[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3594770B2 - Refrigerant circuit of refrigeration and air conditioning system - Google Patents

Refrigerant circuit of refrigeration and air conditioning system Download PDF

Info

Publication number
JP3594770B2
JP3594770B2 JP19276497A JP19276497A JP3594770B2 JP 3594770 B2 JP3594770 B2 JP 3594770B2 JP 19276497 A JP19276497 A JP 19276497A JP 19276497 A JP19276497 A JP 19276497A JP 3594770 B2 JP3594770 B2 JP 3594770B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
pressure
expansion valve
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19276497A
Other languages
Japanese (ja)
Other versions
JPH1137573A (en
Inventor
邦夫 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP19276497A priority Critical patent/JP3594770B2/en
Publication of JPH1137573A publication Critical patent/JPH1137573A/en
Application granted granted Critical
Publication of JP3594770B2 publication Critical patent/JP3594770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍空調装置、特に、その起動初期における圧縮機への液バック現象の発生を防止する冷媒回路を備えた冷凍空調装置の冷媒回路に関する。
【0002】
【従来の技術】
例えば、冷凍空調装置に封入された冷媒は、凝縮器で凝縮液化して状態変化された冷媒液を膨張弁で減圧した後に蒸発器で蒸発させ、この際の蒸発潜熱によって蒸発器の周囲の空気の熱を奪いつつ圧縮機に送り、この圧縮機で圧縮して高温・高圧の冷媒ガスとして再び凝縮器へと送る冷凍サイクルを冷媒回路で繰り返している。
【0003】
図2は、このような冷媒回路の一例を示し、1は主液電磁弁、2は冷媒流量を制御する膨張弁、3は蒸発器、4は凝縮器(図示せず)から主液電磁弁1,膨張弁2,蒸発器3を経由して圧縮機(図示せず)へと冷媒(液・ガス)を供給する配管である。
【0004】
蒸発器3の出口側の配管4の外部近傍には、蒸発器3を経由した冷媒の温度を監視する温度監視手段としての感温筒5が設けられている。
【0005】
また、膨張弁2は、感温筒5と外部均圧管6を作動入力とし、感温筒5の飽和圧力と外部均圧管6の圧力との差が一定となるように動作する。
【0006】
【発明が解決しようとする課題】
ところで、上記の如く構成された乾式の蒸発器と温度式の自動膨張弁とを組み合わせた冷凍空調装置の冷媒回路においては、蒸発器3の出口側で過熱度(スーパーヒート)の一定制御を行なっているが、冷凍空調装置の起動初期には、感温筒6の温度低下が外部的圧力の降下に追従せず膨張弁2の開度が過剰となる場合がある。
【0007】
即ち、冷凍空調装置の起動直後は冷媒回路の各部が等温度の状態から制御が開始されるため、感温筒5の飽和圧力よりも外部均圧管6を通じて検出される蒸発圧力の方が低圧なため膨張弁2の開度が過剰となってしまう。
【0008】
従って、冷凍空調装置の起動初期においては、起動直後の膨張弁2の動作遅れにより発生する過渡的な冷媒流量の増加、並びに、膨張弁2の全開に伴い、蒸発器3に圧縮機から液状冷媒が吸入されるという液バック現象により圧縮機が損傷する虞があった。
【0009】
そこで、このような液バック現象を回避するために、冷凍空調器の停止前に主液電磁弁1を閉じてポンプダウン運転を行って蒸発器3に残留する液冷媒を凝縮器に回収したり、冷凍空調器の駆動直後にポンプダウン運転を行って圧縮機への冷媒の過剰流入を制限するといった容量制御運転を行っている。
【0010】
また、圧縮機の吸込側(蒸発器3の出口側)に蒸発器3で蒸発できない冷媒液からガスを分離する気液分離器7を設けて冷媒液が圧縮機に流入することを防止するといった方式を採用している。
【0011】
しかしながら、冷凍空調器の停止前にポンプダウン運転を行った場合、その制御容量には制約があるため蒸発器3に冷媒液が残留するといった問題点があり、冷凍空調器の起動時にポンプダウンを行った場合、感温筒5の温度低下によりポンプダウンを解除した後に低圧圧力異常が発生したり、吸込過熱度大により圧縮機モータ(図示せず)の巻線温度が上昇するといった問題が発生していた。
【0012】
また、気液分離器7を設置した場合には冷媒量に応じて必要な容積を確保しなければならないという問題点があった。
【0013】
本発明は、上記事情に鑑みなされたものであって、冷凍空調装置の冷媒回路を提供することを目的とする。
【0014】
【課題を解決するための手段】
その目的を達成するため、請求項1に記載の発明は、膨張弁から蒸発器を経て圧縮機へと至る管路を有すると共に前記蒸発器を経由した冷媒の温度を前記管路外で監視する温度検出手段の検出結果に基づいて前記膨張弁の開閉を制御する冷凍空調装置の冷媒回路において、一端が前記管路の前記膨張弁の手前に接続され、他端が前記管路の温度検出手段が位置する部位に接続された迂回管路であって、前記管路前記膨張弁の手前から前記温度検出手段が冷媒の温度を監視する位置まで冷媒の一部を前記冷凍空調装置の駆動初期において迂回させる迂回管路と、該迂回管路中に設けられ、前記管路を経て前記温度検出手段で温度監視される位置での冷媒の温度・圧力よりも前記迂回管路を経て前記温度検出手段で温度監視される位置での冷媒の温度・圧力を低温・低圧とする減圧手段と、を備え、前記冷凍空調装置の駆動初期に前記迂回管路に冷媒を供給する際に前記膨張弁を閉じ、前記減圧手段によって低温・低圧とされた冷媒により前記温度検出手段を冷却することを要旨とする。
【0015】
また、請求項2に記載の発明は、前記減圧手段は段階的に冷媒の圧力を減衰するよう多段とされていることを要旨とする。
【0016】
【発明の実施の形態】
次に、本発明の冷凍空調装置の冷媒回路の実施の形態を図面に基づいて説明する。
【0017】
図1において、11は主液電磁弁、12は冷媒流量を制御する膨張弁、13は蒸発器、14は凝縮器(図示せず)から主液電磁弁11,膨張弁12,蒸発器13を経由して圧縮機(図示せず)へと冷媒(液・ガス)を供給する配管(管路)である。
【0018】
蒸発器13の出口側の配管14の外部近傍には、蒸発器13を経由した冷媒の温度を監視する温度監視手段としての感温筒15が設けられている。
【0019】
また、膨張弁12の手前から感温筒15が位置する部位の配管14には、冷媒液の一部を冷凍空調装置の駆動初期において迂回させる迂回管路16が設けられている。
【0020】
この迂回管路16は、電磁弁17、迂回管路16に供給された冷媒液の一部を段階的に低温・低圧とする細管(キャピラリチューブ)18,19、細管18,19の間に位置して外部均圧圧力の急激な変動を緩衝する圧力チャンバー20、圧力チャンバー20から膨張弁12に連結された外部均圧管21を有する。
【0021】
迂回管路16は、配管14を経て感温筒15で温度監視される位置での冷媒液よりも、細管18,19によって低温・低圧とされて感温筒15で温度監視される位置での冷媒液を低温・低圧とする。
【0022】
膨張弁12は、感温筒15と外部均圧管21を差動入力とし、感温筒15の飽和圧力と外部均圧管21の圧力との差が一定となるように動作する。
【0023】
上記の構成において、冷凍空調器が起動開始すると、電磁弁17が開いて膨張弁12の前後圧力を同一にした後、圧縮機が運転を開始し、主液電磁弁11が開く。
【0024】
この主液電磁弁11が開くことによって、凝縮器から配管14に高温・高圧な冷媒液が供給されて膨張弁12へと供給される。また、その一部が迂回管路16へと分岐される。
【0025】
この迂回管路16へと分岐された冷媒液の一部は、細管18,19を通って低温・低圧化されて蒸発器13の出口側へと流れ、その温度が感温筒15によって検出される。
【0026】
この際、膨張弁12は、外部均圧管21からの冷媒液の圧力(外均圧力)が感温筒15での飽和圧力よりも高いため全閉状態となる。
【0027】
従って、圧縮機(図示せず)へは、細管18,19を経由した冷媒液が吸い込まれる。この際、この冷媒液によって圧縮機モーターが冷却される。また、迂回管路16を経て低温・低圧とされた冷媒液によって感温筒15が冷却されると電磁弁17が閉じると共に膨張弁12が開いて定常運転状態となる。
【0028】
この際、電磁弁17は、迂回管路16を経て感温筒15に供給された低温・低圧な冷媒液によって冷却されたことをタイマーのカウントによって監視する。
【0029】
また、膨張弁12は、圧力チャンバー20と細管19により外部均圧圧力の変化が積分動作となるため、オーバーヒートが防止される。
【0030】
このように、本発明の冷凍空調装置の冷媒回路によれば、膨張弁12の動作を制限することによって冷媒流入を抑制するので、簡単な制御で液バック現象の発生を防止することができる。
【0031】
即ち、膨張弁12は、感温筒15の近傍の冷媒の温度・圧力よりも低温・低圧な外部均圧管21から冷媒液によって強制的に閉じた後、迂回管路16からのみの低温・低圧な一部の冷媒液によって感温筒15を冷やして膨張弁12の開放を促進することによって膨張弁12の動作遅れを解消し、起動直後の膨張弁12の動作遅れにより発生する過渡的な冷媒流量の増加を抑制することができ、よって液バック現象を防止し得て圧縮機の保護を確実なものとして製品の信頼性を向上させることができる。
【0032】
【発明の効果】
以上説明したように、本発明の冷凍空調装置の冷媒回路にあっては、管路に膨張弁の手前から温度検出手段が冷媒の温度を監視する位置まで冷媒の一部を冷凍空調装置の駆動初期において迂回させる迂回管路を設けると共に、迂回管路中に管路を経て温度検出手段で温度監視される位置での冷媒の温度・圧力よりも迂回管路を経て温度検出手段で温度監視される位置での冷媒の温度・圧力を低温・低圧とする減圧手段を設け、減圧手段によって減圧された冷媒の一部を膨張弁に印加する外部近圧管を設けたことにより、液バック現象を防止し得て圧縮機の保護を確実なものとして製品の信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係わる冷凍空調装置の冷媒回路である。
【図2】従来の冷凍空調装置の冷媒回路である。
【符号の説明】
12 膨張弁、13 蒸発器、14 配管(管路)、15 感温筒(温度検出手段)、16 迂回管路、18 細管(減圧手段)、19 細管(減圧手段)、21 外部均圧管。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigeration / air-conditioning apparatus, and more particularly to a refrigeration / air-conditioning apparatus having a refrigerant circuit for preventing occurrence of a liquid back phenomenon in a compressor at an early stage of startup.
[0002]
[Prior art]
For example, a refrigerant sealed in a refrigerating air conditioner is condensed and liquefied in a condenser, and the refrigerant liquid changed in state is decompressed by an expansion valve and then evaporated in an evaporator. The refrigerant circuit repeats a refrigeration cycle in which the refrigerant is sent to a compressor while depriving it of heat, and is compressed by the compressor and sent to the condenser again as high-temperature and high-pressure refrigerant gas.
[0003]
FIG. 2 shows an example of such a refrigerant circuit, wherein 1 is a main liquid solenoid valve, 2 is an expansion valve for controlling the flow rate of refrigerant, 3 is an evaporator, and 4 is a condenser (not shown) from a main liquid solenoid valve. 1, a pipe for supplying a refrigerant (liquid / gas) to a compressor (not shown) via an expansion valve 2 and an evaporator 3.
[0004]
Near the outside of the pipe 4 on the outlet side of the evaporator 3, a temperature sensing cylinder 5 is provided as a temperature monitoring means for monitoring the temperature of the refrigerant passing through the evaporator 3.
[0005]
The expansion valve 2 operates with the temperature sensing cylinder 5 and the external pressure equalizing pipe 6 as operation inputs, and operates so that the difference between the saturation pressure of the temperature sensing cylinder 5 and the pressure of the external pressure equalizing pipe 6 becomes constant.
[0006]
[Problems to be solved by the invention]
By the way, in the refrigerant circuit of the refrigeration / air-conditioning apparatus in which the dry evaporator configured as described above and the temperature type automatic expansion valve are combined, constant control of superheat (superheat) is performed at the outlet side of the evaporator 3. However, in the early stage of the activation of the refrigeration / air-conditioning apparatus, the temperature of the temperature-sensitive cylinder 6 may not follow the drop of the external pressure, and the opening of the expansion valve 2 may be excessive.
[0007]
That is, immediately after the start of the refrigeration / air-conditioning apparatus, the control is started from a state in which each part of the refrigerant circuit is at an equal temperature. Therefore, the evaporation pressure detected through the external pressure equalizing pipe 6 is lower than the saturation pressure of the temperature-sensitive cylinder 5. Therefore, the opening of the expansion valve 2 becomes excessive.
[0008]
Therefore, in the initial stage of the start-up of the refrigeration / air-conditioning apparatus, the transient refrigerant flow caused by the operation delay of the expansion valve 2 immediately after the start-up and the expansion valve 2 being fully opened cause the liquid refrigerant from the compressor to the evaporator 3. There is a possibility that the compressor may be damaged due to the liquid back phenomenon that the liquid is sucked.
[0009]
Therefore, in order to avoid such a liquid back phenomenon, the main liquid solenoid valve 1 is closed and the pump-down operation is performed before the refrigerating air conditioner is stopped, and the liquid refrigerant remaining in the evaporator 3 is collected in the condenser. In addition, a capacity control operation is performed such that a pump-down operation is performed immediately after the driving of the refrigeration air conditioner to restrict an excessive inflow of refrigerant into the compressor.
[0010]
Further, a gas-liquid separator 7 for separating a gas from a refrigerant liquid that cannot be evaporated by the evaporator 3 is provided on the suction side (the outlet side of the evaporator 3) of the compressor to prevent the refrigerant liquid from flowing into the compressor. The method is adopted.
[0011]
However, if the pump-down operation is performed before the refrigeration / air-conditioner is stopped, there is a problem that the refrigerant capacity remains in the evaporator 3 because the control capacity is limited. If this is done, problems occur such as low pressure abnormalities occurring after the pump-down is released due to the temperature drop of the temperature-sensitive cylinder 5 and the winding temperature of the compressor motor (not shown) increasing due to large suction overheating. Was.
[0012]
Further, when the gas-liquid separator 7 is installed, there is a problem that a necessary volume must be secured according to the amount of the refrigerant.
[0013]
The present invention has been made in view of the above circumstances, and has as its object to provide a refrigerant circuit of a refrigeration / air-conditioning apparatus.
[0014]
[Means for Solving the Problems]
In order to achieve the object, the invention according to claim 1 has a pipe from an expansion valve to a compressor via an evaporator, and monitors the temperature of the refrigerant passing through the evaporator outside the pipe. In a refrigerant circuit of a refrigeration / air-conditioning apparatus that controls opening and closing of the expansion valve based on a detection result of a temperature detection unit, one end is connected to the pipeline before the expansion valve, and the other end is a temperature detection unit for the pipeline. there a bypass conduit connected to sites located, the initial driving of the refrigerating and air-conditioning device a part of the refrigerant from the front of the expansion valve of the conduit to a position where said temperature sensing means monitors the temperature of the refrigerant A detour pipe to be detoured in, and the temperature detection via the detour pipe than the temperature and pressure of the refrigerant at a position provided in the detour pipe and monitored by the temperature detecting means via the pipe. Refrigerant at a position whose temperature is monitored by means Comprising a decompression means for the temperature and pressure into a low-temperature low-pressure, wherein the closed expansion valve when the refrigerant is supplied to the bypass pipe to the initial driving of the refrigerating and air-conditioning apparatus, is a low-temperature and low-pressure by the pressure reducing means The point is that the temperature detecting means is cooled by the cooled refrigerant .
[0015]
The gist of the invention described in claim 2 is that the pressure reducing means is provided in multiple stages so as to attenuate the pressure of the refrigerant stepwise.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of a refrigerant circuit of a refrigerating air conditioner of the present invention will be described with reference to the drawings.
[0017]
In FIG. 1, reference numeral 11 denotes a main liquid solenoid valve, 12 denotes an expansion valve for controlling the flow rate of refrigerant, 13 denotes an evaporator, and 14 denotes a main liquid solenoid valve 11, an expansion valve 12, and an evaporator 13 from a condenser (not shown). A pipe (pipe) for supplying a refrigerant (liquid / gas) to a compressor (not shown) via the pipe.
[0018]
In the vicinity of the outside of the pipe 14 on the outlet side of the evaporator 13, a temperature sensing tube 15 is provided as temperature monitoring means for monitoring the temperature of the refrigerant passing through the evaporator 13.
[0019]
Further, a bypass pipe 16 is provided in the pipe 14 at a position where the temperature-sensitive cylinder 15 is located from just before the expansion valve 12 so as to bypass a part of the refrigerant liquid at an early stage of driving the refrigeration / air-conditioning apparatus.
[0020]
The bypass pipe 16 is located between the solenoid valve 17 and the small pipes (capillary tubes) 18, 19 for gradually reducing the temperature of the refrigerant liquid supplied to the bypass pipe 16 to a low temperature and low pressure. A pressure chamber 20 for buffering rapid fluctuations of the external pressure equalization pressure, and an external pressure equalizing pipe 21 connected to the expansion valve 12 from the pressure chamber 20.
[0021]
The bypass conduit 16 is at a position where the temperature is monitored by the thermosensitive cylinder 15 at a lower temperature and a lower pressure by the thin tubes 18 and 19 than the refrigerant liquid at a position where the temperature is monitored by the thermosensitive cylinder 15 via the pipe 14. Refrigerant liquid at low temperature and low pressure.
[0022]
The expansion valve 12 operates with the temperature-sensitive cylinder 15 and the external pressure equalizing pipe 21 as differential inputs, and operates so that the difference between the saturation pressure of the temperature-sensitive cylinder 15 and the pressure of the external pressure equalizing pipe 21 is constant.
[0023]
In the above configuration, when the refrigerating air conditioner starts to operate, the solenoid valve 17 opens to equalize the front and rear pressures of the expansion valve 12, then the compressor starts operating, and the main liquid solenoid valve 11 opens.
[0024]
When the main liquid electromagnetic valve 11 is opened, a high-temperature and high-pressure refrigerant liquid is supplied from the condenser to the pipe 14 and supplied to the expansion valve 12. Further, a part thereof is branched to the bypass pipe 16.
[0025]
A part of the refrigerant liquid branched to the bypass pipe 16 is reduced in temperature and pressure through the narrow pipes 18 and 19 and flows to the outlet side of the evaporator 13, and the temperature is detected by the thermosensitive cylinder 15. You.
[0026]
At this time, the expansion valve 12 is fully closed because the pressure of the refrigerant liquid from the external pressure equalizing pipe 21 (outer pressure equalizing) is higher than the saturation pressure in the temperature-sensitive cylinder 15.
[0027]
Therefore, the refrigerant liquid is sucked into the compressor (not shown) via the small tubes 18 and 19. At this time, the compressor motor is cooled by the refrigerant liquid. Further, when the temperature-sensitive cylinder 15 is cooled by the low-temperature and low-pressure refrigerant liquid via the bypass pipe 16, the electromagnetic valve 17 is closed and the expansion valve 12 is opened to be in a steady operation state.
[0028]
At this time, the electromagnetic valve 17 monitors the cooling by the low-temperature and low-pressure refrigerant liquid supplied to the temperature-sensitive cylinder 15 via the bypass pipe 16 by counting the timer.
[0029]
In addition, the expansion valve 12 is prevented from overheating because the change in the external pressure equalization pressure is integrated by the pressure chamber 20 and the thin tube 19.
[0030]
As described above, according to the refrigerant circuit of the refrigeration / air-conditioning apparatus of the present invention, since the inflow of the refrigerant is suppressed by restricting the operation of the expansion valve 12, the occurrence of the liquid back phenomenon can be prevented with simple control.
[0031]
That is, the expansion valve 12 is forcibly closed by the refrigerant liquid from the external pressure equalizing pipe 21 which is lower in temperature and pressure than the temperature and pressure of the refrigerant in the vicinity of the temperature sensing cylinder 15, and then the low temperature and low pressure only from the bypass line 16. The operation of the expansion valve 12 is eliminated by cooling the temperature sensing cylinder 15 with a part of the refrigerant liquid to promote the opening of the expansion valve 12, and the transient refrigerant generated due to the operation delay of the expansion valve 12 immediately after the startup. An increase in the flow rate can be suppressed, so that the liquid back phenomenon can be prevented, and the protection of the compressor can be ensured and the reliability of the product can be improved.
[0032]
【The invention's effect】
As described above, in the refrigerant circuit of the refrigeration / air-conditioning apparatus of the present invention, a part of the refrigerant is driven from the position before the expansion valve to the position where the temperature detection means monitors the temperature of the refrigerant in the pipeline. In addition to providing a detour pipe for detouring at an initial stage, the temperature is monitored by the temperature detection means via the detour pipe rather than the temperature and pressure of the refrigerant at the position where the temperature is monitored by the temperature detection means via the pipe in the detour pipe. Pressure reducing means for reducing the temperature and pressure of the refrigerant at a low temperature and low pressure at a certain position, and an external near-pressure pipe for applying a part of the refrigerant decompressed by the pressure reducing means to the expansion valve to prevent a liquid back phenomenon. In addition, the reliability of the product can be improved by ensuring the protection of the compressor.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit of a refrigeration / air-conditioning apparatus according to the present invention.
FIG. 2 is a refrigerant circuit of a conventional refrigeration / air-conditioning apparatus.
[Explanation of symbols]
12 expansion valve, 13 evaporator, 14 pipe (pipe), 15 temperature-sensitive cylinder (temperature detecting means), 16 bypass pipe, 18 thin pipe (decompression means), 19 thin pipe (decompression means), 21 external pressure equalizing pipe.

Claims (2)

膨張弁から蒸発器を経て圧縮機へと至る管路を有すると共に前記蒸発器を経由した冷媒の温度を前記管路外で監視する温度検出手段の検出結果に基づいて前記膨張弁の開閉を制御する冷凍空調装置の冷媒回路において、
一端が前記管路の前記膨張弁の手前に接続され、他端が前記管路の温度検出手段が位置する部位に接続された迂回管路であって、前記管路前記膨張弁の手前から前記温度検出手段が冷媒の温度を監視する位置まで冷媒の一部を前記冷凍空調装置の駆動初期において迂回させる迂回管路と、
該迂回管路中に設けられ、前記管路を経て前記温度検出手段で温度監視される位置での冷媒の温度・圧力よりも前記迂回管路を経て前記温度検出手段で温度監視される位置での冷媒の温度・圧力を低温・低圧とする減圧手段と、
を備え、
前記冷凍空調装置の駆動初期に前記迂回管路に冷媒を供給する際に前記膨張弁を閉じ、前記減圧手段によって低温・低圧とされた冷媒により前記温度検出手段を冷却することを特徴とする冷凍空調装置の冷媒回路。
It has a conduit from the expansion valve to the compressor via the evaporator, and controls the opening and closing of the expansion valve based on the detection result of the temperature detecting means for monitoring the temperature of the refrigerant passing through the evaporator outside the conduit. In the refrigerant circuit of the refrigerating air conditioner,
One end connected to the front of the expansion valve of the conduit, the other end a bypass conduit temperature sensing means is connected to a site located in the conduit, from the front of the expansion valve of the conduit A bypass pipe that bypasses a part of the refrigerant to a position at which the temperature detection unit monitors the temperature of the refrigerant at an initial stage of driving the refrigeration / air-conditioning apparatus ;
Provided detour line in, at positions temperature monitored by said temperature detecting means through said bypass line than the temperature and pressure of the refrigerant at positions temperature monitored by the temperature detection means via the conduit Pressure reducing means for reducing the temperature and pressure of the refrigerant to a low temperature and a low pressure ;
With
Refrigeration characterized by closing the expansion valve when supplying refrigerant to the bypass pipe at the initial stage of driving the refrigeration air conditioner, and cooling the temperature detection means by the refrigerant whose temperature and pressure are lowered by the pressure reducing means. Refrigerant circuit of air conditioner.
前記減圧手段は段階的に冷媒の圧力を減衰するよう多段とされていることを特徴とする請求項1に記載の冷凍空調装置の冷媒回路。The refrigerant circuit of a refrigeration / air-conditioning apparatus according to claim 1, wherein the pressure reducing means is multistage so as to attenuate the pressure of the refrigerant stepwise.
JP19276497A 1997-07-17 1997-07-17 Refrigerant circuit of refrigeration and air conditioning system Expired - Fee Related JP3594770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19276497A JP3594770B2 (en) 1997-07-17 1997-07-17 Refrigerant circuit of refrigeration and air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19276497A JP3594770B2 (en) 1997-07-17 1997-07-17 Refrigerant circuit of refrigeration and air conditioning system

Publications (2)

Publication Number Publication Date
JPH1137573A JPH1137573A (en) 1999-02-12
JP3594770B2 true JP3594770B2 (en) 2004-12-02

Family

ID=16296662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19276497A Expired - Fee Related JP3594770B2 (en) 1997-07-17 1997-07-17 Refrigerant circuit of refrigeration and air conditioning system

Country Status (1)

Country Link
JP (1) JP3594770B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5950010B1 (en) * 2015-08-25 2016-07-13 富士電機株式会社 Heat pump steam generator

Also Published As

Publication number Publication date
JPH1137573A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
EP1659348B1 (en) Freezing apparatus
EP0921364A2 (en) Pulsed flow for capacity control
JPH09178274A (en) Refrigerating system
JPH05223366A (en) Method and device for recovering oil in centrifugal deep freezing system
JPH09318169A (en) Refrigerating apparatus
JP2007225141A (en) Gas heat pump type air conditioner and its starting method
JP4082435B2 (en) Refrigeration equipment
JPH04356665A (en) Two-stage compressor type refrigerating apparatus
JP3594770B2 (en) Refrigerant circuit of refrigeration and air conditioning system
JP4274250B2 (en) Refrigeration equipment
JP2964705B2 (en) Air conditioner
JP3710043B2 (en) Air conditioner
JP2008032391A (en) Refrigerating unit
US20060064997A1 (en) Cooling systems
JP2757689B2 (en) Refrigeration equipment
KR100748982B1 (en) Air conditioner and Control method of the same
JP3060444B2 (en) Air conditioner
JP4111241B2 (en) Refrigeration equipment
JP3134388B2 (en) Air conditioner
JPH0552430A (en) Refrigerating machine
JP3048658B2 (en) Refrigeration equipment
JPH08136089A (en) Refrigerant recovering device
JPH08193757A (en) Freezer device
JP3326835B2 (en) Refrigeration cycle
JPH11142044A (en) Multiple refrigerator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees