[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3589273B2 - Power device drive circuit - Google Patents

Power device drive circuit Download PDF

Info

Publication number
JP3589273B2
JP3589273B2 JP26335697A JP26335697A JP3589273B2 JP 3589273 B2 JP3589273 B2 JP 3589273B2 JP 26335697 A JP26335697 A JP 26335697A JP 26335697 A JP26335697 A JP 26335697A JP 3589273 B2 JP3589273 B2 JP 3589273B2
Authority
JP
Japan
Prior art keywords
control circuit
power supply
drive
power device
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26335697A
Other languages
Japanese (ja)
Other versions
JPH11103243A (en
Inventor
由成 簑谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP26335697A priority Critical patent/JP3589273B2/en
Publication of JPH11103243A publication Critical patent/JPH11103243A/en
Application granted granted Critical
Publication of JP3589273B2 publication Critical patent/JP3589273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electronic Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パワーデバイスの駆動回路に関し、とくに、インバータの電力スイッチング素子として用いられるIGBT(絶縁ゲート形バイポーラモードトランジスタ)を駆動する場合の誤動作を防止することを可能にしたパワーデバイスの駆動回路に関する。
【0002】
【発明が解決しようとする課題】
従来、IGBTを駆動する駆動回路として、図2に示すものがある。この駆動回路1は、電流センス端子を内蔵したIGBTからなるパワーデバイス8のゲートを駆動するドライブ制御回路3と、パワーデバイス8の電流、電圧、温度等を監視するセンサ5と、このセンサ5等がパワーデバイス8の異常を検出したり、端子Sを介してパワーデバイス8の過電流を検出した場合に異常検出信号を出力する異常検知・保護制御回路4と、外部信号源9からの駆動信号と前記異常検知・保護制御回路4からの異常検出信号にもとづいてパワーデバイス8をオン・オフさせる信号をドライブ制御回路3へ出力するスイッチング制御回路2とから構成されている。これら各制御回路2〜4は、ともに電源端子V、接地端子EGを介して外部電源VDDに接続されているとともに、接地側は、パワーデバイス8のエミッタとも接続されている。
【0003】
しかしながら、このように構成された駆動回路1では、パワーデバイス8を駆動する際のターンオン・ターンオフの瞬間に、その駆動に必要なドライブ電流がピークで数100mAから数A以上となる。また、この時の電流と駆動回路1内の電源配線および接地配線の抵抗成分やインダクタンス成分によって発生する過渡的な電圧降下や電圧振動と、パワーデバイス8のスイッチング時に主回路側に発生する電圧の大きな時間的変動(dv/dt)および電流の大きな時間的変動(di/dt)の影響により、各制御回路2〜4の電源電圧が変動して駆動回路1が誤動作することがあった。
そこで、各制御回路2,4へ供給される電源電圧の変動を小さくするために、特開平5−276000号公報に記載されたように、駆動回路内に降圧型レギュレータ回路を設けて、駆動回路に加えられた外部電源VDDの電圧を所定電圧まで降圧してから、制御回路2,4へ供給する構成とした駆動回路が提案されている。しかしながら、この場合も、各制御回路2,4が1つの降圧型レギュレータ回路に共通して接続されているため、1つの制御回路の電圧変動が他の制御回路に影響を及ぼすことがあり、誤動作を完全に防止することは難しかった。
【0004】
【課題を解決するための手段】
そこで上記課題を解決するために、請求項1の発明は、入力された駆動信号にもとづいてパワーデバイスを駆動するドライブ制御回路と、パワーデバイスを監視し異常発生の場合に異常検知信号を出力する異常検知・保護制御回路と、前記異常検知信号および外部から入力された信号にもとづいて駆動信号を生成して前記ドライブ制御回路へ送るスイッチング制御回路と、電源端子を介して前記ドライブ制御回路に接続されて駆動電力を供給するとともに接地側がパワーデバイスの接地端子と接続された外部電源とを備えたパワーデバイスの駆動回路において、ドライブ制御回路に外部電源の接地側を接続するために設けられた第1の接地端子と、異常検知・保護制御回路およびスイッチング制御回路に外部電源の接地側を接続するために設けられた第2の接地端子と、第1の接地端子とパワーデバイスの接地端子とを接続する第1の配線と、第2の接地端子とパワーデバイスの接地端子とを接続する第2の配線と、外部電源と異常検知・保護制御回路との間に接続されて外部電源の電圧を所定電圧まで降圧して異常検知・保護制御回路へ供給する第2の降圧回路と、外部電源とスイッチング制御回路との間に接続されて外部電源の電圧を所定電圧まで降圧してスイッチング制御回路へ供給する第1の降圧回路とを備えたことを特徴とする。
【0005】
なおここで、パワーデバイスとしてIGBTを用い、その接地端子をエミッタとすることができる。
【0006】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。
図1は本発明の実施形態の構成を示すブロック図である。図において、1は駆動回路であり、電流センス端子を内蔵したIGBTからなるパワーデバイス8と、ゲート側の端子Gおよびエミッタ側の端子EG,SGおよび電流センス側の端子Sを介して接続されている。また、駆動回路1は、電源端子Vおよび接地端子EGを介して、外部電源VDDと接続されている。ここで、IGBTのエミッタに相当するパワーデバイス8の接地端子Kは、配線11,12を介してそれぞれ接地端子EG,SGと接続されているため、端子SGにも外部電源VDDが接続されることになる。さらに、外部信号源9からの信号が端子Fを介して入力される。
【0007】
駆動回路1は、パワーデバイス8および駆動回路1自体の異常(過電圧、電圧低下、過熱、負荷短絡等)を検知するために設置されたセンサ5と、端子Sを介して入力されるパワーデバイス8の電流値から過電流を検知するとともにセンサ5からの信号にもとづいて異常検知信号を出力する異常検知・保護制御回路4と、端子Fを介して外部信号源9から入力された信号と異常検知・保護制御回路4から入力された異常検知信号とによりパワーデバイス8をオン・オフする信号を生成してドライブ制御回路3へ送るスイッチング制御回路2と、スイッチング制御回路2から送られた信号にもとづいてパワーデバイス8を駆動するための駆動信号を端子Gを介してパワーデバイス8のゲートへ送るドライブ制御回路3と、電源端子Vと端子SGの間に接続されて外部電源VDDより低く安定化された第1の電圧を出力してスイッチング制御回路2へ供給する第1降圧回路6と、同じく電源端子Vと端子SGの間に接続されて外部電源VDDより低く安定化された第2の電圧を出力して異常検知・保護制御回路4へ供給する第2降圧回路7とから構成されている。
【0008】
ここで、ドライブ制御回路3は、端子Vと端子EGを介して、外部電源VDDに直接接続されており、パワーデバイス8を駆動するに充分な電源が供給される。また、スイッチング制御回路2および異常検知・保護制御回路4は、外部電源VDDから降圧回路6,7を介して低く安定化された電源が供給される。
このような構成において、パワーデバイス8のオン・オフ時に発生するゲート駆動電流による制御回路内電源配線での電圧降下・振動等の変動と、パワーデバイス8のスイッチング時に高い値が発生する電圧および電流の時間的変動dv/dt、di/dtの影響により駆動回路1内の端子Vにつながる各回路の電源端子では電位が変動するが、この変動は降圧回路6,7で吸収されるため、この電源電位の変動はスイッチング制御回路2、異常検知・保護制御回路4には伝わることがなく、電源電位の変動による誤動作の発生がなくなる。
【0009】
また、スイッチング制御回路2の動作によって生じる電源電位の変動は降圧回路6との間で吸収され、他の制御回路に影響を及ぼすことはない。同様に、異常検知・保護制御回路4の動作によって生じる電源電位の変動は降圧回路7との間で吸収され、他の制御回路に影響を及ぼすことはない。また、異常検知・保護制御回路4とスイッチング制御回路2の間やスイッチング制御回路2とドライブ制御回路3との間などの異なる電源系の制御回路間の信号伝達では、レベルシフト伝達、2値信号伝達、プルアップ、プルダウン、インピーダンス整合、フィルタによるノイズ除去等で信号の品質を向上させてから伝達しており、スイッチング以外の突発的なノイズ印加による誤動作の誘発をも防いでいる。
【0010】
また、この駆動回路1を集積回路で構成する場合は、制御回路2〜4、降圧回路6,7を、誘電体分離や接合分離等の分離技術によって、各電源系毎にウェルを分離して構成する。さらに、ハイブリッドICやプリント基板上に駆動回路1を構成する場合は、各制御回路2〜4、降圧回路6,7ごとに周辺回路を集中して配置し、各回路間を接続する。また、いずれの場合も、電源端子は途中で分岐させずに端子Vで1点となるように接続し、端子Vでの電源変動が降圧回路6、7に同程度に加わり不均衡を生じないようにし、同時に、配線インピーダンスの不均衡による反射を増長させないようにする。
【0011】
接地端子については、大電流が流れるドライブ制御回路3の接地端子EGとそれほど大きな電流の流れないその他の制御回路2,4の接地端子SGとに分け、パワーデバイス8の接地端子Kまでを、互いに異なる配線11,12により接続することで、前述した電源端子Vの場合と同様の効果が得られる。即ち、ドライブ制御回路3の接地端子EGからパワーデバイス8の接地端子Kにつながる配線11の電位がパワーデバイス8のスイッチングにより変動しても、スイッチング制御回路2及び異常検知・保護制御回路4の接地端子SGの電位はその変動の影響を受けないため、スイッチング制御回路2及び異常検知・保護制御回路4は、電源電圧の変動を原因とした誤動作がなくなる。
【0012】
上述したように、本発明の駆動回路1は、パワーデバイス8を駆動するドライブ制御回路3と、そのパワーデバイス8や駆動回路1の異常を検知して保護を行う異常検知・保護制御回路4と、入力信号と異常検知・保護制御回路4の出力によりドライブ制御回路3の出力を制御するスイッチング制御回路2と、外部電源VDDより低い第1の電圧を発生させる第1降圧回路6と、外部電源VDDより低い第2の電圧を発生させる第2降圧回路7とから構成し、パワーデバイス8を充分駆動できるだけの電圧を必要とするドライブ制御回路3には外部電源VDDを直接接続し、スイッチング制御回路2には外部電源VDDから第1降圧回路6によりその外部電源VDDより低く安定化された第1の電圧を供給し、異常検知・保護制御回路4には外部電源VDDから第2降圧回路7によりその外部電源VDDより低く安定化された第2の電圧を供給し、ドライブ制御回路3の接地端子EGとその他の制御回路2,4の接地端子SGを分離し、両者がパワーデバイス8の接地端子Kにおいて1点で接続するようにしたものである。
【0013】
そのため、第1及び第2の降圧回路6,7により、外部電源VDDから供給される電圧よりも低く安定化した電圧がスイッチング制御回路2及び異常検知・保護制御回路4に供給され、外部電源VDDにつながる駆動回路1内の電源配線での電位がパワーデバイス8のスイッチングにより変動しても、スイッチング制御回路2及び異常検知・保護制御回路4に供給される電圧は外部電源VDDより低く安定したままである。
【0014】
また、スイッチング制御回路2と異常検知・保護制御回路4の電源を2つの降圧回路6,7によって分離したことにより、例えばスイッチング制御回路2が動作することで生じるこの部分での電源電圧変動が、異常検知・保護制御回路4の電源電圧に影響を及ぼすことがなくなる。同様に、異常検知・保護制御回路4が動作することで生じるこの部分での電源電圧変動が、スイッチング制御回路2の電源電圧に影響を及ぼすことがなくなる。
【0015】
さらにまた、ドライブ制御回路3の接地端子EGとその他の制御回路2,4の接地端子SGを分離し、両者をパワーデバイス8の接地端子Kにおいて1点で接続するようにしたことにより、ドライブ制御回路3の接地端子EGからパワーデバイス8の接地端子Kにつながる配線11上の電位がパワーデバイス8のスイッチングにより変動しても、スイッチング制御回路2及び異常検知・保護制御回路4の接地端子SGの電位は、その変動の影響を受けない。
【0016】
従って、パワーデバイス8のスイッチングにより駆動回路1内部の電源・接地電位が変動したり、各制御回路2〜4の電源電圧が変動しても、駆動回路1全体としての動作が安定し、パワーデバイス8の駆動制御に関して誤動作を発生することが少なくなる。
なお、実施形態では、IGBTからなるパワーデバイス8を駆動する駆動回路について説明したが、他のパワーデバイスについても同様に適用可能である。
【0017】
【発明の効果】
以上述べたように本発明によれば、ドライブ制御回路は外部電源の電圧により直接駆動され、異常検知・保護制御回路およびスイッチング制御回路はそれぞれ専用の降圧回路により外部電源の電圧よりも低い電圧で駆動されるため、ドライブ制御回路のオン・オフ時の電圧変動が他の制御回路へ及ぼす影響が少なくなる。また、ドライブ制御回路の接地端子とパワーデバイスの接地端子との間を接続する配線と、異常検知・保護制御回路およびスイッチング制御回路の接地端子とパワーデバイスの接地端子との間を接続する配線とを全く別な配線として分離したたため、ドライブ制御回路のオン・オフ時の電圧変動が他の制御回路へ及ぼす影響がさらに少なくなる。その結果、誤動作の発生の少ないパワーデバイスの駆動回路が得られる。
【図面の簡単な説明】
【図1】本発明の実施形態の構成を示すブロック図である。
【図2】従来例を示す図である。
【符号の説明】
1 駆動回路
2 スイッチング制御回路
3 ドライブ制御回路
4 異常検知・保護制御回路
5 センサ
6 第1降圧回路
7 第2降圧回路
8 パワーデバイス
9 外部信号源
11,12 配線
EG,SG 接地端子
G,S 端子
K 接地端子
VDD 外部電源
V 電源端子
F 端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a drive circuit for a power device, and more particularly to a drive circuit for a power device that can prevent a malfunction when driving an IGBT (insulated gate bipolar mode transistor) used as a power switching element of an inverter. .
[0002]
[Problems to be solved by the invention]
2. Description of the Related Art Conventionally, there is a drive circuit shown in FIG. 2 for driving an IGBT. The drive circuit 1 includes a drive control circuit 3 that drives a gate of a power device 8 composed of an IGBT having a built-in current sense terminal, a sensor 5 that monitors the current, voltage, temperature, and the like of the power device 8, a sensor 5 and the like. Detects an abnormality of the power device 8 or outputs an abnormality detection signal when an overcurrent of the power device 8 is detected via the terminal S, and a drive signal from an external signal source 9. And a switching control circuit 2 that outputs a signal for turning on / off the power device 8 to the drive control circuit 3 based on the abnormality detection signal from the abnormality detection / protection control circuit 4. Each of these control circuits 2 to 4 is connected to an external power supply VDD via a power supply terminal V and a ground terminal EG, and the ground side is also connected to the emitter of the power device 8.
[0003]
However, in the drive circuit 1 configured as described above, at the moment of turn-on / turn-off when the power device 8 is driven, the drive current required for the drive becomes several hundred mA to several A or more at the peak. In addition, a transient voltage drop or voltage oscillation caused by the current at this time and a resistance component or an inductance component of the power supply wiring and the ground wiring in the drive circuit 1 and a voltage generated on the main circuit side when the power device 8 is switched. Due to the influence of the large temporal fluctuation (dv / dt) and the large temporal fluctuation (di / dt) of the current, the power supply voltage of each of the control circuits 2 to 4 fluctuates and the drive circuit 1 may malfunction.
Therefore, in order to reduce the fluctuation of the power supply voltage supplied to each of the control circuits 2 and 4, a step-down regulator circuit is provided in the drive circuit as described in JP-A-5-276000. There is proposed a drive circuit in which the voltage of the external power supply VDD applied to the control circuit is reduced to a predetermined voltage and then supplied to the control circuits 2 and 4. However, also in this case, since each of the control circuits 2 and 4 is commonly connected to one step-down regulator circuit, a voltage fluctuation of one control circuit may affect another control circuit, and a malfunction may occur. Was difficult to completely prevent.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a first aspect of the present invention provides a drive control circuit that drives a power device based on an input drive signal, and monitors the power device and outputs an abnormality detection signal when an abnormality occurs. An abnormality detection / protection control circuit, a switching control circuit that generates a drive signal based on the abnormality detection signal and a signal input from the outside, and sends the drive signal to the drive control circuit, and is connected to the drive control circuit via a power supply terminal And a drive circuit for supplying a drive power and having an external power supply having a ground side connected to a ground terminal of the power device, wherein a drive control circuit is provided for connecting the ground side of the external power supply to the drive control circuit. 1 to connect the ground side of the external power supply to the abnormality detection / protection control circuit and switching control circuit. A second wiring connecting the first ground terminal to the ground terminal of the power device; a second wiring connecting the second ground terminal to the ground terminal of the power device. A second step-down circuit connected between an external power supply and an abnormality detection / protection control circuit, for reducing the voltage of the external power supply to a predetermined voltage and supplying the voltage to the abnormality detection / protection control circuit; and an external power supply and a switching control circuit. And a first step-down circuit connected to the switching control circuit for reducing the voltage of the external power supply to a predetermined voltage and supplying the reduced voltage to the switching control circuit.
[0005]
Here, an IGBT can be used as a power device, and its ground terminal can be used as an emitter.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of the embodiment of the present invention. In the figure, reference numeral 1 denotes a drive circuit, which is connected to a power device 8 composed of an IGBT having a built-in current sense terminal, via a terminal G on the gate side, terminals EG and SG on the emitter side, and a terminal S on the current sense side. I have. The drive circuit 1 is connected to an external power supply VDD via a power supply terminal V and a ground terminal EG. Here, since the ground terminal K of the power device 8 corresponding to the emitter of the IGBT is connected to the ground terminals EG and SG via the wirings 11 and 12, respectively, the external power supply VDD is also connected to the terminal SG. become. Further, a signal from the external signal source 9 is input via the terminal F.
[0007]
The drive circuit 1 includes a sensor 5 installed to detect an abnormality (overvoltage, voltage drop, overheating, load short-circuit, etc.) of the power device 8 and the drive circuit 1 itself, and a power device 8 input via a terminal S. An abnormality detection / protection control circuit 4 which detects an overcurrent from the current value of the current and outputs an abnormality detection signal based on a signal from the sensor 5, and a signal inputted from an external signal source 9 via a terminal F and abnormality detection A switching control circuit that generates a signal for turning on and off the power device based on the abnormality detection signal input from the protection control circuit and sends the signal to the drive control circuit; and a signal transmitted from the switching control circuit. A drive control circuit 3 for sending a drive signal for driving the power device 8 to the gate of the power device 8 via a terminal G, a power supply terminal V and a terminal SG A first step-down circuit 6 connected between the first power supply terminal V and a terminal SG for outputting a first voltage stabilized below the external power supply VDD and supplying the first voltage to the switching control circuit 2; And a second step-down circuit 7 for outputting a stabilized second voltage lower than the power supply VDD and supplying the same to the abnormality detection / protection control circuit 4.
[0008]
Here, the drive control circuit 3 is directly connected to the external power supply VDD via the terminal V and the terminal EG, and sufficient power for driving the power device 8 is supplied. The switching control circuit 2 and the abnormality detection / protection control circuit 4 are supplied with low stabilized power from the external power supply VDD via the step-down circuits 6 and 7.
In such a configuration, fluctuations in voltage drop, vibration, and the like in the power supply wiring in the control circuit due to the gate drive current generated when the power device 8 is turned on and off, and the voltage and current that generate high values when the power device 8 is switched The potential changes at the power supply terminals of each circuit connected to the terminal V in the drive circuit 1 due to the influence of the temporal fluctuations dv / dt and di / dt, but these fluctuations are absorbed by the step-down circuits 6 and 7. Fluctuations in the power supply potential are not transmitted to the switching control circuit 2 and the abnormality detection / protection control circuit 4, so that malfunctions due to fluctuations in the power supply potential do not occur.
[0009]
Further, the fluctuation of the power supply potential caused by the operation of the switching control circuit 2 is absorbed between the step-down circuit 6 and does not affect other control circuits. Similarly, the fluctuation of the power supply potential caused by the operation of the abnormality detection / protection control circuit 4 is absorbed between the step-down circuit 7 and does not affect other control circuits. In signal transmission between control circuits of different power supply systems, such as between the abnormality detection / protection control circuit 4 and the switching control circuit 2 or between the switching control circuit 2 and the drive control circuit 3, a level shift transmission and a binary signal The signal is transmitted after the quality of the signal is improved by transmission, pull-up, pull-down, impedance matching, noise removal by a filter, and the like, thereby preventing a malfunction due to sudden noise application other than switching.
[0010]
When the drive circuit 1 is formed by an integrated circuit, the control circuits 2 to 4 and the step-down circuits 6 and 7 are separated into wells for each power supply system by a separation technique such as dielectric separation or junction separation. Constitute. Further, when the drive circuit 1 is configured on a hybrid IC or a printed circuit board, peripheral circuits are centrally arranged for each of the control circuits 2 to 4 and the step-down circuits 6 and 7, and the circuits are connected. In any case, the power supply terminals are connected at the terminal V at one point without branching on the way, and the power supply fluctuation at the terminal V is applied to the step-down circuits 6 and 7 to the same extent, so that imbalance does not occur. At the same time, the reflection due to the imbalance of the wiring impedance is not increased.
[0011]
The ground terminal is divided into a ground terminal EG of the drive control circuit 3 through which a large current flows and a ground terminal SG of the other control circuits 2 and 4 through which a large current does not flow. By connecting with different wirings 11 and 12, the same effect as in the case of the power supply terminal V described above can be obtained. That is, even if the potential of the wiring 11 connected from the ground terminal EG of the drive control circuit 3 to the ground terminal K of the power device 8 fluctuates due to the switching of the power device 8, the switching control circuit 2 and the abnormality detection / protection control circuit 4 are grounded. Since the potential of the terminal SG is not affected by the fluctuation, the switching control circuit 2 and the abnormality detection / protection control circuit 4 do not malfunction due to the fluctuation of the power supply voltage.
[0012]
As described above, the drive circuit 1 of the present invention includes the drive control circuit 3 for driving the power device 8, the abnormality detection / protection control circuit 4 for detecting and protecting the power device 8 and the drive circuit 1 from abnormality. A switching control circuit 2 for controlling an output of the drive control circuit 3 by an input signal and an output of the abnormality detection / protection control circuit 4, a first step-down circuit 6 for generating a first voltage lower than the external power supply VDD, and an external power supply. A second step-down circuit 7 for generating a second voltage lower than VDD, and an external power supply VDD directly connected to the drive control circuit 3 which requires a voltage sufficient to drive the power device 8, and a switching control circuit 2 is supplied from the external power supply VDD to the first voltage stabilized by the first step-down circuit 6 below the external power supply VDD. The second voltage step-down circuit 7 supplies a stabilized second voltage from the external power supply VDD to the ground terminal EG of the drive control circuit 3 and the ground terminals SG of the other control circuits 2 and 4 from the external power supply VDD. However, they are connected at a single point at the ground terminal K of the power device 8.
[0013]
Therefore, a stabilized voltage lower than the voltage supplied from the external power supply VDD is supplied to the switching control circuit 2 and the abnormality detection / protection control circuit 4 by the first and second step-down circuits 6, 7, and the external power supply VDD Even if the potential in the power supply wiring in the drive circuit 1 connected to the power supply 8 fluctuates due to the switching of the power device 8, the voltage supplied to the switching control circuit 2 and the abnormality detection / protection control circuit 4 remains lower and stable than the external power supply VDD. It is.
[0014]
Further, since the power supply of the switching control circuit 2 and the power supply of the abnormality detection / protection control circuit 4 are separated by the two step-down circuits 6, 7, for example, the power supply voltage fluctuation in this portion caused by the operation of the switching control circuit 2 is reduced. The power supply voltage of the abnormality detection / protection control circuit 4 is not affected. Similarly, the power supply voltage fluctuation in this part caused by the operation of the abnormality detection / protection control circuit 4 does not affect the power supply voltage of the switching control circuit 2.
[0015]
Furthermore, the ground terminal EG of the drive control circuit 3 and the ground terminal SG of the other control circuits 2 and 4 are separated, and the two are connected at a single point at the ground terminal K of the power device 8, so that drive control is performed. Even if the potential on the wiring 11 connected from the ground terminal EG of the circuit 3 to the ground terminal K of the power device 8 fluctuates due to the switching of the power device 8, the switching control circuit 2 and the ground terminal SG of the abnormality detection / protection control circuit 4 The potential is not affected by the fluctuation.
[0016]
Therefore, even if the power supply / ground potential inside the drive circuit 1 fluctuates due to the switching of the power device 8 or the power supply voltage of each of the control circuits 2 to 4 fluctuates, the operation of the drive circuit 1 as a whole is stabilized, and In the drive control of No. 8, malfunctions are less likely to occur.
In the embodiment, the drive circuit for driving the power device 8 composed of an IGBT has been described, but the present invention can be similarly applied to other power devices.
[0017]
【The invention's effect】
As described above, according to the present invention, the drive control circuit is directly driven by the voltage of the external power supply, and the abnormality detection / protection control circuit and the switching control circuit are each operated at a voltage lower than the voltage of the external power supply by the dedicated step-down circuit. Since the drive control circuit is driven, the influence of the voltage fluctuation when the drive control circuit is turned on and off on other control circuits is reduced. A wiring connecting the ground terminal of the drive control circuit to the ground terminal of the power device; and a wiring connecting the ground terminal of the abnormality detection / protection control circuit and the switching control circuit to the ground terminal of the power device. Are completely separated from each other, so that the influence of the voltage fluctuation when the drive control circuit is turned on and off on other control circuits is further reduced. As a result, a drive circuit for a power device with less occurrence of malfunction can be obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.
FIG. 2 is a diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Drive circuit 2 Switching control circuit 3 Drive control circuit 4 Abnormality detection / protection control circuit 5 Sensor 6 First step-down circuit 7 Second step-down circuit 8 Power device 9 External signal sources 11, 12 Wiring EG, SG Grounding terminal G, S terminal K Ground terminal VDD External power supply V Power supply terminal F terminal

Claims (2)

入力された駆動信号にもとづいてパワーデバイスを駆動するドライブ制御回路と、
パワーデバイスを監視し異常発生の場合に異常検知信号を出力する異常検知・保護制御回路と、
前記異常検知信号および外部から入力された信号にもとづいて駆動信号を生成して前記ドライブ制御回路へ送るスイッチング制御回路と、
電源端子を介して前記ドライブ制御回路に接続されて駆動電力を供給するとともに接地側がパワーデバイスの接地端子と接続された外部電源と、
を備えたパワーデバイスの駆動回路において、
ドライブ制御回路に外部電源の接地側を接続するために設けられた第1の接地端子と、
異常検知・保護制御回路およびスイッチング制御回路に外部電源の接地側を接続するために設けられた第2の接地端子と、
第1の接地端子とパワーデバイスの接地端子とを接続する第1の配線と、
第2の接地端子とパワーデバイスの接地端子とを接続する第2の配線と、
外部電源と異常検知・保護制御回路との間に接続されて外部電源の電圧を所定電圧まで降圧して異常検知・保護制御回路へ供給する第2の降圧回路と、
外部電源とスイッチング制御回路との間に接続されて外部電源の電圧を所定電圧まで降圧してスイッチング制御回路へ供給する第1の降圧回路と、
を備えたことを特徴とするパワーデバイスの駆動回路。
A drive control circuit that drives the power device based on the input drive signal;
An abnormality detection / protection control circuit that monitors a power device and outputs an abnormality detection signal when an abnormality occurs;
A switching control circuit that generates a drive signal based on the abnormality detection signal and a signal input from the outside and sends the drive signal to the drive control circuit;
An external power supply connected to the drive control circuit through a power supply terminal to supply drive power and connected to the ground terminal of the power device on the ground side;
In a drive circuit of a power device having
A first ground terminal provided for connecting a ground side of an external power supply to the drive control circuit;
A second ground terminal provided for connecting the ground side of the external power supply to the abnormality detection / protection control circuit and the switching control circuit;
A first wiring connecting the first ground terminal and the ground terminal of the power device;
A second wiring connecting the second ground terminal and a ground terminal of the power device;
A second step-down circuit that is connected between the external power supply and the abnormality detection / protection control circuit and reduces the voltage of the external power supply to a predetermined voltage and supplies the voltage to the abnormality detection / protection control circuit;
A first step-down circuit that is connected between the external power supply and the switching control circuit and that steps down the voltage of the external power supply to a predetermined voltage and supplies the voltage to the switching control circuit;
A driving circuit for a power device, comprising:
請求項1記載のパワーデバイスの駆動回路において、
パワーデバイスをIGBTとし、その接地端子をエミッタとしたパワーデバイスの駆動回路。
The drive circuit for a power device according to claim 1,
A power device drive circuit in which the power device is an IGBT and the ground terminal is an emitter.
JP26335697A 1997-09-29 1997-09-29 Power device drive circuit Expired - Lifetime JP3589273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26335697A JP3589273B2 (en) 1997-09-29 1997-09-29 Power device drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26335697A JP3589273B2 (en) 1997-09-29 1997-09-29 Power device drive circuit

Publications (2)

Publication Number Publication Date
JPH11103243A JPH11103243A (en) 1999-04-13
JP3589273B2 true JP3589273B2 (en) 2004-11-17

Family

ID=17388354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26335697A Expired - Lifetime JP3589273B2 (en) 1997-09-29 1997-09-29 Power device drive circuit

Country Status (1)

Country Link
JP (1) JP3589273B2 (en)

Also Published As

Publication number Publication date
JPH11103243A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
US6057728A (en) Semiconductor circuit and power transistor protection circuit
KR100735849B1 (en) Power semiconductor device
US6538480B2 (en) Load driving device
JPH0340517A (en) Driving/protecting circuit for power device
JPH0894695A (en) Semiconductor power switch system
JPH11234104A (en) Semiconductor module and inverter device
EP0730347A2 (en) Semiconductor device
US5138516A (en) Fault sensing and driving system for output driver device
US7978453B2 (en) Low side driver with short to battery protection
JPH0883909A (en) Semiconductor integrated circuit
US20030193819A1 (en) Power semiconductor device
US5991175A (en) Control circuit for an in-rush current control element, and a protection circuit and power supply employing the same
JP2018098938A (en) Drive system and power conversion device
JP3589273B2 (en) Power device drive circuit
US6292341B1 (en) Bidirectional electronic switch
JPH05267580A (en) Semiconductor device
JP2000333468A (en) Power switching apparatus and inverter apparatus
US12113518B2 (en) Circuit arrangement for controlling a plurality of semiconductor switches connected in parallel
KR100902608B1 (en) Intelligent power module
KR20180112699A (en) Device and method for providing an activation voltage for a safety unit for a vehicle, and safety device
US5091816A (en) Procedure and device for overload and short-circuit protection of output drivers
US20040136131A1 (en) Electrical inertial load controlling apparatus having gate drive for proctecting igbt
JP2682699B2 (en) Drive circuit
KR20210069396A (en) Voltage monitoring circuit
JP4278440B2 (en) Power semiconductor device and semiconductor integrated circuit device used in the device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term