[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3588493B2 - Resolver - Google Patents

Resolver Download PDF

Info

Publication number
JP3588493B2
JP3588493B2 JP03771695A JP3771695A JP3588493B2 JP 3588493 B2 JP3588493 B2 JP 3588493B2 JP 03771695 A JP03771695 A JP 03771695A JP 3771695 A JP3771695 A JP 3771695A JP 3588493 B2 JP3588493 B2 JP 3588493B2
Authority
JP
Japan
Prior art keywords
time
signal
resolver
induced voltage
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03771695A
Other languages
Japanese (ja)
Other versions
JPH08214523A (en
Inventor
政光 谷口
紀行 岡安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03771695A priority Critical patent/JP3588493B2/en
Publication of JPH08214523A publication Critical patent/JPH08214523A/en
Application granted granted Critical
Publication of JP3588493B2 publication Critical patent/JP3588493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、回転機械の速度制御等のための位置検出等に用いるレゾルバに関する。
【0002】
【従来の技術】
例えば、誘導機や同期機等の回転機械では、各種機械を駆動したり、電力を発生したりするために、回転体の回転速度制御やトルク制御等が行われる。このような制御のとき、回転体の位置や速度の検出が不可欠で、一般に、レゾルバが用いられる。レゾルバは、シンクロ電機の一種で、巻線形の誘導機と同様の構造となっており、固定子に90°位相のずれた二相巻線を配置し、回転子と共に回転する回転子巻線の誘導電圧の位相により位置検出を行うようになっている。
【0003】
この種のレゾルバの動作原理について図6を参照して説明する。
【0004】
レゾルバは、固定子1に固定子巻線1aが施され、回転子2に電気的に90°ずれた回転子巻線2aと回転子巻線2bとが互いに配置されている。固定子1の固定子巻線1aは所定の周波数によって励磁電圧が印加されている一方、回転子巻線2aの出力端子R1と出力端子R3から誘導電圧Er1が取出され、回転子巻線2bの出力端子R2と出力端子R4とから誘導電圧Er2が取り出される。
【0005】
上記誘導電圧Er1と誘導電圧Er2の値は、一般に、固定子巻線1aへ加えられる電圧の振幅と、回転子2の角度θによって決まる固定子巻線1aと回転子巻線2aと回転子巻線2b間の磁気的結合度によって決まる。すなわち、誘導電圧Er1と誘導電圧Er2の値は、回転子巻線2aと回転子巻線2bとの位置によって固定子巻線1aの磁束と回転子巻線2aと回転子巻線2bとの鎖交磁束により定まり、回転子2の角度に応じてsin,cosに比例する。
【0006】
例えば、図6に示す関係のように、回転子2のロータ角度θ(軸端側より見て反時計方向をとる)を定めると、誘導電圧Er1と誘導電圧Er2は次の式(1)および(2)で示される。
【0007】
Er1=KEscosθ−−−−(1)
Er2=KEssinθ−−−−(2)
【0008】
ここで、Es:固定子の励磁電圧
K:結合係数
【0009】
上記式(1)および(2)を電気的ベクトルを用いて表示すると、図7に示すようにレゾルバの固定子1の固定子巻線1aの励磁電圧Esを直交座標に分解することができる。
【0010】
ところで、一般に、レゾルバは図8に原理図を示す二相巻線励磁−二相巻線出力によるものが用いられる。このレゾルバは、図6に示したレゾルバの原理図に固定子1の固定子巻線1aに90°位相角を有する固定子巻線1bとを配置したもので、図9に示すように電気的ベクトルの表示することができる。
【0011】
従って、誘導電圧Er1と誘導電圧Er2とは図9からすれば、次の式(3)および(4)によって示される。
【0012】
Er1=K(Es1cosθ+Es2sinθ)−−−−(3)
Er2=K(Es2cosθ−Es1sinθ)−−−−(4)
【0013】
ここで、Es1=固定子巻線1aの励磁電圧
Es2=固定子巻線1bの励磁電圧
K=最大結合係数
θ=軸端側から反時計方向の角度(図9)
【0014】
上記式(3)および(4)上で最大結合係数Kと固定子巻線1aの励磁電圧Es1と固定子巻線1bの励磁電圧Es2と回転子巻線2aの第1の誘導電圧Er1と回転子巻線2bの第2の誘導電圧Er2とは判るから、これらを演算処理すれば角度θが求められ、回転体の軸端側からの角度、つまり、回転体の位置が求められる。
【0015】
なお、一般に、固定子巻線1aと固定子巻線1bの励磁周波数は、1KHz程度が用いられ、回転体が20Hz前後とすれば、上記(3),(4)で表される回転子2のロータ角度θの近傍における波形は、固定子巻線1aと固定子巻線1bの励磁周波数の波形に近似したものとなり、所定の位相差を有して出力される。
【0016】
また、誘導電圧Er1と誘導電圧Er2は、ブラシを介して外部へ取出されるが、近年ブラシを介さないで、ブラシレスで取出す手段も用いられるようになっている。
【0017】
【発明が解決しようとする課題】
ところで、レゾルバの故障により回転体等が暴走しても従来のレゾルバはレゾルバが故障の原因であることが直ちに判らなかった。
【0018】
すなわち、上記レゾルバの固定子巻線1aと固定子巻線1b、回転子巻線2aと回転子巻線2b等が断線したり、ブラシの接触異常、さらに、レゾルバと取出接続部間等との接続不良等により正常な位置信号が出力されないことがある。
【0019】
レゾルバが故障すると、回転体の位置や速度が実際のものと異なるために、制御装置が異常となり、駆動源が電動機であれば、過電流や過速度(暴走)をひき起こす。このような場合、従来、レゾルバを含めて装置全体のどこに原因があるのか調べるが、大型装置では、原因追求の箇所も多くどこに原因があるのか調べるのに多くの時間と労力を要した。
【0020】
そこで、本発明は、レゾルバの故障を直ちに検出することができるレゾルバを提供することを目的とする。
【0021】
【課題を解決するための手段】
本発明は、固定子に固定子巻線を配置し前記固定子巻線に対して所定の励磁周波数によって励磁する一方、回転体の軸に接続される回転子に二相回転子巻線を前記固定子巻線により発生するそれぞれの磁束と鎖交して第1の誘導電圧と第2の誘導電圧を発生するように配置し、前記第1の誘導電圧と前記第2の誘導電圧に応じて前記回転体の位置検出をするレゾルバにおいて、前記第1の誘導電圧が所定のしきい値以上のとき第1比較信号を出力する第1比較手段と、前記第2の誘導電圧が所定のしきい値以上のとき第2比較信号を出力する第2比較手段と、前記第1比較信号と前記第2比較信号との論理和信号を出力する論理和演算手段と、前記論理和信号の出力時間を計測し、該第1の計測時間が第1の所定の時間以上となったときのみリセット信号を出力する第1限時手段と、時間の計測をして第2の所定の時間内に前記リセット信号が入力されたとき第2の計測時間をリセットする一方、前記第2の計測時間が前記第2の所定の時間以上となると、故障信号を外部へ出力する第2限時手段を備えたものである。
【0023】
【作用】
したがって、レゾルバが故障すれば、直ちにレゾルバの故障が判るから回転体を停止し、対応措置を講ずることができる。また、レゾルバに起因する故障が直ちに判るからレゾルバが故障のとき、他の関連する部所を調べる必要がなく、また、装置に故障が発生したときレゾルバに故障がないときレゾルバを除外して原因追求が迅速にされ、装置に故障があったとき、原因追求の労力と時間の削減をすることができる。
【0026】
【実施例】
以下、本発明の実施例について図面を参照して説明する。
【0027】
図1は、本発明の第一実施例を示すレゾルバの構成図である。
【0028】
レゾルバ10は、発信部11と変換部12と故障検出部13とから構成されている。発信部11は、図8で説明した二相巻線励磁−二相電圧出力型のもので、固定子1には固定子巻線1aと固定子巻線1bとが90°位相差をもって配置され、回転子2には図示しない回転体に接続する回転子巻線2aと回転子巻線2bとが互いに90°の位相差を有し回転体と連動して回転するようになっている。
【0029】
変換部12は、発信部11に設ける固定子1の固定子巻線1aと固定子巻線1bとへ印加されるそれぞれの励磁電圧Es1,Es2を取込み、さらに、回転子2から回転子巻線2aと回転子巻線2bとの誘導電圧Er1と誘導電圧Er2とを取込んで所定演算をして回転体の角度θを位置信号として出力する。
【0030】
故障検出部13は、誘導電圧Er1と誘導電圧Er2とを入力して、後述するように回転子2の誘導電圧Er1と誘導電圧Er2との出力レベルの低下を把えて故障が発生したとき故障信号を出力する。
【0031】
図2は、上記する故障検出部13の詳細な構成を示し、故障検出部13は、第1比較手段13aと第2比較手段13bと論理和演算手段13cと第1限時手段13dと第2限時手段13eとから構成されている。
【0032】
第1比較手段13aは、誘導電圧Er1が所定のしきい値以上のとき、第1比較信号を出力するものである。第2比較手段13bは、誘導電圧Er2が所定のしきい値以上のとき第2比較信号を出力するものである。論理和演算手段13cは、第1比較信号と第2比較信号との論理和が成立すると論理和信号を出力するものである。第1限時手段13dは、論理和信号の出力時間を計測し、計測時間が所定の時間以上のときリセット信号を出力するものである。第2限時手段13eは、時間の計測をして所定の時間内にリセット信号を入力すると計測時間をリセットする一方、計測時間が所定の時間外となると、故障信号を外部へ出力するものである。
【0033】
以上の構成で、発信部11に設ける固定子1の固定子巻線1aと固定子巻線1bとへそれぞれ励磁電圧Es1と励磁電圧Es2とを印加して回転子2が角度θの位置にあるとする。この場合、従来例で説明した式(3)および(4)による誘導電圧Er1と誘導電圧Er2とが所定の位相差で約1Kz程度の周期をもって出力され角度θに応じて出力波形が変化する。
【0034】
ここで、まず、図3を参照して説明すると、上記誘導電圧Er1と誘導電圧Er2とが、図2に示すそれぞれの第1比較手段13aと第2比較手段13bとへ入力され、時刻t1に第1比較手段13aと第2比較手段13bに設定される所定のしきい値LCと比較される。この比較により、誘導電圧Er2が所定のしきい値LCより大きいとき、第1比較手段13aよりその時間幅のON信号CR1が出力され、誘導電圧Er1が所定のしきい値LCより大きいとき、第2比較手段13bよりその時間幅のON信号CR2が出力される。
【0035】
このON信号CR1とON信号CR2とが論理和演算手段13cへ入力されて論理和演算手段13cがON信号ORを出力する。このON信号ORが第1限時手段13dへ入力されると、第1限時手段13dが時間を計測し、その計測時間である出力信号TD1が所定のしきい値L1に向かって徐々に増加される。このとき、第2限時手段13eが時間を計測し、その計測時間である出力信号TD2を徐々に増加させ所定のしきい値L2に向かって行く。
【0036】
これによって、時刻t2になると、出力信号TD1が所定のしきい値LCを超えて第1限時手段13dがリセット信号T1を出力する。リセット信号T1が第2限時手段13eへ入力されると、リセット信号T1によって第2限時手段13eがリセットされる。
【0037】
同様に時刻t3と時刻t4にリセット信号T1が出力され、第2限時手段13eの計測時間がリセットされる。この場合、所定のしきい値L1,所定のしきい値L2を適宜の大きさに設定することにより、発信部11が正常に動作している限り故障信号が外部へ出力されない。
【0038】
次に、図4に示すように、固定子1の固定子巻線1bが断線した場合、図5に示す作用をする。
【0039】
図5は、角度約θ=45°のときに固定子巻線1aが断線した瞬時の状態で、かつ、角度θの近傍を示すもので、時刻t1から時刻t2間が正常で時刻t3に断線したとする。
【0040】
この場合に、固定子巻線1bの断線によって誘導電圧Er1の最大量が大幅にに低下し、誘導電圧Er2がほぼ零に近い値に低下する。この結果、時刻t3以降に第2比較手段13bからON信号CR2が出力されない。このため第1限時手段13dから第2限時手段13eへリセット信号が時刻t2に出力された後に出力されない。これにより、時刻t4に第2限時手段13eの出力信号TD2が所定のしきい値L2を超えて故障信号T2が出力される。
【0041】
このように誘導電圧Er1と誘導電圧Er2とが正常のとき、ON信号CR1としての第1比較信号とON信号CR2としての第2比較信号が正常に出力されて、論理和演算手段13cから論理和信号が出力される。そして、第1限時手段13dの計測時間が所定の値以上となり、リセット信号が出力される。リセット信号の入力により、第2限時手段13eの計測時間がリセットされ故障信号が出力されることが禁止される。一方、レゾルバが故障すると、誘導電圧Er1または誘導電圧Er2あるいは誘導電圧Er1と誘導電圧Er2の双方のレベルが低下する。このため、第1比較信号と第2比較信号の双方またはいずれかの信号が異常となり、状況に応じて時間幅の短い論理和信号が出力される。これにより、第1限時手段13dの計測時間が短くなり、計測時間が所定の時間に達しなくなり、リセット信号が出力されなくなる。このとき、リセット信号が出力されないから第2限時手段13eの計測時間が所定時間を越えて、故障信号が出力される。
【0042】
従って、レゾルバが故障すれば、直ちにレゾルバの故障が判るから回転体を停止し、対応措置を講ずることができる。また、レゾルバに起因する故障が直ちに判るからレゾルバが故障のとき、他の関連する部所を調べる必要がなく、また、装置に故障が発生したときレゾルバに故障がないときレゾルバを除外して原因追求ができるから原因追求が迅速にされ、装置に故障があったとき、原因追求の労力と時間の削減をすることができる。
【0043】
なお、本実施例では、固定子巻線1aと固定子巻線1bのいずれか、一方の断線について説明したが固定子巻線1aと固定子巻線1bとが一緒に断線したり、接触不良を起こしたりしても誘導電圧Er1と誘導電圧Er2の出力レベルが低下するから故障を検出できる。
【0044】
また、回転子巻線2aと回転子巻線2bに故障が発生しても検出できる。さらに、図6に示した二相巻線励磁−一相巻線出力にも適用することができる。
【0045】
【発明の効果】
以上説明したように、本発明によれば、固定子に固定子巻線を配置し前記固定子巻線に対して所定の励磁周波数によって励磁する一方、回転体の軸に接続される回転子に二相回転子巻線を前記固定子巻線により発生するそれぞれの磁束と鎖交して第1の誘導電圧と第2の誘導電圧を発生するように配置し、前記第1の誘導電圧と前記第2の誘導電圧に応じて前記回転体の位置検出をするレゾルバにおいて、前記第1の誘導電圧が所定のしきい値以上のとき第1比較信号を出力する第1比較手段と、前記第2の誘導電圧が所定のしきい値以上のとき第2比較信号を出力する第2比較手段と、前記第1比較信号と前記第2比較信号との論理和信号を出力する論理和演算手段と、前記論理和信号の出力時間を計測し、該第1の計測時間が第1の所定の時間以上となったときのみリセット信号を出力する第1限時手段と、時間の計測をして第2の所定の時間内に前記リセット信号が入力されたとき第2の計測時間をリセットする一方、前記第2の計測時間が前記第2の所定の時間以上となると、故障信号を外部へ出力する第2限時手段を備えたので、レゾルバが故障すれば、直ちにレゾルバの故障が判るから回転体を停止し、対応措置を講ずることができるという効果を得る。また、レゾルバに起因する故障が直ちに判るからレゾルバが故障のとき、他の関連する部所を調べる必要がなく、また、装置に故障が発生したときレゾルバに故障がないときレゾルバを除外して原因追求が迅速にされ、装置に故障があったとき、原因追求の労力と時間の削減をすることができるという効果も得る。
【図面の簡単な説明】
【図1】本発明の第一実施例を示すレゾルバの構成図である。
【図2】図1のレゾルバに備える故障検出部の構成図である。
【図3】図2の故障検出部の第1の作用を示す説明図である。
【図4】図1のレゾルバに故障が発生したときの説明図である。
【図5】図2の故障検出部の第2の作用を示す説明図である。
【図6】二相巻線−一相巻線出力のレゾルバの原理図である。
【図7】図6のレゾルバの入出力を示すベクトル図である。
【図8】二相巻線−二相巻線出力のレゾルバの原理図である。
【図9】図8のレゾルバの入出力を示すベクトル図である。
【符号の説明】
1 固定子
1a,1b 固定子巻線
2 回転子
2a,2b 回転子巻線
10 レゾルバ
11 発信部
12 変換部
13 故障検出部
13a 第1比較手段
13b 第2比較手段
13c 論理和演算手段
13d 第1限時手段
13e 第2限時手段
CR1 第1の比較手段のON信号
CR2 第2の比較手段のON信号
OR 論理和演算手段のON信号
TD1 第1限時手段の出力信号
TD2 第2限時手段の出力信号
T1 リセット信号
T2 故障信号
[0001]
[Industrial applications]
The present invention relates to a resolver used for position detection and the like for speed control and the like of a rotary machine.
[0002]
[Prior art]
For example, in a rotating machine such as an induction machine or a synchronous machine, rotation speed control, torque control, and the like of a rotating body are performed to drive various machines and generate electric power. In such control, detection of the position and speed of the rotating body is indispensable, and a resolver is generally used. The resolver is a type of synchro electric machine, and has the same structure as a winding type induction machine.A two-phase winding with a 90 ° phase shift is arranged on the stator, and a rotor winding that rotates together with the rotor. Position detection is performed based on the phase of the induced voltage.
[0003]
The operation principle of this type of resolver will be described with reference to FIG.
[0004]
In the resolver, a stator winding 1a is applied to a stator 1, and a rotor winding 2a and a rotor winding 2b, which are electrically shifted from each other by 90 °, are arranged on a rotor 2. While the excitation voltage is applied to the stator winding 1a of the stator 1 at a predetermined frequency, the induced voltage Er1 is taken out from the output terminals R1 and R3 of the rotor winding 2a, and the induction voltage Er1 is taken out of the rotor winding 2b. The induced voltage Er2 is extracted from the output terminal R2 and the output terminal R4.
[0005]
Generally, the values of the induced voltage Er1 and the induced voltage Er2 are determined based on the amplitude of the voltage applied to the stator winding 1a and the angle θ of the rotor 2, the stator winding 1a, the rotor winding 2a, and the rotor winding. It is determined by the degree of magnetic coupling between the lines 2b. That is, the value of the induced voltage Er1 and the value of the induced voltage Er2 depend on the position of the rotor winding 2a and the rotor winding 2b, and the magnetic flux of the stator winding 1a and the chain of the rotor winding 2a and the rotor winding 2b. It is determined by the intersecting magnetic flux, and is proportional to sin and cos according to the angle of the rotor 2.
[0006]
For example, when the rotor angle θ of the rotor 2 (takes a counterclockwise direction when viewed from the shaft end side) is determined as in the relationship shown in FIG. 6, the induced voltage Er1 and the induced voltage Er2 are expressed by the following equation (1). This is indicated by (2).
[0007]
Er1 = KEscos θ ---- (1)
Er2 = KEssin θ-(2)
[0008]
Here, Es: exciting voltage of the stator K: coupling coefficient
When the above equations (1) and (2) are displayed using electric vectors, the excitation voltage Es of the stator winding 1a of the stator 1 of the resolver can be decomposed into rectangular coordinates as shown in FIG.
[0010]
Generally, a resolver based on two-phase winding excitation and two-phase winding output whose principle is shown in FIG. 8 is used. This resolver is obtained by disposing a stator winding 1a of a stator 1 and a stator winding 1b having a 90 ° phase angle in the principle diagram of the resolver shown in FIG. 6, and as shown in FIG. Vector can be displayed.
[0011]
Therefore, the induced voltage Er1 and the induced voltage Er2 are represented by the following equations (3) and (4) according to FIG.
[0012]
Er1 = K (Es1cosθ + Es2sinθ) --- (3)
Er2 = K (Es2cosθ−Es1sinθ) --- (4)
[0013]
Here, Es1 = excitation voltage of stator winding 1a Es2 = excitation voltage K of stator winding 1b = maximum coupling coefficient θ = counterclockwise angle from shaft end side (FIG. 9)
[0014]
In the above equations (3) and (4), the maximum coupling coefficient K, the excitation voltage Es1 of the stator winding 1a, the excitation voltage Es2 of the stator winding 1b, the first induction voltage Er1 of the rotor winding 2a, and the rotation Since the second induced voltage Er2 of the slave winding 2b is known, the angle θ is obtained by performing an arithmetic operation on the second induced voltage Er2, and the angle from the shaft end side of the rotating body, that is, the position of the rotating body is obtained.
[0015]
Generally, the excitation frequency of the stator winding 1a and the stator winding 1b is about 1 KHz, and if the rotating body is around 20 Hz, the rotor 2 represented by the above (3) and (4) is used. In the vicinity of the rotor angle θ is similar to the waveform of the excitation frequency of the stator winding 1a and the stator winding 1b, and is output with a predetermined phase difference.
[0016]
Further, the induced voltage Er1 and the induced voltage Er2 are taken out to the outside via a brush. However, in recent years, means for taking out the product without using a brush and without using a brush has been used.
[0017]
[Problems to be solved by the invention]
By the way, even if a rotating body or the like runs away due to a failure of the resolver, the conventional resolver could not immediately recognize that the resolver was the cause of the failure.
[0018]
That is, the stator winding 1a and the stator winding 1b of the resolver, the rotor winding 2a and the rotor winding 2b, and the like are disconnected, the brush is abnormally contacted, and furthermore, the connection between the resolver and the take-out connection part is lost. Normal position signals may not be output due to poor connection or the like.
[0019]
If the resolver fails, the control device becomes abnormal because the position and speed of the rotating body are different from the actual ones. If the drive source is an electric motor, overcurrent or overspeed (runaway) is caused. In such a case, conventionally, where the cause is in the entire apparatus including the resolver is examined. However, in the case of a large-sized apparatus, a lot of places for pursuing the cause are required and much time and labor are required to find out where the cause is.
[0020]
Therefore, an object of the present invention is to provide a resolver that can immediately detect a failure of the resolver.
[0021]
[Means for Solving the Problems]
The present invention arranges a stator winding on a stator and excites the stator winding at a predetermined excitation frequency, while providing a two-phase rotor winding on a rotor connected to a shaft of a rotating body. A first induction voltage and a second induction voltage are arranged so as to interlink with respective magnetic fluxes generated by the stator winding, and are arranged in accordance with the first induction voltage and the second induction voltage. A resolver for detecting a position of the rotating body, a first comparing means for outputting a first comparison signal when the first induced voltage is equal to or higher than a predetermined threshold value, and a second threshold for detecting the second induced voltage. A second comparison means for outputting a second comparison signal when the value is not less than a value, an OR operation means for outputting an OR signal of the first comparison signal and the second comparison signal, and an output time of the OR signal. Measurement, and only when the first measurement time is equal to or longer than a first predetermined time A first time limiter for outputting a set signal; and a second time measuring unit for measuring time and resetting the second measuring time when the reset signal is input within a second predetermined time. A second time limit means for outputting a failure signal to the outside when the time exceeds the second predetermined time is provided.
[0023]
[Action]
Therefore, if the resolver breaks down, it is immediately known that the resolver has broken down, so that the rotating body can be stopped and countermeasures can be taken. In addition, since the failure caused by the resolver can be immediately recognized, it is not necessary to check other related parts when the resolver fails, and when there is no failure in the device, the resolver is excluded when there is no failure, and Pursuit is quick, and in the event of a device failure, labor and time for seeking the cause can be reduced.
[0026]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0027]
FIG. 1 is a configuration diagram of a resolver showing a first embodiment of the present invention.
[0028]
The resolver 10 includes a transmission unit 11, a conversion unit 12, and a failure detection unit 13. The transmission unit 11 is of the two-phase winding excitation-two-phase voltage output type described with reference to FIG. 8, and the stator winding 1 a and the stator winding 1 b are arranged on the stator 1 with a phase difference of 90 °. In the rotor 2, a rotor winding 2a and a rotor winding 2b connected to a rotating body (not shown) have a phase difference of 90 ° with each other and rotate in conjunction with the rotating body.
[0029]
The conversion unit 12 takes in the respective excitation voltages Es1 and Es2 applied to the stator winding 1a and the stator winding 1b of the stator 1 provided in the transmission unit 11, and further converts the rotor winding 2 into the rotor winding An induction voltage Er1 and an induction voltage Er2 between the rotor 2a and the rotor winding 2b are taken, a predetermined operation is performed, and the angle θ of the rotating body is output as a position signal.
[0030]
The failure detection unit 13 receives the induction voltage Er1 and the induction voltage Er2, and detects a decrease in the output level of the induction voltage Er1 and the induction voltage Er2 of the rotor 2 as described later. Is output.
[0031]
FIG. 2 shows a detailed configuration of the above-described failure detection unit 13. The failure detection unit 13 includes a first comparison unit 13a, a second comparison unit 13b, an OR operation unit 13c, a first time-out unit 13d, and a second time-out unit 13d. Means 13e.
[0032]
The first comparing means 13a outputs a first comparison signal when the induced voltage Er1 is equal to or higher than a predetermined threshold. The second comparison means 13b outputs a second comparison signal when the induced voltage Er2 is equal to or higher than a predetermined threshold. The logical sum operation means 13c outputs a logical sum signal when the logical sum of the first comparison signal and the second comparison signal is established. The first time limiter 13d measures the output time of the OR signal and outputs a reset signal when the measured time is equal to or longer than a predetermined time. The second time limiter 13e measures the time, resets the measurement time when a reset signal is input within a predetermined time, and outputs a failure signal to the outside when the measurement time is outside the predetermined time. .
[0033]
With the above configuration, the excitation voltage Es1 and the excitation voltage Es2 are applied to the stator winding 1a and the stator winding 1b of the stator 1 provided in the transmission unit 11, respectively, so that the rotor 2 is at the position of the angle θ. And In this case, the induced voltage Er1 and the induced voltage Er2 according to the equations (3) and (4) described in the conventional example are output with a predetermined phase difference and a cycle of about 1 Kz, and the output waveform changes according to the angle θ.
[0034]
Here, first, referring to FIG. 3, the induced voltage Er1 and the induced voltage Er2 are input to the first comparing means 13a and the second comparing means 13b shown in FIG. It is compared with a predetermined threshold value LC set in the first comparing means 13a and the second comparing means 13b. As a result of this comparison, when the induced voltage Er2 is larger than the predetermined threshold value LC, the first comparing means 13a outputs an ON signal CR1 of that time width. When the induced voltage Er1 is larger than the predetermined threshold value LC, An ON signal CR2 of the time width is output from the second comparing means 13b.
[0035]
The ON signal CR1 and the ON signal CR2 are input to the OR operation unit 13c, and the OR operation unit 13c outputs the ON signal OR. When this ON signal OR is input to the first time limiter 13d, the first time limiter 13d measures time, and the output signal TD1, which is the measured time, is gradually increased toward a predetermined threshold L1. . At this time, the second time limiter 13e measures the time, gradually increases the output signal TD2, which is the measured time, and goes toward a predetermined threshold L2.
[0036]
Thus, at time t2, the output signal TD1 exceeds the predetermined threshold value LC, and the first time limiter 13d outputs the reset signal T1. When the reset signal T1 is input to the second time limiter 13e, the second time limiter 13e is reset by the reset signal T1.
[0037]
Similarly, a reset signal T1 is output at time t3 and time t4, and the measurement time of the second time limiter 13e is reset. In this case, by setting the predetermined threshold value L1 and the predetermined threshold value L2 to an appropriate value, a failure signal is not output to the outside as long as the transmitting unit 11 operates normally.
[0038]
Next, as shown in FIG. 4, when the stator winding 1b of the stator 1 is disconnected, the operation shown in FIG. 5 is performed.
[0039]
FIG. 5 shows an instantaneous state where the stator winding 1a is disconnected when the angle is about θ = 45 °, and shows the vicinity of the angle θ. The time interval between the time t1 and the time t2 is normal and the connection is broken at the time t3. Suppose you did.
[0040]
In this case, the maximum amount of the induced voltage Er1 is significantly reduced due to the disconnection of the stator winding 1b, and the induced voltage Er2 is reduced to a value close to zero. As a result, the ON signal CR2 is not output from the second comparing means 13b after the time t3. Therefore, the reset signal is not output from the first time limit means 13d to the second time limit means 13e after being output at time t2. As a result, at time t4, the output signal TD2 of the second time limiter 13e exceeds the predetermined threshold L2, and the failure signal T2 is output.
[0041]
As described above, when the induced voltages Er1 and Er2 are normal, the first comparison signal as the ON signal CR1 and the second comparison signal as the ON signal CR2 are normally output, and the OR operation means 13c performs the OR operation. A signal is output. Then, the measurement time of the first time limiter 13d becomes equal to or longer than a predetermined value, and a reset signal is output. By the input of the reset signal, the measurement time of the second time limiter 13e is reset, and the output of the failure signal is prohibited. On the other hand, if the resolver fails, the level of the induced voltage Er1, the induced voltage Er2, or both the induced voltage Er1 and the induced voltage Er2 decreases. For this reason, both or one of the first comparison signal and the second comparison signal becomes abnormal, and an OR signal with a short time width is output according to the situation. As a result, the measurement time of the first time limiter 13d is shortened, the measurement time does not reach the predetermined time, and the reset signal is not output. At this time, since the reset signal is not output, the measurement time of the second time limiter 13e exceeds the predetermined time, and the failure signal is output.
[0042]
Therefore, if the resolver breaks down, it is immediately known that the resolver has broken down, so that the rotating body can be stopped and countermeasures can be taken. In addition, since the failure caused by the resolver can be immediately recognized, it is not necessary to check other related parts when the resolver fails, and when there is no failure in the device, the resolver is excluded when there is no failure, and Since the pursuit can be performed, the cause can be quickly pursued, and when a failure occurs in the device, labor and time for pursuing the cause can be reduced.
[0043]
In this embodiment, the disconnection of one of the stator winding 1a and the stator winding 1b has been described. However, the stator winding 1a and the stator winding 1b may be disconnected at the same time, or a contact failure may occur. Occurs, the output level of the induced voltage Er1 and the induced voltage Er2 decreases, so that a failure can be detected.
[0044]
Further, even if a failure occurs in the rotor windings 2a and 2b, it can be detected. Further, the present invention can be applied to the two-phase winding excitation-single-phase winding output shown in FIG.
[0045]
【The invention's effect】
As described above, according to the present invention, the stator winding is arranged on the stator and the stator winding is excited at a predetermined excitation frequency, while the rotor connected to the shaft of the rotating body is excited. A two-phase rotor winding is arranged to interlink with respective magnetic fluxes generated by the stator winding to generate a first induced voltage and a second induced voltage, and the first induced voltage and the A resolver for detecting a position of the rotating body in accordance with a second induced voltage, a first comparing means for outputting a first comparison signal when the first induced voltage is equal to or higher than a predetermined threshold; A second comparison means for outputting a second comparison signal when the induced voltage of the second comparison signal is equal to or higher than a predetermined threshold value; and an OR operation means for outputting a logical sum signal of the first comparison signal and the second comparison signal; Measuring an output time of the OR signal, wherein the first measurement time is a first predetermined time; A first time-limit means for outputting a reset signal only when the time is equal to or more than a time, while resetting a second measurement time when the reset signal is input within a second predetermined time by measuring time; When the second measurement time is equal to or longer than the second predetermined time, the second time limit means for outputting a failure signal to the outside is provided. Therefore, if the resolver fails, the failure of the resolver can be immediately recognized. The effect is obtained that the vehicle can be stopped and countermeasures can be taken. In addition, since the failure caused by the resolver can be immediately recognized, it is not necessary to check other related parts when the resolver fails, and when there is no failure in the device, the resolver is excluded when there is no failure, and The pursuit is speeded up, and when a failure occurs in the device, the effect of reducing labor and time for pursuing the cause can be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a resolver showing a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a failure detection unit provided in the resolver of FIG. 1;
FIG. 3 is an explanatory diagram illustrating a first operation of the failure detection unit in FIG. 2;
FIG. 4 is an explanatory diagram when a failure occurs in the resolver of FIG. 1;
FIG. 5 is an explanatory diagram illustrating a second operation of the failure detection unit in FIG. 2;
FIG. 6 is a principle diagram of a resolver having two-phase winding and one-phase winding output.
FIG. 7 is a vector diagram showing input and output of the resolver of FIG. 6;
FIG. 8 is a principle diagram of a two-phase winding-two-phase winding output resolver.
FIG. 9 is a vector diagram showing input and output of the resolver of FIG. 8;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stator 1a, 1b Stator winding 2 Rotor 2a, 2b Rotor winding 10 Resolver 11 Transmitting part 12 Conversion part 13 Failure detecting part 13a First comparing means 13b Second comparing means 13c Logical sum calculating means 13d First Time limit means 13e Second time limit means CR1 ON signal CR2 of first comparison means ON signal OR of second comparison means ON signal TD1 of OR operation means Output signal TD2 of first time limit means Output signal T1 of second time limit means Reset signal T2 Failure signal

Claims (1)

固定子に固定子巻線を配置し前記固定子巻線に対して所定の励磁周波数によって励磁する一方、回転体の軸に接続される回転子に二相回転子巻線を前記固定子巻線により発生するそれぞれの磁束と鎖交して第1の誘導電圧と第2の誘導電圧を発生するように配置し、前記第1の誘導電圧と前記第2の誘導電圧に応じて前記回転体の位置検出をするレゾルバにおいて、
前記第1の誘導電圧が所定のしきい値以上のとき第1比較信号を出力する第1比較手段と、
前記第2の誘導電圧が所定のしきい値以上のとき第2比較信号を出力する第2比較手段と、
前記第1比較信号と前記第2比較信号との論理和信号を出力する論理和演算手段と、
前記論理和信号の出力時間を計測し、該第1の計測時間が第1の所定の時間以上となったときのみリセット信号を出力する第1限時手段と、
時間の計測をして第2の所定の時間内に前記リセット信号が入力されたとき第2の計測時間をリセットする一方、前記第2の計測時間が前記第2の所定の時間以上となると、故障信号を外部へ出力する第2限時手段を備えたことを特徴とするレゾルバ。
A stator winding is arranged on a stator, and the stator winding is excited at a predetermined excitation frequency, while a two-phase rotor winding is mounted on a rotor connected to a shaft of a rotating body. Are arranged so as to generate a first induced voltage and a second induced voltage by interlinking with the respective magnetic fluxes generated by the first and second induced voltages. In a resolver that detects position,
First comparing means for outputting a first comparison signal when the first induced voltage is equal to or higher than a predetermined threshold;
Second comparing means for outputting a second comparison signal when the second induced voltage is equal to or higher than a predetermined threshold value;
OR operation means for outputting an OR signal of the first comparison signal and the second comparison signal;
First time-limit means for measuring an output time of the OR signal and outputting a reset signal only when the first measured time is equal to or longer than a first predetermined time;
When the time is measured and the reset signal is input within a second predetermined time, the second measurement time is reset. On the other hand, when the second measurement time is equal to or longer than the second predetermined time, A resolver comprising: a second time limiter for outputting a failure signal to the outside.
JP03771695A 1995-02-03 1995-02-03 Resolver Expired - Fee Related JP3588493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03771695A JP3588493B2 (en) 1995-02-03 1995-02-03 Resolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03771695A JP3588493B2 (en) 1995-02-03 1995-02-03 Resolver

Publications (2)

Publication Number Publication Date
JPH08214523A JPH08214523A (en) 1996-08-20
JP3588493B2 true JP3588493B2 (en) 2004-11-10

Family

ID=12505250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03771695A Expired - Fee Related JP3588493B2 (en) 1995-02-03 1995-02-03 Resolver

Country Status (1)

Country Link
JP (1) JP3588493B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040660A (en) * 2016-09-07 2018-03-15 多摩川精機株式会社 Redundant system two-phase output type resolver for phase modulation system, and signal output method therefor
JP6732238B2 (en) * 2016-10-19 2020-07-29 多摩川精機株式会社 Method and apparatus for converting analog signals to digital signals
JP6732237B2 (en) * 2016-10-19 2020-07-29 多摩川精機株式会社 Method and apparatus for converting analog signals to digital signals
JP7166535B2 (en) * 2018-08-09 2022-11-08 多摩川精機株式会社 Excitation signal abnormality detector for angle detector
JP2020026962A (en) * 2018-08-09 2020-02-20 多摩川精機株式会社 Output signal abnormality detection device of angle detector

Also Published As

Publication number Publication date
JPH08214523A (en) 1996-08-20

Similar Documents

Publication Publication Date Title
JP3216491B2 (en) Resolver abnormality detection apparatus and method
JP3362537B2 (en) Fail-safe control of drive motor for electric vehicles
US5691611A (en) Abnormality detecting system and abnormality detecting method for rotor position detection means, and motor control system
JP2002286503A (en) Method and device for detecting anomaly in position detector and electromotive power steering device
JP6124112B2 (en) AC motor control device and control method
WO2017187601A1 (en) Angle detection device and electric power steering control device
JP2002350182A (en) Position detector and abnormality detector
US20120242265A1 (en) Method for operating an electric machine, and drive device
US6822416B1 (en) Device for monitoring the measuring system of an electric drive
JP3588493B2 (en) Resolver
JP3588499B2 (en) Method and apparatus for detecting failure of winding type rotation detector
JP3671770B2 (en) Fault detection method of current sensor using three-phase alternating current equilibrium detection method
JPH1114691A (en) Disconnection detector for sensor
EP4116721B1 (en) Motor parameter diagnosis device and system
JP3491526B2 (en) IC chip abnormality detection device
JP2003319682A (en) Controller for permanent magnet synchronous motor
JP2687651B2 (en) Disconnection detection circuit for magnetic resolver
JPH06269191A (en) Controller for servo motor
KR101499991B1 (en) method for sensing fail of a power cable of a motor
US10359467B2 (en) Method and circuit for detecting a short circuit of a resolver exciter line to ground or to the operating voltage
JPS5934049B2 (en) Synchronous machine step-out prediction method
JP2972458B2 (en) Magnetic resolver
JPS6026470B2 (en) Ground fault detection device for brushless rotating electric machines
JPS6369477A (en) Motor controller with temperature detecting function
CN111164879B (en) Motor with a motor housing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees