JP3594190B2 - Low friction sliding material and lubricating oil composition used therefor - Google Patents
Low friction sliding material and lubricating oil composition used therefor Download PDFInfo
- Publication number
- JP3594190B2 JP3594190B2 JP2002322322A JP2002322322A JP3594190B2 JP 3594190 B2 JP3594190 B2 JP 3594190B2 JP 2002322322 A JP2002322322 A JP 2002322322A JP 2002322322 A JP2002322322 A JP 2002322322A JP 3594190 B2 JP3594190 B2 JP 3594190B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- lubricating oil
- oil composition
- aluminum alloy
- friction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Landscapes
- Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
- Lubricants (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、低摩擦摺動材料及びこれに用いる潤滑油組成物に係り、更に詳細には、内燃機関等での使用に適し、極めて優れた低摩擦性を示す低摩擦摺動材料及びこれに用いる潤滑油組成物に関する。
【0002】
【従来の技術】
地球全体の温暖化、オゾン層の破壊など地球規模での環境問題が大きくクローズアップされ、とりわけ地球全体の温暖化に大きな影響があるといわれているCO2削減については各国でその規制値の決め方をめぐって大きな関心を呼んでいる。
CO2削減については、自動車の燃費の削減を図ることが大きな課題の1つであり、摺動材料と潤滑油が果たす役割は大きい。
摺動材料の役割は、エンジンの摺動部位の中で摩擦摩耗環境が苛酷な部位に対して耐磨耗性に優れ且つ低い摩擦係数を発現することであり、最近では、種々の硬質薄膜材料の適用が進んできている。一般にDLC材料は、空気中、潤滑油非存在下における摩擦係数が、TiNやCrNといった耐磨耗性の硬質被膜材料と比べて低いことから低摩擦摺動材料として期待されている。
【0003】
また、潤滑油における省燃費対策としては、▲1▼低粘度化による、流体潤滑領域における粘性抵抗及びエンジン内の攪拌抵抗の低減、▲2▼最適な摩擦調整剤と各種添加剤の配合による、混合及び境界潤滑領域下での摩擦損失の低減、が提言されており、摩擦調整剤としては、MoDTCやMoDTPといった有機Mo化合物を中心に多くの研究がなされており、従来の鋼材料から成る摺動面においては、使用開始初期に優れた低摩擦係数を示す有機Mo化合物を配合した潤滑油が適用され、効果を上げていた。
【0004】
しかしながら、空気中において低摩擦性に優れる一般のDLC材料は、潤滑油存在下においては、その摩擦低減効果が小さいことが報告されている(例えば、非特許文献1参照)。
また、この摺動材料に有機モリブデン化合物を含有する潤滑油組成物を適用したとしても摩擦低減効果が十分発揮されていないことがわかってきている(例えば、非特許文献2参照)。
【0005】
【非特許文献1】
加納 他「日本トライボロジー学会予稿集・東京」、1999年5月、p11〜12
【非特許文献2】
Kano et al.「World Tribology Congress」、2001年9月、Vienna,Proceeding、p342
【0006】
【発明が解決しようとする課題】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、極めて優れた低摩擦特性を示し、更には従来のアルミニウム合金と鋼材料の摺動部と有機Mo化合物との組合せよりも更に優れた省燃費効果を発揮し得る低摩擦摺動材料及びこれに用いる潤滑油組成物を提供することにあり、更に、本発明は耐磨耗性に優れ、安定的に低摩擦特性を発揮し得る低摩擦材料を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、DLC部材とアルミニウム合金部材とを、所定の無灰摩擦調整剤を含有する潤滑油組成物存在下で摺動させることにより、上記課題が解決されることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明の低摩擦摺動材料は、DLC部材と、アルミニウム合金部材と、これらの摺動面に脂肪酸エステル系無灰摩擦調整剤及び/又は脂肪族アミン系無灰摩擦調整剤を含有する潤滑油組成物を用いることを特徴とする。
【0009】
また、本発明に用いる潤滑油組成物は、上記低摩擦摺動材料に用いられる潤滑油組成物であって、
脂肪酸エステル系無灰摩擦調整剤及び/又は脂肪族アミン系無灰摩擦調整剤を含有することを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の低摩擦摺動材料について、更に詳細に説明する。なお、本明細書において「%」は、特記しない限り質量百分率を示す。
かかる低摩擦摺動材料は、DLC部材とアルミニウム合金部材とを摺動させる際に、DLC部材とアルミニウム合金部材との摺動面に脂肪酸エステル系及び/又は脂肪族アミン系無灰摩擦調整剤を含有する潤滑油組成物を介在させる。これより、DLC部材とアルミニウム合金部材とが従来よりも極めて低摩擦で摺動しうる。
【0011】
ここで、上記DLC部材を構成するDLC(ダイヤモンドライクカーボン)材は、炭素元素を主として構成された非晶質であり、炭素同士の結合形態がダイヤモンド構造(SP3結合)とグラファイト結合(SP2結合)の両方から成る。具体的には、炭素元素だけから成るa−C(アモルファスカーボン)、水素を含有するa−C:H(水素アモルファスカーボン)、及びチタン(Ti)やモリブデン(Mo)等の金属元素を一部に含むMeCが挙げられるが、本発明においては、上記DLC部材は大幅な摩擦低減効果の発揮の面から、水素を含まないa−C系材料から成ることが好適である。
上記アルミニウム合金部材の構成材料としては、シリコン(Si)を4〜20%及び銅(Cu)を1.0〜5.0%含む亜共晶アルミニウム合金又は過共晶アルミニウム合金を用いることが好ましい。具体的にはAC2A、AC8A、ADC12やADC14(JIS)などを挙げることができる。
【0012】
また、上記DLC部材及びアルミニウム合金部材のそれぞれの表面粗さは、算術平均粗さRaで、0.1μm以下であることが摺動の安定性の面から好適である。0.1μmを超えると局部的にスカッフィングを形成し、摩擦係数の大幅向上となることがある。
更に、上記DLC部材は、表面硬さが、マイクロビッカーズ硬さ(10g荷重)でHv1000〜3500、厚さが0.3〜2.0μmであることが好ましく、上記アルミニウム合金部材は、表面硬さが、ブリネル硬さHB80〜130であることが好ましい。DLC部材の表面硬さ及び厚さが上記範囲から外れるとHv1000未満、厚さ0.3μm未満では摩滅し、逆にHv3500、厚さ2.0μmを超えると剥離し易くなり、アルミニウム合金部材の表面硬さが上記から外れるとHB80未満ではアルミニウム合金が摩耗し易くなることがある。
【0013】
本発明の低摩擦摺動材料は、潤滑油を介在させて2つの金属表面が接触する摺動面であれば何ら限定なく使用できるが、代表的には、内燃機関の摺動部として使用できる。この場合は、従来に比べて極めて優れた低摩擦特性が得られるので有効である。
【0014】
次に、本発明に用いる潤滑油組成物について詳細に説明する。
かかる潤滑油組成物は、潤滑油基油に、脂肪酸エステル系無灰摩擦調整剤及び/又は脂肪族アミン系無灰摩擦調整剤を含有して成り、上述した低摩擦摺動材料に用いられる。
【0015】
ここで、上記脂肪酸エステル系無灰摩擦調整剤及び/又は脂肪族アミン系無灰摩擦調整剤としては、炭素数6〜30、好ましくは炭素数8〜24、特に好ましくは炭素数10〜20の直鎖状又は分枝状炭化水素基を有する脂肪酸エステル、脂肪族アミン化合物及びこれらの任意混合物を挙げることができる。炭素数が6〜30でないときは、本発明のような摩擦低減効果が十分得られない可能性がある。
ここで、上記潤滑油基油としては特に限定されるものではなく、通常、潤滑油組成物の基油として用いられるものであれば、鉱油系基油、合成系基油を問わず使用することができる。
鉱油系基油としては、具体的には、原油を常圧蒸留及び減圧蒸留して得られた潤滑油留分を溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、水素化精製、ワックス異性化等の処理を1つ以上行って精製したもの等が挙げられ、特に水素化分解処理や水素化精製処理あるいはワックス異性化処理が施されたもの等の各種の基油を用いることができる。
【0016】
合成系基油としては、具体的には、アルキルナフタレン、アルキルベンゼン、ポリブテン又はその水素化物;1−オクテンオリゴマー、1−デセンオリゴマー等のポリ−α−オレフィン又はその水素化物;ジトリデシルグルタレート、ジオクチルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、及びジオクチルセバケート等のジエステル;トリメチロールプロパンカプリレート、トリメチロールプロパンぺラルゴネート、ペンタエリスリトール−2−エチルヘキサノエート、及びペンタエリスリトールぺラルゴネート等のポリオールエステル及びこれらの混合物等が例示できる。中でも、1−オクテンオリゴマー、1−デセンオリゴマー等のポリ−α−オレフィン又はその水素化物が好ましい例として挙げられる。
【0017】
本発明の潤滑油組成物における基油は、鉱油系基油又は合成系基油を単独あるいは混合して用いる以外に、2種類以上の鉱油系基油、あるいは2種類以上の合成系基油の混合物であっても差し支えない。また、上記混合物における2種類以上の基油の混合比も特に限定されず任意に選ぶことができる。
【0018】
潤滑油基油の全芳香族含有量には特に制限はないが、15%以下であることが好ましく、より好ましくは10%以下、さらに好ましくは8%である。潤滑油基油の全芳香族含有量が15%を超える場合には、酸化安定性が劣るため好ましくない。また、高度水素化分解鉱油あるいは1−デセンオリゴマー水素化物等、潤滑油基油の全芳香族含有量が2%以下、あるいは0%であっても摩擦低減効果の高い組成物を得ることができるが、例えば、脂肪酸エステル系無灰摩擦調整剤及び/又は脂肪族アミン系無灰摩擦調整剤の含有量が1%を超える場合には、貯蔵安定性に劣る可能性があるため、必要に応じて溶剤精製鉱油やアルキルベンゼン等を配合することにより潤滑油基油の全芳香族含有量を調整する(例えば2%以上とする)ことが好ましい。ここで、全芳香族含有量とは、ASTM D2549に準拠して測定した芳香族留分(aromatic fraction)含有量を意味し、通常この芳香族留分には、アルキルベンゼン、アルキルナフタレン、アントラセン、フェナントレン、及びこれらのアルキル化物、四環以上のベンゼン環が縮合した化合物、又はピリジン類、キノリン類、フェノール類、ナフトール類等のヘテロ芳香族を有する化合物等が含まれる。
【0019】
潤滑油基油の動粘度は、特に制限はないが、内燃機関用潤滑油組成物として使用する場合には、100℃における動粘度は、2mm2/s以上であることが好ましく、より好ましくは3mm2/s以上であり、一方、その動粘度は、20mm2/s以下であることが好ましく、10mm2/s以下、特に8mm2/s以下であることが好ましい。潤滑油基油の100℃における動粘度を2mm2/s以上とすることによって油膜形成が十分であり、潤滑性に優れ、また、高条件下での基油の蒸発損失がより小さい組成物を得ることができる。一方、100℃における動粘度を20mm2/s以下とすることによって、流体抵抗が小さくなるため潤滑個所での摩擦抵抗のより小さい組成物を得ることができる。
【0020】
また、潤滑油基油の粘度指数は、特に制限はないが、80以上であることが好ましく、内燃機関用潤滑油組成物として使用する場合には、100以上であることが好ましく、120以上であることが特に好ましい。潤滑油基油の粘度指数が高いものを選択することにより低温粘度特性に優れるだけでなく、摩擦低減効果に優れた組成物を得ることができる。
【0021】
上記炭素数6〜30の直鎖状又は分枝状炭化水素基としては、具体的には、へキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、ヘキサコシル基、ヘプタコシル基、オクタコシル基、ノナコシル基及びトリアコンチル基等のアルキル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基、ヘンイコセニル基、ドコセニル基、トリコセニル基、テトラコセニル基、ペンタコセニル基、ヘキサコセニル基、ヘプタコセニル基、オクタコセニル基、ノナコセニル基及びトリアコンテニル基等のアルケニル基などを挙げることができる。
なお、上記アルキル基及びアルケニル基には、考えられる全ての直鎖状構造及び分枝状構造が含まれ、また、アルケニル基における二重結合の位置は任意である。
【0022】
また、上記脂肪酸エステルとしては、かかる炭化水素基を有する脂肪酸と脂肪族1価アルコール又は脂肪族多価アルコールとから成るエステルなどを例示できる。具体的な好適例としては、グリセリンモノオレート、グリセリンジオレート、ソルビタンモノオレート及びソルビタンジオレートなどが挙げられる。
更に、上記脂肪族アミン化合物としては、脂肪族モノアミン又はそのアルキレンオキシド付加物、脂肪族ポリアミン、イミダゾリン化合物等、及びこれらの誘導体等を例示できる。具体的には、ラウリルアミン、ラウリルジエチルアミン、ラウリルジエタノールアミン、ドデシルジプロパノールアミン、パルミチルアミン、ステアリルアミン、ステアリルテトラエチレンペンタミン、オレイルアミン、オレイルプロピレンジアミン、オレイルジエタノールアミン、及びN−ヒドロキシエチルオレイルイミダゾリン等の脂肪族アミン化合物や、これら脂肪族アミン化合物のN,N−ジポリオキシアルキレン−N−アルキル(又はアルケニル)(炭素数6〜28)等のアミンアルキレンオキシド付加物、これら脂肪族アミン化合物に炭素数2〜30のモノカルボン酸(脂肪酸等)や、シュウ酸、フタル酸、トリメリット酸、ピロメリット酸等の炭素数2〜30のポリカルボン酸を作用させて、残存するアミノ基及び/又はイミノ基の一部又は全部を中和したりアミド化した、いわゆる酸変性化合物等が挙げられる。好適な例としては、N,N−ジポリオキシエチレン−N−オレイルアミン等が挙げられる。
【0023】
また、本発明に用いる潤滑油組成物に含まれる脂肪酸エステル系無灰摩擦調整剤及び/又は脂肪族アミン系無灰摩擦調整剤の含有量は、特に制限はないが、組成物全量基準で、0.05〜3.0%であることが好ましく、更に好ましくは0.1〜2.0%、特に好ましくは0.5〜1.4%であることがよい。上記含有量が0.05%未満であると摩擦低減効果が小さくなり易く、3.0%を超えると摩擦低減効果に優れるものの潤滑油への溶解性や貯蔵安定性が著しく悪化し、沈殿物が発生し易いので、好ましくない。
【0024】
更に、本発明に用いる潤滑油組成物は、ポリブテニルコハク酸イミド及び/又はその誘導体を含有することが好適である。
上記ポリブテニルコハク酸イミドとしては、次の一般式(1)及び(2)
【0025】
【化1】
【0026】
【化2】
【0027】
で表される化合物が挙げられる。これら一般式におけるPIBは、ポリブテニル基を示し、高純度イソブテン又は1−ブテンとイソブテンの混合物をフッ化ホウ素系触媒又は塩化アルミニウム系触媒で重合させて得られる数平均分子量が900〜3500、望ましくは1000〜2000のポリブテンから得られる。上記平均分子量が900未満の場合は清浄性効果が劣り易く、3500を超える場合は低温流動性に劣り易いため、望ましくない。
また、上記一般式におけるnは、清浄性に優れる点から1〜5の整数、より望ましくは2〜4の整数であることがよい。更に、上記ポリブテンは、製造過程の触媒に起因して残留する微量のフッ素分や塩素分を吸着法や十分な水洗等の適切な方法により、50ppm以下、より望ましくは10ppm以下、特に望ましくは1ppm以下まで除去してから用いることもよい。
【0028】
更に、上記ポリブテニルコハク酸イミドの製造方法としては、特に限定はないが、例えば、上記ポリブテンの塩素化物又は塩素やフッ素が充分除去されたポリブテンと無水マレイン酸とを100〜200℃で反応させて得られるブテニルコハク酸を、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン及びペンタエチレンヘキサミン等のポリアミンと反応させることにより得ることができる。
【0029】
一方、上記ポリブテニルコハク酸イミドの誘導体としては、上記一般式(1)及び(2)に示す化合物に、ホウ素化合物や含酸素有機化合物を作用させて、残存するアミノ基及び/又はイミノ基の一部又は全部を中和したりアミド化した、いわゆるホウ素変性化合物又は酸変性化合物を例示できる。代表的には、ホウ素含有ポリブテニルコハク酸イミド、特にホウ素含有ビスポリブテニルコハク酸イミドを用いることがより望ましい。
【0030】
上記ホウ素化合物としては、ホウ酸、ホウ酸塩及びホウ酸エステル等が挙げられる。具体的には、上記ホウ酸としては、例えばオルトホウ酸、メタホウ酸及びパラホウ酸等が挙げられる。また、上記ホウ酸塩としては、アンモニウム塩等、例えばメタホウ酸アンモニウム、四ホウ酸アンモニウム、五ホウ酸アンモニウム及び八ホウ酸アンモニウム等のホウ酸アンモニウム等が好適例として挙げられる。更に、ホウ酸エステルとしては、ホウ酸とアルキルアルコール(望ましくは炭素数1〜6)とのエステル、例えばホウ酸モノメチル、ホウ酸ジメチル、ホウ酸トリメチル、ホウ酸モノエチル、ホウ酸ジエチル、ホウ酸トリエチル、ホウ酸モノプロピル、ホウ酸ジプロピル、ホウ酸トリプロピル、ホウ酸モノブチル、ホウ酸ジブチル及びホウ酸トリブチル等が好適例として挙げられる。なお、ホウ素含有ポリブテニルコハク酸イミドにおけるホウ素含有量Bと窒素含有量Nとの質量比「B/N」は、通常0.1〜3であり、望ましくは0.2〜1である。
また、上記含酸素有機化合物としては、具体的には、例えばギ酸、酢酸、グリコール酸、プロピオン酸、乳酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデカン酸、ミリスチン酸、ペンタデカン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、ノナデカン酸及びエイコサン酸等の炭素数1〜30のモノカルボン酸、シュウ酸、フタル酸、トリメリット酸及びピロメリット酸等の炭素数2〜30のポリカルボン酸並びにこれらの無水物、又はエステル化合物、炭素数2〜6のアルキレンオキサイド及びヒドロキシ(ポリ)オキシアルキレンカーボネート等が挙げられる。
【0031】
なお、本発明に用いる潤滑油組成物において、ポリブテニルコハク酸イミド及び/又はその誘導体の含有量は特に制限されないが、0.1〜15%が望ましく、より望ましくは1.0〜12%であることがよい。0.1%未満では清浄性効果に乏しくなることがあり、15%を超えると含有量に見合う清浄性効果が得られにくく、抗乳化性が悪化し易い。
【0032】
更にまた、本発明に用いる潤滑油組成物は、次の一般式(3)
【0033】
【化3】
【0034】
で表されるジチオリン酸亜鉛を含有することが好適である。
上記式(3)中のR4、R5、R6及びR7は、それぞれ別個に炭素数1〜24の炭化水素基を示す。これら炭化水素基としては、炭素数1〜24の直鎖状又は分枝状のアルキル基、炭素数3〜24の直鎖状又は分枝状のアルケニル基、炭素数5〜13のシクロアルキル基又は直鎖状若しくは分枝状のアルキルシクロアルキル基、炭素数6〜18のアリール基又は直鎖状若しくは分枝状のアルキルアリール基、及び炭素数7〜19のアリールアルキル基等のいずれかであることが望ましい。また、アルキル基やアルケニル基は、第1級、第2級及び第3級のいずれであってもよい。
【0035】
上記R4、R5、R6及びR7としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基及びテトラコシル基等のアルキル基、プロペニル基、イソプロペニル基、ブテニル基、ブタジエニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基及びオレイル基等のオクタデセニル基、ノナデセニル基、イコセニル基、ヘンイコセニル基、ドコセニル基、トリコセニル基及びテトラコセニル基等のアルケニル基、シクロペンチル基、シクロへキシル基及びシクロヘプチル基等のシクロアルキル基、メチルシクロペンチル基、ジメチルシクロペンチル基、エチルシクロペンチル基、プロピルシクロペンチル基、エチルメチルシクロペンチル基、トリメチルシクロペンチル基、ジエチルシクロペンチル基、エチルジメチルシクロペンチル基、プロピルメチルシクロペンチル基、プロピルエチルシクロペンチル基、ジ−プロピルシクロペンチル基、プロピルエチルメチルシクロペンチル基、メチルシクロへキシル基、ジメチルシクロへキシル基、エチルシクロへキシル基、プロピルシクロへキシル基、エチルメチルシクロへキシル基、トリメチルシクロへキシル基、ジエチルシクロヘキシル基、エチルジメチルシクロヘキシル基、プロピルメチルシクロヘキシル基、プロピルエチルシクロヘキシル基、ジ−プロピルシクロへキシル基、プロピルエチルメチルシクロヘキシル基、メチルシクロヘプチル基、ジメチルシクロヘプチル基、エチルシクロヘプチル基、プロピルシクロヘプチル基、エチルメチルシクロヘプチル基、トリメチルシクロヘプチル基、ジエチルシクロヘプチル基、エチルジメチルシクロヘプチル基、プロピルメチルシクロヘプチル基、プロピルエチルシクロヘプチル基、ジ−プロピルシクロヘプチル基及びプロピルエチルメチルシクロヘプチル基等のアルキルシクロアルキル基、フェニル基及びナフチル基等のアリール基、トリル基、キシリル基、エチルフェニル基、プロピルフェニル基、エチルメチルフェニル基、トリメチルフェニル基、ブチルフェニル基、プロピルメチルフェニル基、ジエチルフェニル基、エチルジメチルフェニル基、テトラメチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ウンデシルフェニル基及びドデシルフェニル基等のアルキルアリール基、ベンジル基、メチルベンジル基、ジメチルベンジル基、フェネチル基、メチルフェネチル基及びジメチルフェネチル基等のアリールアルキル基等が例示できる。
などを挙げることができる。
なお、上記炭化水素基には、考えられる全ての直鎖状構造及び分枝状構造をが含まれ、また、アルケニル基の二重結合の位置、アルキル基のシクロアルキル基への結合位置、アルキル基のアリール基への結合位置、及びアリール基のアルキル基への結合位置は任意である。
【0036】
上記ジチオリン酸亜鉛の好適な具体例としては、例えば、ジイソプロピルジチオリン酸亜鉛、ジイソブチルジチオリン酸亜鉛、ジ−sec−ブチルジチオリン酸亜鉛、ジ−sec−ペンチルジチオリン酸亜鉛、ジ−n−ヘキシルジチオリン酸亜鉛、ジ−sec−ヘキシルジチオリン酸亜鉛、ジ−オクチルジチオリン酸亜鉛、ジ−2−エチルヘキシルジチオリン酸亜鉛、ジ−n−デシルジチオリン酸亜鉛、ジ−n−ドデシルジチオリン酸亜鉛、ジイソトリデシルジチオリン酸亜鉛、及びこれらの任意の組合せに係る混合物等が挙げられる。
【0037】
また、上記ジチオリン酸亜鉛の含有量は、特に制限されないが、より高い摩擦低減効果を発揮させる観点から、組成物全量基準且つリン元素換算量で、0.1%以下であることが好ましく、また0.06%以下であることがより好ましく、更にはジチオリン酸亜鉛が含有されないことが特に好ましい。ジチオリン酸亜鉛の含有量がリン元素換算量で0.1%を超えると、DLC部材とアルミニウム合金部材との摺動面における上記脂肪酸エステル系無灰摩擦調整剤や上記脂肪族アミン系無灰摩擦調整剤の優れた摩擦低減効果が阻害されるおそれがある。
【0038】
更に、上記ジチオリン酸亜鉛は、特に限定されることなく、任意の従来方法を採用して製造することができる。具体的には、例えば、上記式(3)中のR4、R5、R6及びR7に対応する炭化水素基を有するアルコール又はフェノールを五硫化ニリンと反応させてジチオリン酸とし、これを酸化亜鉛で中和させることにより合成できる。なお、上記ジチオリン酸亜鉛の構造が異なるのは、使用する原料アルコール等によることは言うまでもない。
【0039】
上述のように、本発明に用いる潤滑油組成物は、DLC部材とアルミニウム合金部材との摺動面に用いる場合に、極めて優れた低摩擦特性を示すが、特に内燃機関の摺動部に用いるときは、金属系清浄剤、酸化防止剤、粘度指数向上剤、他の無灰摩擦調整剤、他の無灰分散剤、磨耗防止剤若しくは極圧剤、防錆剤、非イオン系界面活性剤、抗乳化剤、金属不活性化剤、及び消泡剤等を単独で又は複数種を組合せて配合し、必要な性能を高めることができる。
【0040】
上記金属系清浄剤としては、潤滑油用の金属系清浄剤として通常用いられる任意の化合物が使用できる。例えば、アルカリ金属又はアルカリ土類金属のスルホネート、フェネート、サリシレート及びナフテネート等を単独で又は複数種を組合せて使用できる。ここで、上記アルカリ金属としてはナトリウム(Na)やカリウム(K)等、上記アルカリ土類金属としてはカルシウム(Ca)やマグネシウム(Mg)等が例示できる。また、具体的な好適例としては、Ca又はMgのスルフォネート、フェネート及びサリシレートが挙げられる。
なお、これら金属系清浄剤の全塩基価及び添加量は、要求される潤滑油の性能に応じて任意に選択できる。通常は、過塩素酸法で0〜500mgKOH/g、望ましくは150〜400mgKOH/gであり、その添加量は組成物全量基準で、通常0.1〜10%である。
【0041】
また、上記酸化防止剤としては、潤滑油用の酸化防止剤として通常用いられる任意の化合物を使用できる。例えば、4,4−メチレンビス(2,6−ジ−tert−ブチルフェノール)及びオクチル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート等のフェノール系酸化防止剤、フェニル−α−ナフチルアミン、アルキルフェニル−α−ナフチルアミン及びアルキルジフェニルアミン等のアミン系酸化防止剤、並びにこれらの任意の組合せに係る混合物等が挙げられる。また、かかる酸化防止剤の添加量は、組成物全量基準で、通常0.01〜5%である。
【0042】
更に、上記粘度指数向上剤としては、具体的には、各種メタクリル酸又はこれらの任意の組合せに係る共重合体やその水添物等のいわゆる非分散型粘度指数向上剤、及び更に窒素化合物を含む各種メタクリル酸エステルを共重合させたいわゆる分散型粘度指数向上剤等が例示できる。また、非分散型又は分散型エチレン−α−オレフィン共重合体(α−オレフィンとしては、例えばプロピレン、1−ブテン、1−ペンテン等)及びその水素化物、ポリイソブチレン及びその水添物、スチレン−ジエン水素化共重合体、スチレン−無水マレイン酸エステル共重合体、並びにポリアルキルスチレン等も例示できる。
これら粘度指数向上剤の分子量は、せん断安定性を考慮して選定することが必要である。具体的には、粘度指数向上剤の数平均分子量は、例えば分散型及び非分散型ポリメタクリレートでは5000〜1000000、好ましくは100000〜800000がよく、ポリイソブチレン又はその水素化物では800〜5000、エチレン−α−オレフィン共重合体及びその水素化物では800〜300000、好ましくは10000〜200000がよい。また、かかる粘度指数向上剤は、単独で又は複数種を任意に組合せて含有させることができるが、通常その含有量は、潤滑油組成物基準で0.1〜40.0%であることが望ましい。
【0043】
更にまた、他の無灰摩擦調整剤としては、ホウ酸エステル、高級アルコール及び脂肪族エーテル等の無灰摩擦調整剤、ジチオリン酸モリブデン、ジチオカルバミン酸モリブデン及び二硫化モリブデン等の金属系摩擦調整剤等が挙げられる。また、他の無灰分散剤としては、数平均分子量が900〜3500のポリブテニル基を有するポリブテニルベンジルアミン、ポリブテニルアミン、数平均分子量が900未満のポリブテニル基を有するポリブテニルコハク酸イミド等及びそれらの誘導体等が挙げられる。
更に、上記磨耗防止剤又は極圧剤としては、ジスルフィド、硫化油脂、硫化オレフィン、炭素数2〜20の炭化水素基を1〜3個含有するリン酸エステル、チオリン酸エステル、亜リン酸エステル、チオ亜リン酸エステル及びこれらのアミン塩等が挙げられる。
更にまた、上記防錆剤としては、アルキルベンゼンスルフォネート、ジノニルナフタレンスルフォネート、アルケニルコハク酸エステル、多価アルコールエステル等が挙げられる。
また、上記非イオン系界面活性剤及び抗乳化剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル及びポリオキシエチレンアルキルナフチルエーテル等のポリアルキレングリコール系非イオン系界面活性剤等が挙げられる。
更に、上記金属不活性化剤としては、イミダゾリン、ピリミジン誘導体、チアジアゾール、ベンゾトリアゾール及びチアジアゾール等が挙げられる。
更にまた、上記消泡剤としては、シリコーン、フルオロシリコーン及びフルオロアルキルエーテル等が挙げられる。
なお、これら添加剤を本発明に用いる潤滑油組成物に含有する場合は、その含有量は、組成物全量基準で、他の摩擦調整剤、他の無灰分散剤、磨耗防止剤又は極圧剤、防錆剤、及び抗乳化剤は0.01〜5%、並びに金属不活性剤は0.0005〜1%の範囲から適宜選択できる。
【0044】
【実施例】
以下、本発明を実施例及び比較例により更に詳述するが、本発明はこれらの実施例に限定されるものではない。
【0045】
(摺動材料)
摺動材料の一例として、図1に示すようなピンオンディスク単体摩擦用の試験片を作製した。この単体試験片は、3つのピンと、円板からなり、以下の方法により得られた摺動材料を用いて作製したものである。
・ピン材料
以下のSUJ2材料から所定のピン形状に研磨加工後、ラッピングテープを用いた研磨によってピンを様々な表面粗さ(Ra0.2μm以下)に仕上げた。
・円板材料
種々のアルミニウム合金から成る円板形状素材に、所定の時効硬化処理後、ピンとの摺動表面を研磨によって、種々の表面粗さに仕上げた。
・表面処理
上記により仕上げられたピン材料の表面に、PVD処理又はCVD処理によって以下の材料を様々な膜厚となるようにコーティングした。コーティングされた表面は更にラッピングテープを用いた研磨によって様々な表面粗さ(Ra0.11μm以下)に仕上げた。
▲1▼a−C
▲2▼TiN
▲3▼CrN
▲4▼DLC(a−C:H)
これら摺動材料について表1に示す。
【0046】
【表1】
【0047】
(潤滑油組成物の調製)
・オイル1
潤滑油基油として水素化分解鉱油(100℃動粘度:5.0mm2/s、粘度指数:120、全芳香族含有量:5.5%)を用い、それにエステル系摩擦調整剤(グリセリンモノオレート)を1%、無灰系分散剤(ポリブテニルコハク酸イミド(窒素含有量:1.2%))を5.0%、金属系清浄剤としてカルシウムスルホネート(全塩基価:300mgKOH/g、カルシウム含有量:12.0%)を0.5%及びカルシウムフェネート(全塩基価:255mgKOH/g、カルシウム含有量:9.2%)を0.9%、その他添加剤として粘度指数向上剤、酸化防止剤、防錆剤、抗乳化剤、非イオン系界面活性剤、金属不活性化剤、消泡剤等を合計量で7.0%配合し調製した。
・オイル2
ジアルキルジチオリン酸亜鉛(亜鉛含有量:9.3%、リン含有量:8.5%、アルキル基:第2級ブチル基又は第2級へキシル基)をリン元素換算量で0.047%添加した以外は、オイル1と同様の操作を繰り返して調製した。
・オイル3
潤滑油基油として1−デセンオリゴマー水素化物(100℃動粘度:3.9mm2/s、粘度指数:124、全芳香族含有量:0.0%)を用いた以外は、オイル2と同様の操作を繰り返して調製した。
・オイル4
エステル系摩擦調整剤を添加せず、アミン系摩擦調整剤(N,N−ジポリオキシエチレン−N−オレイルアミン)を1.0%添加した以外は、オイル1と同様の操作を繰り返して調製した。
・オイル5
ジアルキルジチオリン酸亜鉛(亜鉛含有量:9.3%、リン含有量:8.5%、アルキル基:第2級ブチル基又は第2へキシル基)をリン元素換算量で0.094%とした以外は、オイル2と同様の操作を繰り返して調製した。
・オイル6
アミン系摩擦調整剤(N,N−ジポリオキシエチレン−N−オレイルアミン)を0.5%添加した以外は、オイル5と同様の操作を繰り返して調製した。
・オイル7
エステル系摩擦調整剤(グリセリンモノオレート)を0.2%とした以外は、オイル2と同様の操作を繰り返して調製した。
・オイル8
エステル系摩擦調整剤を添加しない以外は、オイル5と同様の操作を繰り返して調製した。
・オイル9
エステル系摩擦調整剤を添加せず、モリブデンジチオカーバメイト(モリブデン含有率:4.1%)を1.1%添加した以外は、オイル5と同様の操作を繰り返して調製した。
これら潤滑油組成物の組成とそのオイル性状を表2に示す。
【0048】
【表2】
【0049】
(実施例1〜9)
表1の実施例1〜9に示すピン及び円板を組合わせた単体試験片を作製し、表1の各実施例に併記した各潤滑油組成物(上記オイル1〜7)を用いて、以下の単体摩擦試験を実施した。この結果を合わせて表1に示す。
(単体摩擦試験条件)
最大ヘルツ圧力 :80MPa
円板回転速度 :30rpm
オイル供給方法 :油浴
供給オイル温度 :80℃
試験時間 :60min
【0050】
(比較例1〜5)
上記と同様に、表1の比較例1〜5に示すピン及び円板を組合わせた単体試験片を作製し、表1の各実施例に併記した各潤滑油組成物(上記オイル5、8又は9)を用いて、以下の単体摩擦試験を実施した。この結果を合わせて表1に示す。
表1より、実施例1〜9で得られた単体試験片は、いずれも優れた低摩擦係数を示すことがわかる。例えば、これらは、エンジンに使われている鉄系材料とアルミニウム合金材料の組合せを用いた比較例1の単体試験片に比べて、約40〜60%の摩擦低減効果が得られた。
更に、実施例1、2及び6の結果から、ジチオリン酸亜鉛の含有量が少ないほど摩擦低減効果に優れることがわかる。
尚、実施例1〜9で得られた単体試験片の材料組合せは、試験後の表面形状に何ら問題はなく、耐磨耗性にも非常に優れ、安定した低摩擦特性を示す。
【0051】
尚、本発明の好適範囲外である実施例5で得られた単体試験片は、表1から明らかなように摩擦低減効果認められるものの、水素を含まないa−C材を用いた他の実施例ほどの効果は見られない。
【0052】
一方、比較例1の単体試験片材料組合せは、SU2材のピンとAC2A材の円板をラッピングテープで研磨仕上げしたものの組合せであり、当該ピンに表面コーティングをしていない組合せである。また、この単体試験では、本発明で用いる摩擦調整剤を含まない潤滑油組成物(オイル8)を用いている。従って、摩擦係数が0.1を超えてしまい摩擦特性に劣る。これは、摺動面にZnDTPを主体とする反応皮膜が形成されたためと推定できる。
また、比較例2の単体試験片材料組合せは、比較例1と同様の構成である。この単体試験では、本発明で用いる摩擦調整剤を含む潤滑油組成物(オイル5)を用いており、多少の摩擦低減効果があるものの、摩擦係数が0.1程度と高く摩擦特性に劣る。これは、摺動面にZnDTPを主体とする反応皮膜が形成されたためと推定できる。
更に、比較例3の単体試験片材料組合せは、実施例4と同様の構成であるが、潤滑油組成物として従来の鋼材料間の摺動面に最も有効であった有機モリブデンを配合した省燃費エンジン油(オイル9)を用いても、摩擦係数が0.1に近い高い摩擦係数を示す。これは、摺動面に二硫化モリブデン被膜が形成されないためと推定できる。
更にまた、比較例4の単体試験片材料組合せでは、TiNコーティングしたピンと本発明で用いる摩擦調整剤を含む潤滑油組成物(オイル5)を用いており、摩擦係数は低減したものの、その絶対値は0.1に近いままであった。また、比較例5の単体試験片材料組合せでは、ピンをCrNコーティングにしてみたが、TiNピンと摩擦低減効果に大差は認められなかった。
【0053】
実施例1〜9より、本発明のようにDLC材、特に好適範囲で作製された水素を含まないa−C系DLC材を用いたピンを、好適なアルミニウム合金材料と特定の摩擦調整剤を所定量添加した潤滑油組成物潤滑下で摺動させるときは、世界トップレベルの低摩擦係数が得られ、且つ耐磨耗性に優れている。また、このような顕著な摩擦低減効果は、工業的に極めて有益であり、エンジン摺動部品等の摩擦損失の大幅な低減、即ちエンジンの燃費改善に有効である。
【0054】
以上、本発明の実施例及び比較例により詳細に説明したが、本発明はこれらに限定されるものではなく、本発明の要旨内であれば種々の変形が可能である。
例えば、産業機械に使われている歯車摺動部材等に用いることもできる。
【0055】
【発明の効果】
以上説明してきたように、本発明によれば、DLC部材とアルミニウム合金部材とを、所定の無灰摩擦調整剤を含有する潤滑油組成物存在下で摺動させることとしたため、極めて優れた低摩擦特性を示し、更には従来のアルミニウム合金と鋼材料の摺動部と有機Mo化合物との組合せよりも更に優れた省燃費効果を発揮し得る低摩擦摺動材料及びこれに用いる潤滑油組成物を提供することができる。
【図面の簡単な説明】
【図1】ピンオン摩擦試験機の概略を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low-friction sliding material and a lubricating oil composition used for the same, and more particularly, to a low-friction sliding material which is suitable for use in an internal combustion engine or the like and exhibits extremely excellent low-friction properties, and It relates to the lubricating oil composition used.
[0002]
[Prior art]
Warming global environmental problems on a global scale, such as destruction of the ozone layer are largely closeup, especially how to determine the regulation value in each country for the CO 2 reduction that is said to have great influence on the global warming of the whole earth Has drawn a great deal of interest over
As for CO 2 reduction, one of the major issues is to reduce the fuel consumption of automobiles, and the role of the sliding material and the lubricating oil plays a large role.
The role of the sliding material is to exhibit excellent wear resistance and develop a low coefficient of friction for a portion where the friction and wear environment is severe in the sliding portion of the engine. Is being applied. Generally, the DLC material is expected to be a low friction sliding material because the DLC material has a lower coefficient of friction in air and in the absence of a lubricating oil than a wear-resistant hard coating material such as TiN or CrN.
[0003]
In addition, measures to reduce fuel consumption of lubricating oil include: (1) reduction of viscosity resistance in the fluid lubrication region and reduction of agitation resistance in the engine by lowering viscosity, and (2) blending of optimal friction modifier and various additives. Reduction of friction loss in the mixing and boundary lubrication regions has been proposed. As a friction modifier, much research has been conducted mainly on organic Mo compounds such as MoDTC and MoDTP. On the moving surface, a lubricating oil containing an organic Mo compound exhibiting an excellent low friction coefficient at the beginning of use has been applied, and the effect has been improved.
[0004]
However, it has been reported that a general DLC material excellent in low friction in air has a small friction reducing effect in the presence of a lubricating oil (for example, see Non-Patent Document 1).
Further, it has been found that even when a lubricating oil composition containing an organic molybdenum compound is applied to this sliding material, the friction reducing effect is not sufficiently exhibited (for example, see Non-Patent Document 2).
[0005]
[Non-patent document 1]
Kano et al. "Preprints of the Japan Society of Tribology, Tokyo", May 1999, p.11-12
[Non-patent document 2]
Kano et al. "World Tribology Congress", September 2001, Vienna, Proceeding, p342.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such problems of the related art, and has as its object to show extremely excellent low-friction characteristics, and furthermore, to provide a sliding portion between a conventional aluminum alloy and a steel material. Frictional sliding material and a lubricating oil composition used therefor that can exhibit a more excellent fuel-saving effect than the combination of the compound and an organic Mo compound. Further, the present invention is excellent in abrasion resistance. Another object of the present invention is to provide a low friction material that can exhibit low friction characteristics stably.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, by sliding a DLC member and an aluminum alloy member in the presence of a lubricating oil composition containing a predetermined ashless friction modifier, The inventors have found that the above problems can be solved, and have completed the present invention.
[0008]
That is, the low-friction sliding material of the present invention contains a DLC member, an aluminum alloy member, and a fatty acid ester-based ashless friction modifier and / or an aliphatic amine-based ashless friction modifier on their sliding surfaces. It is characterized by using a lubricating oil composition.
[0009]
The lubricating oil composition used in the present invention is a lubricating oil composition used for the low friction sliding material,
It is characterized by containing a fatty acid ester-based ashless friction modifier and / or an aliphatic amine-based ashless friction modifier.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the low friction sliding material of the present invention will be described in more detail. In this specification, “%” indicates mass percentage unless otherwise specified.
When sliding the DLC member and the aluminum alloy member, such a low friction sliding material uses a fatty acid ester-based and / or aliphatic amine-based ashless friction modifier on the sliding surface between the DLC member and the aluminum alloy member. The lubricating oil composition to be contained is interposed. Thus, the DLC member and the aluminum alloy member can slide with extremely lower friction than before.
[0011]
Here, the DLC (diamond-like carbon) material constituting the DLC member is amorphous mainly composed of a carbon element, and the bonding form between carbons is a diamond structure (SP 3 bond) and a graphite bond (SP 2 bond). Bond). Specifically, aC (amorphous carbon) consisting only of carbon element, aC: H (hydrogen amorphous carbon) containing hydrogen, and metal elements such as titanium (Ti) and molybdenum (Mo) are partially used. However, in the present invention, the DLC member is preferably made of an aC-based material containing no hydrogen from the viewpoint of exhibiting a significant friction reducing effect.
As a constituent material of the aluminum alloy member, it is preferable to use a hypoeutectic aluminum alloy or a hypereutectic aluminum alloy containing 4 to 20% of silicon (Si) and 1.0 to 5.0% of copper (Cu). . Specifically, AC2A, AC8A, ADC12, ADC14 (JIS) and the like can be mentioned.
[0012]
The surface roughness of each of the DLC member and the aluminum alloy member is preferably not more than 0.1 μm in terms of arithmetic average roughness Ra from the viewpoint of sliding stability. If it exceeds 0.1 μm, scuffing is locally formed, and the coefficient of friction may be significantly improved.
Further, the DLC member preferably has a surface hardness of Hv1000 to 3500 in micro Vickers hardness (10 g load) and a thickness of 0.3 to 2.0 μm, and the aluminum alloy member has a surface hardness of 0.3 to 2.0 μm. There is preferably a Brinell hardness H B 80 to 130. When the surface hardness and the thickness of the DLC member are out of the above ranges, the hardness is less than Hv1000, and when the thickness is less than 0.3 μm, the material is worn away. hardness is that aluminum alloy is easily worn is less than H B 80 deviates from above.
[0013]
The low-friction sliding material of the present invention can be used without any limitation as long as it is a sliding surface where two metal surfaces are in contact with a lubricating oil interposed therebetween, but can be typically used as a sliding portion of an internal combustion engine. . In this case, a very excellent low friction characteristic can be obtained as compared with the related art, which is effective.
[0014]
Next, the lubricating oil composition used in the present invention will be described in detail.
Such a lubricating oil composition contains a fatty acid ester-based ashless friction modifier and / or an aliphatic amine-based ashless friction modifier in a lubricating base oil, and is used for the above-mentioned low friction sliding material.
[0015]
Here, the fatty acid ester-based ashless friction modifier and / or the aliphatic amine-based ashless friction modifier include C6 to C30, preferably C8 to C24, and particularly preferably C10 to C20. Examples thereof include a fatty acid ester having a linear or branched hydrocarbon group, an aliphatic amine compound, and an arbitrary mixture thereof. When the number of carbon atoms is not 6 to 30, the effect of reducing friction as in the present invention may not be sufficiently obtained.
Here, the lubricating base oil is not particularly limited, and may be used regardless of whether it is a mineral base oil or a synthetic base oil as long as it is usually used as a base oil of a lubricating oil composition. Can be.
As the mineral base oil, specifically, a lubricating oil fraction obtained by atmospheric distillation and vacuum distillation of crude oil is subjected to solvent removal, solvent extraction, hydrocracking, solvent dewaxing, hydrorefining, wax purification. There may be mentioned those refined by one or more treatments such as isomerization, etc. In particular, various base oils such as those subjected to hydrocracking treatment, hydrorefining treatment or wax isomerization treatment can be used. .
[0016]
Specific examples of the synthetic base oil include alkylnaphthalene, alkylbenzene, polybutene or hydrides thereof; poly-α-olefins such as 1-octene oligomer and 1-decene oligomer or hydrides thereof; ditridecyl glutarate, dioctyl Diesters such as adipate, diisodecyl adipate, ditridecyl adipate, and dioctyl sebacate; polyol esters such as trimethylolpropane caprylate, trimethylolpropane perargonate, pentaerythritol-2-ethylhexanoate, and pentaerythritol perargonate; And the like. Among them, preferred are poly-α-olefins such as 1-octene oligomers and 1-decene oligomers and hydrides thereof.
[0017]
The base oil in the lubricating oil composition of the present invention may be a mixture of two or more mineral base oils or two or more synthetic base oils, in addition to using a mineral base oil or a synthetic base oil alone or as a mixture. It can be a mixture. The mixing ratio of two or more base oils in the mixture is not particularly limited, and can be arbitrarily selected.
[0018]
The total aromatic content of the lubricating base oil is not particularly limited, but is preferably 15% or less, more preferably 10% or less, and still more preferably 8%. If the total aromatic content of the lubricating base oil exceeds 15%, the oxidation stability is poor, which is not preferable. Further, even when the total aromatic content of the lubricating base oil is 2% or less, or 0%, such as highly hydrocracked mineral oil or 1-decene oligomer hydride, a composition having a high friction reducing effect can be obtained. However, for example, when the content of the fatty acid ester-based ashless friction modifier and / or the aliphatic amine-based ashless friction modifier is more than 1%, the storage stability may be poor. It is preferable to adjust the total aromatic content of the lubricating base oil (for example, to 2% or more) by blending a solvent refined mineral oil, alkylbenzene, or the like. Here, the total aromatic content means the content of an aromatic fraction measured according to ASTM D2549, and this aromatic fraction usually includes alkylbenzene, alkylnaphthalene, anthracene, phenanthrene And alkylated products thereof, compounds in which four or more benzene rings are condensed, and compounds having heteroaromatics such as pyridines, quinolines, phenols, and naphthols.
[0019]
The kinematic viscosity of the lubricating base oil is not particularly limited, but when used as a lubricating oil composition for an internal combustion engine, the kinematic viscosity at 100 ° C. is preferably 2 mm 2 / s or more, more preferably It is at least 3 mm 2 / s, while its kinematic viscosity is preferably at most 20 mm 2 / s, preferably at most 10 mm 2 / s, particularly preferably at most 8 mm 2 / s. By setting the kinematic viscosity at 100 ° C. of the lubricating base oil to 2 mm 2 / s or more, a composition having sufficient oil film formation, excellent lubricity, and small evaporation loss of the base oil under high conditions can be obtained. Obtainable. On the other hand, by setting the kinematic viscosity at 100 ° C. to 20 mm 2 / s or less, the fluid resistance becomes small, so that a composition having a small friction resistance at a lubricating point can be obtained.
[0020]
The viscosity index of the lubricating base oil is not particularly limited, but is preferably 80 or more, and when used as a lubricating oil composition for an internal combustion engine, is preferably 100 or more, and more preferably 120 or more. It is particularly preferred that there is. By selecting a lubricating base oil having a high viscosity index, a composition having not only excellent low-temperature viscosity characteristics but also an excellent friction reducing effect can be obtained.
[0021]
As the linear or branched hydrocarbon group having 6 to 30 carbon atoms, specifically, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, Tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, henycosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl and triacontyl Alkyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icosenyl Group, henicosenyl group include docosenyl, tricosenyl group, tetracosenyl group, Pentakoseniru group, Hekisakoseniru group, Heputakoseniru group, Okutakoseniru group, an alkenyl group such as Nonakoseniru group and thoria container group.
The alkyl group and the alkenyl group include all conceivable linear and branched structures, and the position of the double bond in the alkenyl group is arbitrary.
[0022]
Examples of the fatty acid ester include esters composed of a fatty acid having such a hydrocarbon group and an aliphatic monohydric alcohol or an aliphatic polyhydric alcohol. Specific preferred examples include glycerin monooleate, glycerindiolate, sorbitan monooleate and sorbitandiolate.
Furthermore, examples of the aliphatic amine compound include an aliphatic monoamine or an alkylene oxide adduct thereof, an aliphatic polyamine, an imidazoline compound, and derivatives thereof. Specifically, laurylamine, lauryldiethylamine, lauryldiethanolamine, dodecyldipropanolamine, palmitylamine, stearylamine, stearyltetraethylenepentamine, oleylamine, oleylpropylenediamine, oleyldiethanolamine, and N-hydroxyethyloleylimidazoline such as Aliphatic amine compounds, amine alkylene oxide adducts of these aliphatic amine compounds such as N, N-dipolyoxyalkylene-N-alkyl (or alkenyl) (C6 to C28), By reacting a monocarboxylic acid having 2 to 30 carbon atoms (fatty acid or the like) or a polycarboxylic acid having 2 to 30 carbon atoms such as oxalic acid, phthalic acid, trimellitic acid or pyromellitic acid, the remaining amino group and / or Imi Amidated or neutralize part or all of the groups, the so-called acid-modified compounds, and the like. Suitable examples include N, N-dipolyoxyethylene-N-oleylamine.
[0023]
The content of the fatty acid ester-based ashless friction modifier and / or the aliphatic amine-based ashless friction modifier contained in the lubricating oil composition used in the present invention is not particularly limited, but is based on the total amount of the composition. It is preferably from 0.05 to 3.0%, more preferably from 0.1 to 2.0%, particularly preferably from 0.5 to 1.4%. If the content is less than 0.05%, the friction reducing effect tends to be small, and if it exceeds 3.0%, the solubility in lubricating oil and the storage stability are significantly deteriorated although the friction reducing effect is excellent. This is not preferred because it is liable to occur.
[0024]
Further, the lubricating oil composition used in the present invention preferably contains polybutenyl succinimide and / or a derivative thereof.
As the polybutenyl succinimide, the following general formulas (1) and (2)
[0025]
Embedded image
[0026]
Embedded image
[0027]
The compound represented by is mentioned. PIB in these general formulas represents a polybutenyl group, and has a number average molecular weight of 900 to 3500, preferably a number average molecular weight obtained by polymerizing high-purity isobutene or a mixture of 1-butene and isobutene with a boron fluoride catalyst or an aluminum chloride catalyst. Obtained from 1000 to 2000 polybutenes. When the average molecular weight is less than 900, the detergency effect tends to deteriorate, and when it exceeds 3500, the low-temperature fluidity tends to deteriorate, which is not desirable.
Further, n in the above general formula is preferably an integer of 1 to 5, more preferably an integer of 2 to 4 from the viewpoint of excellent cleanability. Further, the polybutene is used to remove trace amounts of fluorine and chlorine remaining due to the catalyst in the production process by an appropriate method such as an adsorption method or a sufficient washing with water, to be 50 ppm or less, more preferably 10 ppm or less, particularly preferably 1 ppm or less. It is also possible to use after removing to the following.
[0028]
Further, the method for producing the polybutenyl succinimide is not particularly limited. For example, the chlorinated product of the polybutene or polybutene from which chlorine or fluorine has been sufficiently removed and maleic anhydride are reacted at 100 to 200 ° C. The butenyl succinic acid obtained by the reaction can be obtained by reacting it with a polyamine such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine and pentaethylenehexamine.
[0029]
On the other hand, as the derivative of the polybutenyl succinimide, a compound represented by the above general formulas (1) and (2) is reacted with a boron compound or an oxygen-containing organic compound to leave a remaining amino group and / or imino group. A so-called boron-modified compound or acid-modified compound obtained by neutralizing or amidating a part or all of the compound can be exemplified. Typically, it is more desirable to use boron-containing polybutenyl succinimide, especially boron-containing bis-polybutenyl succinimide.
[0030]
Examples of the boron compound include boric acid, borate and borate. Specifically, examples of the boric acid include orthoboric acid, metaboric acid, paraboric acid, and the like. Preferred examples of the borate include ammonium salts and the like, for example, ammonium borate such as ammonium metaborate, ammonium tetraborate, ammonium pentaborate and ammonium octaborate. Further, as the borate ester, an ester of boric acid and an alkyl alcohol (preferably having 1 to 6 carbon atoms), for example, monomethyl borate, dimethyl borate, trimethyl borate, monoethyl borate, diethyl borate, triethyl borate Preferred examples include monopropyl borate, dipropyl borate, tripropyl borate, monobutyl borate, dibutyl borate, tributyl borate and the like. In addition, the mass ratio "B / N" of the boron content B and the nitrogen content N in the boron-containing polybutenyl succinimide is usually 0.1 to 3, preferably 0.2 to 1.
Examples of the oxygen-containing organic compound include, for example, formic acid, acetic acid, glycolic acid, propionic acid, lactic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecylic acid Monocarboxylic acid having 1 to 30 carbon atoms such as lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, oleic acid, nonadecanoic acid and eicosanoic acid, oxalic acid, phthalic acid, trimellit Examples thereof include polycarboxylic acids having 2 to 30 carbon atoms such as acids and pyromellitic acid, and anhydrides or ester compounds thereof, alkylene oxides having 2 to 6 carbon atoms, and hydroxy (poly) oxyalkylene carbonates.
[0031]
In the lubricating oil composition used in the present invention, the content of polybutenyl succinimide and / or its derivative is not particularly limited, but is preferably 0.1 to 15%, more preferably 1.0 to 12%. It is good to be. If it is less than 0.1%, the detergency effect may be poor, and if it exceeds 15%, it is difficult to obtain a detergency effect commensurate with the content, and the demulsification properties are likely to deteriorate.
[0032]
Furthermore, the lubricating oil composition used in the present invention has the following general formula (3)
[0033]
Embedded image
[0034]
It is preferable to contain zinc dithiophosphate represented by
R 4 , R 5 , R 6 and R 7 in the above formula (3) each independently represent a hydrocarbon group having 1 to 24 carbon atoms. Examples of these hydrocarbon groups include linear or branched alkyl groups having 1 to 24 carbon atoms, linear or branched alkenyl groups having 3 to 24 carbon atoms, and cycloalkyl groups having 5 to 13 carbon atoms. Or a linear or branched alkylcycloalkyl group, an aryl group having 6 to 18 carbon atoms, a linear or branched alkylaryl group, and an arylalkyl group having 7 to 19 carbon atoms. Desirably. Further, the alkyl group or alkenyl group may be any of primary, secondary and tertiary.
[0035]
Specific examples of the above R 4 , R 5 , R 6 and R 7 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. An undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, an icosyl group, an alkyl group such as a henycosyl group, a docosyl group, a tricosyl group and a tetracosyl group, a propenyl group, Isopropenyl, butenyl, butadienyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl and oleyl Octade of group Alkenyl group such as enyl group, nonadecenyl group, icosenyl group, henicocenyl group, docosenyl group, tricosenyl group and tetracosenyl group, cyclopentyl group, cycloalkyl group such as cyclohexyl group and cycloheptyl group, methylcyclopentyl group, dimethylcyclopentyl group, To ethylcyclopentyl, propylcyclopentyl, ethylmethylcyclopentyl, trimethylcyclopentyl, diethylcyclopentyl, ethyldimethylcyclopentyl, propylmethylcyclopentyl, propylethylcyclopentyl, di-propylcyclopentyl, propylethylmethylcyclopentyl, methylcyclo Xyl group, dimethylcyclohexyl group, ethylcyclohexyl group, propylcyclohexyl group, ethylmethylcyclo Xyl, trimethylcyclohexyl, diethylcyclohexyl, ethyldimethylcyclohexyl, propylmethylcyclohexyl, propylethylcyclohexyl, di-propylcyclohexyl, propylethylmethylcyclohexyl, methylcycloheptyl, dimethylcycloheptyl Group, ethylcycloheptyl group, propylcycloheptyl group, ethylmethylcycloheptyl group, trimethylcycloheptyl group, diethylcycloheptyl group, ethyldimethylcycloheptyl group, propylmethylcycloheptyl group, propylethylcycloheptyl group, di-propylcyclo Alkylcycloalkyl groups such as heptyl group and propylethylmethylcycloheptyl group, aryl groups such as phenyl group and naphthyl group, tolyl group, xylyl group , Ethylphenyl, propylphenyl, ethylmethylphenyl, trimethylphenyl, butylphenyl, propylmethylphenyl, diethylphenyl, ethyldimethylphenyl, tetramethylphenyl, pentylphenyl, hexylphenyl, heptyl Alkylaryl groups such as phenyl group, octylphenyl group, nonylphenyl group, decylphenyl group, undecylphenyl group and dodecylphenyl group, benzyl group, methylbenzyl group, dimethylbenzyl group, phenethyl group, methylphenethyl group and dimethylphenethyl group And the like.
And the like.
The hydrocarbon group includes all conceivable linear structures and branched structures, and further includes a double bond position of an alkenyl group, a bond position of an alkyl group to a cycloalkyl group, and an alkyl group. The bonding position of the group to the aryl group and the bonding position of the aryl group to the alkyl group are arbitrary.
[0036]
Preferable specific examples of the zinc dithiophosphate include, for example, zinc diisopropyldithiophosphate, zinc diisobutyldithiophosphate, zinc di-sec-butyldithiophosphate, zinc di-sec-pentyldithiophosphate, and zinc di-n-hexyldithiophosphate. Zinc di-sec-hexyldithiophosphate, zinc di-octyldithiophosphate, zinc di-2-ethylhexyldithiophosphate, zinc di-n-decyldithiophosphate, zinc di-n-dodecyldithiophosphate, zinc diisotridecyldithiophosphate And mixtures according to any combination thereof.
[0037]
The content of the zinc dithiophosphate is not particularly limited, but is preferably 0.1% or less, based on the total amount of the composition and in terms of phosphorus element, from the viewpoint of exhibiting a higher friction reducing effect. It is more preferable that the content is 0.06% or less, and it is particularly preferable that zinc dithiophosphate is not contained. When the content of zinc dithiophosphate exceeds 0.1% in terms of phosphorus element, the fatty acid ester-based ashless friction modifier or the aliphatic amine-based ashless friction on the sliding surface between the DLC member and the aluminum alloy member is used. The excellent friction reducing effect of the modifier may be impaired.
[0038]
Further, the zinc dithiophosphate can be produced by any conventional method without any particular limitation. Specifically, for example, alcohol or phenol having a hydrocarbon group corresponding to R 4 , R 5 , R 6 and R 7 in the above formula (3) is reacted with diphosphorus pentasulfide to obtain dithiophosphoric acid. It can be synthesized by neutralizing with zinc oxide. Needless to say, the difference in the structure of the zinc dithiophosphate depends on the raw material alcohol used.
[0039]
As described above, the lubricating oil composition used in the present invention exhibits extremely excellent low-friction characteristics when used on a sliding surface between a DLC member and an aluminum alloy member, but is particularly used for a sliding portion of an internal combustion engine. Sometimes, metal detergents, antioxidants, viscosity index improvers, other ashless friction modifiers, other ashless dispersants, antiwear or extreme pressure agents, rust inhibitors, nonionic surfactants, The demulsifier, metal deactivator, defoaming agent, and the like can be used alone or in combination of two or more to enhance the required performance.
[0040]
As the metal-based detergent, any compound usually used as a metal-based detergent for lubricating oil can be used. For example, sulfonates, phenates, salicylates, naphthenates and the like of alkali metals or alkaline earth metals can be used alone or in combination of two or more. Here, examples of the alkali metal include sodium (Na) and potassium (K), and examples of the alkaline earth metal include calcium (Ca) and magnesium (Mg). Specific preferred examples include sulfonates, phenates and salicylates of Ca or Mg.
The total base number and the amount of these metal-based detergents can be arbitrarily selected according to the required lubricating oil performance. Usually, the amount is 0 to 500 mgKOH / g, preferably 150 to 400 mgKOH / g by the perchloric acid method, and the addition amount is usually 0.1 to 10% based on the total amount of the composition.
[0041]
Further, as the antioxidant, any compound which is usually used as an antioxidant for lubricating oil can be used. For example, phenolic antioxidants such as 4,4-methylenebis (2,6-di-tert-butylphenol) and octyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate; Examples include amine-based antioxidants such as α-naphthylamine, alkylphenyl-α-naphthylamine and alkyldiphenylamine, and mixtures of any combination thereof. The amount of the antioxidant added is usually 0.01 to 5% based on the total amount of the composition.
[0042]
Furthermore, as the viscosity index improver, specifically, a so-called non-dispersion type viscosity index improver such as a copolymer or a hydrogenated product thereof based on various methacrylic acids or any combination thereof, and further a nitrogen compound. So-called dispersion type viscosity index improvers obtained by copolymerizing various methacrylic esters containing the same. In addition, non-dispersed or dispersed ethylene-α-olefin copolymers (eg, propylene, 1-butene, 1-pentene, etc.) and their hydrides, polyisobutylene and its hydrogenated products, styrene- Examples include hydrogenated diene copolymers, styrene-maleic anhydride copolymers, and polyalkylstyrenes.
It is necessary to select the molecular weight of these viscosity index improvers in consideration of shear stability. Specifically, the number average molecular weight of the viscosity index improver is, for example, 5,000 to 1,000,000, preferably 100,000 to 800,000 for dispersion type and non-dispersion type polymethacrylate, and 800 to 5,000 for polyisobutylene or a hydride thereof, ethylene- 800 to 300,000, preferably 10,000 to 200,000 is preferable for the α-olefin copolymer and its hydride. Further, such a viscosity index improver can be contained singly or in any combination of two or more kinds. Usually, the content is 0.1 to 40.0% based on the lubricating oil composition. desirable.
[0043]
Further, other ashless friction modifiers include ashless friction modifiers such as borate esters, higher alcohols and aliphatic ethers, and metal-based friction modifiers such as molybdenum dithiophosphate, molybdenum dithiocarbamate and molybdenum disulfide. Is mentioned. Other ashless dispersants include polybutenylbenzylamine having a polybutenyl group having a number average molecular weight of 900 to 3500, polybutenylamine, and polybutenylsuccinimide having a polybutenyl group having a number average molecular weight of less than 900. And their derivatives.
Further, as the wear inhibitor or extreme pressure agent, disulfide, sulfurized oil and fat, sulfurized olefin, phosphate ester containing 1 to 3 hydrocarbon groups having 2 to 20 carbon atoms, thiophosphate ester, phosphite ester, And thiophosphites and amine salts thereof.
Furthermore, examples of the rust preventive include alkyl benzene sulfonate, dinonyl naphthalene sulfonate, alkenyl succinate, and polyhydric alcohol ester.
Examples of the nonionic surfactant and demulsifier include polyoxyethylene alkyl ethers, polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl phenyl ether and polyoxyethylene alkyl naphthyl ether. .
Further, examples of the metal deactivator include imidazoline, pyrimidine derivatives, thiadiazole, benzotriazole, and thiadiazole.
Furthermore, examples of the antifoaming agent include silicone, fluorosilicone, and fluoroalkyl ether.
When these additives are contained in the lubricating oil composition used in the present invention, the content thereof is, based on the total amount of the composition, other friction modifiers, other ashless dispersants, antiwear agents or extreme pressure agents. The rust preventive and the demulsifier can be appropriately selected from the range of 0.01 to 5%, and the metal deactivator can be appropriately selected from the range of 0.0005 to 1%.
[0044]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0045]
(Sliding material)
As an example of the sliding material, a test piece for pin-on-disk single friction as shown in FIG. 1 was produced. This unit test piece was composed of three pins and a disk, and was manufactured using a sliding material obtained by the following method.
-Pin material After polishing the SUJ2 material below to a predetermined pin shape, the pin was finished to various surface roughness (Ra 0.2 µm or less) by polishing using a wrapping tape.
Disc material A disc-shaped material made of various aluminum alloys was subjected to a predetermined age hardening treatment, and then a sliding surface with a pin was finished to various surface roughness by polishing.
Surface treatment The surface of the pin material finished as described above was coated with the following materials to have various film thicknesses by PVD treatment or CVD treatment. The coated surface was further finished to various surface roughnesses (Ra 0.11 μm or less) by polishing using a wrapping tape.
(1) a-C
(2) TiN
(3) CrN
(4) DLC (a-C: H)
Table 1 shows these sliding materials.
[0046]
[Table 1]
[0047]
(Preparation of lubricating oil composition)
・ Oil 1
Hydrocracked mineral oil (100 ° C. kinematic viscosity: 5.0 mm 2 / s, viscosity index: 120, total aromatic content: 5.5%) was used as a lubricating base oil, and an ester-based friction modifier (glycerin mono- Oleate), 5.0% ashless dispersant (polybutenyl succinimide (nitrogen content: 1.2%)), calcium sulfonate (total base number: 300 mg KOH / g) as a metal detergent , Calcium content: 12.0%) 0.5%, calcium phenate (total base number: 255 mg KOH / g, calcium content: 9.2%) 0.9%, and viscosity index improvement as other additives , An antioxidant, a rust inhibitor, a demulsifier, a nonionic surfactant, a metal deactivator, an antifoaming agent and the like in a total amount of 7.0%.
・ Oil 2
Addition of 0.047% of zinc dialkyldithiophosphate (zinc content: 9.3%, phosphorus content: 8.5%, alkyl group: secondary butyl group or secondary hexyl group) in terms of elemental phosphorus The same procedure as in Oil 1 was repeated except that the preparation was carried out.
・ Oil 3
Same as Oil 2 except that 1-decene oligomer hydride (100 ° C. kinematic viscosity: 3.9 mm 2 / s, viscosity index: 124, total aromatic content: 0.0%) was used as the lubricating base oil The procedure was repeated to prepare.
・ Oil 4
It was prepared by repeating the same operation as for Oil 1 except that the ester friction modifier was not added and the amine friction modifier (N, N-dipolyoxyethylene-N-oleylamine) was added at 1.0%. .
・ Oil 5
Zinc dialkyldithiophosphate (zinc content: 9.3%, phosphorus content: 8.5%, alkyl group: secondary butyl group or secondary hexyl group) was adjusted to 0.094% in terms of elemental phosphorus. Except for the above, oil was prepared by repeating the same operation as for oil 2.
・ Oil 6
It was prepared by repeating the same operation as for Oil 5, except that 0.5% of an amine friction modifier (N, N-dipolyoxyethylene-N-oleylamine) was added.
・ Oil 7
It was prepared by repeating the same operation as for Oil 2, except that the ester friction modifier (glycerin monooleate) was 0.2%.
・ Oil 8
The oil was prepared by repeating the same operation as for Oil 5, except that no ester-based friction modifier was added.
・ Oil 9
The oil was prepared by repeating the same operation as for Oil 5, except that the ester friction modifier was not added and molybdenum dithiocarbamate (molybdenum content: 4.1%) was added at 1.1%.
Table 2 shows the composition of these lubricating oil compositions and their oil properties.
[0048]
[Table 2]
[0049]
(Examples 1 to 9)
A unit test piece was prepared by combining the pin and the disk shown in Examples 1 to 9 of Table 1, and each lubricating oil composition (the above oils 1 to 7) described in each example of Table 1 was used. The following single friction test was performed. The results are shown in Table 1.
(Single friction test conditions)
Maximum Hertz pressure: 80MPa
Disk rotation speed: 30 rpm
Oil supply method: Oil bath supply oil temperature: 80 ° C
Test time: 60min
[0050]
(Comparative Examples 1 to 5)
In the same manner as described above, unit test pieces were prepared by combining the pins and disks shown in Comparative Examples 1 to 5 in Table 1, and the respective lubricating oil compositions (the above oils 5 and 8) described in Examples in Table 1 were also used. Or 9), the following single friction test was performed. The results are shown in Table 1.
From Table 1, it can be seen that all of the unit test pieces obtained in Examples 1 to 9 show excellent low friction coefficients. For example, in these, a friction reduction effect of about 40 to 60% was obtained as compared with the unit test piece of Comparative Example 1 using a combination of an iron-based material and an aluminum alloy material used in an engine.
Furthermore, from the results of Examples 1, 2 and 6, it can be seen that the smaller the content of zinc dithiophosphate, the better the friction reducing effect.
In addition, the material combination of the unit test pieces obtained in Examples 1 to 9 has no problem in the surface shape after the test, has excellent abrasion resistance, and shows stable low friction characteristics.
[0051]
In addition, the unit test piece obtained in Example 5, which is out of the preferable range of the present invention, shows a friction reducing effect as is clear from Table 1, but shows another test using an aC material containing no hydrogen. Not as effective as usual.
[0052]
On the other hand, the unit test piece material combination of Comparative Example 1 is a combination of a pin made of SU2 material and a disk made of AC2A material polished with a wrapping tape, and the pin is not coated with a surface. In this unit test, a lubricating oil composition (oil 8) containing no friction modifier used in the present invention was used. Therefore, the friction coefficient exceeds 0.1 and the friction characteristics are inferior. This is presumed to be because a reaction film mainly composed of ZnDTP was formed on the sliding surface.
Further, the material combination of the single test piece of Comparative Example 2 has the same configuration as that of Comparative Example 1. In this unit test, the lubricating oil composition (oil 5) containing the friction modifier used in the present invention is used, and although it has a slight friction reducing effect, the friction coefficient is as high as about 0.1 and the friction characteristics are inferior. This is presumed to be because a reaction film mainly composed of ZnDTP was formed on the sliding surface.
Further, the unit test piece material combination of Comparative Example 3 has the same configuration as that of Example 4, except that the organic molybdenum that was most effective as the lubricating oil composition on the sliding surface between the conventional steel materials was omitted. Even when a fuel-efficient engine oil (oil 9) is used, the friction coefficient shows a high friction coefficient close to 0.1. This is presumably because no molybdenum disulfide coating is formed on the sliding surface.
Furthermore, in the unit specimen material combination of Comparative Example 4, the lubricating oil composition (oil 5) containing the TiN-coated pin and the friction modifier used in the present invention was used, and although the friction coefficient was reduced, its absolute value was Remained close to 0.1. In addition, in the single specimen material combination of Comparative Example 5, the pins were formed by CrN coating, but no significant difference was observed between the TiN pins and the friction reducing effect.
[0053]
From Examples 1 to 9, a pin using a DLC material as in the present invention, in particular, an aC-based DLC material containing no hydrogen produced in a suitable range, a suitable aluminum alloy material and a specific friction modifier were used. When sliding under lubrication of a lubricating oil composition to which a predetermined amount has been added, a world-leading low coefficient of friction is obtained and the abrasion resistance is excellent. Further, such a remarkable friction reduction effect is extremely useful industrially, and is effective for greatly reducing friction loss of engine sliding parts and the like, that is, for improving fuel efficiency of the engine.
[0054]
As described above, the present invention has been described in detail with reference to examples and comparative examples. However, the present invention is not limited to these, and various modifications can be made within the gist of the present invention.
For example, it can be used for a gear sliding member or the like used in industrial machines.
[0055]
【The invention's effect】
As described above, according to the present invention, since the DLC member and the aluminum alloy member are slid in the presence of the lubricating oil composition containing the predetermined ashless friction modifier, extremely excellent low A low-friction sliding material and a lubricating oil composition used for the same, which exhibit frictional characteristics and can exhibit more excellent fuel-saving effects than the combination of the conventional aluminum alloy / steel material sliding part and the organic Mo compound. Can be provided.
[Brief description of the drawings]
FIG. 1 is a view schematically showing a pin-on friction tester.
Claims (10)
上記脂肪酸エステル系無灰摩擦調整剤及び/又は脂肪族アミン系無灰摩擦調整剤が炭素数6〜30の炭化水素基を有し、組成物全量基準で0.05〜3.0%含まれて成ることを特徴とする潤滑油組成物。A lubricating oil composition used for the low friction sliding material according to any one of claims 1 to 6,
The fatty acid ester-based ashless friction modifier and / or the aliphatic amine-based ashless friction modifier has a hydrocarbon group having 6 to 30 carbon atoms and is contained in an amount of 0.05 to 3.0% based on the total amount of the composition. A lubricating oil composition comprising:
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002322322A JP3594190B2 (en) | 2002-11-06 | 2002-11-06 | Low friction sliding material and lubricating oil composition used therefor |
US10/692,853 US6969198B2 (en) | 2002-11-06 | 2003-10-27 | Low-friction sliding mechanism |
DE60317026T DE60317026T2 (en) | 2002-11-06 | 2003-11-05 | Sliding mechanism with low friction |
EP03025444A EP1418353B1 (en) | 2002-11-06 | 2003-11-05 | Low-friction sliding mechanism |
AT03025444T ATE376628T1 (en) | 2002-11-06 | 2003-11-05 | LOW FRICTION SLIDING MECHANISM |
US11/123,016 US7322749B2 (en) | 2002-11-06 | 2005-05-06 | Low-friction sliding mechanism |
US11/955,949 US20080167206A1 (en) | 2002-11-06 | 2007-12-13 | Low-friction sliding mechanism |
US12/835,705 US8152377B2 (en) | 2002-11-06 | 2010-07-13 | Low-friction sliding mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002322322A JP3594190B2 (en) | 2002-11-06 | 2002-11-06 | Low friction sliding material and lubricating oil composition used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004155891A JP2004155891A (en) | 2004-06-03 |
JP3594190B2 true JP3594190B2 (en) | 2004-11-24 |
Family
ID=32802539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002322322A Expired - Fee Related JP3594190B2 (en) | 2002-11-06 | 2002-11-06 | Low friction sliding material and lubricating oil composition used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3594190B2 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005014760A1 (en) * | 2003-08-06 | 2005-02-17 | Nippon Oil Corporation | System having dlc contacting faces, method for lubricating the system and lubricating oil for the system |
US7951756B2 (en) * | 2003-08-06 | 2011-05-31 | Nippon Oil Corporation | System having DLC contact surfaces, method of lubricating the system, and lubricant for the system |
KR101003865B1 (en) * | 2003-08-06 | 2010-12-30 | 닛산 지도우샤 가부시키가이샤 | Low-Friction Sliding Mechanism, Low-Friction Agent Composition and Method of Friction Reduction |
JP4973971B2 (en) | 2003-08-08 | 2012-07-11 | 日産自動車株式会社 | Sliding member |
JP4915891B2 (en) * | 2003-08-21 | 2012-04-11 | 日産自動車株式会社 | Low friction sliding member |
US7771821B2 (en) * | 2003-08-21 | 2010-08-10 | Nissan Motor Co., Ltd. | Low-friction sliding member and low-friction sliding mechanism using same |
EP1508611B1 (en) | 2003-08-22 | 2019-04-17 | Nissan Motor Co., Ltd. | Transmission comprising low-friction sliding members and transmission oil therefor |
JP4572688B2 (en) | 2004-04-27 | 2010-11-04 | 株式会社豊田中央研究所 | Low friction sliding member |
JP4976645B2 (en) * | 2004-07-23 | 2012-07-18 | 出光興産株式会社 | Lubricating oil composition for sliding part of internal combustion engine and sliding method |
DE102004041235A1 (en) * | 2004-08-26 | 2006-03-02 | Ina-Schaeffler Kg | Wear resistant coating and method of making same |
JP2006144100A (en) * | 2004-11-24 | 2006-06-08 | Nissan Motor Co Ltd | Sliding member for automobile engine |
IN2009CN02056A (en) | 2006-10-17 | 2015-08-07 | Idemitsu Kosan Co | |
US20100190669A1 (en) * | 2007-05-24 | 2010-07-29 | The Lubrizol Corporation | Method of Lubricating an Aluminum Silicate Composite Surface with a Lubricant Comprising Ashless, Sulphur, Phosphorous Free Antiwear Agent |
JP5273337B2 (en) * | 2007-06-01 | 2013-08-28 | 神奈川県 | Low friction sliding member |
JP2011084721A (en) | 2009-09-15 | 2011-04-28 | Idemitsu Kosan Co Ltd | Sliding mechanism |
JP5990749B2 (en) | 2012-03-16 | 2016-09-14 | 出光興産株式会社 | Lubricating oil composition, sliding mechanism using the lubricating oil composition |
JP2013216872A (en) | 2012-03-16 | 2013-10-24 | Idemitsu Kosan Co Ltd | Lubricating oil composition and sliding mechanism using the same |
JP6591907B2 (en) * | 2016-02-17 | 2019-10-16 | Jxtgエネルギー株式会社 | Lubricating oil composition for internal combustion engines |
DE102020111403A1 (en) * | 2020-04-27 | 2021-10-28 | Klüber Lubrication München Se & Co. Kg | Lubricant composition and its use |
-
2002
- 2002-11-06 JP JP2002322322A patent/JP3594190B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004155891A (en) | 2004-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3555891B2 (en) | Low friction sliding material and lubricating oil composition used therefor | |
JP5058331B2 (en) | Low friction sliding member | |
JP4973971B2 (en) | Sliding member | |
JP3594190B2 (en) | Low friction sliding material and lubricating oil composition used therefor | |
US7322749B2 (en) | Low-friction sliding mechanism | |
JP2004360649A (en) | Piston pin for engine | |
JP2005054617A (en) | Valve system | |
JP3594193B1 (en) | Low friction sliding member and lubricating oil composition used for the same | |
JP2008056735A (en) | Low-friction slide mechanism and lubricant composition used therein | |
JP2005090489A (en) | Valve lifter for internal combustion engine | |
JP3965694B2 (en) | Low friction sliding cam / follower combination and lubricating oil composition used therefor | |
JP4212954B2 (en) | Hard carbon coating sliding member | |
JP4915891B2 (en) | Low friction sliding member | |
JP3594194B1 (en) | Low friction sliding mechanism and lubricating oil composition used therefor | |
JP2004358495A (en) | Jig for cold drawing and lubricating oil composition used therefor | |
JP2005002888A (en) | Piston ring for automobile engine and lubricating oil composition used therefor | |
JP2005069249A (en) | Connecting structure of piston and crank shaft | |
JP2005069008A (en) | Combination of cylinder and piston of internal combustion engine | |
JP2005003094A (en) | Automobile engine | |
JP2005048801A (en) | Sealed device | |
JP4600719B2 (en) | Differential unit | |
JP2005090738A (en) | Rolling bearing | |
JP4006644B2 (en) | Valve mechanism for internal combustion engine | |
JP4458228B2 (en) | Belt type continuously variable transmission | |
JP4200841B2 (en) | Chain guide or chain tensioner shoe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040331 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20040331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040713 |
|
TRDD | Decision of grant or rejection written | ||
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20040823 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040826 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040826 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3594190 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080910 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090910 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100910 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100910 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110910 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120910 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |