[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3591927B2 - Cryogenic liquid with multiple components and boil-off gas treatment device - Google Patents

Cryogenic liquid with multiple components and boil-off gas treatment device Download PDF

Info

Publication number
JP3591927B2
JP3591927B2 JP21687495A JP21687495A JP3591927B2 JP 3591927 B2 JP3591927 B2 JP 3591927B2 JP 21687495 A JP21687495 A JP 21687495A JP 21687495 A JP21687495 A JP 21687495A JP 3591927 B2 JP3591927 B2 JP 3591927B2
Authority
JP
Japan
Prior art keywords
heat exchanger
low
gas
boil
temperature liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21687495A
Other languages
Japanese (ja)
Other versions
JPH0960799A (en
Inventor
裕 伊藤
敏則 新居
政美 山根
幸雄 岩田
義彦 山下
恭士 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Osaka Gas Co Ltd
Original Assignee
Kobe Steel Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Osaka Gas Co Ltd filed Critical Kobe Steel Ltd
Priority to JP21687495A priority Critical patent/JP3591927B2/en
Priority to KR1019960034804A priority patent/KR970011764A/en
Publication of JPH0960799A publication Critical patent/JPH0960799A/en
Application granted granted Critical
Publication of JP3591927B2 publication Critical patent/JP3591927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液化天然ガス(以下、LNGと称する。)等、複数成分をもつ低温液体を貯槽内から送出するとともに、上記貯槽内で発生したボイルオフガス(以下、BOGと称する。)を貯槽外に取り出して液化してから上記貯槽内に還元するための装置に関するものである。
【0002】
【従来の技術】
一般に、LNG基地に貯蔵されたLNGは、専用のポンプで昇圧された後、LNG気化器で気化され、天然ガス(以下、NGと称する。)として需要地へ供給される。このLNG供給システムにおいて、上記LNGの貯槽内でLNGから蒸発したメタンガスを主成分とするBOGについては、このBOGを上記貯槽から抜き出して圧縮機で昇圧し、NGに混合して利用に供することが可能である。例えば図4に示す装置では、LNG貯槽80内のLNGを第1ポンプ82で貯槽外へ送出し、さらにこれを第2ポンプ92で圧縮し、LNG配管83を通じて気化器94に送り、気化させてNGを生成する一方、LNG貯槽80内で発生したBOGはBOG配管途中のBOG圧縮機86で上記NGと同等の圧力まで昇圧させてから、このNGに合流させることができる。
【0003】
しかし、上記LNG貯槽80内へのLNGの受入れ及び上記貯槽内からのLNGの払出の頻度が少ない場合、すなわち、上記LNG貯槽80内に長期間LNGが滞留する場合には、上記LNG貯槽80からBOGを抜き出し続けると、貯槽内に収容されたLNGにおけるメタン成分が減ってそれ以外の成分の濃度が上昇する(すなわちLNGが濃縮される)ことになる。ここで、特に都市ガス供給事業では、LNGの気化後、図4に示すようにプロパン等の添加によって送出ガスの熱量調整を行っており、上記のような濃縮が進むとLNGの熱量が大きくなり過ぎてその調整が困難になるおそれがある。このような不都合は、上記LNGに限らず、複数成分をもつ低温液体からそのBOGを抜き出す場合に発生する。
【0004】
そこで、上記のようなLNG等の濃縮を防ぐべく、BOGを一旦貯槽から抜き出した後、これを圧縮、液化して貯槽に還元するようにした装置が知られるに至っている。その一例を図5に示す。図において、第2ポンプ92で圧縮されたLNGは、熱交換器88で加温され、気化器94で気化されてNGとして使用に供される。一方、BOG圧縮機84で圧縮されたBOGは熱交換器88で上記LNGとの熱交換により冷却され、少なくとも一部が液化される。そして、減圧弁87を通じて気液分離器85に導入され、液体成分のみが液体用配管84lを通じてLNG貯槽80に還元され、ガス成分はガス用配管84gを通じて上記BOG圧縮機86の入口側に戻される。
【0005】
この装置によれば、BOGの還元によってLNG貯槽80内のLNGの濃縮を防止できるが、BOGを還元するのに多量のLNGが必要となる。従って、LNGの送出量が多い昼間にはBOGの液化、還元が可能であるが、LNGの送出量が少ない夜間ではBOGを液化できない不都合がある。
【0006】
このような不都合を解消すべく、特開昭59−18369号公報には、LPG等の低温液体を蓄冷容器で蓄冷しておき、貯槽から抜き出して圧縮したBOGを上記蓄冷容器の蓄えた冷熱で液化するようにした装置が提案されている。この装置によれば、低温液体の払出量が多い時にその冷熱を蓄冷容器に蓄えておくことにより、低温液体の払出量が少ない時に上記冷熱を用いてBOGを圧縮することができる。
【0007】
しかし、この装置では、蓄冷容器内に収容される蓄冷媒体として比較的凝固点の低いものが用いられており、この蓄冷媒体は運転中常に液相を保っているので、上記蓄冷には蓄冷媒体の液顕熱しか利用できない。従って、運転条件によっては上記蓄冷容器として極めて大きなものを使用しなければならない不都合がある。
【0008】
これに対し、特開昭63−163769号公報には、蓄冷媒体の液潜熱を利用して蓄冷を行う装置が開示されるに至っている。この装置を図6に示す。図において、LPG等の低温液体は、貯槽80内から配管83を通じて気化器94へ送られるが、その一部は気化器94の手前から蓄冷容器90内の伝熱管92Lに通され、上記配管83に戻される。従って、この低温液体の払出量が多い場合には、上記蓄冷容器90内の蓄冷媒体89が凝固する。
【0009】
一方、貯槽80内のBOGは、BOG圧縮機86で昇圧された後、上記蓄冷容器90内の伝熱管92Gに通され、この蓄冷容器90内の蓄冷媒体89の冷熱によって冷却、液化されてから気液分離器85へ導入され、その液体成分が貯槽80内に還元される。ここで、上記低温液体の払出量が少ない場合、上記BOGは、上記低温液体の払出量が多いときに凝固した蓄冷媒体89を融解させ、その溶解潜熱によって冷却される。
【0010】
すなわち、この装置では、上記蓄冷媒体89の凝固潜熱を利用して蓄冷が行われ、融解潜熱によってBOGの冷却、液化が行われるため、液顕熱のみを利用する装置に比べ、蓄冷容器90の規模を大幅に小さくすることができる。
【0011】
【発明が解決しようとする課題】
上記装置において、低温液体用伝熱管92Lの周囲には、蓄冷媒体89の凍結体が終始まとわりついた状態となっており、これが伝熱性能を著しく低下させる要因となっている。しかも、この低温液体用の伝熱管92LとBOG用の伝熱管92Gとは互いに離間した状態で蓄冷容器90内に収容されているため、上記凍結体自身のもつ冷熱さえもBOG用伝熱管92G及びその中を流れるBOGに効果的に伝えることができない不都合がある。さらに、この装置では2種の伝熱管92L,92Gを蓄冷容器89内に収容しなければならないので、構造が複雑であり、その分設備コストも高くなる。
【0012】
本発明は、このような事情に鑑み、簡単な構造で、貯槽から取り出したBOGを効率良く液化し、還元できる処理装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、貯槽内に収容された複数成分をもつ低温液体を貯槽外へ送出するための低温液体用配管と、この低温液体用配管を通じて上記貯槽内の低温液体を貯槽外へ送出する液体送出手段と、上記貯槽内で発生したボイルオフガスを貯槽外に導出するためのボイルオフガス用配管と、このボイルオフガス用配管を通じて上記貯槽内のボイルオフガスを貯槽外へ導出して圧縮するガス圧縮手段と、このガス圧縮手段で圧縮されたボイルオフガスと上記低温液体から送出される上記低温液体とを熱交換させて上記ボイルオフガスを液化する熱交換器とを備え、その液化成分が上記貯槽内に還元されるように構成した複数成分をもつ低温液体及びそのボイルオフガスの処理装置において、上記熱交換器とは別に設置され、上記ボイルオフガスの液化温度近傍で凝固する蓄冷媒体を収容し、この蓄冷媒体内に伝熱管が浸漬された蓄冷容器と、この蓄冷容器内の伝熱管を含み、上記低温液体用配管及びボイルオフガス用配管とは独立して設置された循環配管と、この循環配管内で所定の循環液体を循環させる循環手段とを備えるとともに、上記熱交換器を、上記貯槽内から上記ボイルオフガス用配管内に送出され、上記ガス圧縮手段で圧縮されたボイルオフガスと、上記貯槽内から上記低温液体用配管内に送出された低温液体と、上記循環配管内を循環する循環液体との間で同時に熱交換させるように構成したものである(請求項1)。
【0014】
さらに、上記ガス圧縮手段で圧縮されて上記熱交換器に入る前のボイルオフガスと上記熱交換器から出た低温液体とを熱交換させる副熱交換器と、気化器とを備え、上記熱交換器では上記低温液体が液相を保つようにこの熱交換器を構成し、この熱交換器を出た低温液体が上記副熱交換器と上記気化器とに分流するように配管することにより、後述のようなより優れた効果が得られる(請求項2)。
【0015】
この場合、上記熱交換器と副熱交換器とを単一のプレートフィン型熱交換器で構成し、このプレートフィン型熱交換器の途中に上記低温液体を上記気化器側へ抜き出すための抜き出し部を設けることが、さらに好ましい(請求項3)。
【0016】
請求項1記載の装置によれば、液体送出手段による低温液体の送出量が多い期間では、この低温液体とガス圧縮手段で圧縮されたBOGとが熱交換器で熱交換することにより、このBOGが冷却、液化され、上記低温液体の貯槽内に還元されると同時に、上記熱交換器で低温液体と循環液体とが熱交換することにより、この循環液体も冷却され、この循環液体が蓄冷容器内の伝熱管を通ることによってこの蓄冷容器内の蓄冷媒体も冷却され、凝固する。
【0017】
一方、上記低温液体の送出量が少なくて圧縮BOGを液化するのに不十分な期間では、凝固した蓄冷媒体との熱交換で低温状態にある循環液体と圧縮BOGとが上記熱交換器で熱交換することにより、圧縮BOGがやはり冷却、液化され、貯槽内に還元される。この時、循環液体は逆に加温され、この循環液体との熱交換で蓄冷媒体は徐々に融解する。
【0018】
すなわち、この装置では、蓄冷媒体の凝固潜熱を利用して蓄冷がなされ、低温液体の送出量が低いときでも蓄冷媒体の融解潜熱によって圧縮BOGの冷却、液化が可能となっている。しかも、図6に示した従来装置のように低温液体と圧縮BOGとを蓄冷容器内で蓄冷媒体を介して熱交換させるのではなく、熱交換器で低温液体と圧縮BOGとを直接熱交換させ、かつ、これら低温液体及び圧縮BOGを蓄冷媒体と熱交換する循環液体と熱交換させるものであるので、蓄冷容器内で伝熱管の周囲が凍結していても熱交換器での流体相互の伝熱性能には影響がなく、この熱交換器内で常に効率の良いBOGの冷却、液化を実行できる。
【0019】
この装置において、最終的に低温液体を気化器で気化する場合、送出された低温液体が熱交換器における圧縮BOGと熱交換して低温液体の一部のみが気化されると、この熱交換器の下流は気液二相流となり、気化器に偏流が生じて気化器本来の性能が失われるおそれがある。また、上記のような熱交換器内での気化を避けるべく、この熱交換器内でのLNGと圧縮BOGとの熱交換量を制限すると、圧縮BOGを十分に冷却、液化できなくなるおそれがある。
【0020】
しかし、請求項2記載の装置では、上記ガス圧縮手段で圧縮されて上記熱交換器に入る前のBOGと上記熱交換器から出た低温液体とを熱交換させる副熱交換器が付加されるとともに、低温液体が上記熱交換器で液相を保つように熱交換器が構成され、かつ、この熱交換器を出た低温液体が上記副熱交換器と気化器とに分流するように配管がなされているので、気化器及び副熱交換器の入口に気液二相流が導入されるのを回避できる。また、副熱交換器にはこの副熱交換器で完全気化できるだけの低温液体を流し、残りを気化器で気化するといった運転を行うことにより、全ての低温液体を効率良く気化処理することができる。しかも、副熱交換器で圧縮BOGが予冷されるため、熱交換器のBOG液化量は十分に確保される。
【0021】
ただし、このような装置でも、その運転条件の変動により熱交換器内で低温液体の気化が始まるおそれがあり、上記熱交換器と副熱交換器とが分割されていると、副熱交換器の入口に流れの不安定な気液二相流が導入されることになるが、請求項3記載の装置では、上記熱交換器と副熱交換器とが単一のプレートフィン型熱交換器で構成されており、熱交換器の通路と副熱交換器の通路とが配管を介さずに連続しているので、仮に低温液体の気化時点が変動して熱交換器内で低温液体の気化が始まっても、そのまま副熱交換器へ円滑に低温液体を導入でき、副熱交換器本来の熱交換性能を十分に維持できる。
【0022】
【発明の実施の形態】
本発明の第1実施形態を図1に基づいて説明する。なお、以下の実施形態では低温液体としてLNGを処理する場合について説明するが、本発明の処理対象となる低温液体は、複数成分を有し、かつその一部がBOGとなるものであればよく、例えば液化石油ガス(LPG)の処理にも応用できるものである。
【0023】
図1において、LNG貯槽10内には第1ポンプ(送出手段)12が設けられており、この第1ポンプ12の吐出口がLNG用配管13に接続され、このLNG用配管13の途中に第2ポンプ22、熱交換器18、及び気化器24が配設されている。
【0024】
上記LNG貯槽10の頂部にはBOG用配管14の一端が接続され、他端が気液分離器15に接続されており、このBOG用配管14の途中にBOG圧縮機(第1ガス圧縮手段)16、上記熱交換器18、及び減圧弁17が設けられている。上記気液分離器20の頂部は、ガス還流配管14gを介して上記BOG用配管14の入口部分に接続され、上記気液分離器20の底部は、液体還流配管14lを介して上記LNG貯槽10に接続されている。
【0025】
さらに、この装置の特徴として、上記LNG配管13及びBOG配管14とは独立して循環配管30が設置されている。この循環配管30の途中には、蓄冷容器32と、循環ポンプ(循環手段)38と、上記熱交換器18とが設けられている。蓄冷容器32内には蓄冷媒体34が収容され、この蓄冷媒体34中に伝熱管36が浸漬されており、この伝熱管36が循環経路の一部を構成している。そして、上記循環ポンプ38の作動により、所定の循環液体が上記循環配管30内を循環するように構成されている。
【0026】
ここで、上記蓄冷媒体34は、BOGの液化温度近傍で凝固する物質であればよく、ブタン、ノルマルペンタン、1−プロパノール、あるいはこれらの混合物等が好適である。また、循環液体は、この装置の運転温度レベルで凝固せず、液相を保ったまま循環できるものであればよく、プロパン等が好適である。
【0027】
そして、上記熱交換器18は、BOG圧縮機16から吐出された圧縮BOGと、第2ポンプ22から吐出されたLNGと、上記循環配管30を循環する循環液体との間で同時に熱交換を行わせる3流体熱交換器とされている。
【0028】
次に、この装置の作用を説明する。
【0029】
LNG貯槽10内のLNGは、第1ポンプ12の作動でLNG配管13内に送出され、さらに第2ポンプ22で加圧された後、熱交換器18を通り、気化器24で気化される。一方、上記LNG貯槽10内でLNGから蒸発したBOGは、配管14の途中に設けられたBOG圧縮機16で適当な圧力(約9kg/cmG)まで昇圧された後、熱交換器18に導入される。
【0030】
ここで、昼間のように、LNG貯槽10からのLNG送出量が多い期間では、このLNGと上記圧縮BOGとが熱交換器18で熱交換することにより、圧縮BOGが冷却、液化され、減圧弁17を通じて気液分離器15に導入される。そして、この気液分離器15底部の液体成分がLNG貯槽10内に還元され、ガス成分がBOG圧縮機16の入口側に戻される。これと同時に、上記LNGと循環液体とが同じ熱交換器18で熱交換することにより、循環液体も冷却され、この低温の循環液体と蓄冷容器30内の蓄冷媒体34とが伝熱管36を通じて熱交換することにより、蓄冷媒体34も冷却されて凝固する。
【0031】
すなわち、多量に送出されたLNGの余剰冷熱は、蓄冷媒体34の凝固潜熱を利用して蓄えられる。
【0032】
その後、夜間のように、LNG貯槽10からのLNG送出量が低い期間に入ると、送出LNGのもつ冷熱だけでは上記圧縮BOGを液化冷却できなくなるが、この期間では、熱交換器18において、低温状態にある循環液体との熱交換によって上記圧縮BOGの冷却が補助されるため、圧縮BOGは昼間と同様に液化され、減圧弁17を通じて気液分離器15に導入され、液体成分がLNG貯槽10内に還元される。圧縮BOGと熱交換した循環液体は、伝熱管36を流れることによって蓄冷容器32内の蓄冷媒体34を徐々に融解させ、この融解潜熱によって冷却されることにより、圧縮BOGと熱交換しながらも低温状態を維持する。
【0033】
すなわち、この期間では、蓄冷媒体34の融解潜熱を利用して圧縮BOGの冷却、液化が行われる。
【0034】
以上のように、この実施形態に示した装置では、LNG送出量が多いときにその冷熱を蓄え、LNG送出量が少ないときに蓄冷を利用して圧縮BOGを冷却、液化するようにしているので、LNG送出量にかかわらず、常に良好なBOGの液化、還元処理をすることができる。また、蓄冷媒体34の液潜熱を利用して上記蓄冷を行っているので、蓄冷媒体の液顕熱のみを利用する場合に比べ、蓄冷容器32の規模を大幅に縮小できる。
【0035】
さらに、この装置では、図6に示した従来装置のようにLNGと圧縮BOGとを蓄冷容器内で蓄冷媒体を介して熱交換させるのではなく、熱交換器18でLNGと圧縮BOGとを直接熱交換させ、かつ、これらLNG及び圧縮BOGを循環液体を媒介として蓄冷媒体34と熱交換させるものであるので、蓄冷容器32内で伝熱管36の周囲が凍結していても流体相互の伝熱性能には影響を受けず、上記熱交換器18内で常に効率の良いBOGの冷却、液化を行うことができる。また、上記蓄冷容器32内に収容する伝熱管は、単一の循環液体用伝熱管36だけで良く、蓄冷容器32の構造をより簡素化して低コスト化を図ることができる。
【0036】
*実験データ
従来装置(図5のように蓄冷無しで送出LNGの冷熱のみによってBOGを冷却、液化する装置)と、本実施形態装置とについて実験を行った結果、次のようなデータを得ることができた。
【0037】
【表1】

Figure 0003591927
【0038】
この表から明らかなように、従来装置では、蓄冷を行わないため、BOGを液貸すのに、昼夜を問わず常に一定以上のLNG送出流量を要するのに対し、本実施形態装置では、昼間にLNGの冷熱を蓄えることによって、夜間、LNG送出量が0であっても不都合なくBOGを液化することが可能となっている。
【0039】
次に、第2実施形態を図2に基づいて説明する。前記第1実施形態において、第2ポンプ22から吐出されたLNGと熱交換器18における圧縮BOGとの熱交換で上記LNGの一部のみが気化されると、この熱交換器18の下流は気液二相流となり、気化器24に偏流が生じて気化器24本来の性能が失われるおそれがある。また、上記のような熱交換器18内での気化を避けるべく、この熱交換器18内でのLNGと圧縮BOGとの熱交換量を制限すると、圧縮BOGを十分に冷却、液化できなくなるおそれがある。
【0040】
そこでこの実施形態では、熱交換器18内でLNGが液相を保てる程度まで熱交換器18でのLNGと圧縮BOGとの熱交換量を制限した上で、上記熱交換器18とは別に2流体熱交換器である副熱交換器19を導入し、熱交換器18から出たLNGと熱交換器18に入る前の圧縮BOGとを副熱交換器19内で熱交換させるようにし、上記熱交換器18を出たLNGを気化器24と副熱交換器19とに分流させるように、上記LNG配管13を熱交換器18と副熱交換器19との間で気化器用配管13vと副熱交換器用配管13cとに分岐させている。
【0041】
この装置によれば、副熱交換器19及び気化器24の入口には常に単相流(液相流)を流すことができ、偏流発生を防止できる。また、副熱交換器19に対してはこの副熱交換器19での熱交換で完全気化できるだけの量を流し、残りの液体成分を全て気化器24に流すように運転することにより、全てのLNGを効率良く気化処理することができる。しかも、圧縮BOGについては、熱交換器18に導入する前に副熱交換器19で予冷しておくことにより、十分なBOG液化量を確保できる。
【0042】
次に、第3実施形態を図3に基づいて説明する。前記第2実施形態のように、熱交換器18と副熱交換器19とが分割されていると、両熱交換器間を配管でつなぐ必要があり、構造が複雑になる。また、運転条件の変動によってLNGの気化時点が早まり、熱交換器18内でLNGの気化が始まってしまうと、副熱交換器19の入口には流れが不均一な気液二相流が導入されることになり、副熱交換器19本来の性能を損なうおそれがある。
【0043】
そこでこの実施形態では、上記熱交換器と副熱交換器とを合体させて単一のプレートフィン型熱交換器20とし、このプレートフィン型熱交換器20の途中にLNGを気化器24側へ抜き出すための抜き出し部20aを設けるようにしている。
【0044】
この装置によれば、熱交換器の通路と副熱交換器の通路とが配管を介さずに連続しているので、仮に低温液体の気化時点が変動して熱交換器内で低温液体の気化が始まっても、副熱交換器へは気液二相流のまま円滑にLNGが導入され、その熱交換器性能を良好に維持できる。また、配管数が大幅に減って構造が簡略化されるため、コストも削減できる。
【0045】
【発明の効果】
以上のように本発明は、蓄冷容器内の伝熱管を通じて循環液体を循環させるとともに、この循環液体と圧縮BOGと送出低温液体とを同時に熱交換させる熱交換器を備え、上記蓄冷容器内の蓄冷媒体の凝固潜熱を利用して低温液体の冷熱を蓄えるようにしたものであるので、低温液体と圧縮BOGとを蓄冷容器内で蓄冷媒体を介して熱交換させる従来装置と異なり、蓄冷容器内で伝熱管の周囲が凍結していても伝熱性能を損なうことなく、熱交換器内で常に効率の良い熱交換を行い、BOGを良好に冷却、液化できる効果がある。また、蓄冷容器内には単一の循環液体用伝熱管を配するだけでよく、蓄冷容器の構造も簡略化して低コスト化を実現できる。
【0046】
さらに、請求項2記載の装置では、上記ガス圧縮手段で圧縮されて上記熱交換器に入る前のBOGと上記熱交換器から出た低温液体とを熱交換させる副熱交換器を付加するとともに、低温液体が上記熱交換器で液相を保つように熱交換器を構成し、かつ、この熱交換器を出た低温液体が上記副熱交換器と気化器とに分流するように配管したものであるので、気化器及び副熱交換器の入口に流れの不安定な気液二相流が導入されるのを回避し、副熱交換器にはこの副熱交換器で完全気化できるだけの低温液体を流し、残りを気化器で気化するといった運転を行うことにより、全ての低温液体を効率良く気化処理できる一方、副熱交換器で圧縮BOGを予冷しておくことにより、熱交換器で十分なBOG液化量を確保できる効果がある。
【0047】
さらに、請求項3記載の装置は、上記熱交換器と副熱交換器とを単一のプレートフィン型熱交換器で構成し、その途中に気化器への低温液体の抜き出し部を設けたものであるので、必要配管数を大幅に削減して構造をより簡素化するとともに、熱交換器の通路と副熱交換器の通路とを無配管で連続させることにより、低温液体の気化時点が変動して熱交換器内で低温液体の気化が始まっても、そのまま副熱交換器へ円滑に低温液体を移送でき、副熱交換器本来の熱交換性能を十分に維持できる効果がある。
【図面の簡単な説明】
【図1】本発明の第1実施形態におけるLNG及びそのBOGの処理装置を示すフローシートである。
【図2】本発明の第2実施形態におけるLNG及びそのBOGの処理装置を示すフローシートである。
【図3】本発明の第3実施形態におけるLNG及びそのBOGの処理装置を示すフローシートである。
【図4】従来のLNG及びそのBOGの処理装置の一例を示すフローシートである。
【図5】従来の低温液体及びそのBOGの処理装置の一例を示すフローシートである。
【図6】従来の低温液体及びそのBOGの処理装置の一例を示すフローシートである。
【符号の説明】
10 LNG貯槽
12 第1ポンプ(送出手段)
13 LNG用配管
14 BOG用配管
15 気液分離器
16 BOG圧縮機(ガス圧縮手段)
18 熱交換器
19 副熱交換器
20 プレートフィン型熱交換器
20a 抜き出し部
22 第2ポンプ
24 気化器
30 循環配管
32 蓄冷容器
34 蓄冷媒体
36 伝熱管
38 循環ポンプ(循環手段)[0001]
TECHNICAL FIELD OF THE INVENTION
In the present invention, a low-temperature liquid having a plurality of components, such as liquefied natural gas (hereinafter, referred to as LNG), is delivered from a storage tank, and boil-off gas (hereinafter, referred to as BOG) generated in the storage tank is stored outside the storage tank. The present invention relates to a device for taking out and liquefying the liquid and returning it to the storage tank.
[0002]
[Prior art]
Generally, LNG stored in an LNG base is pressurized by a dedicated pump, then vaporized by an LNG vaporizer, and supplied to a demand area as natural gas (hereinafter, referred to as NG). In this LNG supply system, with respect to BOG mainly composed of methane gas evaporated from LNG in the LNG storage tank, the BOG can be extracted from the storage tank, pressurized by a compressor, and mixed with NG for use. It is possible. For example, in the apparatus shown in FIG. 4, LNG in the LNG storage tank 80 is sent out of the storage tank by the first pump 82, further compressed by the second pump 92, sent to the vaporizer 94 through the LNG pipe 83, and vaporized. While NG is generated, BOG generated in the LNG storage tank 80 can be combined with this NG after being boosted to a pressure equivalent to NG by the BOG compressor 86 in the middle of the BOG pipe.
[0003]
However, if the frequency of receiving LNG into the LNG storage tank 80 and paying out LNG from the storage tank is low, that is, if LNG stays in the LNG storage tank 80 for a long time, the LNG storage tank 80 If BOG is continuously extracted, the methane component in LNG contained in the storage tank decreases, and the concentration of other components increases (that is, LNG is concentrated). Here, especially in the city gas supply business, after the LNG is vaporized, the calorific value of the delivered gas is adjusted by adding propane or the like as shown in FIG. 4, and as the concentration proceeds as described above, the calorific value of the LNG increases. May be difficult to adjust. Such inconvenience occurs not only in the case of the above-mentioned LNG but also in a case where the BOG is extracted from a low-temperature liquid having a plurality of components.
[0004]
Therefore, in order to prevent the above-mentioned concentration of LNG or the like, there has been known an apparatus in which BOG is once extracted from a storage tank and then compressed and liquefied to be returned to the storage tank. An example is shown in FIG. In the figure, LNG compressed by a second pump 92 is heated by a heat exchanger 88, vaporized by a vaporizer 94, and used as NG. On the other hand, the BOG compressed by the BOG compressor 84 is cooled by heat exchange with the LNG in the heat exchanger 88, and at least a part thereof is liquefied. Then, the liquid component is introduced into the gas-liquid separator 85 through the pressure reducing valve 87, only the liquid component is reduced to the LNG storage tank 80 through the liquid pipe 84l, and the gas component is returned to the inlet side of the BOG compressor 86 through the gas pipe 84g. .
[0005]
According to this apparatus, the concentration of LNG in the LNG storage tank 80 can be prevented by reducing BOG, but a large amount of LNG is required to reduce BOG. Therefore, liquefaction and reduction of BOG can be performed during the daytime when the amount of LNG delivered is large, but there is a disadvantage that BOG cannot be liquefied during nighttime when the amount of LNG delivered is small.
[0006]
In order to solve such inconveniences, JP-A-59-18369 discloses that low-temperature liquid such as LPG is stored in a cold storage container, and BOG extracted from the storage tank and compressed is stored in the cold storage container. A device for liquefaction has been proposed. According to this device, when the amount of low-temperature liquid to be discharged is large, the cold heat is stored in the cold storage container, so that when the amount of low-temperature liquid to be discharged is small, the BOG can be compressed using the low-temperature liquid.
[0007]
However, in this device, a refrigerant having a relatively low freezing point is used as the refrigerant stored in the regenerator, and the refrigerant always maintains a liquid phase during operation. Only liquid sensible heat is available. Therefore, there is a disadvantage that an extremely large regenerator must be used depending on the operating conditions.
[0008]
On the other hand, Japanese Patent Application Laid-Open No. 63-163969 discloses a device that performs cold storage using liquid latent heat of a refrigerant storage medium. This device is shown in FIG. In the figure, a low-temperature liquid such as LPG is sent from a storage tank 80 to a vaporizer 94 through a pipe 83, and a part of the low-temperature liquid is passed through a heat transfer pipe 92L in a cold storage container 90 from just before the vaporizer 94, and the pipe 83 Is returned to. Therefore, when the discharge amount of the low-temperature liquid is large, the refrigerant storage 89 in the cold storage container 90 solidifies.
[0009]
On the other hand, after the BOG in the storage tank 80 is pressurized by the BOG compressor 86, the BOG is passed through a heat transfer tube 92G in the cold storage container 90, and cooled and liquefied by the cold heat of the refrigerant storage 89 in the cold storage container 90. The liquid component is introduced into the gas-liquid separator 85, and the liquid component is reduced into the storage tank 80. Here, when the discharge amount of the low-temperature liquid is small, the BOG melts the solidified refrigerant storage body 89 when the discharge amount of the low-temperature liquid is large, and is cooled by the latent heat of melting.
[0010]
In other words, in this apparatus, the cold storage is performed using the latent heat of solidification of the refrigerant body 89, and the BOG is cooled and liquefied by the latent heat of fusion. The scale can be significantly reduced.
[0011]
[Problems to be solved by the invention]
In the above-described device, the frozen body of the refrigerant body 89 is fixed around the low-temperature liquid heat transfer tube 92L, and this is a factor that significantly reduces the heat transfer performance. In addition, since the heat transfer tube 92L for the low-temperature liquid and the heat transfer tube 92G for the BOG are housed in the cold storage container 90 in a state of being separated from each other, even the cold heat of the frozen body itself is not included in the heat transfer tube 92G for the BOG. There is a disadvantage that it cannot be effectively transmitted to the BOG flowing therein. Further, in this device, since two types of heat transfer tubes 92L and 92G must be accommodated in the cold storage container 89, the structure is complicated, and the equipment cost increases accordingly.
[0012]
In view of such circumstances, an object of the present invention is to provide a processing apparatus capable of efficiently liquefying and reducing BOG taken out of a storage tank with a simple structure.
[0013]
[Means for Solving the Problems]
The present invention provides a low-temperature liquid pipe for sending a low-temperature liquid having a plurality of components contained in a storage tank to the outside of the storage tank, and a liquid delivery for sending the low-temperature liquid in the storage tank to the outside of the storage tank through the low-temperature liquid pipe. Means, boil-off gas piping for leading the boil- off gas generated in the storage tank to the outside of the storage tank, and gas compression means for guiding the boil-off gas in the storage tank to the outside of the storage tank through the boil-off gas piping for compression. A heat exchanger for liquefying the boil-off gas by exchanging heat between the boil-off gas compressed by the gas compression means and the low-temperature liquid sent from the low-temperature liquid, and the liquefied component is reduced into the storage tank. in the processing apparatus of the cryogenic liquid and the boil-off gas having a plurality of components configured to be, and the heat exchanger is installed separately from the liquefaction of the BOG Housing the cold storage medium to coagulate in degrees near the cool storage container heat transfer tube is immersed in the cold-storage medium, comprising a heat transfer tube of the cold storage container, independently of the above low temperature liquid pipe and boil-off gas pipe And a circulating means for circulating a predetermined circulating liquid in the circulating pipe.The heat exchanger is sent from the storage tank to the boil-off gas pipe, and the gas is compressed. The boil-off gas compressed by the means, the low-temperature liquid sent from the storage tank into the low-temperature liquid pipe, and the circulating liquid circulating in the circulation pipe are configured to simultaneously perform heat exchange. (Claim 1).
[0014]
The heat exchanger further includes a sub-heat exchanger for exchanging heat between the boil-off gas compressed by the gas compression unit before entering the heat exchanger and the low-temperature liquid discharged from the heat exchanger, and a vaporizer. In the vessel, the heat exchanger is configured so that the low-temperature liquid maintains a liquid phase, and piping is arranged such that the low-temperature liquid that has exited the heat exchanger is divided into the sub heat exchanger and the vaporizer. More excellent effects are obtained as described below (claim 2).
[0015]
In this case, the heat exchanger and the sub heat exchanger are constituted by a single plate-fin heat exchanger, and the low-temperature liquid is withdrawn to the vaporizer side in the middle of the plate-fin heat exchanger. It is more preferable to provide a portion (claim 3).
[0016]
According to the first aspect of the present invention, during a period in which the amount of the low-temperature liquid delivered by the liquid delivery means is large, the low-temperature liquid and the BOG compressed by the gas compression means exchange heat with the heat exchanger, thereby forming the BOG. Is cooled and liquefied, and is returned to the low-temperature liquid storage tank. At the same time, the low-temperature liquid and the circulating liquid exchange heat with the heat exchanger, so that the circulating liquid is also cooled. By passing through the heat transfer tube in the inside, the refrigerant storage body in the cold storage container is also cooled and solidified.
[0017]
On the other hand, during a period in which the amount of the low-temperature liquid delivered is small and the compressed BOG is insufficient to liquefy the compressed BOG, the circulating liquid and the compressed BOG in the low-temperature state by the heat exchange with the solidified refrigerant storage medium are heated by the heat exchanger. By exchanging, the compressed BOG is also cooled, liquefied and returned to the storage tank. At this time, the circulating liquid is heated in reverse, and the refrigerant medium gradually melts by heat exchange with the circulating liquid.
[0018]
That is, in this device, the cold storage is performed using the latent heat of solidification of the refrigerant storage medium, and even when the low-temperature liquid delivery amount is low, the cooling BOG can be cooled and liquefied by the latent heat of fusion of the refrigerant storage medium. In addition, instead of exchanging heat between the low-temperature liquid and the compressed BOG through the refrigerant medium in the regenerator as in the conventional apparatus shown in FIG. 6, the heat exchanger directly exchanges heat between the low-temperature liquid and the compressed BOG. In addition, since the low-temperature liquid and the compressed BOG are heat-exchanged with the circulating liquid that exchanges heat with the refrigerant storage medium, even if the surroundings of the heat transfer tubes are frozen in the cold storage container, the mutual exchange of fluids in the heat exchanger is performed. There is no effect on the thermal performance, and efficient BOG cooling and liquefaction can always be performed within this heat exchanger.
[0019]
In this apparatus, when the low-temperature liquid is finally vaporized by the vaporizer, the discharged low-temperature liquid exchanges heat with the compressed BOG in the heat exchanger and only a part of the low-temperature liquid is vaporized. Downstream of the gas flow becomes a gas-liquid two-phase flow, and a drift occurs in the vaporizer, which may cause loss of the original performance of the vaporizer. Further, if the amount of heat exchange between LNG and the compressed BOG in the heat exchanger is limited in order to avoid vaporization in the heat exchanger as described above, the compressed BOG may not be sufficiently cooled and liquefied. .
[0020]
However, in the apparatus according to the second aspect, an auxiliary heat exchanger for exchanging heat between the BOG compressed by the gas compression means and entering the heat exchanger and the low-temperature liquid discharged from the heat exchanger is added. In addition, a heat exchanger is configured so that the low-temperature liquid keeps a liquid phase in the heat exchanger, and piping is arranged so that the low-temperature liquid exiting the heat exchanger is divided into the sub heat exchanger and the vaporizer. Therefore, the introduction of the gas-liquid two-phase flow into the inlets of the vaporizer and the sub-heat exchanger can be avoided. In addition, the low-temperature liquid that can be completely vaporized by the sub-heat exchanger is flowed into the sub-heat exchanger, and the operation of vaporizing the remainder with the vaporizer is performed, so that all the low-temperature liquid can be efficiently vaporized. . In addition, since the compressed BOG is pre-cooled in the sub heat exchanger, the BOG liquefaction amount in the heat exchanger is sufficiently ensured.
[0021]
However, even in such a device, the low-temperature liquid may be vaporized in the heat exchanger due to fluctuations in the operating conditions, and if the heat exchanger and the sub heat exchanger are divided, the sub heat exchanger An unstable gas-liquid two-phase flow is introduced into the inlet of the heat exchanger. In the apparatus according to claim 3, the heat exchanger and the sub heat exchanger are a single plate-fin type heat exchanger. Since the passage of the heat exchanger and the passage of the sub heat exchanger are continuous without passing through the piping, the vaporization point of the low-temperature liquid fluctuates and the low-temperature liquid vaporizes in the heat exchanger. , The low-temperature liquid can be smoothly introduced into the sub heat exchanger as it is, and the original heat exchange performance of the sub heat exchanger can be sufficiently maintained.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment of the present invention will be described with reference to FIG. In the following embodiment, a case where LNG is processed as a low-temperature liquid will be described. However, the low-temperature liquid to be processed according to the present invention may be any liquid as long as it has a plurality of components and a part of which is BOG. For example, it can be applied to the processing of liquefied petroleum gas (LPG).
[0023]
In FIG. 1, a first pump (delivery means) 12 is provided in the LNG storage tank 10, and a discharge port of the first pump 12 is connected to an LNG pipe 13. Two pumps 22, a heat exchanger 18, and a vaporizer 24 are provided.
[0024]
One end of a BOG pipe 14 is connected to the top of the LNG storage tank 10, and the other end is connected to a gas-liquid separator 15. A BOG compressor (first gas compression means) is provided in the middle of the BOG pipe 14. 16, the heat exchanger 18, and the pressure reducing valve 17 are provided. The top of the gas-liquid separator 20 is connected to the inlet of the BOG pipe 14 via a gas reflux pipe 14g, and the bottom of the gas-liquid separator 20 is connected to the LNG storage tank 10 via a liquid reflux pipe 141. It is connected to the.
[0025]
Further, as a feature of this apparatus, a circulation pipe 30 is provided independently of the LNG pipe 13 and the BOG pipe 14. In the middle of the circulation pipe 30, a cold storage container 32, a circulation pump (circulation means) 38, and the heat exchanger 18 are provided. A refrigerant storage 34 is accommodated in the cold storage container 32, and a heat transfer tube 36 is immersed in the refrigerant storage 34, and the heat transfer tube 36 constitutes a part of a circulation path. A predetermined circulating liquid is circulated in the circulating pipe 30 by the operation of the circulating pump 38.
[0026]
Here, the refrigerant storage body 34 may be any substance that solidifies near the liquefaction temperature of BOG, and is preferably butane, normal pentane, 1-propanol, or a mixture thereof. The circulating liquid may be any liquid that does not solidify at the operating temperature level of the apparatus and can be circulated while maintaining the liquid phase, and propane or the like is preferable.
[0027]
The heat exchanger 18 simultaneously exchanges heat between the compressed BOG discharged from the BOG compressor 16, the LNG discharged from the second pump 22, and the circulating liquid circulating in the circulating pipe 30. It is a three-fluid heat exchanger.
[0028]
Next, the operation of this device will be described.
[0029]
The LNG in the LNG storage tank 10 is sent into the LNG pipe 13 by the operation of the first pump 12, is further pressurized by the second pump 22, passes through the heat exchanger 18, and is vaporized by the vaporizer 24. On the other hand, the BOG evaporating from the LNG in the LNG storage tank 10 is boosted to an appropriate pressure (about 9 kg / cm 2 G) by a BOG compressor 16 provided in the middle of the pipe 14, and then is transferred to the heat exchanger 18. be introduced.
[0030]
Here, during a period in which the amount of LNG sent from the LNG storage tank 10 is large, such as during the daytime, the LNG and the compressed BOG undergo heat exchange with the heat exchanger 18, whereby the compressed BOG is cooled and liquefied, and a pressure reducing valve is provided. It is introduced into the gas-liquid separator 15 through 17. Then, the liquid component at the bottom of the gas-liquid separator 15 is reduced into the LNG storage tank 10, and the gas component is returned to the inlet side of the BOG compressor 16. At the same time, the LNG and the circulating liquid exchange heat in the same heat exchanger 18, so that the circulating liquid is also cooled, and the low-temperature circulating liquid and the refrigerant storage body 34 in the regenerator 30 heat through the heat transfer tube 36. By the replacement, the refrigerant storage body 34 is also cooled and solidified.
[0031]
That is, the excess cold heat of LNG sent out in a large amount is stored using the latent heat of solidification of the refrigerant storage body 34.
[0032]
Thereafter, when the amount of LNG delivered from the LNG storage tank 10 is low, such as at night, the compressed BOG cannot be liquefied and cooled only by the cold heat of the delivered LNG. Since the cooling of the compressed BOG is assisted by heat exchange with the circulating liquid in the state, the compressed BOG is liquefied in the same manner as in the daytime, introduced into the gas-liquid separator 15 through the pressure reducing valve 17, and the liquid component is stored in the LNG storage tank 10. Is reduced to within. The circulating liquid that has exchanged heat with the compressed BOG gradually flows through the heat transfer tube 36 to melt the refrigerant storage body 34 in the cold storage container 32, and is cooled by the latent heat of fusion, so that the circulated liquid has a low temperature while exchanging heat with the compressed BOG. Maintain state.
[0033]
That is, during this period, the compressed BOG is cooled and liquefied using the latent heat of fusion of the refrigerant storage body 34.
[0034]
As described above, in the device shown in this embodiment, when the LNG delivery amount is large, the cold heat is stored, and when the LNG delivery amount is small, the compressed BOG is cooled and liquefied by utilizing the cold storage. , Regardless of the amount of LNG delivered, it is possible to always perform good liquefaction and reduction of BOG. Further, since the above-described cold storage is performed using the liquid latent heat of the refrigerant storage body 34, the size of the cold storage container 32 can be significantly reduced as compared with the case where only the liquid sensible heat of the refrigerant storage body is used.
[0035]
Further, in this device, LNG and the compressed BOG are not heat-exchanged in the regenerator via a refrigerant storage medium as in the conventional device shown in FIG. 6, but LNG and the compressed BOG are directly exchanged by the heat exchanger 18. Since the heat exchange is performed and the LNG and the compressed BOG are exchanged with the refrigerant storage medium 34 via the circulating liquid, the heat transfer between the fluids can be performed even if the surroundings of the heat transfer tube 36 are frozen in the cold storage container 32. The BOG can always be efficiently cooled and liquefied in the heat exchanger 18 without being affected by the performance. In addition, the heat transfer tube accommodated in the cold storage container 32 may be a single heat transfer tube 36 for circulating liquid, and the structure of the cold storage container 32 can be further simplified and cost can be reduced.
[0036]
* Experimental data The following data is obtained as a result of conducting experiments on a conventional device (a device that cools and liquefies BOG only by the cold heat of the delivered LNG without cooling as shown in FIG. 5) and the device of the present embodiment. Was completed.
[0037]
[Table 1]
Figure 0003591927
[0038]
As is clear from this table, the conventional apparatus does not perform cold storage, and therefore requires a constant or higher LNG transmission flow rate at all times of day and night to lend BOG, whereas the apparatus of the present embodiment does not perform cold storage during the daytime. By storing the cold heat of the LNG, it is possible to liquefy the BOG without any inconvenience even if the LNG delivery amount is 0 at night.
[0039]
Next, a second embodiment will be described with reference to FIG. In the first embodiment, when only a part of the LNG is vaporized by heat exchange between the LNG discharged from the second pump 22 and the compressed BOG in the heat exchanger 18, the downstream of the heat exchanger 18 is vaporized. A liquid two-phase flow may occur, causing a drift in the vaporizer 24, and the original performance of the vaporizer 24 may be lost. Further, if the amount of heat exchange between LNG and the compressed BOG in the heat exchanger 18 is limited in order to avoid vaporization in the heat exchanger 18 as described above, the compressed BOG may not be sufficiently cooled and liquefied. There is.
[0040]
Therefore, in this embodiment, the amount of heat exchange between LNG and the compressed BOG in the heat exchanger 18 is limited to such an extent that the LNG can maintain a liquid phase in the heat exchanger 18, and then the heat exchange 18 is separated from the heat exchanger 18 by 2. The auxiliary heat exchanger 19, which is a fluid heat exchanger, is introduced, and LNG exiting from the heat exchanger 18 and the compressed BOG before entering the heat exchanger 18 are heat-exchanged in the auxiliary heat exchanger 19. The LNG pipe 13 is connected between the heat exchanger 18 and the sub-heat exchanger 19 by connecting the vaporizer pipe 13v with the sub-heat exchanger 19 so that the LNG exiting the heat exchanger 18 is divided into the vaporizer 24 and the sub-heat exchanger 19. It is branched to a heat exchanger pipe 13c.
[0041]
According to this device, a single-phase flow (liquid-phase flow) can always flow at the inlets of the sub-heat exchanger 19 and the vaporizer 24, and occurrence of drift can be prevented. In addition, the auxiliary heat exchanger 19 is operated such that an amount that can be completely vaporized by the heat exchange in the auxiliary heat exchanger 19 and the remaining liquid component is entirely supplied to the vaporizer 24 are operated. LNG can be efficiently vaporized. In addition, a sufficient amount of BOG liquefaction can be secured by pre-cooling the compressed BOG in the auxiliary heat exchanger 19 before introducing it to the heat exchanger 18.
[0042]
Next, a third embodiment will be described with reference to FIG. When the heat exchanger 18 and the sub heat exchanger 19 are divided as in the second embodiment, it is necessary to connect the two heat exchangers with a pipe, which complicates the structure. In addition, when the LNG vaporization time is advanced due to the fluctuation of the operating condition and the vaporization of LNG starts in the heat exchanger 18, a gas-liquid two-phase flow having an uneven flow is introduced into the inlet of the sub heat exchanger 19. Therefore, the original performance of the sub heat exchanger 19 may be impaired.
[0043]
Therefore, in this embodiment, the heat exchanger and the sub-heat exchanger are combined into a single plate-fin heat exchanger 20, and LNG is transferred to the vaporizer 24 in the middle of the plate-fin heat exchanger 20. An extraction portion 20a for extracting is provided.
[0044]
According to this device, since the passage of the heat exchanger and the passage of the sub heat exchanger are continuous without passing through the pipe, the vaporization point of the low-temperature liquid fluctuates temporarily, and the vaporization of the low-temperature liquid in the heat exchanger occurs. Is started, the LNG is smoothly introduced into the sub-heat exchanger while maintaining the gas-liquid two-phase flow, and the heat exchanger performance can be favorably maintained. Further, the number of pipes is greatly reduced and the structure is simplified, so that the cost can be reduced.
[0045]
【The invention's effect】
As described above, the present invention includes a heat exchanger that circulates the circulating liquid through the heat transfer tube in the cold storage container and simultaneously exchanges heat with the circulating liquid, the compressed BOG, and the low-temperature liquid to be sent out. Since the cold heat of the low-temperature liquid is stored by using the latent heat of solidification of the medium, unlike the conventional device in which the low-temperature liquid and the compressed BOG exchange heat via the refrigerant storage medium in the low-temperature storage container, Even if the periphery of the heat transfer tube is frozen, heat exchange is always performed efficiently in the heat exchanger without deteriorating the heat transfer performance, and the BOG is effectively cooled and liquefied. In addition, only a single heat transfer tube for circulating liquid needs to be provided in the cold storage container, and the structure of the cold storage container can be simplified to reduce the cost.
[0046]
Further, in the apparatus according to claim 2, a sub heat exchanger for exchanging heat between the BOG compressed by the gas compression means before entering the heat exchanger and the low-temperature liquid discharged from the heat exchanger is added. The heat exchanger was configured so that the low-temperature liquid maintained a liquid phase in the heat exchanger, and piping was arranged such that the low-temperature liquid exiting the heat exchanger was divided into the sub heat exchanger and the vaporizer. Therefore, it is possible to avoid introducing an unstable gas-liquid two-phase flow into the inlet of the vaporizer and the sub heat exchanger, and to allow the sub heat exchanger to completely vaporize with the sub heat exchanger. By performing an operation such as flowing a low-temperature liquid and evaporating the remainder with a vaporizer, all the low-temperature liquids can be efficiently vaporized.On the other hand, by pre-cooling the compressed BOG with the auxiliary heat exchanger, the heat There is an effect that a sufficient BOG liquefaction amount can be secured.
[0047]
Further, in the apparatus according to claim 3, the heat exchanger and the sub heat exchanger are constituted by a single plate-fin type heat exchanger, and a part for extracting a low-temperature liquid to a vaporizer is provided in the middle of the heat exchanger and the sub heat exchanger. Therefore, the number of required pipes is greatly reduced to simplify the structure, and the passage of the low-temperature liquid fluctuates by connecting the heat exchanger passage and the sub-heat exchanger passage without piping. Even if the low-temperature liquid starts to evaporate in the heat exchanger, the low-temperature liquid can be smoothly transferred to the sub heat exchanger as it is, and the original heat exchange performance of the sub heat exchanger can be sufficiently maintained.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing an apparatus for processing LNG and its BOG in a first embodiment of the present invention.
FIG. 2 is a flow sheet showing an LNG and its BOG processing apparatus according to a second embodiment of the present invention.
FIG. 3 is a flow sheet showing an LNG and its BOG processing apparatus according to a third embodiment of the present invention.
FIG. 4 is a flow sheet illustrating an example of a conventional LNG and BOG processing apparatus.
FIG. 5 is a flow sheet showing an example of a conventional apparatus for treating a low-temperature liquid and its BOG.
FIG. 6 is a flow sheet showing an example of a conventional apparatus for treating a low-temperature liquid and its BOG.
[Explanation of symbols]
10 LNG storage tank 12 First pump (delivery means)
13 LNG piping 14 BOG piping 15 Gas-liquid separator 16 BOG compressor (gas compression means)
Reference Signs List 18 heat exchanger 19 sub heat exchanger 20 plate fin type heat exchanger 20a extraction section 22 second pump 24 vaporizer 30 circulation pipe 32 cold storage container 34 refrigerant storage body 36 heat transfer tube 38 circulation pump (circulation means)

Claims (3)

貯槽内に収容された複数成分をもつ低温液体を貯槽外へ送出するための低温液体用配管と、この低温液体用配管を通じて上記貯槽内の低温液体を貯槽外へ送出する液体送出手段と、上記貯槽内で発生したボイルオフガスを貯槽外に導出するためのボイルオフガス用配管と、このボイルオフガス用配管を通じて上記貯槽内のボイルオフガスを貯槽外へ導出して圧縮するガス圧縮手段と、このガス圧縮手段で圧縮されたボイルオフガスと上記低温液体から送出される上記低温液体とを熱交換させて上記ボイルオフガスを液化する熱交換器とを備え、その液化成分が上記貯槽内に還元されるように構成した複数成分をもつ低温液体及びそのボイルオフガスの処理装置において、上記熱交換器とは別に設置され、上記ボイルオフガスの液化温度近傍で凝固する蓄冷媒体を収容し、この蓄冷媒体内に伝熱管が浸漬された蓄冷容器と、この蓄冷容器内の伝熱管を含み、上記低温液体用配管及びボイルオフガス用配管とは独立して設置された循環配管と、この循環配管内で所定の循環液体を循環させる循環手段とを備えるとともに、上記熱交換器を、上記貯槽内から上記ボイルオフガス用配管内に送出され、上記ガス圧縮手段で圧縮されたボイルオフガスと、上記貯槽内から上記低温液体用配管内に送出された低温液体と、上記循環配管内を循環する循環液体との間で同時に熱交換させるように構成したことを特徴とする複数成分をもつ低温液体及びそのボイルオフガスの処理装置。 A low-temperature liquid pipe for sending the low-temperature liquid having a plurality of components contained in the storage tank to the outside of the storage tank, and a liquid sending means for sending the low-temperature liquid in the storage tank to the outside of the storage tank through the low-temperature liquid pipe ; A boil- off gas pipe for leading the boil- off gas generated in the storage tank to the outside of the storage tank; a gas compression means for leading the boil-off gas in the storage tank to the outside of the storage tank through the boil-off gas pipe for compression; and A heat exchanger for liquefying the boil-off gas by exchanging heat between the boil-off gas compressed by the means and the low-temperature liquid sent from the low-temperature liquid, so that the liquefied component is reduced into the storage tank. in the processing apparatus of the cryogenic liquid and the boil-off gas having a structure with multiple components, and the heat exchanger are installed separately, at liquefaction temperature near the BOG Housing the cold storage medium to the solid, and cool storage containers heat transfer tube is immersed in the cold-storage medium, comprising a heat transfer tube of the cold storage container, and the cryogenic liquid pipe and boil-off gas piping is installed independently And a circulation means for circulating a predetermined circulating liquid in the circulation pipe, and the heat exchanger is sent from the storage tank to the boil-off gas pipe and compressed by the gas compression means. Heat exchange between the boil-off gas, the low-temperature liquid sent from the storage tank into the low-temperature liquid pipe, and the circulating liquid circulating in the circulation pipe at the same time. An apparatus for treating a low-temperature liquid having a plurality of components and a boil-off gas. 請求項1記載の複数成分をもつ低温液体及びそのボイルオフガスの処理装置において、上記ガス圧縮手段で圧縮されて上記熱交換器に入る前のボイルオフガスと上記熱交換器から出た低温液体とを熱交換させる副熱交換器と、気化器とを備え、上記熱交換器では上記低温液体が液相を保つようにこの熱交換器を構成し、この熱交換器を出た低温液体が上記副熱交換器と上記気化器とに分流するように配管したことを特徴とする複数成分をもつ低温液体及びそのボイルオフガスの処理装置。2. The apparatus for treating a low-temperature liquid having a plurality of components and a boil-off gas thereof according to claim 1, wherein the boil-off gas compressed by the gas compression means before entering the heat exchanger and the low-temperature liquid exiting the heat exchanger. A sub-heat exchanger for heat exchange; and a vaporizer. The heat exchanger is configured so that the low-temperature liquid keeps a liquid phase in the heat exchanger. An apparatus for treating a low-temperature liquid having a plurality of components and a boil-off gas thereof, wherein the pipe is provided so as to be divided into a heat exchanger and the vaporizer. 請求項2記載の複数成分をもつ低温液体及びそのボイルオフガスの処理装置において、上記熱交換器と副熱交換器とを単一のプレートフィン型熱交換器で構成し、このプレートフィン型熱交換器の途中に上記低温液体を上記気化器側へ抜き出すための抜き出し部を設けたことを特徴とする複数成分をもつ低温液体及びそのボイルオフガスの処理装置。3. The apparatus for treating a low-temperature liquid having a plurality of components and a boil-off gas thereof according to claim 2, wherein the heat exchanger and the sub heat exchanger are constituted by a single plate-fin heat exchanger. An apparatus for treating a low-temperature liquid having a plurality of components and a boil-off gas thereof, wherein an extraction portion for extracting the low-temperature liquid to the vaporizer side is provided in the middle of the vessel.
JP21687495A 1995-08-25 1995-08-25 Cryogenic liquid with multiple components and boil-off gas treatment device Expired - Lifetime JP3591927B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21687495A JP3591927B2 (en) 1995-08-25 1995-08-25 Cryogenic liquid with multiple components and boil-off gas treatment device
KR1019960034804A KR970011764A (en) 1995-08-25 1996-08-22 Low temperature liquid having plural components and apparatus for treating the boiling off gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21687495A JP3591927B2 (en) 1995-08-25 1995-08-25 Cryogenic liquid with multiple components and boil-off gas treatment device

Publications (2)

Publication Number Publication Date
JPH0960799A JPH0960799A (en) 1997-03-04
JP3591927B2 true JP3591927B2 (en) 2004-11-24

Family

ID=16695276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21687495A Expired - Lifetime JP3591927B2 (en) 1995-08-25 1995-08-25 Cryogenic liquid with multiple components and boil-off gas treatment device

Country Status (2)

Country Link
JP (1) JP3591927B2 (en)
KR (1) KR970011764A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017162977A1 (en) * 2016-03-22 2017-09-28 Gaztransport Et Technigaz Facility for feeding fuel gas to a member consuming gas and for liquefying said fuel gas
CN109416002A (en) * 2016-07-05 2019-03-01 川崎重工业株式会社 Ship
CN110542016A (en) * 2019-09-09 2019-12-06 浙江海洋大学 LNG storage tank assembly
KR20210029016A (en) * 2019-09-05 2021-03-15 (유)성문 decompression apparatus and method of LNG fuel tank using internal circulation

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062043A (en) * 2000-08-23 2002-02-28 Tokyo Gas Co Ltd Apparatus for processing evaporated gas of liquefied natural gas
JP4544885B2 (en) * 2004-03-22 2010-09-15 三菱重工業株式会社 Gas reliquefaction apparatus and gas reliquefaction method
JP2006348080A (en) * 2005-06-13 2006-12-28 Mitsui Eng & Shipbuild Co Ltd Method for treatment of boil off gas and apparatus therefor
KR20070020162A (en) * 2006-10-04 2007-02-20 대우조선해양 주식회사 Apparatus and method for reliquefying boil-off gas, and lng carrier with the apparatus
KR100747231B1 (en) * 2006-10-04 2007-08-07 대우조선해양 주식회사 Apparatus and method for reliquefying boil-off gas
KR100835090B1 (en) * 2007-05-08 2008-06-03 대우조선해양 주식회사 System and method for supplying fuel gas of lng carrier
JP2011033051A (en) * 2009-07-29 2011-02-17 Shimizu Corp Storage facility for low-temperature liquefied gas
KR101224924B1 (en) * 2010-11-01 2013-01-22 삼성중공업 주식회사 Vessel
KR101224931B1 (en) * 2010-11-01 2013-01-22 삼성중공업 주식회사 Liquefied natural gas carrier
KR101224906B1 (en) * 2010-11-01 2013-01-22 삼성중공업 주식회사 Vessel and LNG Reliquefaction apparatus
JP5999874B2 (en) * 2011-02-28 2016-09-28 三菱重工業株式会社 Liquefied gas regasification apparatus and regasification gas production method
KR101281636B1 (en) * 2011-03-25 2013-07-15 삼성중공업 주식회사 Vessel
KR101281639B1 (en) * 2011-03-31 2013-07-03 삼성중공업 주식회사 Vessel
WO2012153886A1 (en) * 2011-05-06 2012-11-15 (주) 유영금속 Re-liquefier using liquefied natural gas and natural gas fuel supply system
KR101399759B1 (en) * 2013-06-12 2014-06-27 현대중공업 주식회사 A treatment System of Liquefied Gas and A Method for the same
KR101438323B1 (en) * 2013-06-12 2014-09-04 현대중공업 주식회사 A treatment System of Liquefied Gas and A Method for the same
KR102306455B1 (en) * 2015-10-27 2021-09-29 한국조선해양 주식회사 A ReGasification System Of Liquefied Gas
CN106196882B (en) * 2016-08-29 2019-05-14 中科赛德(北京)科技有限公司 A kind of cool-storage type gas liquefaction equipment
JP7143120B2 (en) * 2018-06-01 2022-09-28 株式会社神戸製鋼所 gas supply system
KR102570185B1 (en) * 2021-10-26 2023-08-28 주식회사 동화엔텍 LNG Fuel Supply System for Small Scale Vessel with Submerged Pump and Integrated Heat Exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017162977A1 (en) * 2016-03-22 2017-09-28 Gaztransport Et Technigaz Facility for feeding fuel gas to a member consuming gas and for liquefying said fuel gas
FR3049331A1 (en) * 2016-03-22 2017-09-29 Gaztransport Et Technigaz FUEL GAS SUPPLY INSTALLATION OF A GAS CONSUMER ORGAN AND LIQUEFACTION OF SUCH FUEL GAS
CN109416002A (en) * 2016-07-05 2019-03-01 川崎重工业株式会社 Ship
EP3483419A4 (en) * 2016-07-05 2020-01-08 Kawasaki Jukogyo Kabushiki Kaisha Ship
CN109416002B (en) * 2016-07-05 2021-05-25 川崎重工业株式会社 Ship with a detachable cover
KR20210029016A (en) * 2019-09-05 2021-03-15 (유)성문 decompression apparatus and method of LNG fuel tank using internal circulation
KR102235684B1 (en) 2019-09-05 2021-04-02 (유)성문 decompression apparatus and method of LNG fuel tank using internal circulation
CN110542016A (en) * 2019-09-09 2019-12-06 浙江海洋大学 LNG storage tank assembly

Also Published As

Publication number Publication date
JPH0960799A (en) 1997-03-04
KR970011764A (en) 1997-03-27

Similar Documents

Publication Publication Date Title
JP3591927B2 (en) Cryogenic liquid with multiple components and boil-off gas treatment device
KR101489738B1 (en) System for supplying fuel gas in ships
EP2196722B1 (en) Device for re-liquefaction of liquefied gas, liquefied gas storage facility and liquefied gas carrying vessel equipped with the device, and method of re-liquefaction of liquefied gas
JP3586501B2 (en) Cryogenic liquid and boil-off gas processing method and apparatus
KR101524430B1 (en) Apparatus for the reliquefaction of boil-off gas
JP2688267B2 (en) Method and device for liquefying and storing natural gas and supplying it after revaporization
JPH11108298A (en) Storing method of lng cold, device thereof, reliquefaction method of bog by utilizing stored cold and device thereof.
KR20140144969A (en) A treatment System of Liquefied Gas and A Method for the same
KR20120111112A (en) Vessel
KR20120045801A (en) Vessel
US3760597A (en) Short term storage of natural gas
JPH07218033A (en) Cooling device for lng tank
JP3610251B2 (en) BOG reliquefaction method using LNG
JP2769219B2 (en) LNG boil-off gas processing method and apparatus
JP3656128B2 (en) Method and apparatus for storing and effectively utilizing LNG cold energy
KR101438323B1 (en) A treatment System of Liquefied Gas and A Method for the same
KR101399759B1 (en) A treatment System of Liquefied Gas and A Method for the same
JP2002338977A (en) Process and apparatus for reliquefying boil-off gas from liquefied natural gas
JPH0627622B2 (en) How to use cold heat by storing cold liquefied gas
JPH05280696A (en) Method and apparatus for liquefying and gasifying town gas
JP2003120897A (en) Storage and supply device for carbon dioxide
JP3397821B2 (en) Gas liquefaction and vaporization equipment
JP2979704B2 (en) Low temperature fluid cool storage material
EP3992520B1 (en) Method and system for forming and dispensing a compressed gas
JPH09236381A (en) Method and device for producing liquid helium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term