール混合溶媒で再結晶し4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチル−4′−ブロモビフェニル18.1g(78.7%)を得た。GC98.7%、Mass 452(M−1),454(M+1)
【0094】
【化45】
アルゴン雰囲気下、1.6Mn−ブチルリチウム/ヘキサン溶液4.6cc(7.3mmol)を−70℃で、(b)で得た4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチル−4′−ブロモビフェニル3g(6.6mmol)のテトラヒドロフラン20cc溶液に滴下し同温度で1時間撹拌した。この反応混合物にボロン酸トリメチル1ccを加え、徐々に0℃まで上げて30分間撹拌した。再度−10℃以下に冷却し、30%過酸化水素水5ccを滴下した後徐々に室温に戻し1時間撹拌した。次いでこの反応混合物を−30℃に冷却し、飽和亜硫酸水素ナトリウム水溶液10ccを加え、徐々に室温に戻しながら一昼夜撹拌した。
【0095】
反応混合物を水に注加し、ベンゼンにて抽出、水洗を行い、硫酸ナトリウムで乾燥後溶媒を留去し、残留分をヘキサン−ベンゼン(2:1〜1:1)を溶出液としたシリカゲルカラムクロマトグラフィーで精製し4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチル−4′−ヒドロキシビフェニル2.42g(93.8%)を得た。
GC96.6%、IR(neat):3400cm−1(OH)
【0096】
【化46】
氷冷下(c)で得た4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチル−4′−ヒドロキシビフェニル1.07g(2.74mmo1)のジメチルホルムアミド20cc溶液に60%水素化ナトリウム0.25gを加え、発泡が収まるまで撹拌した。さらにn−プロピルブロマイド0.61g(4.96mmol)を加え、室温で2日間撹拌した。
【0097】
反応混合物を希塩酸水溶液に注加し、ベンゼンにて抽出、水洗を行い、硫酸ナトリウムで乾燥後溶媒を留去し、残留分をヘキサン−ベンゼン(4:1)を溶出液としたシリカゲルカラムクロマトグラフィーにて精製し、次いでアセトン−メタノール混合溶媒で再結晶を行い4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチル−4′−プロピルオキシビフェニル0.95g(79.8%)を得た。
【0098】
この物の純度はHPLCで99.1%であり、TLCで1スポットであった。又、IR測定の結果及びMass分析で432に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0099】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察したその結果を表4に示す。
【0100】
実施例12
【化47】
参考例1−(d)においてn−プロピルブロマイド0.61g.に替えてn−オクチルブロマイド0.96gを用い、他は参考例1−(d)と同様に操作し4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチル−4′−オクチルオキシビフェニル0.83g(60.1%)を得た。
【0101】
この物の純度はHPLCで97.0%であり、TLCで1スポットであった。
又、IR測定の結果及びMass分析で502に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0102】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察したその結果を表4に示す。
【0103】
参考例2
【化48】
アルゴン雰囲気下、1.6Mn−ブチルリチウム/ヘキサン溶液4.6cc(7.3mmol)を−70℃で、参考例1−(b)で得た4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチル−4′−ブロモビフェニル3g(6.6mmol)のテトラヒドロフラン20cc溶液に滴下し、同温度で2時間撹拌した。さらにN−ホルミルピペリジン0.95g(8.4mmol)を滴下し、徐々に室温まで戻し一昼夜撹拌した。
【0104】
反応混合物を希塩酸水溶液に注加し、ベンゼンにて抽出、水洗を行い、硫酸ナトリウムで乾燥後溶媒を留去し粗4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチル−4′−ホルミルビフェニル2.69gを得た。GC93.9%、IR(neat):1700cm−1(CHO)
【0105】
【化49】
氷冷下、水素化ホウ素ナトリウム0.5g(13.2mmol)を(a)で得た粗4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチル−4′−ホルミルビフェニル2.6g(6.5mmol)のテトラヒドロフラン10cc及びエタノール10ccから成る溶液に加え、3時間還流撹拌した。
【0106】
反応混合物を希塩酸水溶液に注加し、ベンゼンにて抽出、水洗を行い、硫酸ナトリウムで乾燥後溶媒を留去し、残留分をヘキサン−ベンゼン(1:0〜1:1)を溶出液としたシリカゲルカラムクロマトグラフィーにて精製し4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチル−4′−ヒドロキシメチルビフェニル2.28g(87.4%)を得た。GC 99.4%、IR(neat):3350cm−1(OH)
【0107】
【化50】
(b)で得た4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチル−4′−ヒドロキシメチルビフェニル1.15g(2.8mmol)のテトラヒドロフラン15cc溶液にメチルアイオダイド1.35g(9.5mmol)、水酸化カリウム0.45g(8.0mmol)及び18−クラウン−60.1g(0.38mmol)を順次加え、室温で2日間撹拌した。
【0108】
反応混合物を水に注加し、ベンゼンにて抽出、水洗を行い、硫酸ナトリウムで乾燥後溶媒を留去し、残留分をヘキサン−ベンゼン(2:1)を溶出液としたシリカゲルカラムクロマトグラフィーにて精製し、次いでアセトン−メタノール混合溶媒で再結晶を行い4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチル−4′−メトキシメチルビフェニル0.91g(76.5%)を得た。
【0109】
この物の純度はHPLCで99.4%であり、TLCで1スポットであった。又、IR測定の結果及びMass分析で418に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0110】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察したその結果を表4に示す。
【0111】
実施例13
【化51】
参考例2−(c)においてメチルアイオダイド1.35gに替えてn−ヘキシルアイオダイド2.0gを用い、他は参考例2−(c)と同様に操作し4−(トランス−4−ペンチルシクロヘキシル)−2′−トリフルオロメチル−4′−ヘキシルオキシメチルビフェニル1.09g(78.4%)を得た。
【0112】
この物の純度はHPLCで97.2%であり、TLCで1スポットであった。又、IR測定の結果及びMass分析で488に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0113】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察したその結果を表4に示す。
【0114】
実施例14
【化52】
実施例1−(d)において4−オクチルオキシビフェニルー4′−ボロン酸1.24gに替えて実施例9−(a)で得られた4−オクチルオキシフェニルボロン酸0.95gを用い、他は実施例1−(d)と同様に操作し3−トリフルオロメチル−4,4′−ジオクチルオキシビフェニル1.37g(83.0%)を得た。
【0115】
この物の純度はHPLCで99.3%であり、TLCで1スポットであった。又、IR測定の結果及びMass分析で478に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0116】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察したその結果を表4に示す。
【0117】
実施例15
【化53】
アルゴン雰囲気下、1.6M n−ブチルリチウム/ヘキサン溶液9.8cc(15.6mmol)を−70℃で、実施例1−(b)で得られる2−トリフルオロメチル−4−ブロモオクチルオキシベンゼン4g(11.3mmol)のテトラヒドロフラン25cc溶液に滴下した。同温度で1時間撹拌した後に、n−ペンチルシクロヘキシルシクロヘキサノン3.55g(14.2mmol)のテトラヒドロフラン10cc溶液を滴下し、この反応混合物を室温まで徐々に戻した。
【0118】
反応混合物を希塩酸水溶液に注加し、トルエン抽出、水洗を行い、硫酸ナトリウムで乾燥後溶媒を留去し、残留分にトルエン250cc及びp−トルエンスルホン酸0.5gを加え、検水管を用いて2時間還流撹拌した。
【0119】
この反応混合物を水に注加し、トルエン抽出、水洗を行い、硫酸ナトリウムで乾燥後溶媒を留去し、残留分を減圧下、GTOにて蒸留し3−トリフルオロメチル−4−オクチルオキシ−〔4−(トランス−4−ペンチルシクロヘキシル)−1−シクロヘキセン−1−イル〕ベンゼン3.86g(67.4%)を得た。b.p.235℃/0.15torr)HPLC 95.3%
【0120】
【化54】
(a)で得た3−トリフルオロメチル−4−オクチルオキシ−〔4−(トランス−4−ペンチルシクロヘキシル)−1−シクロヘキセン−1−イル〕ベンゼン3.86g(7.6mmol)、10%パラジウムカーボン0.1g及び酢酸エチル50ccの混合物を12時間水素添加した。
【0121】
反応混合物をろ過してパラジウムカーボンを除き、溶媒を留去した。アルゴン雰囲気下残留分をジメチルスルホキシド20ccに溶解し、カリウム−tert−ブトキシド1g(8.9mmol)を加え、80〜85℃で30時間撹拌した。
【0122】
この反応混合物を希塩酸水溶液に注加し、ベンゼンにて抽出、水洗を行い、硫酸ナトリウムで乾燥後溶媒を留去し、残留分をヘキサンを溶出液としたシリカゲルカラムクロマトグラフィーにて精製し、次いでアセトン−メタノール混合溶媒で再結晶を行い2−トリフルオロメチル−4−オクチルオキシ−4−〔トランス−4−(トランス−4−ペンチルシクロヘキシル)シクロヘキシル〕ベンゼン1.71g(44.3%)を得た。
【0123】
この物の純度はHPLC99.3%であり、TLCで1スポットであった。又、IR測定の結果及びMass分析で508に分子イオンピークが認められたこと並びに用いた原料の関係から得られた物質が標記化合物であることを確認した。
【0124】
この物をメトラーホットステージFP−82を用い、偏光顕微鏡下で相変化を観察したその結果を表4に示す。
【0125】
実施例16
【化55】
上記4種類のフェニルピリミジン化合物から成る母体液晶組成物(B−1)を調製した。
【0126】
母体液晶組成物(B−1)80wt%と実施例1−(d)で得られた3−トリフルオロメチル−4,4″−ジオクチルオキシターフェニル10wt%、並びに下記の公知光学活性化合物(D−1)
【化56】
を10wt%添加し、カイラルSc組成物(M−1)を作成した。
【0127】
同時に、前記実施例1−(d)の化合物を含まない、母体液晶組成物(B−1)90wt%と公知の光学活性化合物(D−1)10wt%とからなるカイラルSc組成物(M−2)を作成した。
これらの組成物の相転移温度を下記に示す。
【0128】
これらの組成物(M−1)及び組成物(M−2)を各々市販の液晶セル(EHC社製、ポリイミド配向膜、2μmギャップ)に注入して液晶素子を作成した。
【0129】
各々の液晶素子を2枚の偏光板に挟み、±5V/μm、200Hzの矩形波を印加して透過光強度の変化から応答時間を求めた。又ソーヤー・タワー法にて自発分極を測定し、印加電圧の極性反転時の消光位の移動角度よりチルト角を測定した。
その結果を表1に示す。なお測定温度は25℃である。
【0130】
【表1】
【0131】
以上に示したように、本発明化合物は、これを添加することにより、無添加の場合と比べて応答時間の短縮、チルト角の拡大、又カイラルSc上限温度の上昇に有効であり、強誘電性液晶組成物作成の際に、目的とする性質の向上を計るために使用できる有用な化合物である。
【0132】
実施例17
前記実施例16で調製した母体液晶組成物(B−1)87wt%と実施例11−(b)で得られた3−トリフルオロメチル−4−オクチルー4″−ヘプチルターフェニル10wt%、並びに下記の公知光学活性化合物(D−2特開平5−213930)を3wt%添加し、カイラルSc組成物(M−3)を作成した。
【0133】
【化57】
【0134】
同時に、前記実施例11−(b)の化合物を含まない、母体液晶組成物(B−1)97wt%と公知の光学活性化合物(D−2)3wt%とからなるカイラルSc組成物(M−4)を作成した。
これらの組成物の相転移温度を下記に示す。
【0135】
これらの組成物(M−3)及び組成物(M−4)を各々市販の液晶セル(EHC社製、ポリイミド配向膜、2μmギャップ)に注入して液晶素子を作成し、実施例16と同様に応答時間、自発分極並びにチルト角を測定した。その結果を表2に示す。
【0136】
【表2】
【0137】
以上に示したように、本発明化合物は、これを添加することにより、無添加の場合と比べて応答時間の短縮及びカイラルSc下限温度を下げるのに有効であり、強誘電性液晶組成物を作成する際に、目的とする性質を向上させるために使用できる有用な化合物である。
【0138】
実施例18
実施例17において、実施例11−(b)の化合物に替えて実施例15−(b)の化合物を用い、実施例17と同様にカイラルSc組成物(M−5)を作成し、実施例11−(b)の化合物を含まない組成物(M−4)と比較した。その相転移温度を下記に、又、応答時間、自発分極並びにチルト角の測定結果を表3に示す。
【0139】
【0140】
【表3】
【0141】
以上に示したように、本発明化合物は、これを添加することにより、無添加の場合と比べてカイラルSc相温度幅を狭めずにカイラルSc下限温度を下げ、又応答時間の短縮に有効であり、強誘電性液晶組成物を作成する際に、目的とする性質を付与するのに使用できる有用な化合物である。
【0142】
実施例19
実施例11−(b)で得られた化合物と実施例4−(b)で得られた化合物は下記の相転移温度(℃)を有する化合物である。
上記の実施例11−(b)と実施例4−(b)の各化合物を30wt%と70wt%の割合で混合し、Sc組成物(B−2)を作成して、その相転移温度(℃)を測定した。その結果を下記に示す。
【0143】
以上に示すように、実施例4−(b)化合物のSc相温度幅は12.3度であるが、これにSc相を持たない実施例11−(b)化合物を添加することにより、Sc相温度幅は20度となり、7.7度拡張された。更に、混合したことにより、それぞれが単品では有していない、実用的に理想とされる相系列、すなわち降温時にI→Ne→SA→Scの相系列を示す組成物が得られた。このようにSc相を持たない化合物も組成物を作成する上で有用である。
【0144】
実施例20
市販のネマチック液晶組成物であるZLI−1132に、液晶相を持たない参考例2−(c)化合物(m.p58.7℃)を10wt%添加(ネマチック組成物M−6)し、ネマチック相から等方性液体への転移温度(TNI)、屈折率異方性(Δn)、並びに、しきい値電圧(Vth)を測定した。又、ZLI−1132自身のそれらについても測定した。その結果を下記に示す。
【0145】
【0146】
以上に示すように、参考例2−(c)化合物はTNI下げるものの、Δn及びVthを大幅に低下させる効果があり、ネマチック液晶組成物作成の際、その目的とする特性を調整する材料として有用である。
【0147】
【表4】
[0001]
【Technical field】
The present invention relates to a novel liquid crystal compound and a liquid crystal composition containing at least one of these liquid crystal compounds. More specifically, the present invention relates to a ferroelectric liquid crystal composition and a nematic liquid crystal composition, and a liquid crystal compound having a novel trifluoromethylbenzene skeleton which is useful as a composition component thereof and has excellent chemical stability, and a liquid crystal compound thereof. The present invention relates to a liquid crystal composition containing at least one liquid crystal compound having a novel trifluoromethylbenzene skeleton.
[0002]
[Background Art]
Liquid crystal display devices are widely used as display devices for watches, calculators, personal word processors, pocket televisions, and the like. This is because the light-receiving type has excellent characteristics such as not causing eyestrain, low power consumption, and thinness.However, the nematic liquid crystal composition has a low response speed and lacks memory properties. There were limitations in application. In order to expand the application, a super twisted nematic (STN) type display system, which is an improvement of a conventionally used twisted nematic (TN) type display system, has also been found. Further, they are approaching a CRT by being driven using a transistor or a diode such as a TFT or MIM. However, since the response speed is still slow as compared with the CRT and the viewing angle is not sufficient, research on liquid crystal display elements has been actively conducted, and one of them is a ferroelectric liquid crystal [R. B. Meyer et al., Physique, 36 L-69 (1975)]. A. Clark et al .; Applied Phys. lett. , 36, 899 (1980)]. This method has excellent characteristics such as a high-speed response of 100 to 1,000 times as compared with the conventional method and a memory property, so that the use of liquid crystal display devices is expected to be expanded. . Ferroelectric liquid crystal refers to a series of smectic liquid crystals in which the long axis of the liquid crystal molecules has a certain angle with respect to the layer normal direction, but a chiral SmC phase is practically used.
[0003]
A ferroelectric liquid crystal for producing a display element is a liquid crystal composition obtained by mixing (1) compounds having various chiral SmC phases or (2) a compound having various SmC phases and an optically active compound. There are two methods. In the research and development of ferroelectric liquid crystal display devices, the liquid crystal composition obtained by the method (1) was initially used. However, research and development have progressed, and the addition of an optically active compound to a compound having an SmC phase has led to strong research and development. Since it has been found that a dielectric liquid crystal can be obtained, there is a tendency to use the composition obtained by the method (2). In particular, the SmC composition (SmC host) obtained by mixing the SmC compound has one to several kinds of optically active compounds (a compound having a chiral SmC phase is preferable, but a compound which does not necessarily have to have the chiral SmC phase). Research and development of ferroelectric liquid crystal compositions by adding a chiral dopant) have become mainstream.
[0004]
This is because (2) is easier to adjust various characteristics (operating temperature range, response speed, spontaneous polarization, spiral pitch, chemical stability, etc.) required for the display element, or compared to the chiral SmC compound. This is because (2) is considered to be advantageous because the SmC compound can be synthesized at low cost.
[0005]
The response time of a ferroelectric liquid crystal is expressed by the formula τ = η / E · Ps (τ = response time η = viscosity, E = electric field, Ps = spontaneous polarization). can do. However, in practice, in addition to the response time, it is necessary to optimize various characteristics such as the operating temperature range, the viewing angle, and the contrast. Therefore, a large number of compounds are mixed and each compound has Attempts have been made to optimize by taking advantage of the features that are available. Most of the ferroelectric liquid crystal composition in the method (2) is an SmC host component, and the SmC host component has a large effect on the characteristics of the ferroelectric liquid crystal composition.
[0006]
Therefore, in order to optimize a ferroelectric liquid crystal composition for a display element, an excellent SmC host is required. For example, a wide SmC temperature range, low viscosity, and a tilt angle of 22. 5 ° and the layer structure is a bookshelf or chevron type. However, it has not yet been put to practical use, and there is a demand for the development of various compounds that can be useful components when preparing a ferroelectric liquid crystal composition.
[0007]
The present inventors have focused on the liquid crystal compound necessary for preparing an SmC host from the above viewpoint, and aimed to obtain an effective liquid crystal compound when preparing a ferroelectric liquid crystal composition. The usefulness as a material for improving various physical properties when preparing a nematic liquid crystal composition was also examined.
[0008]
By introducing a trifluoromethyl group with a strong electron-withdrawing property on the side of the molecular long axis, a compound whose permittivity in the direction perpendicular to the molecular long axis is designed and synthesized.
[0009]
As a result, a ferroelectric liquid crystal display (JM Geary, SID'85, Digest (1985) that can increase the tilt angle, shorten the response time, and achieve a high viewing angle and a high contrast display by a high frequency superposition method. ) 128, as a material for Y. Sato, et al, SID '86, Digest (1986) 348) and at the time of preparing a nematic liquid crystal composition,th), A novel trifluoromethylbenzene derivative useful as a material for adjusting the refractive index anisotropy (Δn) was successfully synthesized.
[0010]
DISCLOSURE OF THE INVENTION
The present invention provides a compound represented by the general formula (I):
Embedded image
(WhereR 1 IsRepresents an alkyl group having 1 to 14 carbon atoms, an alkoxy group or an alkoxyalkyl group,R 2 Represents an alkyl group having 5 to 14 carbon atoms, an alkoxy group or an alkoxyalkyl group,
Embedded image
And m and n each independently represent 0 or 1.
[0011]
However, m and n are not 0 at the same time, and when m and n are 1 at the same time, neither A nor B
Embedded image
A) a trifluoromethylbenzene derivative represented by the formula: and a liquid crystal composition comprising at least one of the derivatives.
[0012]
The novel compounds according to the present invention include those having an SmC phase alone and those having no SmC phase, but each of them can be used for preparing a ferroelectric liquid crystal composition or a nematic liquid crystal composition. It is an effective compound.
[0013]
Examples of the methods for synthesizing these compounds will be briefly described as synthesis routes 1 to 5, and further details will be described with reference to examples of the present invention. The following synthetic routes are merely examples, and do not specify the present invention. Table 4 shows the measurement results of the phase transition temperatures of the compounds synthesized in the examples. It is to be understood that these results are affected by differences in measuring instruments and measuring methods, or by purity, and that there are some differences in the numerical values.
[0014]
(Synthetic route)
In the following synthetic routes, R represents an alkyl group having 1 to 14 carbon atoms, J, k, p, and q each represent an integer of 1 to 13, and other symbols are represented by claims. Have a definition.
[0015]
Embedded image
[0016]
Route 1 (Precursor synthesis route-1)
Embedded image
[0017]
Route 2 (Precursor synthesis route-2)
Embedded image
[0018]
Route 3 (Synthesis route of the title compound-1)
Embedded image
[0019]
Embedded image
Route 4 (Precursor synthesis route-3)
Embedded image
[0020]
Route 5 (Synthesis route of the title compound-2)
Embedded image
[0021]
Hereinafter, the synthesis route will be schematically described.
For Route 1:
The compounds represented by the general formulas (1) to (5) are commercially available, and the compounds represented by the general formulas (6) to (9) are (6-1), (7-1), and (9- 1) can be obtained as a starting material.
[0022]
If the compound (6-1) obtained by etherifying the compound (6-1) with RONa (sodium alkoxide) is brominated with bromine, the compound represented by the general formula (6) is obtained.
[0023]
Compound (7-1) is cyanated with potassium cyanide, and then the compound (7-3) obtained by acid hydrolysis is converted to LiAlH4To give a compound (7-4). This is brominated with hydrobromic acid to obtain compound (7-5). Using the compound (7-5) in place of the above (7-1), cyanation, hydrolysis, reduction, and bromination, and a series of reactions repeatedly and arbitrarily performed using the obtained bromide to form a compound represented by the general formula ( The compound represented by 7-6) is obtained.
[0024]
If the compound represented by the general formula (7-6) is etherified with RONa (sodium alkoxide), the compound represented by the general formula (7) is obtained. The compound of the general formula (8) can be synthesized by a coupling reaction between p-bromoiodobenzene and a boronic acid compound derived from the compound represented by the general formula (7).
[0025]
Compound (9-1) was converted to LiAlH4The compound (9-2) obtained by reduction with the above is brominated with hydrobromic acid to give the compound (9-3). Using the compound (9-3), the compound represented by the general formula (9-8) is obtained in the same manner as in the method for obtaining the compound (7-6) from the compound (7-1). The compound represented by the general formula (9-8) is obtained by brominating the compound represented by the general formula (9-8) with bromine and then etherifying the compound with RONa (sodium alkoxide).
[0026]
The compounds represented by the general formulas (1) to (5) and the compounds represented by the general formulas (6) to (9) obtained by the above method are respectively reacted with Mg to prepare a Grignard reagent. Trimethyl borate [B (OCH3)3And then hydrolysis to give a compound represented by the general formula (P-1) or (P-2).
[0027]
For Route 2:
A commercially available compound (10-1) is reacted with sodium nitrite to prepare a diazonium salt, which is thermally decomposed with sulfuric acid, and the compound (10-2) is reacted with copper iodide (Cul) to form a compound ( 11-1) further converts compound (11-1) to copper cyanide [Cu (CN)2To give each of the compounds (14-1).
[0028]
The compound represented by the general formula (10) can be synthesized by a conventional etherification reaction of the compound (10-2) with an alkyl bromide (RBr). The compounds represented by the general formulas (11) and (13) are obtained by performing a coupling reaction between the compound (11-1) and the boronic acid of the compounds (3) and (1) described in the route 1, respectively.
[0029]
Using the compound (14-1) obtained by the above-mentioned method, the compound of the general formula (7) and the compound represented by the general formula (7) and (8) are obtained from the compound (7-1) in the route 1 by the same method. The compounds represented by 14) and (15) are obtained. Further, the compound represented by the general formula (12) can be obtained by tosylating the compound (14-3) in this route with tosyl chloride and reacting it with alkylmagnesium bromide (RMgBr).
Thus, the compound represented by the general formula (P-3) or (P-4) is obtained.
[0030]
For Route 3:
The compound represented by the general formula (P-1) obtained by the route 1 and the route 2 and the compound represented by the general formula (P-4) or the compound represented by the general formula (P-2) and the general formula ( The compound represented by P-3) is converted to tetrakistriphenylphosphine palladium [Pd (PPh3)4By performing the coupling reaction in the presence of the compound, the compound of the present invention represented by the general formula (I) can be obtained.
[0031]
For Route 4:
Compounds represented by the general formula (16-1) were converted to potassium hydrogen sulfate (KHSO4The compound represented by the general formula (16) can be obtained by an oxidation reaction using an oxidizing agent such as
[0032]
By oxidizing a boronic acid derivative obtained from the compound represented by the general formula (6) using hydrogen peroxide in the route 1, the compound represented by the general formula (17-1) is obtained. This is subjected to nucleus hydrogenation under a palladium carbon (Pd / C) catalyst to obtain a compound represented by the general formula (17-2), which is converted to potassium hydrogen sulfate (KHSO).4The compound represented by the general formula (17) can be obtained by performing an oxidation reaction using an oxidizing agent such as
[0033]
For Route 5:
A compound represented by the general formula (P-3) or (P-4) obtained in Route 2 is reacted with magnesium to prepare a Grignard reagent, and a Grignard reagent obtained therefrom is reacted with the general formula (P-6) or When a cyclohexene derivative obtained by performing a coupling reaction with the compound represented by (P-5) is hydrogenated in the presence of Pd / C, the compound represented by the general formula (I), which is the compound of the present invention, is obtained. Can be obtained.
[0034]
Hereinafter, the present invention will be described in more detail with reference to Examples, but the abbreviations described herein have the following meanings.
GTO: Glass tube oven
GC: Gas chromatography
HPLC: High Performance Liquid Chromatography
IR: infrared absorption spectrum
Mass: mass spectrum
GC-Ms: Gas chromatography-mass spectrum
b. p. : Boiling point
C: Crystal
Sx: Sc, SASmectic phase other than
SmC, Sc: smectic C phase
SA: Smectic A phase
Ch: Cholesteric phase
Ne: Nematic phase
I: Isotropic liquid
? : Temperature unknown
[0035]
【Example】
Example 1
Embedded image
A solution of 24 cc of concentrated sulfuric acid in 60 cc of water was added to 20 g (83.3 mmol) of 2-amino-5-bromobenzotrifluoride to produce a precipitate. An additional 60 cc of acetic acid was added to dissolve the precipitate. After the solution was cooled to 5 ° C. or lower, a solution of 6.68 g (96.8 mmol) of sodium nitrite in 20 cc of water was added dropwise, and ice chips, 0.5 g of urea and 120 cc of acetic acid were added, and the mixture was left at 5 ° C. or lower. The diazonium salt solution was left. On the other hand, a suspension composed of 31.2 g of sodium sulfate, 24 cc of concentrated sulfuric acid and 20 cc of water was heated to 130 to 135 ° C., and the diazonium salt solution prepared above was gradually dropped to form a phenol compound together with steam. Distilled. The distillate was extracted with ether, washed with saturated saline, dried over sodium sulfate, and the solvent was distilled off. The residue was distilled under reduced pressure using GTO to obtain 15.3 g of 2-trifluoromethyl-4-bromophenol. (76.5%). b. p. 105 ° C./30 torr, GC 92.2%, GC-Ms 240 (M−1), 242 (M + 1)
[0036]
Embedded image
From 5 g (20.7 mmol) of 2-trifluoromethyl-4-bromophenol obtained in (a), 4.8 g (24.8 mmol) of n-octyl bromide, 8.6 g (62.1 mmol) of potassium carbonate and 50 cc of methyl ethyl ketone The resulting mixture was stirred at reflux for 10 hours. The reaction mixture was filtered to remove insolubles by suction filtration, the filtrate was concentrated, extracted with benzene, washed with water, dried over sodium sulfate, and the solvent was distilled off. The residue was distilled under reduced pressure using GTO to give 2- 5.9 g (80.8%) of trifluoromethyl-4-bromooctyloxybenzene were obtained. b. p. 125 ° C./1.5 torr, GC 94.4%, GC-Ms 352 (M-1), 354 (M + 1)
[0037]
Embedded image
Under an argon atmosphere, 1/5 of a solution of 25 g (69.3 mmol) of 4-octyloxy-4'-bromobiphenyl in 100 cc of tetrahydrofuran was added to 1.85 g (76.2 mmol) of magnesium activated by iodine, and the mixture was heated. After the start of the reaction, the remaining solution was added dropwise, and the mixture was further stirred under reflux for 2 hours to prepare a Grignard reagent. On the other hand, under an argon atmosphere, a solution of 6 g (57.7 mmol) of trimethyl borate in 20 cc of tetrahydrofuran was cooled to 0 ° C., and the Grignard reagent prepared above was added dropwise, and the mixture was gradually returned to room temperature and stirred for 3 hours. The reaction mixture was hydrolyzed by adding an ice-cooled 10% aqueous sulfuric acid solution, extracted with benzene, washed with water, dried over sodium sulfate, evaporated, and the residue was recrystallized from hexane to give 4-octyloxybiphenyl. 13.7 g (60.6%) of -4'-boronic acid were obtained. HPLC 95.9%
[0038]
Embedded image
Under an argon atmosphere, Pd [PPh3)4[Tetrakis (triphenylphosphine) palladium (0)] 0.2 g, 2-trifluoromethyl-4-bromooctyloxybenzene obtained in (b), 24 g (3.5 mmol) in 20 cc benzene solution, (c) A mixture of 1.24 g (3.8 mmol) of 4-octyloxybiphenyl-4'-boronic acid obtained in the above and a suspension of 25 cc of ethanol and 5 cc of a 2 M aqueous sodium carbonate solution was stirred under reflux for 6 hours. The reaction mixture was poured into water, extracted with benzene, washed with water, dried over sodium sulfate, and the solution was distilled off. The residue was subjected to silica gel column chromatography using hexane-benzene (15: 1 to 5: 1) as an eluent. And then recrystallized from acetone to obtain 0.85 g (43.6%) of 3-trifluoromethyl-4,4 "-dioctyloxyterphenyl.
[0039]
The purity of this product was 98.9% by HPLC and one spot by TLC. It was also confirmed by IR measurement and Mass analysis that a molecular ion peak was observed at 554, and that the substance obtained was the title compound from the relationship between the raw materials used.
[0040]
This product was observed for phase change under a polarizing microscope using a Mettler hot stage FP-82. Table 4 shows the results.
[0041]
Example 2
Embedded image
In the same manner as in Example 1- (c), except that 22.9 g of 4-heptyl-4'-bromobiphenyl was used instead of 25 g of 4-octyloxy-4'-bromobiphenyl in Example 1- (c). Thus, 14 g (68.3%) of 4-heptylbiphenyl-4'-boronic acid was obtained. HPLC 93.8%
[0042]
Embedded image
In Example 1- (d), 1.14 g of 4-heptylbiphenyl-4'-boronic acid obtained in (a) was used instead of 1.24 g of 4-octyloxybiphenyl-4'-boronic acid. By operating in the same manner as in Example 1- (d), 1.25 g (67.9%) of 3-trifluoromethyl-4-octyloxy-4 ″ -heptylterphenyl was obtained.
[0043]
The purity of this product was 99.4% by HPLC and one spot by TLC. It was also confirmed by IR measurement and Mass analysis that a molecular ion peak was observed at 524, and that the substance obtained was the title compound from the relationship between the raw materials used.
[0044]
This product was observed for phase change under a polarizing microscope using a Mettler hot stage FP-82. Table 4 shows the results.
[0045]
Example 3
Embedded image
In Example 1- (b), 4.1 g of n-hexyl bromide was used instead of 4.8 g of n-octyl bromide, and the others were operated in the same manner as in Example 1- (b) to obtain 2-trifluoromethyl-4. 5.1 g (92.7%) of -bromohexyloxybenzene were obtained. b. p. 110 ° C./1.5 torr, GC 94.7%, GC-Ms 324 (M−1) 326 (M + 1)
[0046]
Embedded image
In Example 1- (c), 2-pentyloxy-4'-bromobiphenyl was replaced with 22.1 g of 4-octyloxy-4'-bromobiphenyl in place of 25 g, and the other conditions were the same as in Example 1- (c). By operation, 10.5 g (53.3%) of 4-pentyloxybiphenyl-4'-boronic acid was obtained. HPLC 96.8%
[0047]
Embedded image
In Example 1- (d), instead of 1.24 g of 2-trifluoromethyl-4-bromooctyloxybenzene and 1.24 g of 4-octyloxybiphenyl-4'-boronic acid, 2- Using 1.14 g of trifluoromethyl-4-bromohexyloxybenzene and 1.08 g of 4-pentyloxybiphenyl-4'-boronic acid obtained in (b), operating in the same manner as in Example 1- (d), except that As a result, 1.07 g (62.9%) of 3-trifluoromethyl-4-hexyloxy-4 ″ -pentyloxyterphenyl was obtained.
[0048]
The purity of this product was 99.4% by HPLC and one spot by TLC. In addition, it was confirmed from the results of IR measurement and mass analysis that a molecular ion peak was observed at 484, and that the substance obtained was the title compound from the relationship between the raw materials used.
[0049]
This product was observed for phase change under a polarizing microscope using a Mettler hot stage FP-82. Table 4 shows the results.
[0050]
Example 4
Embedded image
The procedure of Example 1- (c) was repeated except that 25 g of 4-octyloxy-4'-bromobiphenyl was replaced by 21 g of 4-pentyl-4'-bromobiphenyl. -Pentylbiphenyl-4'-boronic acid (10.9 g, 58.6%). HPLC 96.4%
[0051]
Embedded image
In Example 3- (a), instead of 1.24 g of 2-trifluoromethyl-4-bromooctyloxybenzene and 1.24 g of 4-octyloxybiphenyl-4'-boronic acid in Example 1- (d), Using 1.14 g of the obtained 2-trifluoromethyl-4-bromohexyloxybenzene and 1.01 g of 4-pentylbiphenyl-4'-boronic acid obtained in (a), the others were the same as in Example 1- (d). The same operation was performed to obtain 1.03 g (62.8%) of 3-trifluoromethyl-4-hexyloxy-4 ″ -pentyl terphenyl.
[0052]
The purity of this product was 99.8% by HPLC and one spot by TLC. In addition, it was confirmed that the obtained substance was the title compound based on the result of IR measurement and the fact that a molecular ion peak was observed at 468 by Mass analysis, and the relationship between the raw materials used.
[0053]
This product was observed for phase change under a polarizing microscope using a Mettler hot stage FP-82. Table 4 shows the results.
[0054]
Example 5
Embedded image
Using 1.01 g of 4-pentylbiphenyl-4'-boronic acid obtained in Example 4- (a) instead of 1.24 g of 4-octyloxybiphenyl-4'-boronic acid in Example 1- (d). Otherwise by operating in the same manner as in Example 1- (d), 1.16 g (67.8%) of 3-trifluoromethyl-4-octyloxy-4 ″ -pentylterphenyl was obtained.
[0059]
The purity of this product was 99.8% by HPLC and one spot by TLC. In addition, it was confirmed that the obtained substance was the title compound based on the result of IR measurement and the fact that a molecular ion peak was observed at 496 by Mass analysis and the relationship between the raw materials used.
[0060]
This product was observed for phase change under a polarizing microscope using a Mettler hot stage FP-82. Table 4 shows the results.
[0061]
Example 6
Embedded image
In Example 1- (c), 21.4 g of 4- (trans-4-pentylcyclohexyl) bromobenzene was used in place of 25 g of 4-octyloxy-4′-bromobiphenyl, and the others were the same as in Example 1- (c). The same operation was performed to obtain 9.5 g (50.1%) of 4- (trans-4-pentylcyclohexyl) phenylboronic acid. HPLC 99.7%
[0062]
Embedded image
Using 1.04 g of 4- (trans-4-pentylcyclohexyl) phenylboronic acid obtained in (a) instead of 1.24 g of 4-octyloxybiphenyl-4′-boronic acid in Example 1- (d), Otherwise, operating as in Example 1- (d), 4- (trans-4-pentylcyclohexyl) -3'-trifluoromethyl-4'-octyloxybiphenyl 0.93 g (53.1%) was obtained. .
[0063]
The purity of this product was 99.2% by HPLC and one spot by TLC.
In addition, it was confirmed that the substance obtained from the IR measurement and the MaSs analysis showed a molecular ion peak at 502, and the obtained substance was the title compound based on the relationship between the raw materials used.
[0064]
This product was observed for phase change under a polarizing microscope using a Mettler hot stage FP-82. Table 4 shows the results.
[0065]
Example 7
Embedded image
The procedure of Example 1- (a) was repeated, except that 20 g of 5-amino-2-bromobenzotrifluoride was used instead of 20 g of 2-amino-5-bromobenzotrifluoride in Example 1- (a). 14.3 g (71.5%) of 3-trifluoromethyl-4-bromophenol were obtained. b. p. 140 ° C./35 torr, GC 98.1%, GC-Ms 240 (M−1) 242 (M + 1)
[0066]
Embedded image
In Example 1- (b), 5 g of 3-trifluoromethyl-4-bromophenol obtained in (a) was used instead of 5 g of 2-trifluoromethyl-4-bromophenol, and the others were the same as in Example 1- (b). ) To give 5.82 g (79.5%) of 3-trifluoromethyl-4-bromooctyloxybenzene. b. p. 115 ° C./0.9 torr, GC 96.1%, GC-Ms 352 (M−1) 354 (M + 1)
[0067]
Embedded image
Using 1.24 g of 3-trifluoromethyl-4-bromooctyloxybenzene obtained in (b) instead of 1.24 g of 2-trifluoromethyl-4-bromooctyloxybenzene in Example 1- (d), Others were the same as those in Example 1- (d) to obtain 1.63 g (83.6%) of 2-trifluoromethyl-4,4 "-dioctyloxyterphenyl.
[0068]
The purity of this product was 99.6% by HPLC and one spot by TLC.
In addition, it was confirmed that the substance obtained from the relationship between the raw material used and the molecular ion peak at 554 as a result of IR measurement and Mass analysis was the title compound.
[0069]
This product was observed for phase change under a polarizing microscope using a Mettler hot stage FP-82. Table 4 shows the results.
[0070]
Example 8
Embedded image
Example 7- (b) in place of 1.24 g of 2-trifluoromethyl-4-bromooctyloxybenzene and 1.24 g of 4-octyloxybiphenyl-4'-boronic acid in Example 1- (d). Using 1.24 g of the obtained 3-trifluoromethyl-4-bromooctyloxybenzene and 1.14 g of 4-heptylbiphenyl-4'-boronic acid obtained in Example 2- (a), Operating in the same manner as in (d), 0.92 g (50%) of 2-trifluoromethyl-4-octyloxy-4 ″ -heptyl terphenyl was obtained.
[0071]
The purity of this product was 99.9% by HPLC and one spot by TLC. In addition, it was confirmed that the obtained substance was the title compound based on the result of IR measurement and the fact that a molecular ion peak was observed at 524 by Mass analysis, and the relationship between the raw materials used.
[0072]
This product was observed for phase change under a polarizing microscope using a Mettler hot stage FP-82. Table 4 shows the results.
[0073]
Example 9
Embedded image
The procedure of Example 1- (c) was repeated, except that 19.8 g of 4-bromooctyloxybenzene was used instead of 25 g of 4-octyloxy-4'-bromobiphenyl. 8.9 g (51.1%) of octyloxyphenylboronic acid were obtained. HPLC 93.0%
[0074]
Embedded image
Under an argon atmosphere, Pd [PPh3)40.4 g, a solution of 2.97 g (11.9 mmol) of 4-octyloxyphenylboronic acid obtained in (a) in 30 cc of ethanol, and a solution of 1.6 g (5.4 mmol) of 2,5-dibromobenzotrifluoride in 30 cc of benzene And 15 cc of a 2M aqueous solution of sodium carbonate were stirred under reflux for 12 hours. The reaction mixture was poured into water, extracted with benzene, washed with water, dried over sodium sulfate, the solvent was distilled off, and the residue was subjected to silica gel column elution with hexane-benzene (10: 1 to 1: 1). Purification by chromatography and recrystallization from acetone gave 1.62 g (55.5%) of 2'-trifluoromethyl-4,4 "-dioctyloxyterphenyl.
[0075]
The purity of this product was 99.9% by HPLC and one spot by TLC. In addition, it was confirmed that the obtained substance was the title compound from the result of IR measurement and the fact that a molecular ion peak was observed at 554 in Mass analysis, and the relationship between the raw materials used.
[0076]
This product was observed for phase change under a polarizing microscope using a Mettler hot stage FP-82. Table 4 shows the results.
[0077]
Example 10
Embedded image
75 cc of concentrated sulfuric acid and 100 cc of acetic acid were added to 15 g (62.5 mmol) of 2-amino-5-bromobenzotrifluoride, and the precipitate was dissolved by heating. After the solution was cooled to 0 ° C. or lower, a solution of 5.28 g (76.5 mmol) of sodium nitrite in 30 cc of water was added dropwise with stirring, and the solution was allowed to stand at 0 ° C. for 30 minutes to prepare a diazonium salt solution.
[0078]
To this diazonium salt solution, a 75 cc solution of cyclohexane and 21.5 g (129.5 mmol) of potassium iodide in 75 cc of water were sequentially added dropwise at 0 ° C. or lower, and the mixture was stirred at room temperature for 24 hours.
[0079]
The reaction mixture was poured into water, extracted with ether, washed with an aqueous solution of sodium pyrosulfite, washed with water, dried over sodium sulfate, the solvent was distilled off, and the residue was distilled with GTO under reduced pressure. 18.7 g (85.4%) of 5-bromo-2-iodobenzotrifluoride were obtained. b. p. 120-125 ° C / 19 torr, GC 95.4%, GC-Ms 350 (M-1), 352 (M + 1)
[0080]
Embedded image
Under an argon atmosphere, 10.5 cc (16.8 mmol) of a 1.6 M n-butyl lithium / hexane solution was added dropwise at −10 ° C. to a 7-cc solution of 1.64 g (14.9 mmol) of 1-octyne in tetrahydrofuran. Stirred for 20 minutes. Further, a suspension composed of 2.28 g (16.8 mmol) of zinc chloride and 15 cc of tetrahydrofuran was added, and the mixture was stirred at −10 ° C. for 30 minutes. .2 mmol) in 15 cc of tetrahydrofuran and Pd [PPh3]40.82 g of a 15 cc solution of tetrahydrofuran was sequentially added dropwise. Then, the temperature was gradually returned to room temperature, and the mixture was stirred overnight.
[0081]
The reaction mixture was poured into a dilute hydrochloric acid aqueous solution, extracted with ether, washed with water, washed with a saturated aqueous solution of sodium hydrogen carbonate, washed again with water, dried over sodium sulfate, and the solvent was distilled off. Then, 3 g (63.3%) of 2-trifluoromethyl-4-bromo- (oct-1-ynyl) benzene was obtained. b. p. 95-100 ° C / 2 torr, GC 96.5%, GC-Ms332 (M-1), 334 (M + 1)
[0082]
Embedded image
2-trifluoromethyl-4-bromo- (oct-1-ynyl) 1 obtained in (b) instead of 1.24 g of 2-trifluoromethyl-4-bromooctyloxybenzene in Example 1- (d) The same operation as in Example 1- (d) was conducted except that 1.52 g (81.7 g) of 3-trifluoromethyl-4- (oct-1-ynyl) -4'-octyloxyterphenyl was used. %). HPLC 99.1%, Mass 534 (M). The phase change of this product was as follows.
[0083]
Embedded image
From 0.51 g (0.96 mmol) of 3-trifluoromethyl-4- (oct-1-ynyl) -4'-octyloxyterphenyl obtained in (c), 0.05 g of 10% palladium carbon and 20 cc of ethyl acetate. The resulting mixture was hydrogenated for 2 hours
[0084]
The reaction mixture was filtered to remove palladium carbon, the solvent was distilled off, and the residue was recrystallized with an acetone-methanol mixed solvent to give 3-trifluoromethyl-4-octyl-4'-octyloxyterphenyl 0.1. 48 g (94.1%) were obtained.
[0085]
The purity of the product was 99.1% by HPLC and one spot by TLC. In addition, it was confirmed that the obtained substance was the title compound based on the result of IR measurement and the fact that a molecular ion peak was observed at 538 by Mass analysis and the relationship between the raw materials used.
[0086]
This product was observed for phase change under a polarizing microscope using a Mettler hot stage FP-82. Table 4 shows the results.
[0087]
Example 11
Embedded image
Example 10- (b) in place of 1.24 g of 2-trifluoromethyl-4-bromooctyloxybenzene and 1.24 g of 4-octyloxybiphenyl-4'-boronic acid in Example 1- (d). Using 1.16 g of the obtained 2-trifluoromethyl-4-bromo- (oct-1-ynyl) benzene and 1.14 g of 4-heptylbiphenyl-4'-boronic acid obtained in Example 2- (a), Otherwise by operating in the same manner as in Example 1- (d), 0.87 g (49.4%) of 3-trifluoromethyl-4- (oct-1-ynyl) -4'-heptylterphenyl was obtained.
HPLC 99.1%, Mass 504 (M). The phase change of this product was as follows.
[0088]
Embedded image
3-trifluoromethyl- obtained in (a) in place of 0.51 g of 3-trifluoromethyl-4- (oct-1-ynyl) -4'-octyloxyterphenyl in Example 10- (d). Using 4-8- (oct-1-ynyl) -4'-heptyl terphenyl in the same manner as in Example 10- (d), but using 0.48 g of 3-trifluoromethyl-4-octyl-4'- 0.38 g (79.2%) of heptyl terphenyl was obtained.
[0089]
The purity of this product was 99.0% by HPLC and one spot by TLC. In addition, it was confirmed that the obtained substance was the title compound from the result of IR measurement and the fact that a molecular ion peak was observed at 508 by Mass analysis, and the relationship between the raw materials used.
This product was observed for phase change under a polarizing microscope using a Mettler hot stage FP-82. Table 4 shows the results.
[0090]
Reference Example 1
Embedded image
Under an argon atmosphere, Pd (PPh3)45 g, 18.7 g (83.1 mmol) of 2-bromo-benzotrifluoride in 200 cc of benzene and 25 g (91.2 mmol) of 4- (trans-4-pentylcyclohexyl) phenylboronic acid obtained in Example 6- (a) ) In 90 ml of a 2M aqueous solution of sodium carbonate was stirred under reflux for 24 hours.
[0091]
The reaction mixture was poured into water, extracted with benzene, washed with water, dried over sodium sulfate, and the solvent was distilled off.The residue was purified by silica gel column chromatography using hexane as an eluent, and then re-used with acetone. The crystals were crystallized to obtain 27.4 g (88.1%) of 4- (trans-4-pentylcyclohexyl) -2'-trifluoromethylbiphenyl. GC 98.9%, Mass 374 (M)
[0092]
Embedded image
Under ice cooling, a solution of 9.1 g (56.9 mmol) of bromine in 5 cc of methylene chloride was obtained in (a). 19 g (50.8 mmol) of 4- (trans-4-pentylcyclohexyl) -2'-trifluoromethylbiphenyl nitric acid The mixture was added dropwise to a mixture consisting of 2.0 g of thallium (II) trihydrate and 100 cc of methylene chloride, and stirred for 3 hours.
[0093]
The reaction mixture was poured into a dilute aqueous sodium hydroxide solution, extracted with methylene chloride, washed with water, dried over sodium sulfate, and the solvent was distilled off. The residue was recrystallized from an acetone-methanol mixed solvent to give 4- (trans- 18.1 g (78.7%) of 4-pentylcyclohexyl) -2'-trifluoromethyl-4'-bromobiphenyl were obtained. GC 98.7%, Mass 452 (M-1), 454 (M + 1)
[0094]
Embedded image
Under an argon atmosphere, 4.6 cc (7.3 mmol) of a 1.6 Mn-butyllithium / hexane solution was obtained at -70 ° C at the temperature of-(trans-4-pentylcyclohexyl) -2'-trifluoromethyl obtained in (b). The solution was added dropwise to a solution of 3 g (6.6 mmol) of 4'-bromobiphenyl in 20 cc of tetrahydrofuran and stirred at the same temperature for 1 hour. 1 cc of trimethyl boronate was added to the reaction mixture, which was gradually heated to 0 ° C. and stirred for 30 minutes. The mixture was cooled again to -10 ° C or lower, 5 cc of 30% hydrogen peroxide was added dropwise, and the mixture was gradually returned to room temperature and stirred for 1 hour. Then, the reaction mixture was cooled to −30 ° C., 10 cc of a saturated aqueous sodium hydrogen sulfite solution was added, and the mixture was stirred for 24 hours while gradually returning to room temperature.
[0095]
The reaction mixture was poured into water, extracted with benzene, washed with water, dried over sodium sulfate, and the solvent was distilled off. The residue was silica gel using hexane-benzene (2: 1 to 1: 1) as an eluent. Purification by column chromatography gave 2.42 g (93.8%) of 4- (trans-4-pentylcyclohexyl) -2'-trifluoromethyl-4'-hydroxybiphenyl.
GC 96.6%, IR (neat): 3400 cm-1(OH)
[0096]
Embedded image
60% hydrogenation of a 20 ml solution of 1.07 g (2.74 mmol) of 4- (trans-4-pentylcyclohexyl) -2'-trifluoromethyl-4'-hydroxybiphenyl obtained in (c) under ice-cooling in dimethylformamide. 0.25 g of sodium was added, and the mixture was stirred until foaming stopped. Further, 0.61 g (4.96 mmol) of n-propyl bromide was added, and the mixture was stirred at room temperature for 2 days.
[0097]
The reaction mixture was poured into a dilute hydrochloric acid aqueous solution, extracted with benzene, washed with water, dried over sodium sulfate, and the solvent was distilled off. The residue was subjected to silica gel column chromatography using hexane-benzene (4: 1) as an eluent. And then recrystallized with a mixed solvent of acetone and methanol to give 0.95 g (79.8%) of 4- (trans-4-pentylcyclohexyl) -2'-trifluoromethyl-4'-propyloxybiphenyl. Obtained.
[0098]
The purity of the product was 99.1% by HPLC and one spot by TLC. In addition, it was confirmed that the obtained substance was the title compound from the result of IR measurement and the fact that a molecular ion peak was observed at 432 by Mass analysis and the relationship between the raw materials used.
[0099]
This product was observed for its phase change under a polarizing microscope using a Mettler hot stage FP-82, and the results are shown in Table 4.
[0100]
Example 12
Embedded image
Reference Example 1-0.61 g of n-propyl bromide in (d). Was replaced with 0.96 g of n-octyl bromide.Reference Example 1Operating in the same manner as in (d), 0.83 g (60.1%) of 4- (trans-4-pentylcyclohexyl) -2'-trifluoromethyl-4'-octyloxybiphenyl was obtained.
[0101]
The purity of this product was 97.0% by HPLC, and one spot by TLC.
In addition, it was confirmed that the obtained substance was the title compound from the result of IR measurement, the fact that a molecular ion peak was observed at 502 in Mass analysis, and the relationship between the raw materials used.
[0102]
This product was observed for its phase change under a polarizing microscope using a Mettler hot stage FP-82, and the results are shown in Table 4.
[0103]
Reference Example 2
Embedded image
Under an argon atmosphere, 1.6 cc (7.3 mmol) of a 1.6 Mn-butyllithium / hexane solution was added at -70 ° C.Reference Example 1-It is added dropwise to a solution of 3 g (6.6 mmol) of 4- (trans-4-pentylcyclohexyl) -2'-trifluoromethyl-4'-bromobiphenyl obtained in (b) in 20 cc of tetrahydrofuran and stirred at the same temperature for 2 hours. did. Further, 0.95 g (8.4 mmol) of N-formylpiperidine was added dropwise, and the mixture was gradually returned to room temperature and stirred for one day.
[0104]
The reaction mixture was poured into a dilute aqueous hydrochloric acid solution, extracted with benzene, washed with water, dried over sodium sulfate, and the solvent was distilled off. Crude 4- (trans-4-pentylcyclohexyl) -2'-trifluoromethyl-4 ' 2.69 g of formylbiphenyl were obtained. GC 93.9%, IR (neat): 1700 cm-1(CHO)
[0105]
Embedded image
Under ice-cooling, 0.5 g (13.2 mmol) of sodium borohydride was obtained in (a) 2.6 g of crude 4- (trans-4-pentylcyclohexyl) -2'-trifluoromethyl-4'-formylbiphenyl (6.5 mmol) was added to a solution composed of 10 cc of tetrahydrofuran and 10 cc of ethanol, and the mixture was stirred under reflux for 3 hours.
[0106]
The reaction mixture was poured into a dilute aqueous hydrochloric acid solution, extracted with benzene, washed with water, dried over sodium sulfate, and the solvent was distilled off. The residue was eluted with hexane-benzene (1: 0 to 1: 1). Purification by silica gel column chromatography gave 2.28 g (87.4%) of 4- (trans-4-pentylcyclohexyl) -2'-trifluoromethyl-4'-hydroxymethylbiphenyl. GC 99.4%, IR (neat): 3350 cm-1(OH)
[0107]
Embedded image
1.35 g of methyl iodide was added to a solution of 1.15 g (2.8 mmol) of 4- (trans-4-pentylcyclohexyl) -2'-trifluoromethyl-4'-hydroxymethylbiphenyl obtained in (b) in 15 cc of tetrahydrofuran ( 9.5 mmol), 0.45 g (8.0 mmol) of potassium hydroxide and 60.1 g (0.38 mmol) of 18-crown-6 were sequentially added, and the mixture was stirred at room temperature for 2 days.
[0108]
The reaction mixture was poured into water, extracted with benzene, washed with water, dried over sodium sulfate, evaporated, and the residue was subjected to silica gel column chromatography using hexane-benzene (2: 1) as an eluent. And then recrystallized with a mixed solvent of acetone and methanol to obtain 0.91 g (76.5%) of 4- (trans-4-pentylcyclohexyl) -2'-trifluoromethyl-4'-methoxymethylbiphenyl. Was.
[0109]
The purity of this product was 99.4% by HPLC and one spot by TLC. In addition, it was confirmed that the obtained substance was the title compound from the result of IR measurement and the fact that a molecular ion peak was observed at 418 by Mass analysis, and the relationship between the raw materials used.
[0110]
This product was observed for its phase change under a polarizing microscope using a Mettler hot stage FP-82, and the results are shown in Table 4.
[0111]
Example 13
Embedded image
Reference Example 2-In (c), 2.0 g of n-hexyl iodide was used instead of 1.35 g of methyl iodide.Reference Example 2The same operation as in (c) was performed to obtain 1.09 g (78.4%) of 4- (trans-4-pentylcyclohexyl) -2'-trifluoromethyl-4'-hexyloxymethylbiphenyl.
[0112]
The purity of this product was 97.2% by HPLC, and one spot by TLC. In addition, it was confirmed that the obtained substance was the title compound from the results of IR measurement and the fact that a molecular ion peak was observed at 488 by Mass analysis, and the relationship between the raw materials used.
[0113]
This product was observed for its phase change under a polarizing microscope using a Mettler hot stage FP-82, and the results are shown in Table 4.
[0114]
Example 14
Embedded image
In Example 1- (d), instead of 1.24 g of 4-octyloxybiphenyl-4'-boronic acid, 0.95 g of 4-octyloxyphenylboronic acid obtained in Example 9- (a) was used. Was operated in the same manner as in Example 1- (d) to obtain 1.37 g (83.0%) of 3-trifluoromethyl-4,4'-dioctyloxybiphenyl.
[0115]
The purity of this product was 99.3% by HPLC and one spot by TLC. In addition, it was confirmed that the substance obtained from the IR measurement and Mass analysis showed a molecular ion peak at 478, and the obtained substance was the title compound based on the relationship between the raw materials used.
[0116]
This product was observed for its phase change under a polarizing microscope using a Mettler hot stage FP-82, and the results are shown in Table 4.
[0117]
Example 15
Embedded image
Under an argon atmosphere, 9.8 cc (15.6 mmol) of a 1.6 M n-butyllithium / hexane solution was applied at -70 ° C to 2-trifluoromethyl-4-bromooctyloxybenzene obtained in Example 1- (b). It was added dropwise to a solution of 4 g (11.3 mmol) of 25 cc of tetrahydrofuran. After stirring at the same temperature for 1 hour, a solution of 3.55 g (14.2 mmol) of n-pentylcyclohexylcyclohexanone in 10 cc of tetrahydrofuran was added dropwise, and the reaction mixture was gradually returned to room temperature.
[0118]
The reaction mixture was poured into a dilute hydrochloric acid aqueous solution, extracted with toluene, washed with water, dried over sodium sulfate, and then the solvent was distilled off. The mixture was stirred under reflux for 2 hours.
[0119]
The reaction mixture was poured into water, extracted with toluene, washed with water, dried over sodium sulfate, the solvent was distilled off, and the residue was distilled with GTO under reduced pressure to give 3-trifluoromethyl-4-octyloxy-. 3.86 g (67.4%) of [4- (trans-4-pentylcyclohexyl) -1-cyclohexen-1-yl] benzene was obtained. b. p. 235 ° C / 0.15 torr) HPLC 95.3%
[0120]
Embedded image
3.86 g (7.6 mmol) of 3-trifluoromethyl-4-octyloxy- [4- (trans-4-pentylcyclohexyl) -1-cyclohexen-1-yl] benzene obtained in (a), 10% palladium A mixture of 0.1 g of carbon and 50 cc of ethyl acetate was hydrogenated for 12 hours.
[0121]
The reaction mixture was filtered to remove palladium carbon, and the solvent was distilled off. Under an argon atmosphere, the residue was dissolved in 20 cc of dimethyl sulfoxide, 1 g (8.9 mmol) of potassium tert-butoxide was added, and the mixture was stirred at 80 to 85 ° C for 30 hours.
[0122]
The reaction mixture was poured into a dilute aqueous hydrochloric acid solution, extracted with benzene, washed with water, dried over sodium sulfate, evaporated, and the residue was purified by silica gel column chromatography using hexane as an eluent. The crystals were recrystallized with an acetone-methanol mixed solvent to obtain 1.71 g (44.3%) of 2-trifluoromethyl-4-octyloxy-4- [trans-4- (trans-4-pentylcyclohexyl) cyclohexyl] benzene. Was.
[0123]
The purity of this product was 99.3% by HPLC, and it was one spot by TLC. In addition, it was confirmed that the obtained substance was the title compound from the result of IR measurement and the fact that a molecular ion peak was observed at 508 by Mass analysis, and the relationship between the raw materials used.
[0124]
This product was observed for its phase change under a polarizing microscope using a Mettler hot stage FP-82, and the results are shown in Table 4.
[0125]
Example 16
Embedded image
A parent liquid crystal composition (B-1) comprising the above four kinds of phenylpyrimidine compounds was prepared.
[0126]
80 wt% of the base liquid crystal composition (B-1), 10 wt% of 3-trifluoromethyl-4,4 ″ -dioctyloxyterphenyl obtained in Example 1- (d), and the following known optically active compound (D -1)
Embedded image
Was added to obtain a chiral Sc composition (M-1).
[0127]
At the same time, a chiral Sc composition (M-) comprising 90 wt% of the parent liquid crystal composition (B-1) and 10 wt% of the known optically active compound (D-1), excluding the compound of Example 1- (d). 2) was created.
The phase transition temperatures of these compositions are shown below.
[0128]
Each of the composition (M-1) and the composition (M-2) was injected into a commercially available liquid crystal cell (manufactured by EHC, polyimide alignment film, 2 μm gap) to prepare a liquid crystal element.
[0129]
Each liquid crystal element was sandwiched between two polarizing plates, and a response time was obtained from a change in transmitted light intensity by applying a ± 5 V / μm, 200 Hz rectangular wave. The spontaneous polarization was measured by the Sawyer tower method, and the tilt angle was measured from the moving angle of the extinction position when the polarity of the applied voltage was inverted.
Table 1 shows the results. The measurement temperature is 25 ° C.
[0130]
[Table 1]
[0131]
As described above, the compound of the present invention is effective in shortening the response time, increasing the tilt angle, and raising the chiral Sc upper limit temperature by adding the compound of the present invention, as compared with the case of not adding the compound. It is a useful compound that can be used to improve the desired properties when preparing a crystalline liquid crystal composition.
[0132]
Example 17
SaidExample 1687 wt% of the base liquid crystal composition (B-1) prepared in the above, 10 wt% of 3-trifluoromethyl-4-octyl-4 ″ -heptyl terphenyl obtained in Example 11- (b), and the following known optical activities: A compound (D-2, JP-A-5-213930) was added at 3 wt% to prepare a chiral Sc composition (M-3).
[0133]
Embedded image
[0134]
At the same time, a chiral Sc composition (M-) comprising 97 wt% of the parent liquid crystal composition (B-1) and 3 wt% of the known optically active compound (D-2), excluding the compound of Example 11- (b). 4) was prepared.
The phase transition temperatures of these compositions are shown below.
[0135]
Each of the composition (M-3) and the composition (M-4) was injected into a commercially available liquid crystal cell (manufactured by EHC, polyimide alignment film, 2 μm gap) to form a liquid crystal element.Example 16The response time, spontaneous polarization and tilt angle were measured in the same manner as in the above. Table 2 shows the results.
[0136]
[Table 2]
[0137]
As described above, the compound of the present invention is effective in shortening the response time and lowering the chiral Sc minimum temperature as compared with the case where no compound is added. It is a useful compound that can be used to improve the desired properties when making it.
[0138]
Example 18
Example 17In which, instead of the compound of Example 11- (b),Example 15Using the compound of-(b),Example 17A chiral Sc composition (M-5) was prepared in the same manner as described above, and compared with the composition (M-4) containing no compound of Example 11- (b). The phase transition temperature is shown below, and the measurement results of the response time, spontaneous polarization and tilt angle are shown in Table 3.
[0139]
[0140]
[Table 3]
[0141]
As described above, by adding the compound of the present invention, the chiral Sc lower limit temperature can be reduced without reducing the chiral Sc phase temperature width as compared with the case where no compound is added, and the compound is effective for shortening the response time. Yes, it is a useful compound that can be used to impart desired properties when preparing a ferroelectric liquid crystal composition.
[0142]
Example 19
The compound obtained in Example 11- (b) and the compound obtained in Example 4- (b) are compounds having the following phase transition temperatures (° C.).
The respective compounds of Example 11- (b) and Example 4- (b) were mixed at a ratio of 30 wt% and 70 wt% to prepare a Sc composition (B-2), and its phase transition temperature ( ° C). The results are shown below.
[0143]
As described above, the Sc phase temperature width of the compound of Example 4- (b) is 12.3 ° C., but the compound of Example 11- (b) having no Sc phase is added to the compound to obtain Sc. The phase temperature width became 20 degrees and was expanded by 7.7 degrees. Furthermore, by mixing, each of them is not a single product, but a practically ideal phase series, that is, I → Ne → SA→ A composition exhibiting a phase sequence of Sc was obtained. Such a compound having no Sc phase is also useful for preparing a composition.
[0144]
Example 20
ZLI-1132 which is a commercially available nematic liquid crystal composition has no liquid crystal phaseReference Example 2-(C) 10 wt% of a compound (mp 58.7 ° C) was added (nematic composition M-6), and the transition temperature (T) from the nematic phase to the isotropic liquid was calculated.NI), Refractive index anisotropy (Δn), and threshold voltage (Vth) Was measured. In addition, ZLI-1132 itself was also measured. The results are shown below.
[0145]
[0146]
As shown above,Reference Example 2- (c)The compound is TNIΔn and VthIs greatly reduced, and is useful as a material for adjusting the intended properties when a nematic liquid crystal composition is prepared.
[0147]
[Table 4]
Claims (2)
ただし、mとnとは同時に0であることはなく、mとnとが同時に1であるときは、AとBとはいずれも
However, m and n are not 0 at the same time, and when m and n are 1 at the same time, neither A nor B
ただし、mとnとは同時に0であることはなく、mとnとが同時に1であるときは、AとBとはいずれも
However, m and n are not 0 at the same time, and when m and n are 1 at the same time, neither A nor B
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34215993A JP3598469B2 (en) | 1992-12-04 | 1993-12-03 | Trifluoromethylbenzene derivatives and liquid crystal compositions containing them |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-356589 | 1992-12-04 | ||
JP35658992 | 1992-12-04 | ||
JP34215993A JP3598469B2 (en) | 1992-12-04 | 1993-12-03 | Trifluoromethylbenzene derivatives and liquid crystal compositions containing them |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06219978A JPH06219978A (en) | 1994-08-09 |
JP3598469B2 true JP3598469B2 (en) | 2004-12-08 |
Family
ID=26577166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34215993A Expired - Fee Related JP3598469B2 (en) | 1992-12-04 | 1993-12-03 | Trifluoromethylbenzene derivatives and liquid crystal compositions containing them |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3598469B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4627576B2 (en) * | 1999-09-24 | 2011-02-09 | 経済産業大臣 | Phenylacetylene compound having fluorine-substituted alkyl group or alkoxy group in its skeleton, its intermediate, its production method, liquid crystal composition containing it, and liquid crystal device using the same |
-
1993
- 1993-12-03 JP JP34215993A patent/JP3598469B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06219978A (en) | 1994-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6552254B2 (en) | 4,6-difluorodibenzothiophene derivatives | |
JP4734579B2 (en) | Difluoromethyl ether derivative and process for producing the same | |
JP4044617B2 (en) | Liquid crystalline compound having negative dielectric anisotropy value, liquid crystal composition, and liquid crystal display device | |
KR20150108325A (en) | 4,6-difluorodibenzofuran derivatives | |
JP3702426B2 (en) | Trifluoromethylbenzene derivative and liquid crystal composition | |
JP5152947B2 (en) | Novel liquid crystalline compound which is 2-fluoronaphthalene derivative and liquid crystal composition containing the same | |
JP3601190B2 (en) | Alkenylcyclohexane derivative and liquid crystal composition | |
JP4258033B2 (en) | Novel liquid crystalline compound which is 6-fluoronaphthalene derivative and liquid crystal composition containing the same | |
JPH05502451A (en) | Methane derivatives and liquid crystal media containing the methane derivatives | |
JP3598469B2 (en) | Trifluoromethylbenzene derivatives and liquid crystal compositions containing them | |
JPH05229979A (en) | New biphenylcyclohexane derivative and liquid crystal composition | |
JP4941801B2 (en) | Liquid crystal composition, display element and liquid crystal compound containing trifluoronaphthalene derivative, production method and production intermediate thereof | |
JPH10298127A (en) | Fluoroalkyl ether compound, liquid crystal composition, and liquid crystal element | |
JPS5818348A (en) | Novel trans-4-(2-(trans-4-alkylcyclohexyl)ethyl)cyclohexane ethyl)cyclohexane carbonitrile | |
JP2005048007A (en) | Liquid crystal composition containing trifluoro naphthalene derivative, display element and liquid crystalline compound | |
US5545747A (en) | Cyclobutanecarboxylic acid derivatives and liquid crystalline compositions containing them | |
JP4547904B2 (en) | Liquid crystal composition, display element and liquid crystalline compound containing trifluoronaphthalene derivative. | |
JP2531966B2 (en) | Novel cyclobutane derivative and liquid crystal composition containing these derivatives | |
JP4311046B2 (en) | Indane compound and nematic liquid crystal composition containing the same | |
CN102898273B (en) | Containing six hydrogen pentalene class novel liquid crystal compounds and composition thereof and application | |
JP4239242B2 (en) | Phenylnaphthalene derivative | |
JP4759949B2 (en) | 2-naphthyl-1,3-dioxane derivatives | |
JPH05213930A (en) | New optically active benzodioxane derivative and liquid crystal composition using the same | |
JP2005075850A (en) | Liquid crystal composition comprising trifluoronaphthalene derivative and display element and liquid crystalline compound | |
JP4501388B2 (en) | Liquid crystal composition and liquid crystalline compound containing difluorotetrahydronaphthalene derivative |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040316 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040514 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040817 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040903 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080924 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090924 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |