[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3581492B2 - Proximity charging device - Google Patents

Proximity charging device Download PDF

Info

Publication number
JP3581492B2
JP3581492B2 JP18088496A JP18088496A JP3581492B2 JP 3581492 B2 JP3581492 B2 JP 3581492B2 JP 18088496 A JP18088496 A JP 18088496A JP 18088496 A JP18088496 A JP 18088496A JP 3581492 B2 JP3581492 B2 JP 3581492B2
Authority
JP
Japan
Prior art keywords
charging
charging member
charged
proximity
charging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18088496A
Other languages
Japanese (ja)
Other versions
JPH1026866A (en
Inventor
啓 安富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP18088496A priority Critical patent/JP3581492B2/en
Publication of JPH1026866A publication Critical patent/JPH1026866A/en
Application granted granted Critical
Publication of JP3581492B2 publication Critical patent/JP3581492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、静電複写機やレーザプリンタ等の電子写真プロセスを用いる画像形成装置の帯電装置に関し、特に被帯電体の移動可能な被帯電面に対して、帯電部材の帯電面を非接触に対向させる近接帯電装置に関する。
【0002】
【従来の技術】
画像形成装置の帯電装置としては、従来からスコロトロン等のコロナ帯電装置が用いられてきた。このようなコロナ帯電装置では、オゾンの発生量が多く且つ印加電圧が例えば5〜7KVと大きい等の問題があり、近年ではコロナ帯電装置のほかに、バイアスを印加した帯電体を被帯電体面に接触させて被帯電体面を帯電させる接触帯電装置も画像形成装置の帯電装置として用いられるようになっている。
【0003】
図8は、従来の帯電装置を備えた電子写真方式の画像形成装置の概略を示す構成図である。感光体ドラム1は円筒状の導体1bの表面に感光体1aを塗布したものであり、図8で矢示方向に回転する。帯電部材2は感光体ドラム1の感光体1aに接触して感光体1aの表面を所定の電位に帯電させる。
【0004】
次に、静電潜像形成手段6により感光体1aを露光して所望の画像に対応する静電潜像を形成し、現像手段7で上記静電潜像をトナーによって現像し、感光体1a上に可視のトナー像を形成する。この感光体1a上のトナー像は、転写手段8により図示しない搬送手段によって搬送される用紙等の転写体9上に転写されるが、転写手段8によって転写体9上に転写されずに感光体1a上に残留したトナーはクリーニング手段10によって清掃される。転写手段8によってトナー像を転写された転写体9は、図示しない定着手段へ搬送され、トナーが加熱されて転写体9上に定着される。
【0005】
上記の行程中、感光体ドラム1は矢示方向に回転しているので、上記の手順を繰り返すことによって転写体9上に所望の画像が形成される。なお、図8において帯電部材2をコロナ帯電装置に交換しても画像形成装置における画像形成行程は全く同様である。
【0006】
図9は、従来の接触帯電装置の一例を示す要部断面図である。帯電部材2は直径5〜20mm,長さほぼ300mmのローラ状をなす導体2b上に弾性層2aを形成したものであり、感光体ドラム1は直径30〜80mm,長さほぼ300mmの円筒状の導体1b上に感光体1aを形成したものである。帯電部材2は時計方向に回転する感光体ドラム1に接触して従動回転し、反時計方向に回転する。
【0007】
この帯電部材2の弾性層2aは、抵抗率が10 〜10 Ωcmの材料からなり、帯電部材2には電源4によって電圧を印加して感光体1aの帯電を行う。このときの印加電圧は、直流で−1.5〜−2KVである。
このような接触帯電装置は、コロナ帯電装置に比してオゾンがほとんど発生せず、印加電圧が小さいという長所がある。
【0008】
しかし、このような接触帯電装置では、帯電部材が直接感光体と接触しているので、感光体上のトナー等が帯電部材に付着することによる帯電性能の低下や、帯電部材を構成している物質の感光体への付着、さらには感光体を長期停止したときに生じる帯電部材の永久変形等の問題点がある。
【0009】
このような接触帯電装置の問題点を解決する方法として、帯電部材を非接触で感光体に近接させる近接帯電装置が開発されている。この近接帯電装置は、帯電部材を、感光体との距離が最近接部で0.005〜0.3mmになるように対向させて、帯電部材に電圧を印加することにより感光体に帯電を行うものである。
【0010】
このような近接帯電装置では、帯電部材と感光体とが接触していないので、接触帯電装置の前述した問題点のうち、帯電部材を構成している物質の感光体への付着と、感光体を長期停止したときに生じる帯電部材の永久変形との問題は解決され、感光体上のトナー等が帯電部材に付着することによる帯電性能の低下の問題についても、帯電部材に付着するトナーが少なくなる近接帯電装置の方が優れていることは明らかである。
【0011】
図10は、従来考えられていた近接帯電装置の一例を示す要部断面図である。帯電部材2は、直径5〜20mm,長さほぼ300mmのローラ状の導体2b上に抵抗層2aを形成したものであり、それ自体回転させてもよく、回転させなくてもよい。一方、感光体ドラム1は、直径30〜80mm,長さほぼ300mmの円筒状の導体1b上に感光体1aを形成したものである。帯電部材2と矢示方向に回転する感光体ドラム1との最近接部での距離Dが0.005〜0.3mmになるような位置に帯電部材2が配設される。帯電部材2の抵抗層2aは、抵抗率が10 〜10 Ωcmの材料から構成され、この帯電部材2には、電源4により直流で−2〜−5KVの電圧を印加して感光体1aの帯電を行う。
【0012】
【発明が解決しようとする課題】
しかしながら、このような従来の近接帯電装置にあっても、接触帯電装置に比べれば少量ではあるが、長期の使用によって帯電部材の表面にトナー等が付着することは不可避である。このように帯電部材の表面がトナー等で汚れた状態で感光体の帯電を行った場合には、帯電時の電位の低下や帯電の不均一が生じ、そのままで画像の形成を行うと画像濃度が不均一になり、反転現像時には白地部にトナーが付着したり、黒地部にトナーの付着が少ない箇所が現れたりする。
【0013】
帯電部材の表面汚れの影響を防止する方法として、従来例えば帯電ローラを回転させる等の方法で帯電部材の表面を移動させながら感光体の帯電を行う方法が提案されている。これにより、帯電部材の表面積を実質的に大きくすることができ、付着するトナーが分散されて帯電部材の汚れによる影響を少なくすることができる。また、移動する帯電部材の表面にクリーニング部材であるブレードを摺接させることにより、帯電部材の表面に付着したトナーを除去する方法も提案されている(特開平6−149020号公報参照)。
【0014】
一方、このように帯電部材の表面を移動させながら感光体の帯電を行うようにした帯電装置では、帯電部材を静止させて感光体の帯電を行うタイプの帯電装置に比べて帯電むらが発生しやすいという問題がある。ここで、帯電むらとは、感光体の帯電が均一になされない状態を意味し、感光体の表面電位が場所によって高くなったり低くなったりしている状態のことである。
【0015】
近接帯電装置で現れる帯電むらは、ピッチ(空間周期)が0.1〜1mm程度と小さいため、空間分離能が5mm程度の一般の表面電位計では、それより小さな帯電むらは平均化されて検出不可能であり、一見感光体が均一に帯電されるように見える。しかし、この状態で実際に感光体上に画像を形成した場合には、画像上に班点状の帯電むらが現れて前述した不都合が生じる。
この発明は上記の点に鑑みてなされたものであり、帯電部材の表面を移動させながら帯電むらの発生を防止し得る近接帯電装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
この発明は上記の目的を達成するため、被帯電体の移動する被帯電面に対して帯電部材の移動する帯電面を最近接距離が0.1mm以上となるように非接触に対向させ、上記帯電部材に電圧を印加させることにより、上記帯電面と上記被帯電面との間で放電させて上記被帯電面を帯電させる近接帯電装置において、上記帯電部材の抵抗率×誘電率で規定される時定数をτ、上記帯電面上の一点が上記被帯電体と上記帯電部材との間の放電領域を通過するのに要する時間をtとしたとき、t/τ>10の条件を満足する近接帯電装置を提供するものである。
また、被帯電体の移動する被帯電面に対して、帯電部材の移動する帯電面を最近接距離が0.1 mm 以上となるように非接触に対向させ、上記帯電部材に電圧を印加させることにより、上記帯電面と上記被帯電面との間で放電させて上記被帯電面を帯電させる近接帯電装置において、上記帯電部材を複数の層によって構成し、この帯電部材の静電容量×抵抗で規定される時定数をτ、上記帯電面上の一点が上記被帯電体と上記帯電部材との間の放電領域を通過するのに要する時間をtとしたとき、t/τ>10 の条件を満足する近接帯電装置も提供する。
そして、これらの帯電部材はローラ状とするのがよく、帯電部材の帯電面に、この帯電面のクリーニング部材を摺接させるとさらによい。
【0017】
【発明の実施の形態】
以下、この発明の実施形態を図面に基づいて具体的に説明するが、図8乃至図10に対応する部分には同一の符号を付して示し、その部分の説明は省略する。
図1は、この発明の第1実施形態を示す要部断面図である。
この図1は前述した図10とほぼ同様であるが、図10に示した従来例との違いは次の3点である。すなわち、帯電部材2と感光体ドラム1の感光体(被帯電面)1aとの距離Dは、もっとも小さいところでも0.1mm以上である点、帯電部材2の表面を形成する帯電面3が移動する点、帯電部材2の抵抗率×誘電率で規定される時定数をτ、帯電面3上の一点が帯電面3の移動によって帯電部材と感光体1との間で放電が起こる領域を通過するのに要する時間をtとしたとき、t/τ>10の関係を満たす点の3点である。
【0018】
この第1実施形態では、帯電部材2は、例えば直径15mm,長さ300mmのローラ状をなし、導体2b上に厚さ3mmの帯電体2aを形成したものであり、NBR系のゴム材料にハロゲン化物(イオン性化合物)を添加して導電性を付与した材料によって構成され、その抵抗率が10 Ωcmに調整してある。
【0019】
なお、帯電部材2を構成する材料としては、上記のもののほか、各種ゴム,樹脂等の高分子材料にイオン性化合物を添加することによって導電性を付与したイオン性導電化材料,イオン性化合物の代わりにカーボンを高分子材料中に分散させた電子性導電化材料、あるいは帯電むらの発生を阻止して感光体1aを帯電するための例えば10〜10Ωcmの中程度の抵抗率を示す材料等どのようなものであってもよく、セラミックス等の金属酸化物等でも差支えない。
【0020】
そして、これらの帯電部材を構成する材料は、誘電率が1/1010F/mに調整されており、この誘電率に関しても、帯電部材として使用し得る材料は上記の材料のみに限られるものではない。
この第1実施形態では、帯電部材2の時定数τは次のようになる。
【0021】
抵抗率:10 Ω m 〜10 Ω m
誘電率:1/1010F/m
時定数:10Ωm×1/1010F/m=1/10sec
この時定数1/10secは、帯電部材2の材料の種類を変えた場合には異なる値となる。
【0022】
図1に示した帯電部材2は、図示しない駆動源によって矢示A方向に回転するが、その回転速度は、帯電面3上の一点の移動速度が例えば15mm/sec になるように調整してある。このとき、帯電部材2の回転方向は、図1に示すように感光体ドラム1と反対方向であっても同方向であっても差支えなく、帯電部材2の表面の移動速度も必ずしも15mm/sec でなくてもよいが、前述した条件式t/τ>10 を満たすことは必要である。
【0023】
図1に示す近接帯電装置において、帯電部材2に直流電圧−2〜−5KVを印加すると、帯電部材2と感光体1aとの間で放電が起こって感光体1aが帯電されるが、その帯電領域は両者の最近接部のみではなく、図2に示すように、帯電部材2の表面が移動する方向に幅Wをもつ。この幅Wは帯電部材2の径、感光体ドラム1の径、印加電圧の大きさ、帯電部材2と感光体1aとの間の最近接距離Dによって決定される。
【0024】
この実施形態では、帯電部材2の直径が15mm、感光体ドラム1の直径が30mm、印加電圧が−2KV、最近接部での距離Dが0.1mmであり、放電領域の幅Wは1.5mmである。したがって、帯電面3上の一点が帯電面の移動に伴って放電領域の幅Wを通過するのに要する時間tは、
帯電面上の一点が移動する速さ:15mm/sec
放電領域の幅W:1.5mm
通過する所要時間t:1/10sec
となる。
したがって、上記のt及びτの値からt/τ=10となり前述の条件式t/τ>10 を充分に満たしている。
【0025】
図3は、上記の第1実施形態において、帯電部材2の表面が移動する速さと帯電むらの発生状態との関係を調べた調査結果を示すものであり、横軸に帯電部材2の表面の移動速度、縦軸に画像上で帯電むらが発生した領域の割合を示してある。図3からも分かるように、実験の結果、帯電部材2の表面移動速度が45mm/secを超えると帯電むらが発生する。これはt/τ=3×10に相当する点である。
【0026】
このように、帯電むら発生の有無が帯電部材2の表面の移動速度に大きく依存する理由は次のように考えることができる。
帯電部材2の表面のうち、放電が起こる領域内に依存する部分の電位は印加した電位に比べて低くなっているはずである。なぜならば、本来、帯電部材2の表面上に電荷が蓄積されていると、この電荷は帯電部材2の時定数τにしたがって帯電部材2の基体部へと逃げるはずである。
【0027】
しかし、帯電部材2と感光体ドラム1との間での放電が順次起こるため、帯電部材2の表面に所定量の電荷が蓄積された状態で平衡になっていると考えられる。一方で、放電が起こらない領域にある帯電部材の表面での電位は、印加した電位と同じである。すなわち電荷は蓄積されていないことになる。
【0028】
帯電部材2の表面を移動させる帯電装置では、帯電部材2と感光体ドラム1との間で放電が起こる領域内に、未放電領域にあった帯電部材2の表面が順次移動し、放電領域内で最初に起こる放電、すなわち、表面上に電荷が蓄積され、それが平衡状態になるまでの放電が原因となって帯電むらが発生するものと考えられる。換言すれば、帯電部材2の表面上の電荷の蓄積状態によって放電のモードが変化し、電荷が蓄積された状態では帯電むらのない均一な放電が起こり、電荷が蓄積されていない状態では帯電むらを伴った不均一な放電が起こると考えることができる。
【0029】
したがって、帯電部材2の表面移動速度が大きく、つまり帯電部材2の表面上の一点が放電領域を通過するに要する時間tが小さくなったり、帯電部材2の時定数τが大きくて電荷の蓄積が速やかに行われなかったりした場合には、上述の電荷が蓄積されていない状態での放電の影響が支配的になって帯電むらが発生するようになる。
【0030】
以上によって明らかなように、このような帯電むら発生条件を回避するため、この発明ではt/τ>10 の条件を満足させることにより、帯電部材2の表面を移動させて表面上に付着したトナーの影響を小さくしながら、帯電むらの発生を有効に防止し得ることが可能になる。
【0031】
なお、この第1実施形態では帯電部材をローラ状にしたので、その支持や表面移動機構を簡単にすることができる。
【0032】
次に、図4は、上記第1実施形態の帯電部材の帯電部材をローラからベルトに変更したこの発明の第2実施形態を示すものである。
この第2実施形態では、帯電部材12を、導体12b上に形成したNBR系ゴム12aの表面を導電性材料によって被覆して帯電面13を形成することによってエンドレスなベルト状としたものであり、帯電面13と感光体ドラム1の感光体1aとの最近接距離Dを0.1mm以上としてある。なお、その他の構成は図1と同様であり、その作用・効果も前第1実施形態に準ずるものである。
【0033】
また、図5は、この発明の第3実施形態を示すものである。帯電部材22のローラ状の導体22c上に抵抗率がそれぞれ異なる導電化材料からなる複数の層22b,22aを積層形成し、最上層22aの表面を導電性を付与された材料によって被覆して帯電面23を形成して、帯電面23と感光体1aとの最近接距離Dを0.1mm以上としたものである。なお、その他の構成は図1と同様である。
【0034】
このように帯電部材22を複数の層で構成した場合には、帯電部材22の時定数τを、第1実施形態の場合のように、誘電率×抵抗率で計算することができない。そこで、帯電部材22を図6の(a),(b)に示すように電気回路でモデル化し、例えば接地した金属板P上に載置した帯電部材22にAC電圧を印加することにより、静電容量C,抵抗Rを測定する。このようにして測定したC,Rの値より時定数τは、τ=CRとして求めることができる。
【0035】
この第3実施形態における帯電部材22は、第1実施形態と同様に導電性を付与したNBR系ゴムからなる導体22cの表面に、ポリウレタン樹脂の第1,第2のコート層22b,22aを計30μmの膜厚に形成し、イオン性化合物を添加して抵抗率を1011Ωcmに調整したものである。
【0036】
なお、上記のコート層22b,22aをポリウレタン樹脂に代えてアクリル樹脂,フッ素系樹脂等としてもよく、膜厚も必ずしも30μmに限るものではなく、その層数も3層以上で構成しても差支えない。また、この第3実施形態では、帯電部材を複数の層から構成した以外の点、例えば帯電部材の形状、帯電部材の表面を移動させながら感光体の帯電を行う点等は上述した第1実施形態と同様である。
【0037】
このように、帯電部材を複数の層から形成することにより、第1実施形態の効果に加えて各層に機能の役割を分担させることが可能になる。具体的には、帯電部材の時定数の制御は帯電部材そのもので行い、オゾンを始めとする放電生成物等に対して耐久性の優れた材料で帯電部材の表面をコートすることによって帯電部材そのものの劣化を少なくすることが可能になる。
【0038】
次に、図7はこの発明の第4実施形態を示す要部断面図である。
この実施形態では、図1と同様の帯電部材2の帯電面3に弾性体ブレードからなるクリーニング部材5を摺接させたものである。このクリーニング部材5は帯電部材2に常時摺接させるようにしてもよく、帯電部材2の表面の汚れに応じて随時摺接させるようにしてもよい。なお、その他の構成は図1に示した第1実施形態と同様である。
また、帯電部材2の表面をクリーニングする方法としては、弾性体ブレードのほかに、例えばブラシローラ,スポンジローラ,フェルト等を用いてもよく、これらのクリーニング部材に電圧を印加してもよい。
【0039】
このような構成によれば、帯電部材2の表面に付着したトナー6は、帯電部材2の表面が矢示A方向へ移動することによって、クリーニング部材5で除去されるため、帯電部材2の表面はトナーの付着がない状態に維持され、帯電部材表面のトナー汚れに起因する感光体の帯電不均一を防止することができる。
【0040】
【発明の効果】
以上述べたように、この発明による近接帯電装置は、帯電部材の材料特性である時定数と帯電部材表面の移動速度との関係が所定の条件を満たすことにより、トナーによる汚れの影響を少なくするために帯電部材の表面を移動させても帯電むらを発生しないようにすることが可能になる。その結果、帯電むら防止のために帯電部材の表面を固定せざるを得なかった従来の近接帯電装置に比して、帯電部材の表面上に付着したトナーの影響を大幅に少なくすることができる。
【0041】
また、帯電部材を複数の層によって構成し、帯電部材の材料特性である時定数と帯電部材表面の移動速度との関係が所定の条件を満たすことにより、帯電むらの発生を防止し得るとともに、帯電部材各層に機能を分担させることが可能になって劣化を減少させ長期にわたる特性の変化を阻止することができる。
そして、これらの近接帯電装置において、帯電部材がローラ状であるようにすると、上記の効果に加えて、帯電部材の支持や表面を移動させる機構を簡略化することができる。
【0042】
さらに、上記の近接帯電装置において、帯電部材の帯電面にクリーニング部材を摺接させるようにすると、帯電面に付着したトナーが帯電部材の表面の移動に伴ってクリーニング部材により除去され、帯電面は常にトナーの付着がない状態に維持される。そのため、感光体が均一に帯電されない等の問題が発生するおそれがなく、長期の使用にも帯電性能の劣化のない近接帯電装置を得ることができる。
【図面の簡単な説明】
【図1】この発明の第1実施形態を示す要部断面図である。
【図2】同じくその放電領域を模式的に示す説明図である。
【図3】同じくその帯電部材表面の移動速度と帯電むら発生領域の割合との関係を示す説明図である。
【図4】この発明の第2実施形態を示す要部断面図である。
【図5】この発明の第3実施形態を示す要部断面図である。
【図6】同じくその時定数測定方法を示す説明図である。
【図7】この発明の第4実施形態を示す要部断面図である。
【図8】従来の画像形成装置の概略を示す構成図である。
【図9】従来の接触帯電装置の一例を示す要部断面図である。
【図10】従来の近接帯電装置の一例を示す要部断面図である。
【符号の説明】
1:感光体ドラム 1a:感光体
2,12,22:帯電部材
3,13,23:帯電面
4:電源 5:クリーニング部材
6:トナー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a charging device of an image forming apparatus using an electrophotographic process such as an electrostatic copying machine or a laser printer, and more particularly, to a method in which a charged surface of a charging member is brought into non-contact with a movable charged surface of a charged member. The present invention relates to a proximity charging device to be opposed.
[0002]
[Prior art]
As a charging device of an image forming apparatus, a corona charging device such as a scorotron has been conventionally used. In such a corona charging device, there are problems such as a large amount of generated ozone and a large applied voltage of, for example, 5 to 7 KV. A contact charging device that contacts and charges the surface of the member to be charged has also been used as a charging device of an image forming apparatus.
[0003]
FIG. 8 is a configuration diagram schematically showing an electrophotographic image forming apparatus provided with a conventional charging device. The photoconductor drum 1 is obtained by applying a photoconductor 1a to the surface of a cylindrical conductor 1b, and rotates in a direction indicated by an arrow in FIG. The charging member 2 contacts the photoconductor 1a of the photoconductor drum 1 and charges the surface of the photoconductor 1a to a predetermined potential.
[0004]
Next, the photosensitive member 1a is exposed by the electrostatic latent image forming means 6 to form an electrostatic latent image corresponding to a desired image, and the developing means 7 develops the electrostatic latent image with toner, and A visible toner image is formed thereon. The toner image on the photoreceptor 1a is transferred onto a transfer body 9 such as paper conveyed by a transfer unit (not shown) by a transfer unit 8, but is not transferred onto the transfer body 9 by the transfer unit 8 The toner remaining on 1a is cleaned by cleaning means 10. The transfer body 9 to which the toner image has been transferred by the transfer unit 8 is conveyed to a fixing unit (not shown), and the toner is heated and fixed on the transfer body 9.
[0005]
During the above process, since the photosensitive drum 1 is rotating in the direction indicated by the arrow, a desired image is formed on the transfer body 9 by repeating the above procedure. In FIG. 8, even if the charging member 2 is replaced with a corona charging device, the image forming process in the image forming apparatus is exactly the same.
[0006]
FIG. 9 is a sectional view of a main part showing an example of a conventional contact charging device. The charging member 2 is formed by forming an elastic layer 2a on a roller-shaped conductor 2b having a diameter of 5 to 20 mm and a length of approximately 300 mm. The photosensitive drum 1 is a cylindrical member having a diameter of 30 to 80 mm and a length of approximately 300 mm. The photoconductor 1a is formed on the conductor 1b. The charging member 2 rotates in contact with the photosensitive drum 1 rotating clockwise, and rotates counterclockwise.
[0007]
The elastic layer 2a of the charging member 2 is made of a material having a resistivity of 10 7 to 10 9 Ωcm, and a voltage is applied to the charging member 2 by a power supply 4 to charge the photosensitive member 1a. The applied voltage at this time is -1.5 to -2 KV in direct current.
Such a contact charging device has advantages in that almost no ozone is generated and an applied voltage is small as compared with a corona charging device.
[0008]
However, in such a contact charging device, the charging member is in direct contact with the photoconductor, so that the toner or the like on the photoconductor adheres to the charging member, thereby lowering the charging performance or constituting the charging member. There are problems such as adhesion of the substance to the photoreceptor and permanent deformation of the charging member that occurs when the photoreceptor is stopped for a long time.
[0009]
As a method of solving such a problem of the contact charging device, a proximity charging device has been developed in which a charging member is brought into close contact with a photoconductor in a non-contact manner. In this proximity charging device, the charging member is charged by applying a voltage to the charging member with the charging member facing the photosensitive member so that the distance to the photosensitive member is 0.005 to 0.3 mm at the nearest part. Things.
[0010]
In such a proximity charging device, since the charging member and the photoconductor are not in contact with each other, one of the above-described problems of the contact charging device is that the material constituting the charging member adheres to the photoconductor, The problem of permanent deformation of the charging member that occurs when the charging member is stopped for a long period of time has been solved, and the problem of deterioration in charging performance due to the adhesion of toner and the like on the photoconductor to the charging member has also been reduced. It is clear that such a proximity charging device is superior.
[0011]
FIG. 10 is a cross-sectional view of a main part showing an example of a proximity charging device that has been conventionally considered. The charging member 2 is formed by forming a resistance layer 2a on a roller-shaped conductor 2b having a diameter of 5 to 20 mm and a length of approximately 300 mm, and may or may not rotate itself. On the other hand, the photoconductor drum 1 is formed by forming a photoconductor 1a on a cylindrical conductor 1b having a diameter of 30 to 80 mm and a length of approximately 300 mm. The charging member 2 is disposed at a position where the distance D at the closest point between the charging member 2 and the photosensitive drum 1 rotating in the direction of the arrow becomes 0.005 to 0.3 mm. The resistance layer 2 a of the charging member 2 is made of a material having a resistivity of 10 7 to 10 9 Ωcm, and a DC voltage of −2 to −5 KV is applied to the charging member 2 by a power source 4 to apply a direct current to the photosensitive member 1 a. Is charged.
[0012]
[Problems to be solved by the invention]
However, even in such a conventional proximity charging device, although small in comparison with the contact charging device, it is inevitable that toner or the like adheres to the surface of the charging member due to long-term use. When the photosensitive member is charged in a state where the surface of the charging member is contaminated with toner or the like, a decrease in the potential at the time of charging or uneven charging occurs. Is non-uniform, and the toner adheres to a white background portion during reversal development, or a portion where the toner adheres little to a black background portion appears.
[0013]
As a method of preventing the influence of the surface contamination of the charging member, a method of charging the photosensitive member while moving the surface of the charging member by, for example, rotating a charging roller has been proposed. As a result, the surface area of the charging member can be substantially increased, and the attached toner can be dispersed to reduce the influence of the contamination of the charging member. Further, a method has been proposed in which a toner, which is a cleaning member, is slid in contact with the surface of a moving charging member to remove toner adhered to the surface of the charging member (see JP-A-6-149020).
[0014]
On the other hand, in such a charging device that charges the photosensitive member while moving the surface of the charging member, uneven charging occurs compared to a charging device in which the charging member is stopped and the photosensitive member is charged. There is a problem that it is easy. Here, the uneven charging means a state in which the photosensitive member is not uniformly charged, and a state in which the surface potential of the photosensitive member is higher or lower depending on the location.
[0015]
Since the charging unevenness appearing in the proximity charging device has a small pitch (spatial period) of about 0.1 to 1 mm, a general surface voltmeter having a spatial resolution of about 5 mm is averaged and detected. At first glance, the photoreceptor appears to be uniformly charged. However, when an image is actually formed on the photoreceptor in this state, spot-like charging unevenness appears on the image, and the above-described inconvenience occurs.
The present invention has been made in view of the above points, and an object of the present invention is to provide a proximity charging device that can prevent the occurrence of uneven charging while moving the surface of a charging member.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the present invention makes the moving surface of the member to be charged face the moving surface of the charging member in a non-contact manner such that the closest distance of the moving member becomes 0.1 mm or more, By applying a voltage to the charging member, in a proximity charging device that discharges between the charging surface and the surface to be charged and charges the surface to be charged, the proximity member is defined by the resistivity × dielectric constant of the charging member. that the time constant tau, when one point on the charging surface is the time required to pass through the discharge region between the member to be charged and the charging member and t, t / τ> 10 satisfies the second condition The present invention is to provide a proximity charging device.
In addition, the moving surface of the charging member is brought into contact with the moving surface of the charging member in a non-contact manner such that the closest distance is 0.1 mm or more, and a voltage is applied to the charging member. Thereby, in the proximity charging device that discharges between the charging surface and the charged surface to charge the charged surface, the charging member is constituted by a plurality of layers, and the capacitance × resistance of the charging member in the time constant defined tau, when one point on the charging surface is the time required to pass through the discharge region between the member to be charged and the charging member and t, t / τ> 10 2 of A proximity charging device satisfying the conditions is also provided.
And these charging members may have to the roller shape, the charged surface of the belt conductive member, even better when sliding contact cleaning member of the charging surface.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. The same reference numerals are given to portions corresponding to FIGS. 8 to 10, and description of those portions will be omitted.
FIG. 1 is a sectional view of a main part showing a first embodiment of the present invention.
FIG. 1 is substantially the same as FIG. 10 described above, but differs from the conventional example shown in FIG. 10 in the following three points. That is, the distance D between the charging member 2 and the photoconductor (surface to be charged) 1a of the photoconductor drum 1 is 0.1 mm or more even at the smallest point, and the charging surface 3 forming the surface of the charging member 2 moves. Τ, a time constant defined by the resistivity × dielectric constant of the charging member 2 is τ, and one point on the charging surface 3 passes through an area where discharge occurs between the charging member and the photoconductor 1 due to the movement of the charging surface 3. when the time required is t to a three points satisfying t / tau> 10 2 relationship.
[0018]
In the first embodiment, the charging member 2 is, for example, a roller having a diameter of 15 mm and a length of 300 mm, and a charging member 2a having a thickness of 3 mm formed on a conductor 2b. It is made of a material having conductivity by adding a compound (ionic compound), and its resistivity is adjusted to 10 8 Ωcm.
[0019]
In addition, in addition to the above-mentioned materials, the charging member 2 may be made of an ionic conductive material obtained by adding an ionic compound to a polymer material such as various rubbers and resins, or an ionic compound. Instead, an electronic conductive material in which carbon is dispersed in a polymer material, or a medium resistivity of, for example, 10 7 to 10 9 Ωcm for preventing the occurrence of charging unevenness and charging the photoreceptor 1a. Any material or the like may be used, and metal oxides such as ceramics may be used.
[0020]
The materials constituting these charging members are adjusted to have a dielectric constant of 1/10 10 F / m, and regarding this dielectric constant, the materials that can be used as the charging member are limited to only the above-mentioned materials. is not.
In the first embodiment, the time constant τ of the charging member 2 is as follows.
[0021]
Resistivity: 10 8 Ω m ~10 6 Ω m
Dielectric constant: 1/10 10 F / m
Time constant: 10 6 Ωm × 1/10 10 F / m = 1/10 4 sec
The time constant 1/10 4 sec has a different value when the type of the material of the charging member 2 is changed.
[0022]
The charging member 2 shown in FIG. 1 is rotated in a direction indicated by an arrow A by a driving source (not shown), and its rotation speed is adjusted such that a moving speed of one point on the charging surface 3 becomes, for example, 15 mm / sec. is there. At this time, the rotating direction of the charging member 2 may be either the opposite direction or the same direction as shown in FIG. 1, and the moving speed of the surface of the charging member 2 is not necessarily 15 mm / sec. However, it is necessary to satisfy the conditional expression t / τ> 10 2 described above.
[0023]
In the proximity charging device shown in FIG. 1, when a DC voltage of −2 to −5 KV is applied to the charging member 2, a discharge occurs between the charging member 2 and the photoconductor 1 a to charge the photoconductor 1 a. The region has a width W in the direction in which the surface of the charging member 2 moves as shown in FIG. The width W is determined by the diameter of the charging member 2, the diameter of the photosensitive drum 1, the magnitude of the applied voltage, and the closest distance D between the charging member 2 and the photosensitive member 1a.
[0024]
In this embodiment, the diameter of the charging member 2 is 15 mm, the diameter of the photosensitive drum 1 is 30 mm, the applied voltage is -2 KV, the distance D at the nearest part is 0.1 mm, and the width W of the discharge region is 1. 5 mm. Therefore, the time t required for one point on the charged surface 3 to pass through the width W of the discharge region with the movement of the charged surface is:
The speed at which one point on the charged surface moves: 15 mm / sec
Discharge area width W: 1.5 mm
Time required to pass t: 1/10 sec
It becomes.
Therefore, t / τ = 10 3 from the above values of t and τ, which satisfies the conditional expression t / τ> 10 2 sufficiently.
[0025]
FIG. 3 shows the results of an investigation on the relationship between the speed at which the surface of the charging member 2 moves and the state of occurrence of charging unevenness in the first embodiment. The horizontal axis indicates the surface of the charging member 2. The moving speed and the vertical axis show the ratio of the area where the uneven charging occurs on the image. As can be seen from FIG. 3, as a result of the experiment, when the surface moving speed of the charging member 2 exceeds 45 mm / sec, uneven charging occurs. This is a point corresponding to t / τ = 3 × 10 2 .
[0026]
The reason why the occurrence of charging unevenness largely depends on the moving speed of the surface of the charging member 2 can be considered as follows.
The potential of the portion of the surface of the charging member 2 that depends on the region where the discharge occurs should be lower than the applied potential. This is because, when charges are originally accumulated on the surface of the charging member 2, the charges should escape to the base portion of the charging member 2 according to the time constant τ of the charging member 2.
[0027]
However, since the discharge occurs between the charging member 2 and the photosensitive drum 1 sequentially, it is considered that the state where the predetermined amount of charge is accumulated on the surface of the charging member 2 is balanced. On the other hand, the potential on the surface of the charging member in a region where discharge does not occur is the same as the applied potential. That is, no charge is accumulated.
[0028]
In the charging device that moves the surface of the charging member 2, the surface of the charging member 2 that has been in the non-discharged region sequentially moves into a region where a discharge occurs between the charging member 2 and the photoconductor drum 1, and the inside of the discharge region It is considered that the first discharge in the above, that is, the charge is accumulated on the surface, and the discharge until the charge reaches an equilibrium state causes uneven charging. In other words, the mode of discharge changes according to the state of charge accumulation on the surface of the charging member 2, uniform discharge occurs without charge unevenness in the state where charge is accumulated, and uneven charge occurs in the state where no charge is accumulated. It can be considered that non-uniform discharge accompanied by
[0029]
Therefore, the surface moving speed of the charging member 2 is high, that is, the time t required for one point on the surface of the charging member 2 to pass through the discharge region is small, or the time constant τ of the charging member 2 is large, and the charge accumulation is If the charging is not performed promptly, the influence of the discharge in a state where the above-mentioned electric charge is not accumulated becomes dominant, and uneven charging occurs.
[0030]
As is clear from the above, in order to avoid such a condition of uneven charging, in the present invention, by satisfying the condition of t / τ> 10 2 , the surface of the charging member 2 was moved and adhered to the surface. It is possible to effectively prevent the occurrence of uneven charging while reducing the influence of the toner.
[0031]
In the first embodiment, since the charging member is formed in a roller shape, its support and surface moving mechanism can be simplified.
[0032]
Next, FIG. 4 shows a second embodiment of the present invention in which the charging member of the charging member of the first embodiment is changed from a roller to a belt.
In the second embodiment, the charging member 12 is formed into an endless belt shape by forming a charging surface 13 by coating the surface of an NBR rubber 12a formed on a conductor 12b with a conductive material. The closest distance D between the charging surface 13 and the photoconductor 1a of the photoconductor drum 1 is set to 0.1 mm or more. The other configuration is the same as that of FIG. 1, and the operation and effect are similar to those of the first embodiment.
[0033]
FIG. 5 shows a third embodiment of the present invention. A plurality of layers 22b and 22a made of conductive materials having different resistivities are laminated and formed on a roller-shaped conductor 22c of the charging member 22, and the surface of the uppermost layer 22a is coated with a material having conductivity and charged. The surface 23 is formed, and the closest distance D between the charging surface 23 and the photoconductor 1a is set to 0.1 mm or more. The other configuration is the same as that of FIG.
[0034]
When the charging member 22 is composed of a plurality of layers as described above, the time constant τ of the charging member 22 cannot be calculated as dielectric constant × resistivity as in the first embodiment. Therefore, the charging member 22 is modeled by an electric circuit as shown in FIGS. 6A and 6B, and for example, by applying an AC voltage to the charging member 22 placed on the grounded metal plate P, The capacitance C and the resistance R are measured. From the values of C and R measured in this manner, the time constant τ can be obtained as τ = CR.
[0035]
The charging member 22 according to the third embodiment includes first and second coating layers 22b and 22a made of polyurethane resin on the surface of a conductor 22c made of NBR-based rubber having conductivity imparted similarly to the first embodiment. It was formed to a thickness of 30 μm, and the resistivity was adjusted to 10 11 Ωcm by adding an ionic compound.
[0036]
The above-mentioned coat layers 22b and 22a may be made of acrylic resin, fluorine-based resin or the like instead of polyurethane resin, and the film thickness is not necessarily limited to 30 μm, and the number of layers may be three or more. Absent. Further, in the third embodiment, points other than the configuration in which the charging member is composed of a plurality of layers, for example, the shape of the charging member, the point that the photosensitive member is charged while the surface of the charging member is moved, and the like are described in the first embodiment. Same as the form.
[0037]
As described above, by forming the charging member from a plurality of layers, it becomes possible to cause each layer to share a function role in addition to the effects of the first embodiment. Specifically, the control of the time constant of the charging member is performed by the charging member itself, and the surface of the charging member is coated with a material having excellent durability against discharge products such as ozone, thereby forming the charging member itself. Can be reduced.
[0038]
Next, FIG. 7 is a sectional view of a main part showing a fourth embodiment of the present invention.
In this embodiment, a cleaning member 5 made of an elastic blade is slid on a charging surface 3 of a charging member 2 similar to that of FIG. The cleaning member 5 may be slidably contacted with the charging member 2 at all times, or may be slidably contacted at any time according to contamination on the surface of the charging member 2. The other configuration is the same as that of the first embodiment shown in FIG.
As a method of cleaning the surface of the charging member 2, for example, a brush roller, a sponge roller, a felt, or the like may be used in addition to the elastic blade, and a voltage may be applied to these cleaning members.
[0039]
According to such a configuration, the toner 6 adhering to the surface of the charging member 2 is removed by the cleaning member 5 as the surface of the charging member 2 moves in the direction of arrow A. Is maintained in a state in which no toner adheres, and it is possible to prevent non-uniform charging of the photoconductor due to toner contamination on the surface of the charging member.
[0040]
【The invention's effect】
As described above, the proximity charging device according to the present invention reduces the influence of toner contamination by satisfying the predetermined relationship between the time constant, which is the material characteristic of the charging member, and the moving speed of the charging member surface. Therefore, even if the surface of the charging member is moved, it is possible to prevent uneven charging. As a result, the effect of toner adhering on the surface of the charging member can be significantly reduced as compared with a conventional proximity charging device in which the surface of the charging member must be fixed to prevent charging unevenness. .
[0041]
Further, the charging member is constituted by a plurality of layers, and the relationship between the time constant, which is a material property of the charging member, and the moving speed of the charging member surface satisfies a predetermined condition. The function of each layer of the charging member can be shared, so that the deterioration can be reduced and the characteristic change for a long period can be prevented.
In these proximity charging devices, if the charging member is formed in a roller shape, the mechanism for supporting the charging member and moving the surface can be simplified in addition to the above-described effects.
[0042]
Further, in the above proximity charging device, when the cleaning member is slid on the charging surface of the charging member, the toner adhered to the charging surface is removed by the cleaning member as the surface of the charging member moves, and the charging surface is removed. It is always maintained in a state where no toner adheres. Therefore, there is no possibility that a problem such as the photosensitive member not being uniformly charged occurs, and a proximity charging device in which the charging performance is not deteriorated even when used for a long time can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a main part of a first embodiment of the present invention.
FIG. 2 is an explanatory view schematically showing the discharge region.
FIG. 3 is an explanatory diagram showing the relationship between the moving speed of the surface of the charging member and the ratio of the uneven charging generation region.
FIG. 4 is a sectional view of a main part showing a second embodiment of the present invention.
FIG. 5 is a sectional view of a main part showing a third embodiment of the present invention.
FIG. 6 is an explanatory diagram showing a time constant measuring method.
FIG. 7 is a sectional view of a main part showing a fourth embodiment of the present invention.
FIG. 8 is a configuration diagram schematically showing a conventional image forming apparatus.
FIG. 9 is a sectional view of a main part showing an example of a conventional contact charging device.
FIG. 10 is a sectional view of a main part showing an example of a conventional proximity charging device.
[Explanation of symbols]
1: Photoconductor drum 1a: Photoconductors 2, 12, 22: Charging members 3, 13, 23: Charging surface 4: Power supply 5: Cleaning member 6: Toner

Claims (4)

被帯電体の移動する被帯電面に対して、帯電部材の移動する帯電面を最近接距離が0.1mm以上となるように非接触に対向させ、前記帯電部材に電圧を印加させることにより、前記帯電面と前記被帯電面との間で放電させて前記被帯電面を帯電させる近接帯電装置において、
前記帯電部材の抵抗率×誘電率で規定される時定数をτ、前記帯電面上の一点が前記被帯電体と前記帯電部材との間の放電領域を通過するのに要する時間をtとしたとき、t/τ>10の条件を満足することを特徴とする近接帯電装置。
With respect to the moving charged surface of the member to be charged, the moving charging surface of the charging member is opposed to the charging surface in a non-contact manner such that the closest distance is 0.1 mm or more, and by applying a voltage to the charging member, In a proximity charging device that discharges between the charged surface and the charged surface to charge the charged surface,
The time constant defined by the resistivity × dielectric constant of the charging member was τ, and the time required for one point on the charging surface to pass through a discharge region between the charged member and the charging member was t. when, t / τ> 10 proximity charging device and satisfies the second condition.
被帯電体の移動する被帯電面に対して、帯電部材の移動する帯電面を最近接距離が0.1 mm 以上となるように非接触に対向させ、前記帯電部材に電圧を印加させることにより、前記帯電面と前記被帯電面との間で放電させて前記被電電面を帯電させる近接帯電装置において、
前記帯電部材を複数の層によって構成し、該帯電部材の静電容量×抵抗で規定される時定数をτ、前記帯電面上の一点が前記被帯電体と前記帯電部材との間の放電領域を通過するのに要する時間をtとしたとき、t/τ>10 の条件を満足することを特徴とする近接帯電装置。
By moving the charged surface of the charged member in a non-contact manner with the moving surface of the charging member so that the closest distance is 0.1 mm or more, and applying a voltage to the charging member, In a proximity charging device that discharges between the charged surface and the charged surface to charge the charged surface,
The charging member is composed of a plurality of layers, a time constant defined by the capacitance of the charging member × resistance is τ, and one point on the charging surface is a discharge area between the charged member and the charging member. A proximity charging device , wherein t / τ> 10 2 is satisfied , where t is a time required to pass through .
帯電部材がローラ状であることを特徴とする請求項1又は2記載の近接帯電装置。 3. The proximity charging device according to claim 1, wherein the charging member has a roller shape . 請求項1乃至3のいずれか1項記載の近接帯電装置において、前記帯電部材の帯電面に、該帯電面のクリーニング部材を摺接させたことを特徴とする近接帯電装置。The proximity charging device according to any one of claims 1 to 3, wherein a cleaning member for the charging surface is slidably contacted with the charging surface of the charging member.
JP18088496A 1996-07-10 1996-07-10 Proximity charging device Expired - Fee Related JP3581492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18088496A JP3581492B2 (en) 1996-07-10 1996-07-10 Proximity charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18088496A JP3581492B2 (en) 1996-07-10 1996-07-10 Proximity charging device

Publications (2)

Publication Number Publication Date
JPH1026866A JPH1026866A (en) 1998-01-27
JP3581492B2 true JP3581492B2 (en) 2004-10-27

Family

ID=16091028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18088496A Expired - Fee Related JP3581492B2 (en) 1996-07-10 1996-07-10 Proximity charging device

Country Status (1)

Country Link
JP (1) JP3581492B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337962B1 (en) 1999-08-12 2002-01-08 Canon Kabushiki Kaisha Process cartridge and electrophotographic apparatus
JP2021021899A (en) * 2019-07-30 2021-02-18 京セラドキュメントソリューションズ株式会社 Image forming apparatus and image forming method

Also Published As

Publication number Publication date
JPH1026866A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
US8787812B2 (en) Image forming apparatus
JPH1073983A (en) Image forming device
JP2002055508A (en) Electrifying member and image forming device and image forming method using the electrifying member
JP3581492B2 (en) Proximity charging device
JPH07168417A (en) Electrifier
JPH10239946A (en) Electrifying device
JP2994676B2 (en) Charging member and charging device having charging member
JP3874128B2 (en) Proximity charging device
JPH0784436A (en) Image forming device and electrifier
JPH07301973A (en) Image forming device
JP3962473B2 (en) Charging device
JPH03203754A (en) Electrostatic charging device
JPH04214579A (en) Electrostatic recorder
JPH11160955A (en) Charging device
JP4227372B2 (en) Image forming apparatus
JPH1195524A (en) Electrifier
JPH08202125A (en) Charge supplying device of image forming device
JP4147835B2 (en) Contact charger and image forming apparatus
JPH09211936A (en) Contact electrifying device
JPH04138477A (en) Electrifying device
JP2785411B2 (en) Contact charging device
JP3637199B2 (en) Image forming apparatus
JP3296093B2 (en) Charging device
JP2001296724A (en) Potential controller and image forming device
JPH07114249A (en) Contact electrifier

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees