JP3587213B2 - Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same - Google Patents
Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same Download PDFInfo
- Publication number
- JP3587213B2 JP3587213B2 JP22419494A JP22419494A JP3587213B2 JP 3587213 B2 JP3587213 B2 JP 3587213B2 JP 22419494 A JP22419494 A JP 22419494A JP 22419494 A JP22419494 A JP 22419494A JP 3587213 B2 JP3587213 B2 JP 3587213B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- negative electrode
- active material
- battery
- primary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y02E60/128—
Landscapes
- Hybrid Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、空気−Ga1次電池に関し、更に詳しくは負極活物質としてGaまたはGaを主とする合金を主成分として使用することにより高容量電池として構成した空気−Ga1次電池に関する。
【0002】
【従来の技術】
空気電池は、正極活物質として空気中の酸素を使用することから、電池内に正極活物質を充填する必要がなく、密閉型電池として最もエネルギー密度の高い電池となる。さらに対エネルギー当りの経済性が高いことから近年ボタン型の空気電池が補聴器用の電源として用いられている。
【0003】
従来の空気電池は、正極に酸素還元用触媒を担持した酸素透過膜(空気極)を用い、一方、負極には活物質として亜鉛を用いている。現存の空気−Zn電池は1次電池であり、充放電の可能な2次電池は未だない。
【0004】
【発明が解決しようとする課題】
しかしながらこのような従来の空気電池においては、正極が膜の形態で、活物質の酸素が空気中から無限に供給されるために、その電池容量は負極活物質の理論容量によって上限が決まってしまう。
【0005】
空気電池用負極活物質としては一般に亜鉛が用いられているが、この場合の空気電池の公称電圧は1.4V(理論電圧:1.65V)であり、電気化学等量は65.39/2=32.7,理論エネルギー密度は1400Wh/kg である。
【0006】
したがって亜鉛より高電位で、かつ低化学等量の活物質の開発が望まれ、今までに、鉄、アルカリ金属、アルカリ土類金属、アルミニウム等の物質が研究されているが活物質の不活性化の問題が解決できず、実用化まで至らないのが実状であった。
【0007】
上述のように従来の亜鉛に代る新規な空気電池用負極活物質を用いて、高容量電池として知られる従来の空気−亜鉛電池を上回る容量の空気電池の開発が望まれていた。
【0008】
【課題を解決するための手段】
本発明者等は斯かる課題を解決するために鋭意研究したところ、周期表第31番元素であるGaが、原子量69.72、価数変化3、電気化学当量23.24と亜鉛に対して有利な性質を有し、かつ空気電池用負極活物質となり得ることを見いだし、本発明を提供することができた。
【0009】
すなわち本発明の第1は、GaまたはGaを主とする合金からなることを特徴とする空気−Ga1次電池用負極活物質であり、第2は、空気極を正極とし、GaまたはGaを主とする合金からなる負極活物質を負極体の中に充填したものを負極として成ることを特徴とする空気−Ga1次電池である。
【0010】
【作用】
本発明において使用するGaは、周期表中Znの隣に位置し、化学的にも似た性質をもつ元素であり、酸・アルカリのどちらにも溶解する両性元素である。特にアルカリ性水溶液中においては、GaO3 3−やHGaO3 2−などのイオンとなり、あるいはGa2 O3 、Ga(OH)3 、GaOOH等の酸化物や水酸化物となって0から3価の価数変化を起こす。そこでこれらの反応を電極反応として利用することでZnと同様、Gaを空気−Ga1次電池用活物質として用い得ることを予測して研究を進め、本発明に到達した。
【0011】
Gaが有する重要な特性として、低融点金属(融点29.8℃)であることが挙げられるが、Gaの液体状態、固体状態の違いは電池特性に大きな影響を及ぼさない。さらにIn、Zn、Sn、Pb,Bi、Tl等の金属と適当な比率で合金化することによって融点をさらに下げることができる。さらにGaは従来の活物質であるHgのように環境上問題とされるような毒性を有していない。このような特性を有しているため、Gaは空気−Ga1次電池用負極活物質として有用であることが確認された。
【0012】
Gaの使用形態としては、Ga単独でも合金でもよく、また粉末状でも固体状でも構わないが、粉末状で用いる場合には電解液中に浸漬して用いるとよいことを見いだした。
【0013】
一方、空気極は触媒のPtを含むアセチレンブラックに結着剤や撥水剤の作用を持つPTFE(ポリテトラフルオロエチレン)を加えて混合し、次いで該混合粉を適当な大きさに圧延して集電体のNi網に圧着して空気極を構成した。
【0014】
以下、実施例をもって詳細に説明するが、本発明の範囲はこれらに限定されるものではない。
【0015】
【実施例1】
図1に示すような正極1として空気極を、負極2としてPt線(−極)3を挿入したGaIn合金10からなる負極を用いた電池を構成し、放電試験を行った。この場合の負極活物質としてはGa(同和鉱業製純度6N)95wt% とIn(同和鉱業製純度6N)5wt% とからなるGaIn合金3gを用いた。空気極としては触媒のPtを含むアセチレンブラックに、結着剤や撥水剤の作用を持つPTFEを適量加えて混合し、次いでこの混合粉を適当な大きさに圧延し、集電体のNi網に圧着して電極としたものを用いた。
【0016】
電解液4には、30wt% 水酸化カリウム水溶液を用い、温度25℃で5mAの放電試験を行った。試験の結果は図2に示すように放電電圧は1.43Vで非常に平坦な放電挙動を示した。
【0017】
負極活物質であるGaIn合金は測定温度25℃で液体であるが、測定温度を15℃に変えて固体状態で放電試験を行った場合も、上記とほぼ同様な放電挙動を示した。
【0018】
また上記GaIn合金に代え、純GaあるいはZn、Sn、Pbとの合金を用いた場合でも同様な結果が得られ、Gaを主成分とする本発明の負極活物質がいずれも充分に有用であることが確認できた。用いた合金はそれぞれZn5wt% 、Sn5wt% 、Pb5wt% を含むGa−Zn、Ga−Sn、Ga−Pb合金であった。
【0019】
【比較例1】
実施例1との比較のため負極活物質として亜鉛を用いた空気−Zn1次電池を構成し、放電試験を行った。この場合、亜鉛(同和鉱業製純度4N)3gを圧延により板状にして負極材とした他は、実施例1と同一条件で放電試験を行った。その結果は図2中に別の曲線で示した。
【0020】
図2に見るように、放電電圧1.34Vの平坦な電位が得られたが、実施例1のGaIn合金の負極材を用いた場合に比較して負極活物質質量当りの容量は少ないことが判明した。
【0021】
【実施例2】
図3に示すように電解液にGa粉(粒径200μmアンダー)を負極活物質として充填して、(Ga粉+電解液)11とした空気電池を構成した。この場合、Ga粉はまず純度4NのGaを液体窒素中で冷却し固体にした後、液体窒素温度に近い極低温の状態で粉砕し、この粉が液体にならない温度(15℃程度)の水中でふるいにかけ、200μmアンダーのGa粉を得た。
【0022】
次いでこのGa粉にポリアクリル酸ナトリウムを1wt% 溶解させた30wt% 水酸化カリウムを適量混ぜ、これを負極に充填した後、セパレーター8、空気極としての正極1(+極リード線6)を取り付けて測定セルとした。
【0023】
実施例1と同様に温度25℃、5mAの条件で放電試験を行ったところ、放電電圧は1.28Vであり、実施例1よりも若干低いものの充分に空気電池として利用できることが確認できた。
【0024】
【発明の効果】
上述のように本発明は、主成分として金属GaまたはGa合金を負極活物質として用いた空気−Ga1次電池を提供するものである。本発明の空気−Ga1次電池は従来の空気−Zn1次電池より高容量化を図れるものである。
【図面の簡単な説明】
【図1】実施例1における測定用セルの構造図。
【図2】実施例1および比較例1における放電特性図。
【図3】実施例2における測定用セルの構造図。
【符号の説明】
1 正極
2 負極
3 Pt線(−極)
4 電解液
5 PPセル
6 +極リード線
7 フタ
8 セパレーター
9 Pt板
10 Ga/In合金
11 Ga粉+電解液[0001]
[Industrial applications]
The present invention relates to an air-Ga primary battery, and more particularly, to an air-Ga primary battery configured as a high capacity battery by using Ga or an alloy mainly containing Ga as a main component as a negative electrode active material.
[0002]
[Prior art]
Since an air battery uses oxygen in the air as a positive electrode active material, there is no need to fill the positive electrode active material into the battery, and the air battery has the highest energy density as a sealed battery. In addition, a button-type air battery has recently been used as a power supply for hearing aids because of its high economy per energy consumption.
[0003]
A conventional air battery uses an oxygen-permeable membrane (air electrode) carrying a catalyst for oxygen reduction on a positive electrode, while using zinc as an active material for a negative electrode. The existing air-Zn battery is a primary battery, and there is no chargeable / dischargeable secondary battery yet.
[0004]
[Problems to be solved by the invention]
However, in such a conventional air battery, since the positive electrode is in the form of a film and the oxygen of the active material is supplied infinitely from the air, the upper limit of the battery capacity is determined by the theoretical capacity of the negative electrode active material. .
[0005]
In general, zinc is used as a negative electrode active material for an air battery. In this case, the nominal voltage of the air battery is 1.4 V (theoretical voltage: 1.65 V), and the electrochemical equivalent is 65.39 / 2. = 32.7, theoretical energy density is 1400 Wh / kg.
[0006]
Therefore, the development of an active material with a higher potential and a lower stoichiometric amount than zinc is desired, and materials such as iron, alkali metals, alkaline earth metals, and aluminum have been studied. In reality, it was not possible to solve the problem of commercialization and not to commercialize it.
[0007]
As described above, there has been a demand for the development of an air battery having a capacity higher than that of a conventional air-zinc battery known as a high-capacity battery by using a novel negative electrode active material for an air battery instead of the conventional zinc.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve such a problem, and found that Ga, which is the 31st element of the periodic table, has an atomic weight of 69.72, a valence change of 3, an electrochemical equivalent of 23.24, and zinc. The present inventors have found that they have advantageous properties and can be used as a negative electrode active material for an air battery, and have provided the present invention.
[0009]
That is, the first invention is a negative electrode active material for air -Ga1 battery, characterized by comprising an alloy consisting mainly of Ga or Ga, the second is an air electrode as a positive electrode, mainly Ga or Ga those filled with anode active material made of an alloy and in the negative electrode body is an air -Ga1 battery, characterized by comprising as a negative electrode.
[0010]
[Action]
Ga used in the present invention is an element that is located next to Zn in the periodic table and has chemically similar properties, and is an amphoteric element that is soluble in both acids and alkalis. In particular, in an alkaline aqueous solution, it becomes an ion such as GaO 3 3- or HGaO 3 2- or an oxide or hydroxide such as Ga 2 O 3 , Ga (OH) 3 , GaOOH, etc. Causes a valence change. Therefore, by utilizing these reactions as an electrode reaction, it was predicted that Ga could be used as an active material for an air-Ga primary battery, as in the case of Zn.
[0011]
An important characteristic of Ga is that it is a low melting point metal (melting point: 29.8 ° C.), but the difference between the liquid state and the solid state of Ga does not significantly affect battery characteristics. Further, the melting point can be further lowered by alloying with a metal such as In, Zn, Sn, Pb, Bi and Tl at an appropriate ratio. Further, Ga does not have toxicity that is environmentally problematic, unlike Hg which is a conventional active material. Because of these characteristics, it was confirmed that Ga was useful as a negative electrode active material for an air-Ga primary battery.
[0012]
As a usage form of Ga, Ga alone or an alloy may be used, and it may be in a powder form or a solid form. However, when it is used in a powder form, it has been found that it is better to immerse it in an electrolytic solution.
[0013]
On the other hand, for the air electrode, PTFE (polytetrafluoroethylene) having a function of a binder and a water repellent is added to acetylene black containing Pt as a catalyst and mixed, and then the mixed powder is rolled to an appropriate size. An air electrode was formed by pressure bonding to a Ni net of a current collector.
[0014]
Hereinafter, the present invention will be described in detail with reference to examples, but the scope of the present invention is not limited thereto.
[0015]
Embodiment 1
A battery using an air electrode as the positive electrode 1 and a negative electrode made of a
[0016]
A discharge test of 5 mA at a temperature of 25 ° C. was performed using a 30 wt% aqueous solution of potassium hydroxide as the
[0017]
The GaIn alloy as the negative electrode active material is a liquid at a measurement temperature of 25 ° C., but when the measurement temperature was changed to 15 ° C. and a discharge test was performed in a solid state, almost the same discharge behavior as described above was exhibited.
[0018]
Similar results are obtained when pure Ga or an alloy of Zn, Sn, and Pb is used instead of the GaIn alloy, and any of the negative electrode active materials of the present invention containing Ga as a main component is sufficiently useful. That was confirmed. The alloys used were Ga-Zn, Ga-Sn, and Ga-Pb alloys containing 5 wt% of Zn, 5 wt% of Sn, and 5 wt% of Pb, respectively.
[0019]
[Comparative Example 1]
For comparison with Example 1, an air-Zn primary battery using zinc as a negative electrode active material was formed, and a discharge test was performed. In this case, a discharge test was performed under the same conditions as in Example 1 except that 3 g of zinc (purity 4N, manufactured by Dowa Mining Industry) was rolled to form a negative electrode material. The result is shown by another curve in FIG.
[0020]
As shown in FIG. 2, a flat potential of 1.34 V was obtained, but the capacity per mass of the negative electrode active material was smaller than that of the case where the GaIn alloy negative electrode material of Example 1 was used. found.
[0021]
As shown in FIG. 3, an air battery was prepared in which an electrolyte was filled with Ga powder (under a particle size of 200 μm) as a negative electrode active material to make (Ga powder + electrolyte) 11. In this case, first, Ga powder having a purity of 4N is cooled in liquid nitrogen to form a solid, and then pulverized at an extremely low temperature close to the liquid nitrogen temperature. To obtain Ga powder under 200 μm.
[0022]
Next, an appropriate amount of 30 wt% potassium hydroxide obtained by dissolving 1 wt% of sodium polyacrylate in this Ga powder was mixed and filled in the negative electrode, and then the separator 8 and the positive electrode 1 (+ electrode lead wire 6) as an air electrode were attached. To obtain a measurement cell.
[0023]
When a discharge test was performed under the conditions of a temperature of 25 ° C. and 5 mA in the same manner as in Example 1, the discharge voltage was 1.28 V. Although it was slightly lower than that of Example 1, it was confirmed that the battery could be sufficiently used as an air battery.
[0024]
【The invention's effect】
As described above, the present invention provides an air-Ga primary battery using metal Ga or a Ga alloy as a main component as a negative electrode active material. The air-Ga primary battery of the present invention can achieve higher capacity than the conventional air-Zn primary battery.
[Brief description of the drawings]
FIG. 1 is a structural diagram of a measurement cell in Example 1.
FIG. 2 is a discharge characteristic diagram in Example 1 and Comparative Example 1.
FIG. 3 is a structural diagram of a measuring cell in Example 2.
[Explanation of symbols]
1
4
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22419494A JP3587213B2 (en) | 1994-08-25 | 1994-08-25 | Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same |
US08/340,725 US5462821A (en) | 1993-11-19 | 1994-11-16 | Gallium based active material for the negative electrode, a negative electrode using the same, and batteries using said negative electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22419494A JP3587213B2 (en) | 1994-08-25 | 1994-08-25 | Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0864204A JPH0864204A (en) | 1996-03-08 |
JP3587213B2 true JP3587213B2 (en) | 2004-11-10 |
Family
ID=16809999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22419494A Expired - Fee Related JP3587213B2 (en) | 1993-11-19 | 1994-08-25 | Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3587213B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100660949B1 (en) * | 2005-03-09 | 2006-12-26 | 재단법인서울대학교산학협력재단 | Self-healing gallium alloy electrode, lithium secondary battery using thereof and manufacturing method of gallium alloy electrode |
-
1994
- 1994-08-25 JP JP22419494A patent/JP3587213B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0864204A (en) | 1996-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5462821A (en) | Gallium based active material for the negative electrode, a negative electrode using the same, and batteries using said negative electrode | |
US4004943A (en) | Rechargeable electrochemical cell | |
EP0923146A1 (en) | Alkaline storage battery | |
JPH1064537A (en) | Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery using this electrode | |
JP3215448B2 (en) | Zinc alkaline battery | |
KR100308313B1 (en) | Battery | |
JP3587213B2 (en) | Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same | |
JP2604282B2 (en) | Alkaline storage battery | |
JP3113891B2 (en) | Metal hydride storage battery | |
JPS62249358A (en) | Hydrogen storage electrode | |
JPH10144313A (en) | Alkaline secondary battery | |
JP2001313069A (en) | Nickel hydrogen storage battery | |
JP2755682B2 (en) | Metal-hydrogen alkaline storage battery | |
JP3461923B2 (en) | Negative electrode material for battery and method of manufacturing the same, negative electrode body and secondary battery using the same | |
JP3968248B2 (en) | Aluminum battery | |
JP3043128B2 (en) | Metal-hydrogen alkaline storage battery | |
JP3082341B2 (en) | Hydrogen storage electrode | |
JPH0441471B2 (en) | ||
JPH0461468B2 (en) | ||
JPH0815079B2 (en) | Hydrogen storage electrode | |
JPH03122235A (en) | Zinc electrode for alkaline storage battery | |
JPH06318455A (en) | Nickel-hydrogen battery | |
JPH0517659B2 (en) | ||
JPH11144729A (en) | Sealed alkaline zinc storage battery | |
JPH0799689B2 (en) | Sealed metal-hydrogen secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040203 |
|
RD02 | Notification of acceptance of power of attorney |
Effective date: 20040206 Free format text: JAPANESE INTERMEDIATE CODE: A7422 |
|
RD04 | Notification of resignation of power of attorney |
Effective date: 20040318 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20040803 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040803 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20080820 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20080820 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080820 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20080820 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090820 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20090820 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100820 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20110820 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110820 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20120820 |
|
LAPS | Cancellation because of no payment of annual fees |