JP3591195B2 - Cathode active material for lithium ion secondary batteries - Google Patents
Cathode active material for lithium ion secondary batteries Download PDFInfo
- Publication number
- JP3591195B2 JP3591195B2 JP07490797A JP7490797A JP3591195B2 JP 3591195 B2 JP3591195 B2 JP 3591195B2 JP 07490797 A JP07490797 A JP 07490797A JP 7490797 A JP7490797 A JP 7490797A JP 3591195 B2 JP3591195 B2 JP 3591195B2
- Authority
- JP
- Japan
- Prior art keywords
- active material
- positive electrode
- electrode active
- particles
- crystallite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、二次電池の正極活物質に係り、特に、サイクル特性、及び熱安定性を向上できる非水系のリチウムイオン二次電池用正極活物質及びその製造方法に関する。
【0002】
【従来の技術】
近年、カメラ一体形VTR、オーディオ・ビデオ機器、ノート型パソコン、携帯電話などの新しいコードレス型電子機器が次々と出現し、短期間で急速に広く普及した。これら機器の小型・軽量化には、携帯用電源である二次電池の高性能化は不可欠である。
【0003】
非水系リチウムイオン二次電池は、電池電圧が高く、高放電容量、及びサイクル特性などに優れ、このような用途に合致し最近盛んに研究されている。
【0004】
この電池の正極活物質にはコバルト酸リチウム(LiCoO2)を代表とするLiの重金属酸塩LiMO2(M=Co、Ni、Fe、Mn、Cr等)が使用されている。
【0005】
従来、LiMO2を正極活物質に用いた非水系二次電池では、充放電サイクルを繰り返し行うことにより、その電池放電容量が徐々に減少するというサイクル特性の劣化の問題があった。この原因は、LiMO2の結晶が崩れることによると考えられていた。特に、充放電を繰り返すことにより、正極活物質を構成する微小粒子のc軸方向への膨張、収縮が起こり、多結晶体等の場合は結晶子の界面が多いので、そこから結晶が崩れ、正極の集電体からの正極活物質の剥離が起こることがサイクル特性を劣化する原因とされていた。これに対し、サイクル特性の改善のために、結晶を単結晶化させ、かつc軸に垂直な方向((003)面)に配向する扁平粒子を成長させる方法が特開平9−22693号公報に提案されている。
【0006】
また、正極活物質のLiCoO2のX線回折線の(003)面と(104)面のピーク強度比を特定の範囲に限定することにより、サイクル特性は向上することが特開平5−258751号公報、特開平9−22692号公報、特開平9−22693号公報、及び特開平8−55624号公報に記載されている。
【0007】
さらに、リチウムイオン二次電池の正極活物質は、高温空気中では安定であるが、充電状態におかれることにより熱安定性が低下し、二次電池の電解液を構成する有機溶媒を酸化分解し、場合によっては発火を引き起こすという重大な問題が潜在している。
【0008】
これまで、リチウムイオン二次電池用正極活物質の特性については、充放電のサイクル特性を向上するための研究が数々なされてきたが、充電時の熱安定性についてはあまり触れられることはなかった。それは充電時の熱安定性を改良すれば、充放電のサイクル特性は低下するという相反する関係にあるとの見解が常識であったからである。
【0009】
【発明が解決しようとする課題】
本発明は上述した事情に鑑みなされ、リチウムイオン二次電池の充電時の熱安定性を改善し、さらに良好な充放電サイクル特性を両立する正極活物質を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者は正極活物質の粒子形状及び構造について鋭意検討したところ、正極活物質は、結晶子と呼ばれる微小な単結晶が集合した粒子からなり、この結晶子及び一次粒子の大きさ或いは形状がリチウムイオン電池の熱安定性及び充放電サイクル特性に密接に関係することを見出し本発明を完成させるに至った。
【0011】
すなわち、本発明のリチウムイオン二次電池用正極活物質は、一般式LiMO2で表現されるリチウムイオン二次電池用正極活物質であって、
その粒子構造は、微小な結晶子を単位とする単結晶が集合した粒子からなり、該結晶子及び該粒子の形状は立体的にほぼ等方的形状であることを特徴とする。
(但しMはCo、Ni、Fe、Mn、Crの群から選ばれる少なくとも一種の重金属元素)
【0012】
結晶子とは、単結晶と考えられる最大限の集合を示し、XRD(X−ray diffraction)測定より、次のシェラーの式を用いることにより計算できる。
<シェラーの式>
結晶子の大きさD(オングストローム)=Kλ/(βsinθ)
K:シェラー定数 (βを積分幅より算出した場合K=1.05)
λ:使用X線管球の波長(CuKα1=1.540562オングストローム β:結晶子の大きさによる回折線の広がりの幅(radian)
θ:回折角2θ/2(degree)
【0013】
ここでいう粒子とはSEMで結像する最小の粒子を指し、粒子が1つの単結晶で構成されている場合は結晶子径と粒子径は同じ大きさである。一つの粒子に複数の単結晶を包含する場合、当然その大きさは一致しない。
【0014】
立体的にほぼ等方的形状とは、粒子に配向性がなく、空間の全ての方向に等方的に成長した形状をいい、典型的には球状であるが、必ずしも真球に限定するものではなく、ほぼ球状であるものも含む。通常の結晶性のある物質はその結晶構造を反映したような粒子形状を有する。これに対し、本発明において有用な正極活物質はそのような配向性を有しない特別な形状であるということができる。
【0015】
該正極活物質の一次粒子を構成する結晶子の立体形状を、層を重ねる方向((003)ベクトル方向)、及びそれに垂直な方向((110)ベクトル方向)で表現する場合、(110)ベクトル方向の結晶子径に対する(003)方向の結晶子径の比率は、0.5〜1.6の範囲であることが好ましい。層を重ねる方向とは、正極活物質のLiMO2の基本格子は六方晶系であり、c軸方向を指す。従って、それに垂直な方向とはa軸方向を指す。
【0016】
該正極活物質の結晶子の(003)ベクトル方向の結晶子径は500〜750オングストロームの範囲であることが好ましい。
【0017】
該正極活物質の結晶子の(110)ベクトル方向の結晶子径は450〜1000オングストロームの範囲であることが好ましい。
【0018】
正極活物質の平均粒径は、空気透過法により比表面積を測定し、一次粒子の粒径の平均値を求めたものであり、具体的にはフィッシャーサブシーブサイザー(F.S.S.S.)を用いて測定した値である。
【0019】
SEM観察による該粒子の長軸粒子径に対する短軸粒子径の比率は0.5〜1.0の範囲であることが好ましい。次のようにして該比率を計算する。図1に示すように、SEM写真からランダムに20個抽出した粒子像の個々の中心を求め、中心を通る最長径を決定し、これを長軸粒子径と定義する。次に中心を通り長軸に垂直な方向の径を短軸粒子径として定義する。得られた個々の粒子の短軸粒子径/長軸粒子径の比率の平均を算出する。
【0020】
本発明のリチウムイオン二次電池用正極活物質の製造方法は、原料の重金属酸化物とリチウム塩をLi/M比が0.98〜1.01の範囲となるように混合して焼成する正極活物質の製造方法において、
重金属酸化物の粒子形状は、立体的にほぼ等方的形状を有する一次粒子又は一次粒子が集合した二次粒子からなり、その中心粒径は0.1〜10μmであることを特徴とする。
(但しMはCo、Ni、Fe、Mn、Crの群から選ばれる少なくとも一種の重金属元素)
【0021】
原料の重金属酸化物の中心粒径は、電気抵抗法の粒度分布測定装置を用いて測定される値であり、ここではCoulter Multisizer2を用いて測定した中心粒径である。これは測定原理から分散状態にあるか凝集状態にあるかの知見を含んだ粒径ということができる。
【0022】
【発明の実施の形態】
<粒子形状>
本発明に於いて、正極活物質の粒子内の結晶子の成長度が、電池特性に影響を及ぼすこと、また特定のベクトル方向への成長度が、個々の特性と相関があることを見いだした。リチウムイオン二次電池の正極活物質であるLiMO2は本来層状構造を有している。本発明の正極活物質の粒子形状は図2(a)に示すように空間に等方的に成長しており、(b)比較例のようなc軸配向のないものである。そのことをSEM観察による粒子の長軸粒子径に対する短軸粒子径の比率を用いて表現すると、0.5〜0.9の範囲である。また、本発明の正極活物質の一次粒子を構成する結晶子の形状を結晶子径を用いて表現すると、(003)ベクトル方向に500〜750オングストロームの範囲、(110)ベクトル方向に450〜1000オングストロームの範囲、(105)ベクトル方向に500〜900オングストロームの範囲、(113)ベクトル方向に450〜1000オングストロームの範囲にあるということができる。
【0023】
本発明において、(105)、(113)ベクトル方向についても言及したが、これは、結晶が三次元的に成長しているか否かを表現するための手段であり、層に平行、垂直でないような面であれば(104)や(108)ベクトル方向の様な他の面方向をとって表現してもかまわない。但し、これらの結晶子も大きすぎると、Liイオンの拡散を阻害し、小さすぎると結晶の崩れの原因となると考えられる。
【0024】
<重金属酸化物原料>
本発明のリチウムイオン二次電池用正極活物質は、上述したような粒子形状に特徴がある。このような結晶子及び粒子の構造とするためには、原料として二次粒子が球状であり、一次粒子の結晶子径の小さな重金属酸化物原料を選択する。正極活物質の粒子形状は、原料の粒子形状をそのまま引き継ぎやすい。例えば、重金属原料の二次粒子の形状が八面体構造である場合、得られるLiMO2の結晶子及び粒子は八面体構造となりやすく、また、重金属酸化物の形状が球状の場合、得られるLiMO2の結晶子及び粒子は球状構造となりやすい。さらに、二次粒子の形状が六角板状構造の場合、得られるLiMO2の結晶子及び粒子は六角板状構造となりやすい。本発明は、六角板状の構造は除外される。特に、重金属元素MがCoであるCo3O4の場合は、(222)ベクトル方向の結晶子のサイズが100〜400オングストロームの範囲であることが好ましい。
【0025】
重金属酸化物は一次粒子の粒径が0.01〜0.5μmのほぼ球状の形状であり、二次粒子の粒径は0.1〜10.0μmの範囲が好ましい。例えば、MがCoである場合、炭酸コバルトCoCO3であって、短軸粒子径/長軸粒子径の比率が0.5〜1.0の範囲である粒子を熱分解することで得ることができる。
【0026】
重金属元素酸化物の二次粒子の短軸粒子径/長軸粒子径の比率、重金属酸化物の二次粒子の中心粒径を上記した範囲に選択するのは、それは前述したように、M3O4の結晶子及び粒子の構造がそのままLiMO2の結晶子及び粒子の構造に反映されるため、この原料粒子のパラメータの限定は非常に重要となるからである。
【0027】
<リチウム原料>
本発明においてリチウム二次電池に使用する原料のLi塩としては、種々検討した結果、融点が比較的高いLi2CO3、Li2(COO)2又はLiOHが好ましく使用できる。
【0028】
<重金属原料とリチウムの混合>
本発明において、M3O4とリチウム塩をLi/M比が0.98〜1.01の範囲となるように混合する。それはLi/M比がこの範囲から逸脱すると、過剰分が融剤として作用することで粒子が異常成長し、粒子径及び粒子形状を制御困難となるからである。
【0029】
<焼成>
得られた混合原料を大気雰囲気下で、750〜1100℃で焼成する。融剤として、アルカリ金属塩類や、Bさらには、Bi、Pb等を加える場合、もしくは、造粒する場合は、(110)ベクトル方向の成長を促進しやすくなり、サイクル特性を低下するので(110)ベクトル方向の成長を制御する必要がある。
【0030】
【作用】
リチウムイオン二次電池の正極活物質は、充電することによりLiが結晶中から脱離し、LixMO2(x<1.0)の状態に変化し、六方晶系であるLiMO2が単斜晶系へと転移する。この転移により結晶が崩れることが正極活物質の充電時の熱安定性の最も大きな低下要因である。これは次のようなメカニズムにより熱安定性が低下する。
【0031】
充電時に結晶が崩れると正極活物質から酸素が遊離する。正極活物質はEC(エチレンカーボネート)等の電解液に接触した状態で電池を構成しているが、この遊離酸素が電解液を酸化分解することによって酸化反応が起こり、発熱し、場合によっては発火に至るという重大な問題に発展する可能性がある。
【0032】
<熱安定性>
本発明において熱安定性が改善されるのは次のような理由による。本発明の正極物質のLiMO2は、基本的に結晶子の形状が空間に等方的に成長した球状であり、しかも結晶子径を大きくしている。結晶子の形状を球形の等方的構造とすることで、充放電に伴うLiの移動による結晶の歪みの方向が全ての空間方向に均等となるため、一定方向に配向した従来の結晶構造に比べ、崩れを最小に抑えることが可能となる。また、結晶子を大きくすることによりLiイオンの脱離時に生じる結晶構造の崩れを軽減できる。このような理由で、(003)ベクトル方向の結晶子は500オングストローム以上、(110)ベクトル方向の結晶子は450オングストローム以上が好ましい。
【0033】
本発明の正極活物質の熱安定性について次のようにして測定した。
充電を完了したリチウムイオン二次電池をドライボックス中で分解し、正極板を取り出して約10mgを切り出し測定試料とする。得られた測定試料をThermal Gravimetric Analyzer(TGA)を用いて熱重量分析を行った。(Solid State Ionics vol.69,No.3/4 Page 265-270(1994))基本的にはその試料の温度を外部から上昇させながら試料の重量変化を引き起こす限界温度を測定する方法である。この重量変化は主として正極活物質から酸素が遊離することによる重量減少に基づく。電池の電解液中にこの酸素濃度が増加すると異常発熱の原因となる。従って、限界温度は高いほど異常発熱の問題は低下し好ましい。
【0034】
結晶子径と、TGA装置の限界温度の関係について、ほぼ球状をした結晶子を有する正極活物質について測定し図3にプロットした。本発明の正極活物質はほぼ球状であるのでの結晶子径はどのようなベクトル方向で測定しても同等であるが、ここでは(003)ベクトル方向の結晶子径を上述したシェラーの式を用いて計算した。図3よりLiMO2の充電時の熱安定性と一次関数的に相関しており、結晶子径の大きい方が限界温度が高くなり、すなわち熱安定性が向上していることが理解できる。これは上述したように結晶子径が大きいと充電時のLiの離脱による結晶の崩れの影響は小さくなり、遊離酸素濃度が低下することによる。
【0035】
<充放電サイクル特性>
充放電サイクルについては、(110)ベクトル方向への結晶子径が1000オングストローム以上に成長し過ぎないことが重要である。これは、(110)ベクトル方向に結晶を成長し過ぎると、図2(b)に示すように、正極活物質にLiを挿入(放電)する際、層に対して平行な方向しかLiイオンが挿入できないため、相対的にLiイオン挿入可能な面が減少し、粒子界面でのLiイオンの拡散が悪化するためである。特に、高い電流密度で放電させた場合、この傾向が顕著になる。
【0036】
図4に本発明の正極活物質の結晶子径と100サイクル劣化率の関係をプロットした。ここで本発明品は球形であることから、結晶子径はどの方向で評価してもほぼ同じであるが、ここでは(110)ベクトル方向の結晶子径に対してプロットした。図4より結晶子径が500からおよそ1000オングストロームの範囲ではサイクル特性はほぼ変化しないが、およそ1000オングストロームを超えると後に定義する容量維持率は低下することが分かる。
【0037】
リチウム二次電池の充放電試験は次のようにして行う。先ず、正極としてLiMO2を70重量部、アセチレンブラックを15重量部、PTFT(ポリテトラフルオロエチレン)15重量部をエタノールで混合し練り延ばしたものをペースト状とし、SUSメッシュ上に圧着し、それを乾燥して正極板を得る。これに対し、Li金属を負極として、これら両電極をEC(エチレンカーボネート)、DEC(ジエチレンカーボネート)及び電解質LiPCl4を混合した電解液に浸漬する。充電は0.2C(1Cは1時間で充電又は放電が終了する電流負荷)の電流負荷に設定し、充電上限電圧を4.20Vとする。放電は0.6C電流負荷に設定し、下限電圧を2.75Vとし、100サイクルの充放電を行う。容量維持率は(100回目の放電容量)/(1回目の放電容量)×100の(%)式により算出する。
【0038】
前述したように従来技術では、サイクル特性を向上させるために、粒子を平板状単結晶にし、c軸方向の粒子の伸縮を一定方向にすることにより、粒子の崩れを防止し、集電体からの剥離を防止するとしている。これに対し、本発明では逆に、結晶を配向性のない球状に近い形状とした。そのことで、粒子そのものの集電体への接着力が増大し、充放電サイクルによる正極活物質の集電体からの剥離を防止し、さらに、粒子界面でのLi挿入可能な面を増加させることにより、サイクル特性が改善される。
【0039】
【実施例】
本発明の実施例を正極活物質としてLiCoO2について説明するが、この組成に限定するものではなく、LiMO2(但しMはCo、Ni、Fe、Mn、Crの群から選ばれる少なくとも一種の重金属元素)の全ての可能な組成についても同様である。
【0040】
[実施例1]
<原料仕込み>
・四三酸化コバルト(Co3O4)・・・・・ 3.000kg
・炭酸リチウム(Li2CO3)・・・・・・ 1.380kg
四三酸化コバルトは(222)ベクトル方向の結晶子径が200オングストロームであり、二次粒子の形状がほぼ球状の多結晶の粒子である。二次粒子径について、Coulter Multisizer2を用いて測定したところ中心粒径は5.0μmであった。上記原料のLi/Coの仕込み比率は1.00である。これら原料をセラミックポットに仕込み、ボールミルを行い正極活物質の混合原料を得る。
【0041】
得られた混合原料を空気中900℃で10時間焼成し、粉砕し、目的とするLiCoO2を合成した。
【0042】
得られたLiCoO2をCuKαを線源とする粉末X線回折を測定し、シェラーの式を用いて計算したところ、(003)ベクトル方向の結晶子径は606オングストローム、及び(110)ベクトル方向の結晶子径は879オングストロームであり、その他(115)ベクトル方向の結晶子径は795オングストローム、(113)ベクトル方向の結晶子径は848オングストロームであった。
【0043】
LiCoO2正極活物質の粒子径について、F.S.S.S.を用いて測定したところ平均粒径は4.0μmであり、個々の粒子の短軸粒子径/長軸粒子径の比率の平均を計算したところ0.9であった。SEMに供する測定用試料を作製する場合、圧力を加えて作製すると、本発明の等方的形状の粒子と見分けが付けにくくなる。そこで、SEM測定試料を作製する場合、粒子の形状を受けにくくするため試料面に圧力をかけないように準備した。
【0044】
<サイクル特性>
得られた正極活物質LiCoO2を70重量部、アセチレンブラックを15重量部、PTFT(ポリテトラフルオロエチレン)15重量部をエタノールで混合し練り延ばしたものをペースト状とし、SUSメッシュ上に圧着し、それを乾燥して正極板を得る。これに対しLi金属を負極として、これら両電極をEC(エチレンカーボネート)、DEC(ジエチレンカーボネート)及び電解質LiPCl4を混合した電解液に浸漬する。充電は0.2C(1Cは1時間で充電又は放電が終了する電流負荷)の電流負荷に設定し、充電上限電圧を4.20Vとする。放電は0.6C電流負荷に設定し、下限電圧を2.75Vとし、100サイクルの充放電を行う。容量維持率は(100回目の放電容量)/(1回目の放電容量)×100の式により求めた結果95.2%であった。
【0045】
<熱安定性>
得られた正極活物質LiCO2を使用し、サイクル特性測定と同じ条件の二次電池を作製し、充電負荷0.2C、充電上限電圧4.20Vの条件で充電を行い、次に、リチウムイオン二次電池をドライボックス中で分解し、正極板を取り出してその内の約10mgを切り出し測定試料とする。得られた測定試料をTGA装置を用いて熱重量分析を行った結果、218.0℃で酸素遊離に基づく重量変化が観測され、限界温度はすなわち218.0℃であった。
【0046】
[比較例1]
四三酸化コバルト粒子はSEMによる観察によると六角板状粒子であり、(222)ベクトル方向の結晶子径が100オングストローム、Coulter Multisizer2を用いて測定した二次粒子の中心粒径が6.2μmであるものを使用する以外実施例1と同じ条件で原料を混合し、焼成することでLiCoO2を合成した。
【0047】
得られたLiCoO2を実施例1と同様にしてシェラーの式を用いて計算したところ、(003)ベクトル方向の結晶子径は649オングストローム、及び(110)ベクトル方向の結晶子径は1150オングストロームであり、その他(115)ベクトル方向の結晶子径は798オングストローム、(113)ベクトル方向の結晶子径は868オングストロームであった。
【0048】
LiCoO2正極活物質の粒子径についてF.S.S.S.を用いて測定したところ平均粒径は3.5μmであった。
【0049】
さらに、SEM観察によるLiCoO2の粒子の長軸粒子径に対する短軸粒子径の比率は0.3であった。
【0050】
<サイクル特性>
得られた正極活物質を使用する以外実施例1と同様にして二次電池を作製し、100サイクル充放電を行った。容量維持率は85.0%であった。
【0051】
<熱安定性>
得られた正極活物質LiCO2を使用し、実施例1と同様にしてTGAを用いて熱重量分析を行った結果、酸素遊離に基づく重量変化が観測される限界温度は190.8℃であった。
【0052】
【発明の効果】
以上説明したように、本発明の正極物質のLiMO2は、基本的に結晶子の形状が空間に等方的に成長した球状であり、しかも結晶子径を大きくしている。結晶子の形状を球形の等方的構造とすることで、充放電に伴うLiの移動による結晶の歪みの方向が全ての空間方向に均等となるため、一定方向に配向した従来の結晶構造に比べ、崩れを最小に抑えることが可能となる。また、さらに結晶子を特定の範囲に大きくすることによりLiイオンの脱離時に生じる結晶構造の崩れを軽減できる。これらの点で本発明品は従来品に比べ正極活物質の熱安定性及びサイクル特性を著しく改善することができた。
【図面の簡単な説明】
【図1】SEM写真による長軸粒子径、短軸粒子径の評価方法を示す模式図。
【図2】(a)本発明品及び(b)比較品の正極活物質の粒子形状の比較を示す拡大模式図。
【図3】結晶子径と限界温度の関係を示す特性図。
【図4】容量維持率と結晶子径の関係を示す特性図。
【符号の説明】
1・・・・・・・Liイオンが挿入可能な面[0001]
[Industrial applications]
The present invention relates to a positive electrode active material for a secondary battery, and more particularly to a nonaqueous positive electrode active material for a lithium ion secondary battery capable of improving cycle characteristics and thermal stability, and a method for producing the same.
[0002]
[Prior art]
In recent years, new cordless electronic devices such as a camera-integrated VTR, an audio / video device, a notebook personal computer, and a mobile phone have appeared one after another, and have rapidly spread widely in a short time. In order to reduce the size and weight of these devices, it is essential to improve the performance of secondary batteries that are portable power supplies.
[0003]
Non-aqueous lithium ion secondary batteries have a high battery voltage, a high discharge capacity, and excellent cycle characteristics, and have been actively studied recently in conformity with such uses.
[0004]
Li metal oxide LiMO2 (M = Co, Ni, Fe, Mn, Cr, etc.) typified by lithium cobalt oxide (LiCoO2) is used as the positive electrode active material of this battery.
[0005]
Conventionally, in a non-aqueous secondary battery using LiMO2 as a positive electrode active material, there has been a problem of deterioration in cycle characteristics that the battery discharge capacity is gradually reduced by repeatedly performing charge and discharge cycles. This was thought to be due to the collapse of the LiMO2 crystal. In particular, by repeating charging and discharging, expansion and contraction of the fine particles constituting the positive electrode active material in the c-axis direction occur, and in the case of a polycrystal or the like, since there are many interfaces of crystallites, the crystal collapses therefrom, It has been considered that peeling of the positive electrode active material from the current collector of the positive electrode causes deterioration of cycle characteristics. On the other hand, Japanese Patent Application Laid-Open No. 9-22693 discloses a method for improving the cycle characteristics by monocrystallizing a crystal and growing flat particles oriented in a direction perpendicular to the c-axis ((003) plane). Proposed.
[0006]
JP-A-5-258755 discloses that the cycle characteristics can be improved by limiting the peak intensity ratio between the (003) plane and the (104) plane of the X-ray diffraction line of LiCoO2 as the positive electrode active material to a specific range. And JP-A-9-22692, JP-A-9-22693, and JP-A-8-55624.
[0007]
Furthermore, the positive electrode active material of a lithium ion secondary battery is stable in high-temperature air, but its thermal stability is reduced by being charged, and the organic solvent constituting the electrolyte of the secondary battery is oxidatively decomposed. In some cases, however, there is a serious problem of causing ignition.
[0008]
Until now, many studies have been conducted on the characteristics of the positive electrode active material for lithium ion secondary batteries to improve the charge / discharge cycle characteristics, but the thermal stability during charging was not mentioned much. . This is because it was common knowledge that if the thermal stability at the time of charging was improved, the cycle characteristics of charge and discharge would be contradictory.
[0009]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a positive electrode active material that improves thermal stability during charging of a lithium ion secondary battery and achieves better charge / discharge cycle characteristics.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the particle shape and structure of the positive electrode active material, and found that the positive electrode active material is composed of particles in which fine single crystals called crystallites are aggregated, and the size or shape of the crystallites and primary particles is The present inventors have found that they are closely related to the thermal stability and charge / discharge cycle characteristics of a lithium ion battery, and have completed the present invention.
[0011]
That is, the positive electrode active material for a lithium ion secondary battery of the present invention is a positive electrode active material for a lithium ion secondary battery represented by a general formula LiMO2,
The particle structure is composed of particles in which single crystals each having a fine crystallite as a unit are aggregated, and the crystallites and the shape of the particles are three-dimensionally substantially isotropic.
(Where M is at least one heavy metal element selected from the group consisting of Co, Ni, Fe, Mn, and Cr)
[0012]
The crystallite indicates a maximum set considered to be a single crystal, and can be calculated from XRD (X-ray diffraction) measurement by using the following Scherrer equation.
<Scherrer's formula>
Crystallite size D (angstrom) = Kλ / (β sin θ)
K: Scherrer's constant (K = 1.05 when β is calculated from the integral width)
λ: wavelength of the used X-ray tube (CuKα1 = 1.540562 Å) β: width of spread of diffraction line depending on the size of crystallite (radian)
θ: diffraction angle 2θ / 2 (degree)
[0013]
Here, the particle refers to the smallest particle that can be imaged by SEM. When the particle is formed of one single crystal, the crystallite diameter and the particle diameter are the same. When a single particle includes a plurality of single crystals, the sizes do not naturally match.
[0014]
The term “nearly isotropic in shape” refers to a shape in which particles have no orientation and grow isotropically in all directions of space, and are typically spherical, but are not necessarily limited to true spheres. Rather, it includes those that are almost spherical. An ordinary crystalline substance has a particle shape that reflects its crystal structure. On the other hand, it can be said that the positive electrode active material useful in the present invention has a special shape having no such orientation.
[0015]
When expressing the three-dimensional shape of the crystallites constituting the primary particles of the positive electrode active material in the direction in which the layers are superposed ((003) vector direction) and the direction perpendicular thereto ((110) vector direction), the (110) vector The ratio of the crystallite diameter in the (003) direction to the crystallite diameter in the direction is preferably in the range of 0.5 to 1.6. The direction in which the layers are stacked indicates that the basic lattice of LiMO2 as the positive electrode active material is hexagonal, and indicates the c-axis direction. Therefore, the direction perpendicular to the direction refers to the a-axis direction.
[0016]
The crystallite diameter of the crystallite of the positive electrode active material in the (003) vector direction is preferably in the range of 500 to 750 angstroms.
[0017]
The crystallite diameter of the crystallite of the positive electrode active material in the (110) vector direction is preferably in the range of 450 to 1000 Å.
[0018]
The average particle diameter of the positive electrode active material is obtained by measuring the specific surface area by an air permeation method and calculating the average value of the particle diameters of the primary particles. Specifically, the average particle diameter is determined by a Fischer sub-sieve sizer (FSSS). .)).
[0019]
It is preferable that the ratio of the minor axis particle diameter to the major axis particle diameter of the particles by SEM observation is in the range of 0.5 to 1.0. The ratio is calculated as follows. As shown in FIG. 1, the center of each of 20 randomly extracted particle images is determined from the SEM photograph, the longest diameter passing through the center is determined, and this is defined as the long-axis particle diameter. Next, the diameter in the direction perpendicular to the major axis passing through the center is defined as the minor axis particle diameter. The average of the ratio of the short axis particle diameter / the long axis particle diameter of each of the obtained particles is calculated.
[0020]
In the method for producing a positive electrode active material for a lithium ion secondary battery according to the present invention, the positive electrode is prepared by mixing raw material heavy metal oxides and lithium salts so that the Li / M ratio is in the range of 0.98 to 1.01 and firing. In the method for producing an active material,
The particle shape of the heavy metal oxide is composed of primary particles having a three-dimensionally almost isotropic shape or secondary particles in which the primary particles are aggregated, and has a center particle diameter of 0.1 to 10 μm.
(Where M is at least one heavy metal element selected from the group consisting of Co, Ni, Fe, Mn, and Cr)
[0021]
The center particle diameter of the heavy metal oxide as a raw material is a value measured by using a particle size distribution analyzer of an electric resistance method, and here is the center particle diameter measured by using a Coulter Multisizer 2. This can be said to be a particle size that includes knowledge of whether it is in a dispersed state or an aggregated state from the measurement principle.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
<Particle shape>
In the present invention, it has been found that the degree of growth of crystallites in the particles of the positive electrode active material affects battery characteristics, and that the degree of growth in a specific vector direction is correlated with individual characteristics. . LiMO2, which is a positive electrode active material of a lithium ion secondary battery, originally has a layered structure. The particle shape of the positive electrode active material of the present invention grows isotropically in the space as shown in FIG. 2A, and has no c-axis orientation as in the comparative example. If this is expressed using the ratio of the short axis particle diameter to the long axis particle diameter of the particles by SEM observation, it is in the range of 0.5 to 0.9. When the shape of the crystallites constituting the primary particles of the positive electrode active material of the present invention is expressed by using the crystallite diameter, it is in the range of 500 to 750 angstroms in the (003) vector direction and 450 to 1000 in the (110) vector direction. It can be said that it is in the range of Angstroms, (105) in the range of 500 to 900 Angstroms in the vector direction, and (113) in the range of 450 to 1000 Angstroms in the vector direction.
[0023]
In the present invention, the (105) and (113) vector directions are also referred to, but this is a means for expressing whether or not the crystal is growing three-dimensionally. If it is a plane, it may be represented by another plane direction such as the (104) or (108) vector direction. However, it is considered that if these crystallites are too large, diffusion of Li ions is hindered, and if they are too small, they cause crystal collapse.
[0024]
<Raw material of heavy metal oxide>
The positive electrode active material for a lithium ion secondary battery of the present invention is characterized by the particle shape as described above. In order to obtain such a crystallite and particle structure, a heavy metal oxide raw material in which the secondary particles are spherical and the crystallite diameter of the primary particles is small is selected as a raw material. As for the particle shape of the positive electrode active material, it is easy to take over the particle shape of the raw material as it is. For example, when the shape of the secondary particles of the heavy metal raw material is an octahedral structure, the obtained LiMO2 crystallites and particles are likely to have an octahedral structure, and when the shape of the heavy metal oxide is spherical, the obtained LiMO2 crystal Particles and particles tend to have a spherical structure. Further, when the secondary particles have a hexagonal plate-like structure, the obtained LiMO2 crystallites and particles tend to have a hexagonal plate-like structure. The present invention excludes a hexagonal plate-like structure. In particular, when the heavy metal element M is Co 3 O 4 where Co is Co, the crystallite size in the (222) vector direction is preferably in the range of 100 to 400 Å.
[0025]
The heavy metal oxide has a substantially spherical shape with primary particles having a particle size of 0.01 to 0.5 μm, and the secondary particles preferably have a particle size of 0.1 to 10.0 μm. For example, when M is Co, it can be obtained by thermally decomposing particles of cobalt carbonate CoCO 3 having a ratio of short axis particle diameter / long axis particle diameter in the range of 0.5 to 1.0. .
[0026]
As described above, the ratio of the ratio of the short axis particle diameter to the long axis particle diameter of the secondary particles of the heavy metal element oxide and the center particle diameter of the secondary particles of the heavy metal oxide is selected as described above. This is because the crystallite and particle structure are directly reflected on the LiMO2 crystallite and particle structure, so that the limitation of the parameters of the raw material particles is very important.
[0027]
<Lithium raw material>
As a result of various studies, as a raw material Li salt used for the lithium secondary battery in the present invention, Li2CO3, Li2 (COO) 2 or LiOH having a relatively high melting point can be preferably used.
[0028]
<Mixing of heavy metal materials and lithium>
In the present invention, M3O4 and a lithium salt are mixed so that the Li / M ratio is in the range of 0.98 to 1.01. This is because if the Li / M ratio deviates from this range, the excess acts as a flux, causing abnormal growth of the particles, making it difficult to control the particle diameter and particle shape.
[0029]
<Firing>
The obtained mixed raw material is fired at 750 to 1100 ° C. in an air atmosphere. When an alkali metal salt, B, Bi, Pb, or the like is added as a flux, or when granulation is performed, growth in the (110) vector direction is easily promoted, and the cycle characteristics are reduced. ) It is necessary to control the growth in the vector direction.
[0030]
[Action]
In a positive electrode active material of a lithium ion secondary battery, Li is desorbed from the crystal upon charging, and changes to a state of LixMO2 (x <1.0), and the hexagonal system LiMO2 changes to a monoclinic system. Transfer. Distortion of the crystal due to this transition is the largest cause of the decrease in thermal stability during charging of the positive electrode active material. This lowers the thermal stability by the following mechanism.
[0031]
If the crystal collapses during charging, oxygen is released from the positive electrode active material. The positive electrode active material constitutes the battery in a state of being in contact with an electrolyte such as EC (ethylene carbonate). The free oxygen oxidizes and decomposes the electrolyte to cause an oxidation reaction, thereby generating heat and, in some cases, igniting. Could lead to serious problems.
[0032]
<Thermal stability>
The thermal stability is improved in the present invention for the following reasons. LiMO2 of the cathode material of the present invention basically has a crystallite shape of a spherical shape isotropically grown in space, and has a large crystallite diameter. By making the crystallites have a spherical isotropic structure, the direction of crystal distortion due to the movement of Li due to charge and discharge becomes uniform in all spatial directions. In comparison, collapse can be minimized. In addition, by increasing the crystallite, it is possible to reduce the collapse of the crystal structure that occurs when Li ions are eliminated. For this reason, the crystallite in the (003) vector direction is preferably 500 Å or more, and the crystallite in the (110) vector direction is preferably 450 Å or more.
[0033]
The thermal stability of the positive electrode active material of the present invention was measured as follows.
The charged lithium ion secondary battery is disassembled in a dry box, the positive electrode plate is taken out, and about 10 mg is cut out to obtain a measurement sample. The obtained measurement sample was subjected to thermogravimetric analysis using a Thermal Gravimetric Analyzer (TGA). (Solid State Ionics vol.69, No.3 / 4 Page 265-270 (1994)) Basically, it is a method of measuring a limit temperature that causes a weight change of a sample while increasing the temperature of the sample from the outside. This weight change is mainly based on the weight loss due to liberation of oxygen from the positive electrode active material. An increase in the oxygen concentration in the battery electrolyte causes abnormal heat generation. Therefore, the higher the limit temperature, the lower the problem of abnormal heat generation, which is preferable.
[0034]
The relationship between the crystallite diameter and the critical temperature of the TGA apparatus was measured for a cathode active material having substantially spherical crystallites and plotted in FIG. Since the cathode active material of the present invention is almost spherical, the crystallite diameter is the same regardless of the vector direction, but here, the crystallite diameter in the (003) vector direction is calculated by the above-mentioned Scherrer equation. Calculated using FIG. 3 shows that the thermal stability during charging of LiMO2 is linearly related to the thermal stability. It can be understood that the larger the crystallite diameter, the higher the critical temperature, that is, the thermal stability is improved. This is because, as described above, when the crystallite diameter is large, the influence of crystal breakage due to the release of Li during charging is reduced, and the free oxygen concentration is reduced.
[0035]
<Charge / discharge cycle characteristics>
Regarding the charge / discharge cycle, it is important that the crystallite diameter in the (110) vector direction does not grow more than 1000 Å. This is because when the crystal grows too much in the (110) vector direction, as shown in FIG. 2B, when Li is inserted (discharged) into the positive electrode active material, Li ions are emitted only in the direction parallel to the layer. This is because the surface into which Li ions can be inserted is relatively reduced due to the inability to insert, and the diffusion of Li ions at the particle interface deteriorates. This tendency is particularly remarkable when discharging is performed at a high current density.
[0036]
FIG. 4 plots the relationship between the crystallite diameter of the positive electrode active material of the present invention and the 100-cycle deterioration rate. Here, since the product of the present invention is spherical, the crystallite diameter is almost the same regardless of the evaluation in any direction. Here, however, the crystallite diameter is plotted against the crystallite diameter in the (110) vector direction. From FIG. 4, it can be seen that the cycle characteristics hardly change when the crystallite diameter is in the range of 500 to about 1000 angstroms, but the capacity retention ratio defined later decreases when it exceeds about 1000 angstroms.
[0037]
The charge / discharge test of the lithium secondary battery is performed as follows. First, as a positive electrode, 70 parts by weight of LiMO2, 15 parts by weight of acetylene black, and 15 parts by weight of PTFT (polytetrafluoroethylene) were mixed with ethanol and kneaded to form a paste, which was then pressed on a SUS mesh and pressed. Dry to obtain a positive electrode plate. On the other hand, both electrodes are immersed in an electrolytic solution in which EC (ethylene carbonate), DEC (diethylene carbonate) and the electrolyte LiPCl4 are mixed, using Li metal as a negative electrode. The charging is set to a current load of 0.2 C (1 C is a current load at which charging or discharging is completed in one hour), and the charging upper limit voltage is set to 4.20 V. The discharge is set to a 0.6 C current load, the lower limit voltage is set to 2.75 V, and charge / discharge for 100 cycles is performed. The capacity retention ratio is calculated by the (%) formula of (100th discharge capacity) / (first discharge capacity) × 100.
[0038]
As described above, in the prior art, in order to improve the cycle characteristics, the particles are made into a plate-shaped single crystal, and the expansion and contraction of the particles in the c-axis direction are made in a certain direction, thereby preventing the particles from collapsing and from the current collector. It is said to prevent peeling. On the other hand, in the present invention, on the contrary, the crystal is formed into a shape close to a spherical shape without orientation. This increases the adhesion of the particles themselves to the current collector, prevents the positive electrode active material from peeling off from the current collector due to charge / discharge cycles, and further increases the surface on the particle interface where Li can be inserted. Thereby, the cycle characteristics are improved.
[0039]
【Example】
Examples of the present invention will be described with reference to LiCoO2 as a positive electrode active material, but the present invention is not limited to this composition, and LiMO2 (where M is at least one heavy metal element selected from the group consisting of Co, Ni, Fe, Mn, and Cr) The same is true for all possible compositions.
[0040]
[Example 1]
<Raw material preparation>
・ Cobalt tetroxide (Co3O4) ・ ・ ・ ・ ・ 3.000kg
・ Lithium carbonate (Li2CO3) ・ ・ ・ ・ ・ ・ 1.380kg
Cobalt tetroxide is a polycrystalline particle having a crystallite diameter in the (222) vector direction of 200 angstroms and a secondary particle having a substantially spherical shape. When the secondary particle size was measured using a Coulter Multisizer 2, the central particle size was 5.0 μm. The charge ratio of Li / Co of the above raw materials is 1.00. These raw materials are charged into a ceramic pot and ball milled to obtain a mixed raw material of the positive electrode active material.
[0041]
The obtained mixed raw material was calcined at 900 ° C. for 10 hours in the air and pulverized to synthesize a target LiCoO 2.
[0042]
The obtained LiCoO2 was subjected to powder X-ray diffraction measurement using CuKα as a radiation source, and the crystallite diameter in the (003) vector direction was 606 Å, and the crystallite size in the (110) vector direction was calculated using Scherrer's equation. The crystallite diameter was 879 angstroms, the crystallite diameter in the other (115) vector directions was 795 angstroms, and the crystallite diameter in the (113) vector directions was 848 angstroms.
[0043]
Regarding the particle size of the LiCoO2 cathode active material, F.I. S. S. S. The average particle diameter was 4.0 μm as measured by using the formula, and the average of the ratio of the short axis particle diameter / the long axis particle diameter of each particle was 0.9. When preparing a measurement sample to be subjected to the SEM, if the sample is prepared by applying pressure, it is difficult to distinguish it from the isotropically shaped particles of the present invention. Therefore, when preparing a SEM measurement sample, preparation was made so that pressure was not applied to the sample surface in order to make it less likely to receive the shape of the particles.
[0044]
<Cycle characteristics>
70 parts by weight of the obtained positive electrode active material LiCoO2, 15 parts by weight of acetylene black, and 15 parts by weight of PTFT (polytetrafluoroethylene) were mixed with ethanol and kneaded to form a paste, which was pressed on a SUS mesh. It is dried to obtain a positive electrode plate. On the other hand, both electrodes are immersed in an electrolytic solution in which EC (ethylene carbonate), DEC (diethylene carbonate) and the electrolyte LiPCl4 are mixed, using Li metal as a negative electrode. The charging is set to a current load of 0.2 C (1 C is a current load at which charging or discharging is completed in one hour), and the charging upper limit voltage is set to 4.20 V. The discharge is set to a 0.6 C current load, the lower limit voltage is set to 2.75 V, and charge / discharge for 100 cycles is performed. The capacity retention ratio was 95.2% as a result of an expression of (100th discharge capacity) / (first discharge capacity) × 100.
[0045]
<Thermal stability>
Using the obtained positive electrode active material LiCO2, a secondary battery was manufactured under the same conditions as in the cycle characteristic measurement, and charged under the conditions of a charging load of 0.2 C and a charging upper limit voltage of 4.20 V. The secondary battery is disassembled in a dry box, the positive electrode plate is taken out, and about 10 mg thereof is cut out to be used as a measurement sample. As a result of performing thermogravimetric analysis on the obtained measurement sample using a TGA apparatus, a weight change due to oxygen release was observed at 218.0 ° C., and the limit temperature was 218.0 ° C.
[0046]
[Comparative Example 1]
Cobalt tetroxide particles are hexagonal plate-like particles observed by SEM. The crystallite diameter in the (222) vector direction is 100 angstroms, and the secondary particles have a center particle diameter of 6.2 μm measured using a Coulter Multisizer 2. LiCoO2 was synthesized by mixing and firing the raw materials under the same conditions as in Example 1 except that a certain material was used.
[0047]
When the obtained LiCoO2 was calculated using Scherrer's equation in the same manner as in Example 1, the crystallite diameter in the (003) vector direction was 649 angstroms, and the crystallite diameter in the (110) vector direction was 1150 angstroms. The crystallite diameter in the (115) vector direction was 798 angstroms, and the crystallite diameter in the (113) vector direction was 868 angstroms.
[0048]
Regarding the particle size of the LiCoO2 cathode active material S. S. S. As a result, the average particle diameter was 3.5 μm.
[0049]
Further, the ratio of the minor axis particle diameter to the major axis particle diameter of the LiCoO2 particles by SEM observation was 0.3.
[0050]
<Cycle characteristics>
A secondary battery was fabricated in the same manner as in Example 1 except that the obtained positive electrode active material was used, and the battery was charged and discharged for 100 cycles. The capacity retention was 85.0%.
[0051]
<Thermal stability>
Using the obtained positive electrode active material LiCO2 and performing thermogravimetric analysis using TGA in the same manner as in Example 1, the critical temperature at which a weight change due to oxygen release was observed was 190.8 ° C. .
[0052]
【The invention's effect】
As described above, the LiMO2 of the cathode material of the present invention is basically a sphere in which the crystallite shape is isotropically grown in space, and the crystallite diameter is large. By making the crystallites have a spherical isotropic structure, the direction of crystal distortion due to the movement of Li due to charge and discharge becomes uniform in all spatial directions. In comparison, collapse can be minimized. Further, by further increasing the crystallite to a specific range, the collapse of the crystal structure caused when Li ions are eliminated can be reduced. In these respects, the product of the present invention was able to significantly improve the thermal stability and cycle characteristics of the positive electrode active material as compared with the conventional product.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a method for evaluating a long axis particle diameter and a short axis particle diameter based on an SEM photograph.
FIG. 2 is an enlarged schematic diagram showing a comparison of the particle shapes of a positive electrode active material of (a) the present invention and (b) a comparative product.
FIG. 3 is a characteristic diagram showing a relationship between a crystallite diameter and a limit temperature.
FIG. 4 is a characteristic diagram showing a relationship between a capacity retention ratio and a crystallite diameter.
[Explanation of symbols]
1 ····· The surface into which Li ions can be inserted
Claims (1)
その粒子構造は、結晶子を単位とし、それが集合した粒子からなり、
前記正極活物質の一次粒子を構成する結晶子の立体形状を、層を重ねる方向((003)ベクトル方向)、及びそれに垂直な方向((110)ベクトル方向)で表現する場合、(110)ベクトル方向の結晶子径に対する(003)ベクトル方向の結晶子径の比率は、0.5〜1.6の範囲であり、
前記(003)ベクトル方向の結晶子径は、500〜750オングストロームの範囲であり、
前記(110)ベクトル方向の結晶子径は、450〜1000オングストロームの範囲であり、
前記粒子の平均粒径は0.1〜10μmであり、SEM観察による前記粒子の長軸粒子径に対する短軸粒子径の比率は0.5〜0.9の範囲である、リチウムイオン二次電池用正極活物質。
(但しMはCo、Ni、Fe、Mn、Crの群から選ばれる少なくとも一種の重金属元素)A positive electrode active material for a lithium ion secondary battery represented by the general formula LiMO2,
The particle structure is composed of particles in which crystallites are united and they are aggregated,
When the three-dimensional shape of the crystallites constituting the primary particles of the positive electrode active material is expressed by a direction in which the layers are stacked ((003) vector direction) and a direction perpendicular to it ((110) vector direction), the (110) vector The ratio of the crystallite diameter in the (003) vector direction to the crystallite diameter in the direction is in the range of 0.5 to 1.6,
The crystallite diameter in the (003) vector direction is in the range of 500 to 750 angstroms,
The crystallite diameter in the (110) vector direction is in the range of 450 to 1000 Å,
The lithium ion secondary battery, wherein the average particle diameter of the particles is 0.1 to 10 μm, and the ratio of the minor axis particle diameter to the major axis particle diameter of the particles by SEM observation is in the range of 0.5 to 0.9. Positive electrode active material.
(Where M is at least one heavy metal element selected from the group consisting of Co, Ni, Fe, Mn, and Cr)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07490797A JP3591195B2 (en) | 1997-03-07 | 1997-03-27 | Cathode active material for lithium ion secondary batteries |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-52900 | 1997-03-07 | ||
JP5290097 | 1997-03-07 | ||
JP07490797A JP3591195B2 (en) | 1997-03-07 | 1997-03-27 | Cathode active material for lithium ion secondary batteries |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003127719A Division JP4062165B2 (en) | 1997-03-07 | 2003-05-06 | Method for producing positive electrode active material for lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10308218A JPH10308218A (en) | 1998-11-17 |
JP3591195B2 true JP3591195B2 (en) | 2004-11-17 |
Family
ID=26393564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07490797A Expired - Lifetime JP3591195B2 (en) | 1997-03-07 | 1997-03-27 | Cathode active material for lithium ion secondary batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3591195B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10483536B2 (en) | 2014-08-20 | 2019-11-19 | Sumitomo Chemical Co., Ltd. | Production method of lithium-containing composite oxide and lithium-containing composite oxide |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11180717A (en) | 1997-12-22 | 1999-07-06 | Ishihara Sangyo Kaisha Ltd | Lithium manganate, its production and lithium cell produced by using the same |
JPH11273678A (en) * | 1998-03-23 | 1999-10-08 | Sumitomo Metal Mining Co Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material |
JP2002063941A (en) * | 2000-08-17 | 2002-02-28 | Mitsubishi Cable Ind Ltd | Lithium ion secondary battery |
JP5036100B2 (en) * | 2001-03-30 | 2012-09-26 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
JP5079951B2 (en) * | 2001-06-27 | 2012-11-21 | 株式会社三徳 | Non-aqueous electrolyte secondary battery positive electrode active material, its manufacturing method, non-aqueous electrolyte secondary battery, and positive electrode manufacturing method |
US7504180B2 (en) * | 2002-09-25 | 2009-03-17 | Seimi Chemical Co., Ltd. | Positive electrode material for lithium secondary battery and process for producing the same |
JP4329434B2 (en) * | 2003-07-30 | 2009-09-09 | 三菱化学株式会社 | Positive electrode for lithium secondary battery and lithium secondary battery using the same |
JP5061437B2 (en) * | 2005-08-26 | 2012-10-31 | ソニー株式会社 | Lithium ion secondary battery |
JP5518182B2 (en) | 2010-03-29 | 2014-06-11 | 住友金属鉱山株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, precursor of the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode active material |
JP5727023B2 (en) * | 2011-09-20 | 2015-06-03 | 日立オートモティブシステムズ株式会社 | Lithium ion battery |
CN104379509B (en) | 2012-06-06 | 2016-08-24 | 住友金属矿山株式会社 | Nickel complex hydroxide, positive electrode active material for nonaqueous electrolyte secondary battery, rechargeable nonaqueous electrolytic battery and their manufacture method |
JP6174047B2 (en) | 2012-12-27 | 2017-08-02 | 三洋電機株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
WO2014192759A1 (en) * | 2013-05-28 | 2014-12-04 | 旭硝子株式会社 | Positive electrode active material |
JP6252010B2 (en) | 2013-07-24 | 2017-12-27 | 住友金属鉱山株式会社 | Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery |
JP6133720B2 (en) | 2013-07-24 | 2017-05-24 | 住友金属鉱山株式会社 | Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery |
JP6244713B2 (en) | 2013-07-24 | 2017-12-13 | 住友金属鉱山株式会社 | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery |
JP6486653B2 (en) | 2014-01-31 | 2019-03-20 | パナソニック株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
KR102430121B1 (en) | 2014-12-25 | 2022-08-05 | 스미또모 가가꾸 가부시끼가이샤 | Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery |
JP6587804B2 (en) * | 2015-01-23 | 2019-10-09 | 住友化学株式会社 | Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery |
JP6624885B2 (en) | 2015-02-19 | 2019-12-25 | パナソニック株式会社 | Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP6496177B2 (en) * | 2015-04-08 | 2019-04-03 | 住友化学株式会社 | Lithium-containing composite oxide, method for producing the same, positive electrode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery |
US10109854B2 (en) | 2015-09-30 | 2018-10-23 | Panasonic Corporation | Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery |
JP6908368B2 (en) | 2016-02-29 | 2021-07-28 | パナソニック株式会社 | Positive electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries |
CN106450155B (en) * | 2016-09-18 | 2019-11-29 | 贵州振华新材料股份有限公司 | Spherical or spherical anode material for lithium-ion batteries and preparation method and application |
CN113839030B (en) * | 2021-11-26 | 2023-09-05 | 蜂巢能源科技有限公司 | Cobalt-free positive electrode material and application thereof |
CN115513451A (en) * | 2022-11-22 | 2022-12-23 | 中创新航技术研究中心(深圳)有限公司 | Positive electrode active material and battery using same |
-
1997
- 1997-03-27 JP JP07490797A patent/JP3591195B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10483536B2 (en) | 2014-08-20 | 2019-11-19 | Sumitomo Chemical Co., Ltd. | Production method of lithium-containing composite oxide and lithium-containing composite oxide |
US11171333B2 (en) | 2014-08-20 | 2021-11-09 | Sumitomo Chemical Co., Ltd. | Production method of lithium-containing composite oxide and lithium-containing composite oxide |
Also Published As
Publication number | Publication date |
---|---|
JPH10308218A (en) | 1998-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3591195B2 (en) | Cathode active material for lithium ion secondary batteries | |
JP4644895B2 (en) | Lithium secondary battery | |
JP4318313B2 (en) | Positive electrode active material powder for lithium secondary battery | |
US7824803B2 (en) | Positive electrode active substance for lithium secondary battery and process for producing the same | |
KR100326455B1 (en) | Positive active material for lithium secondary battery and method of preparing the same | |
JP4268392B2 (en) | Positive electrode active material for lithium secondary battery and method for producing the same | |
JP4353808B2 (en) | Particulate cathode active material for lithium secondary battery | |
JP2023523667A (en) | Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same | |
JP4276442B2 (en) | Positive electrode active material powder for lithium secondary battery | |
US7192672B2 (en) | Process for producing positive electrode active material for lithium secondary battery | |
US7829045B2 (en) | Method for producing lithium composite oxide for use as positive electrode active material for lithium secondary batteries | |
JP2004253174A (en) | Positive pole active material for nonaqueous electrolytic secondary battery | |
JPH1116573A (en) | Lithium cobalt double oxide for lithium ion secondary battery and its manufacture | |
JP2004292264A (en) | Trimanganese tetroxide particle, its production method, nonaqueous electrolyte secondary battery, positive electrode active substance therefor and its preparation method | |
JP4919147B2 (en) | Method for producing positive electrode active material for non-aqueous lithium secondary battery | |
JP2023523668A (en) | Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same | |
JP2000128539A (en) | Lithium transition metal based halogenated oxide and its production and its utilization | |
JP4250886B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JP2004087492A (en) | Anode active substance for nonaqueous electrolytic solution rechargeable battery and its manufacturing method | |
JP4172024B2 (en) | Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery | |
JP2006318928A (en) | Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery | |
JP2005332713A (en) | Lithium secondary battery and positive electrode active material for secondary battery | |
JP3489391B2 (en) | Positive active material for lithium ion secondary battery and method for producing the same | |
JP2004006277A (en) | Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof | |
JP4062165B2 (en) | Method for producing positive electrode active material for lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20031224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040220 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040624 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040716 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040816 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080903 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090903 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090903 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090903 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100903 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100903 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110903 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110903 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120903 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120903 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120903 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120903 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130903 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |