[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3580438B2 - Gaseous fuel-oxygen burner - Google Patents

Gaseous fuel-oxygen burner Download PDF

Info

Publication number
JP3580438B2
JP3580438B2 JP31897794A JP31897794A JP3580438B2 JP 3580438 B2 JP3580438 B2 JP 3580438B2 JP 31897794 A JP31897794 A JP 31897794A JP 31897794 A JP31897794 A JP 31897794A JP 3580438 B2 JP3580438 B2 JP 3580438B2
Authority
JP
Japan
Prior art keywords
oxygen
gaseous fuel
nozzle
fuel
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31897794A
Other languages
Japanese (ja)
Other versions
JPH08178226A (en
Inventor
隆公 秋元
昌樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP31897794A priority Critical patent/JP3580438B2/en
Publication of JPH08178226A publication Critical patent/JPH08178226A/en
Application granted granted Critical
Publication of JP3580438B2 publication Critical patent/JP3580438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、硝子溶融炉等、輻射伝熱を主体とした炉に用いられる気体燃料−酸素バーナーに関するものである。
【0002】
【従来の技術】
硝子溶融炉に於いては、重油等の液体燃料或いは天然ガス等の気体燃料を予熱した空気で燃焼させるバーナーが用いられ、輻射伝熱を主体とした溶融方式となっている。
【0003】
空気を支燃ガスとして用いると、燃焼に寄与しない窒素が空気の大部分を占めているため熱効率が悪くなる。このため通常は蓄熱室や熱交換器を用いて燃焼用空気を予熱し熱効率の向上が図られているが、充分なものではない。また、予熱空気の温度を高くして熱効率の改善をすればするほどNOxが多量に発生するという不都合がある。さらに、燃焼排ガス量が多いため、その処理にかなり大型の処理設備が必要となる。このようなことから、酸素を支燃ガスとしたバーナーが注目され、実用化されるようになってきている。
【0004】
【発明が解決しようとする課題】
以上のように、酸素を支燃ガスとして用いると、燃焼排ガス量の低減、熱効率の向上、NOxの低減ができ、さらに、蓄熱室が不要になる等利点が多いが、輻射伝熱を主体とした溶融炉に利用するには解決すべき課題がある。
【0005】
一般に酸素燃焼では燃焼速度が速く、高温の火炎が生成される。しかし、通常、その火炎温度の割りには火炎の輝度が低く、輻射伝熱を主体とした溶融炉には不都合がある。そうした輝度が低いという問題は、天然ガスのような炭素含有量の低い気体燃料を用いる時に、特に顕著になる。尚、ここで用いている気体燃料という用語は、メタン、エタン、プロパン、ブタンや天然ガス等の炭素を含み、すすを発生し得る気体状燃料を意味する。
【0006】
火炎の輝度を高くするためには、良く知られているように、層流火炎とするのが有効である。しかし、工業上実用的な燃焼負荷を満足して層流火炎にするためには、ノズルからの吐出速度を数m/sec以下という低速に抑える必要がある。硝子溶融炉のような平炉では、水平方向に伸びる火炎が必要であり、その時に、ノズルからの吐出速度を数m/sec以下という低速に抑えると、火炎の推進力が不足となり、火炎は舞い上がってしまい、炉の天井を損傷してしまう。また、火炎の推進力を増すためには、ノズルからの吐出速度を大きくすれば良いが、この吐出速度を大きくすればするほど乱流火炎となり、輝度は低くなってしまうという矛盾が生じる。
【0007】
本発明の目的は、輝度が高く、推進力のある火炎を生成し得る気体燃料−酸素バーナーを提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明は、中心部から気体燃料を、その周囲から酸素を支燃ガスとして吐出する気体燃料−酸素バーナーにおいて、気体燃料ノズルと酸素ノズルとのうちの少なくとも気体燃料ノズルの先端部近傍に、複数の管状物で構成される整流管を備えると共に、前記気体燃料ノズルに備えられた整流管の終端部を、該気体燃料ノズルの吐出端から奥に入り込んだ位置に配置させたことを特徴とする。
【0009】
この場合、前記気体燃料ノズルに備えられた整流管の終端部は、該気体燃料ノズルの吐出端から100mm以内の範囲内で奥に入り込んだ位置に配置されていることが好ましい。
【0010】
また、前記酸素ノズルに対して前記気体燃料ノズルを偏心させて配置することが好ましい。
【0011】
さらに、上記したいずれかのバーナーを炉壁に気体燃料及び酸素の吐出方向を略平行にして複数個並列的に連設することが好ましい。
【0012】
【作用】
本発明は、中心部から気体燃料を、その周囲から酸素を支燃ガスとして吐出する気体燃料−酸素バーナーにおいて、少なくとも気体燃料ノズルの先端部近傍に複数の管状物で構成される整流管を備えているため、ノズルからの吐出流が整流管の存在により層流に近くなることに加えて、整流管の終端部を気体燃料ノズルの吐出端から奥に入り込んだ位置に配置させているため、気体燃料と酸素の混合が緩慢になり、火炎の輝度を増すことができる。同時に流れの推進力も増大するので火炎の舞い上がりも少なくなる。本発明において、複数の管状物なる用語は、金属製若しくはセラミック製の円形、多角形等の管状物を複数個束状に、又は、ハニカム状に構成した、流体の流れを層流に近い状態に整流するための管状物群を意味するものと理解されたい。
【0013】
また、酸素と燃料を同心円状でなく、偏心した形態で供給することにより、さらに気体燃料と酸素の混合が緩慢になり、火炎の輝度を増すことができる。
【0014】
また、上記したバーナーを炉壁に気体燃料及び酸素の吐出方向を略平行にして複数個並列的に連接することにより、個々のバーナーの中間部が周囲に比較して低圧状態となるため、各バーナーから吐出される気体燃料と酸素との吐出流が先端部で相互に接近して合流する形態となり、この合流点は炉内奥部となることから、この炉内奥部で気体燃料と酸素との混合を促進させ、火炎の輝度を増加させるとともに、高温燃焼させることができ、溶融対象物への輻射伝熱量を増加させ、熱効率を向上させることができる。
【0015】
【実施例】
図1は本発明に係る気体燃料−酸素バーナーの第1実施例の縦断側面図、図2は図1のA−A線における縦断正面図、図3は本発明の第2実施例の縦断正面図、図4は本発明の第3実施例を示す平面図、図5は本発明に使用する整流管の縦断正面図、図6は本発明に係るノズルと従来のノズルとの吐出流体の流速分布を示す比較図である。
【0016】
本発明者等の研究によれば、この種の気体燃料−酸素バーナーにおいて、火炎の輝度を高くするためには、燃焼反応を緩慢にし、火炎中にすすを多く発生させる必要があり、そのためには燃料と酸素の混合を出来る限り緩慢にすることが一番有効であり、整流管が有効な手段となることが判明した。
【0017】
上記点を確認するため、図5に示すように、円筒形断面の金属製外管1内に薄肉の金属製細管2を管束形状に密接配置してなる整流管3を備えたノズル4と、整流管のないノズル(図示省略)からの吐出流の特性を調査した。図6はノズル4から一定距離離れた所での吐出流の流速分布を示すもので、実線aが整流管3を備えたノズルの流速分布曲線を示し、点線bが整流管3のないノズルの流速分布曲線を示している。この図6より、整流管3を備えたノズル4からの吐出流の方が中心部の流速が大きく、かつ、より狭い領域に流れが集中していることが解る。この時はノズルからの吐出初速度を同じにしているが、整流管3を備えることにより吐出流の推進力が増していることは明らかであり、逆にノズル4から一定距離離れた所での流速を同じにするためにはより低い吐出初速度とすることができるので、流れの乱れの程度を表すレイノルズ数が小さくなり、より層流に近い流れとすることができる。また、流れの中に煙を流し、流れのパターンを目視で確認比較した。整流管3がある場合には煙は比較的長く直進するが、無い場合には煙の流れは乱雑で鮮明にならず、明らかな差異が認められた。煙が比較的長く直進するということは、気体の混合が緩慢であることを意味するので、中心部の化学量論的に燃料過多(酸素不足)の領域が大きくなり、すすが発生しやすくなるので、火炎の輝度は高くなる。
【0018】
そこで、本発明は図1及び図2の実施例に示すように、中心部に気体燃料を吐出する前記整流管3を備えたノズル4を配置し、その外側に、酸素を吐出するノズル5を同心円状に配置して気体燃料−酸素バーナーを構成したものである。
【0019】
図3の実施例は、酸素を吐出するノズル5と気体燃料を吐出する前記整流管3を備えたノズル4を同心円状でなく、偏心した形態で配置したものである。この実施例のバーナーで気体燃料と酸素を供給すると、さらに燃料過多(酸素不足)の領域を大きくすることができる。
【0020】
整流管3の形状や設置位置についても検討し、テストした結果、整流管3を構成する細管2は円である必要はないが、各要素である細管2の内径は3mm以下が好ましく、長さは30mm以上好ましくは100mm位確保する必要があることが解った。また整流管3の各要素を構成する細管2の肉厚は薄いほど良いが、実用的には0.5mm以下とするのが好ましい。整流管3の終端部はノズル4の吐出端より0〜100mm以内の近傍に設置する必要があることも解った。
【0021】
以上のように整流管3を備えることにより、ノズル4からの吐出流がより層流に近くなるので、気体燃料と酸素の混合が緩慢になり、火炎の輝度を増すことができる。同時に流れの推進力も増大するので火炎の舞い上がりも少なくなる。
【0022】
図1、図2に示す第1実施例のバーナーは、例えば、中心部に、外径3mm、肉厚0.5mm、長さ100mmの耐熱鋼細管2の管束でできた整流管3を有する気体燃料流路6を形成し、その周囲に同心状に酸素ガス流路7を形成する。
【0023】
このバーナーと、整流管を除いた以外は同じバーナーを用いて同じ燃焼負荷で発熱量9000Kcal/Nmのガスを燃焼させ比較したところ輝度、火炎形状共に整流管3を有するものの方が明らかに優れていることが確認できた。
【0024】
しかし、燃焼負荷を60万Kcal/Hr以上に増大させると、輝度の低下が認められた。実用的にはもっと大きな燃焼容量のバーナーが必要となる場合があるので、このままでは不都合である。
【0025】
そこで第1実施例のバーナーを2つ製作し、図4に示すように、隣接させて燃焼テストを行った。2つのバーナー8、9の炉壁10に対する配置の仕方により火炎形状は変化するが、2つの火炎を衝突させない限り、燃焼負荷が全体で60万Kcal/Hr以上になっても輝度の高い火炎を得ることができた。好ましい火炎形状は用途により異なるので、一様には決めることができないが、複数個のノズルを備えたバーナーで燃焼負荷60万Kcal/Hr以上に対応できることが解った。上記図4の実施例の場合、2つのバーナー8、9の中間部が周囲よりも低圧となるため、相互の火炎が先端部で接近して合流する傾向を生じ、この合流点は炉内奥部となるため、この炉内奥部で気体燃料と酸素との混合を促進させ、火炎の輝度を増加させるとともに、高温燃焼させることができる。
【0026】
さらに、実施例のバーナーの気体燃料ノズルを酸素ノズルに対して5mmまたは10mm偏心させて設置し、燃焼テストを行った。偏心量が多いほど火炎形状は軸対称でなくなり、不完全燃焼に特有の赤みが部分的に認められ、火炎の色調が変化した。そのため、輝度の評価が困難であったが、すすの発生量は増えており、酸素流量を増やすことで輝度が増すことが判明した。
【0027】
酸素は高価なので、不必要に酸素を多く消費することは好ましくないが、ノズルを偏心して設置することが好ましい場合もある。通常、硝子溶融炉にはバーナーは複数個設置され、排ガス煙道が設置されるので、炉内には他のバーナーの燃焼ガスの流れも存在する。本発明のバーナーのように、吐出速度が小さいバーナーを使用する場合には、そうした燃焼ガスの流れが無視できず、特に外周の酸素が影響を受けやすい。そのような場合には、偏心していることが、むしろ好都合になることがある。
【0028】
さらに、上記実施例のバーナーの酸素流路7にも整流管3を追加したバーナー(図示省略)を製作し、燃焼テストを行った。この場合の整流管3としては、気体燃料流路6に使用したものと同じ外径3mm、肉厚0.5mm、長さ100mmの耐熱鋼細管束を用いた。この場合、輝度、火炎形状共に改善が認められた。
上記各実施例は、整流管3として、円形の細管2を使用した場合を例示しているが、他の管束形状、例えば、楕円形、四角形、六角形、その他適宜の形状を単独で、或いは、組み合わせて採用してもよく、ハニカム形状としてもよい。
【0029】
【発明の効果】
以上のように発明によれば、ノズルからの吐出流が整流管の存在により層流に近くなることに加えて、整流管の終端部を気体燃料ノズルの吐出端から奥に入り込んだ位置に配置させたことから、気体燃料と酸素の混合が緩慢になり、火炎の輝度を増すことができ、硝子溶融炉のような輻射伝熱を主体とした炉ではエネルギー効率の向上が期待できる。同時に流れの推進力も増大するので火炎の舞い上がりも少なくなり、炉の天井の損傷も少なくなるため、炉の寿命が長くなる効果も期待できる。
【0030】
また、酸素と燃料を同心円状でなく、偏心した形態で供給するように構成すれば、さらに気体燃料と酸素の混合が緩慢になり、火炎の輝度を一層増大させることができる。
【0031】
また、上記したバーナーを炉壁に気体燃料及び酸素の噴出方向を略平行にして複数個並列的に連接するように構成すれば、個々のバーナーの中間部が周囲に比較して低圧状態となるため、各バーナーから噴出される気体燃料と酸素との噴射流が先端部で相互に接近して合流する形態となり、この合流点は炉内奥部となることから、この炉内奥部で気体燃料と酸素との混合を促進させ、火炎の輝度を増加させるとともに、高温燃焼させることができ、溶融対象物への輻射伝熱量を増加させ、熱効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る気体燃料−酸素バーナーの第1実施例の縦断側面図。
【図2】図1のA−A線における縦断正面図。
【図3】本発明の第2実施例の縦断正面図。
【図4】本発明の第3実施例を示す平面図。
【図5】本発明に使用する整流管の縦断正面図。
【図6】本発明に係るノズルと従来のノズルとの吐出流体の流速分布を示す比較図。
【符号の説明】
1 金属製外管
2 金属製細管
3 整流管
4 気体燃料吐出ノズル
5 酸素吐出ノズル
6 気体燃料流路
7 酸素ガス流路
8、9 バーナー
10 炉壁
[0001]
[Industrial applications]
The present invention relates to a gaseous fuel-oxygen burner used in a furnace mainly for radiant heat transfer, such as a glass melting furnace.
[0002]
[Prior art]
In a glass melting furnace, a burner that burns a liquid fuel such as heavy oil or a gaseous fuel such as natural gas with preheated air is used, and is a melting method mainly using radiant heat transfer.
[0003]
When air is used as the supporting gas, thermal efficiency deteriorates because nitrogen that does not contribute to combustion occupies most of the air. For this reason, the combustion air is usually preheated using a heat storage chamber or a heat exchanger to improve the thermal efficiency, but this is not sufficient. Further, there is a disadvantage that the higher the temperature of the preheated air and the higher the thermal efficiency, the more NOx is generated. Furthermore, because of the large amount of combustion exhaust gas, a considerably large treatment facility is required for the treatment. For this reason, burners using oxygen as a supporting gas have attracted attention and have been put to practical use.
[0004]
[Problems to be solved by the invention]
As described above, when oxygen is used as a supporting gas, the amount of combustion exhaust gas can be reduced, the thermal efficiency can be improved, NOx can be reduced, and further, there are many advantages such as eliminating the need for a heat storage chamber. There are issues that need to be solved in order to use this method in a melting furnace.
[0005]
Generally, in oxyfuel combustion, the combustion speed is high and a high-temperature flame is generated. However, the brightness of the flame is usually low for the flame temperature, and there is an inconvenience in a melting furnace mainly using radiant heat transfer. The problem of such low brightness is particularly pronounced when using a low carbon content gaseous fuel such as natural gas. The term gaseous fuel as used herein means a gaseous fuel containing carbon such as methane, ethane, propane, butane and natural gas, which can generate soot.
[0006]
In order to increase the luminance of the flame, it is effective to use a laminar flame, as is well known. However, in order to satisfy the industrially practical combustion load and produce a laminar flame, it is necessary to suppress the discharge speed from the nozzle to a low speed of several m / sec or less. In a flat furnace such as a glass melting furnace, a flame extending in the horizontal direction is necessary. At that time, if the discharge speed from the nozzle is suppressed to a low speed of several m / sec or less, the propulsive force of the flame becomes insufficient, and the flame soars. It will damage the furnace ceiling. Further, in order to increase the propulsive force of the flame, it is sufficient to increase the discharge speed from the nozzle. However, as this discharge speed is increased, a turbulent flame is generated, and contradiction arises in that the luminance decreases.
[0007]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a gaseous fuel-oxygen burner that can generate a high-luminance, propulsive flame.
[0008]
[Means for Solving the Problems]
To achieve the above object, the present invention, the gaseous fuel from the center, the gaseous fuel and discharges the oxygen from its surroundings as the combustion-supporting gas - at least gaseous fuel nozzles of the oxygen burner, a gas fuel nozzle and the oxygen nozzle to near the tip, Rutotomoni includes a rectifying tube composed of a plurality of tubing, the end portion of the rectifying tube provided in the gaseous fuel nozzle, a position that has entered the inner from the discharge end of the gas fuel nozzles It is characterized by being arranged .
[0009]
In this case, it is preferable that the terminal end of the flow straightening pipe provided in the gaseous fuel nozzle is disposed at a position that is deeper than 100 mm from the discharge end of the gaseous fuel nozzle.
[0010]
Further, it is preferable to arrange eccentrically said gaseous fuel nozzle with respect to the oxygen nozzles.
[0011]
Further, it is preferable to connect a plurality of the above-described burners in parallel to the furnace wall with the discharge directions of the gaseous fuel and oxygen substantially parallel .
[0012]
[Action]
The present invention provides a gas fuel-oxygen burner that discharges gaseous fuel from a central portion and oxygen as a supporting gas from the periphery thereof, and includes a rectifying tube composed of a plurality of tubular objects at least near a distal end portion of a gaseous fuel nozzle. Because the discharge flow from the nozzle is close to laminar flow due to the presence of the flow straightening tube, the terminal end of the flow straightening tube is located at a position deeper from the discharge end of the gas fuel nozzle , The mixing of the gaseous fuel and oxygen becomes slower, and the brightness of the flame can be increased. At the same time, the driving force of the flow is also increased, so that the soar of the flame is reduced. In the present invention, the term "a plurality of tubular objects" refers to a state in which a fluid flow is close to laminar flow, in which a plurality of tubular objects such as circular or polygonal metal or ceramics are formed in a bundle or in a honeycomb shape. Should be understood to mean a group of tubing for rectifying the flow.
[0013]
Further, by supplying the oxygen and the fuel in an eccentric form, not concentrically, the mixing of the gaseous fuel and the oxygen becomes slower, and the brightness of the flame can be increased.
[0014]
Further, by connecting a plurality of the above-described burners to the furnace wall in parallel with the discharge directions of the gaseous fuel and oxygen substantially parallel to each other, the intermediate portion of each burner is in a low pressure state as compared with the surroundings. The discharge flows of the gaseous fuel and the oxygen discharged from the burner are close to each other at the tip and merge, and this confluence point is at the inner part of the furnace. And promotes the mixing of the flame, increases the brightness of the flame, burns at a high temperature, increases the amount of radiant heat transferred to the object to be melted, and improves the thermal efficiency.
[0015]
【Example】
FIG. 1 is a vertical side view of a first embodiment of a gaseous fuel-oxygen burner according to the present invention, FIG. 2 is a vertical front view taken along line AA of FIG. 1, and FIG. 3 is a vertical front view of a second embodiment of the present invention. FIGS. 4 and 5 are plan views showing a third embodiment of the present invention, FIG. 5 is a vertical sectional front view of a flow straightening tube used in the present invention, and FIG. 6 is a flow rate of a discharge fluid between a nozzle according to the present invention and a conventional nozzle. FIG. 4 is a comparison diagram showing a distribution.
[0016]
According to the study of the present inventors, in this type of gaseous fuel-oxygen burner, in order to increase the brightness of the flame, it is necessary to slow down the combustion reaction and generate a lot of soot in the flame. It is most effective to make the mixing of fuel and oxygen as slow as possible, and it has been found that a straightening tube is an effective means.
[0017]
In order to confirm the above points, as shown in FIG. 5, a nozzle 4 provided with a straightening tube 3 in which a thin metal thin tube 2 is closely arranged in a tube bundle shape in a metal outer tube 1 having a cylindrical cross section, The characteristics of the discharge flow from a nozzle without a straightening tube (not shown) were investigated. FIG. 6 shows the flow velocity distribution of the discharge flow at a position separated from the nozzle 4 by a certain distance. The solid line a shows the flow velocity distribution curve of the nozzle provided with the rectifying tube 3, and the dotted line b shows the flow rate distribution of the nozzle without the rectifying tube 3. 5 shows a flow velocity distribution curve. From FIG. 6, it can be seen that the discharge flow from the nozzle 4 having the flow straightening pipe 3 has a higher flow velocity at the center and the flow is concentrated in a narrower area. At this time, the initial discharge speed from the nozzle is the same, but it is clear that the provision of the flow straightening tube 3 has increased the propulsive force of the discharge flow. In order to make the flow velocity the same, a lower initial discharge velocity can be used, so that the Reynolds number indicating the degree of flow turbulence is reduced, and the flow can be closer to laminar flow. In addition, smoke was caused to flow in the flow, and the flow pattern was visually confirmed and compared. When the straightening pipe 3 is provided, the smoke travels straight for a relatively long time. However, when the straightening pipe 3 is not provided, the flow of the smoke is not smooth and clear, and a clear difference is recognized. Since the smoke travels straight for a relatively long time, it means that the gas mixture is slow, so the stoichiometric excess fuel-rich (oxygen-deficient) area in the center becomes large, and soot is easily generated. Therefore, the brightness of the flame increases.
[0018]
Therefore, according to the present invention, as shown in the embodiment of FIGS. 1 and 2, a nozzle 4 having the rectifying tube 3 for discharging gaseous fuel is disposed at a central portion, and a nozzle 5 for discharging oxygen is provided outside the nozzle 4. The gas fuel-oxygen burner is arranged concentrically.
[0019]
In the embodiment shown in FIG. 3, a nozzle 5 for discharging oxygen and a nozzle 4 provided with the rectifying tube 3 for discharging gaseous fuel are arranged not concentrically but eccentrically. When gaseous fuel and oxygen are supplied by the burner of this embodiment, the region of excess fuel (insufficient oxygen) can be further enlarged.
[0020]
The shape and installation position of the rectifier tube 3 were also examined and tested. As a result of the test, the tubule 2 constituting the rectifier tube 3 does not need to be a circle, but the inner diameter of the tubule 2 as each element is preferably 3 mm or less, and the length It was found that it was necessary to secure 30 mm or more, preferably about 100 mm. Further, the thinner the thin tube 2 constituting each element of the flow straightening tube 3 is, the better it is, but it is practically preferable to be 0.5 mm or less. It has also been found that the end of the flow straightening tube 3 needs to be installed in the vicinity of 0 to 100 mm from the discharge end of the nozzle 4.
[0021]
By providing the straightening pipe 3 as described above, the discharge flow from the nozzle 4 becomes closer to laminar flow, so that the mixing of the gaseous fuel and oxygen becomes slower, and the brightness of the flame can be increased. At the same time, the driving force of the flow is also increased, so that the soar of the flame is reduced.
[0022]
The burner of the first embodiment shown in FIGS. 1 and 2 has, for example, a gas having a rectifying tube 3 made of a bundle of heat-resistant steel thin tubes 2 having an outer diameter of 3 mm, a wall thickness of 0.5 mm, and a length of 100 mm at the center. A fuel flow path 6 is formed, and an oxygen gas flow path 7 is formed concentrically around the fuel flow path 6.
[0023]
A gas having a calorific value of 9000 Kcal / Nm 3 was burned with the same burner using the same burner except for the rectifier tube except for the rectifier tube. A comparison revealed that the burner having the rectifier tube 3 in both brightness and flame shape was clearly superior. Was confirmed.
[0024]
However, when the combustion load was increased to 600,000 Kcal / Hr or more, a decrease in luminance was observed. In practice, this may be inconvenient because a burner with a larger combustion capacity may be required.
[0025]
Therefore, two burners of the first embodiment were manufactured, and as shown in FIG. 4, a combustion test was performed adjacent to the burners. The flame shape changes depending on the arrangement of the two burners 8 and 9 with respect to the furnace wall 10. However, as long as the two flames do not collide, even if the combustion load becomes 600,000 Kcal / Hr or more as a whole, a high-luminance flame is generated. I got it. Since the preferred flame shape varies depending on the application, it cannot be determined uniformly, but it has been found that a burner having a plurality of nozzles can cope with a combustion load of 600,000 Kcal / Hr or more. In the case of the embodiment shown in FIG. 4, since the middle part of the two burners 8 and 9 has a lower pressure than the surroundings, there is a tendency that the flames approach each other at the leading end and join together. Therefore, the mixing of the gaseous fuel and oxygen is promoted in the inner part of the furnace to increase the brightness of the flame and to perform high-temperature combustion.
[0026]
Further, the gas fuel nozzle of the burner of the example was installed eccentrically with respect to the oxygen nozzle by 5 mm or 10 mm, and a combustion test was performed. As the amount of eccentricity increased, the flame shape became less axisymmetric, and the redness characteristic of incomplete combustion was partially observed, and the color tone of the flame changed. For this reason, it was difficult to evaluate the luminance, but it was found that the amount of soot generated increased, and the luminance was increased by increasing the oxygen flow rate.
[0027]
Since oxygen is expensive, it is not preferable to consume unnecessarily much oxygen. However, it may be preferable to install the nozzle eccentrically. Usually, a plurality of burners are installed in a glass melting furnace, and an exhaust gas flue is installed. Therefore, a flow of combustion gas of another burner also exists in the furnace. When a burner with a low discharge speed is used as in the burner of the present invention, such a flow of the combustion gas cannot be ignored, and particularly, oxygen on the outer periphery is easily affected. In such a case, eccentricity may be rather convenient.
[0028]
Further, a burner (not shown) in which the flow straightening tube 3 was added to the oxygen flow path 7 of the burner of the above embodiment was manufactured, and a combustion test was performed. In this case, a bundle of heat-resistant steel thin tubes having an outer diameter of 3 mm, a wall thickness of 0.5 mm, and a length of 100 mm, which was the same as that used for the gaseous fuel flow path 6, was used as the flow straightening tube 3. In this case, both the luminance and the flame shape were improved.
Each of the above embodiments illustrates the case where the circular thin tube 2 is used as the rectifying tube 3. However, other tube bundle shapes, for example, an elliptical shape, a square shape, a hexagonal shape, or any other appropriate shape alone or , May be employed in combination, or may be a honeycomb shape.
[0029]
【The invention's effect】
As described above , according to the present invention, in addition to the fact that the discharge flow from the nozzle is close to laminar flow due to the presence of the flow straightening tube, the terminal end of the flow straightening tube is disposed at a position deep into the discharge end of the gas fuel nozzle. As a result , the mixing of the gaseous fuel and oxygen becomes slower, the brightness of the flame can be increased, and an improvement in energy efficiency can be expected in a furnace mainly using radiant heat transfer such as a glass melting furnace. At the same time, the propulsive force of the flow is increased, so that the soaring of the flame is reduced, and the damage to the ceiling of the furnace is also reduced, so that the effect of prolonging the life of the furnace can be expected.
[0030]
Further, if the configuration is such that the oxygen and the fuel are supplied in an eccentric form instead of being concentric, the mixing of the gaseous fuel and the oxygen becomes slower, and the brightness of the flame can be further increased.
[0031]
Further, if configured to a plurality parallel concatenated to the burner described above substantially parallel ejection direction of the gaseous fuel and oxygen to the furnace wall, a low pressure intermediate portion of each burner in comparison to ambient Therefore, the jet flows of the gaseous fuel and oxygen ejected from each burner come close to each other at the tip and join together, and this confluence point is located inside the furnace. It is possible to promote the mixing of fuel and oxygen, increase the brightness of the flame, perform high-temperature combustion, increase the amount of radiant heat transferred to the object to be melted, and improve the thermal efficiency.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional side view of a first embodiment of a gaseous fuel-oxygen burner according to the present invention.
FIG. 2 is a vertical sectional front view taken along line AA of FIG. 1;
FIG. 3 is a vertical sectional front view of a second embodiment of the present invention.
FIG. 4 is a plan view showing a third embodiment of the present invention.
FIG. 5 is a vertical sectional front view of a flow straightening tube used in the present invention.
FIG. 6 is a comparison diagram showing a flow velocity distribution of a discharge fluid between a nozzle according to the present invention and a conventional nozzle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal outer tube 2 Metal thin tube 3 Rectifier tube 4 Gas fuel discharge nozzle 5 Oxygen discharge nozzle 6 Gas fuel flow path 7 Oxygen gas flow path 8, 9 Burner 10 Furnace wall

Claims (4)

中心部から気体燃料を、その周囲から酸素を支燃ガスとして吐出する気体燃料−酸素バーナーにおいて、気体燃料ノズルと酸素ノズルとのうちの少なくとも気体燃料ノズルの先端部近傍に、複数の管状物で構成される整流管を備えると共に、前記気体燃料ノズルに備えられた整流管の終端部を、該気体燃料ノズルの吐出端から奥に入り込んだ位置に配置させたことを特徴とする気体燃料−酸素バーナー。In a gas fuel-oxygen burner that discharges gaseous fuel from the center and oxygen as a supporting gas from the periphery, a plurality of tubular objects are provided at least near the tip of the gaseous fuel nozzle of the gaseous fuel nozzle and the oxygen nozzle. Rutotomoni includes a configured rectifying tube, the gas to the end of the fuel rectifying tube nozzle provided in the gas fuel, characterized in that the discharge end of the gas fuel nozzle was located at a position entering the back - Oxygen burner. 前記気体燃料ノズルに備えられた整流管の終端部は、該気体燃料ノズルの吐出端から100mm以内の範囲内で奥に入り込んだ位置に配置されていることを特徴とする請求項1に記載の気体燃料−酸素バーナー。 2. The terminal according to claim 1, wherein an end of the straightening pipe provided in the gaseous fuel nozzle is located at a position deeper within 100 mm from a discharge end of the gaseous fuel nozzle. 3. Gaseous fuel-oxygen burner. 前記酸素ノズルに対して前記気体燃料ノズルを偏心させて配置したことを特徴とする請求項1に記載の気体燃料−酸素バーナー。Oxygen-fuel burner - gas fuel according to claim 1, characterized in that arranged eccentrically to the gaseous fuel nozzle with respect to the oxygen nozzles. バーナーを炉壁に気体燃料及び酸素の吐出方向を略平行にして複数個並列的に連設することを特徴とする請求項1〜3のいずれかに記載の気体燃料−酸素バーナー。The gas fuel-oxygen burner according to any one of claims 1 to 3, wherein a plurality of burners are connected to the furnace wall in parallel with the discharge directions of the gaseous fuel and oxygen being substantially parallel.
JP31897794A 1994-12-22 1994-12-22 Gaseous fuel-oxygen burner Expired - Fee Related JP3580438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31897794A JP3580438B2 (en) 1994-12-22 1994-12-22 Gaseous fuel-oxygen burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31897794A JP3580438B2 (en) 1994-12-22 1994-12-22 Gaseous fuel-oxygen burner

Publications (2)

Publication Number Publication Date
JPH08178226A JPH08178226A (en) 1996-07-12
JP3580438B2 true JP3580438B2 (en) 2004-10-20

Family

ID=18105116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31897794A Expired - Fee Related JP3580438B2 (en) 1994-12-22 1994-12-22 Gaseous fuel-oxygen burner

Country Status (1)

Country Link
JP (1) JP3580438B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100159409A1 (en) * 2006-06-05 2010-06-24 Richardson Andrew P Non-centric oxy-fuel burner for glass melting systems
KR100886228B1 (en) * 2007-10-30 2009-03-02 한국에너지기술연구원 Eccentric jet type low nox oxyfuel burner
JP2016070532A (en) * 2014-09-29 2016-05-09 中川産業株式会社 Burner for combustion
CN110160047B (en) * 2019-05-24 2024-11-01 华帝股份有限公司 Tubular honeycomb body and combustor

Also Published As

Publication number Publication date
JPH08178226A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
JP3460441B2 (en) Combustion device and thermal equipment equipped with the combustion device
US9869469B2 (en) Combustion burner and boiler including the same
RU2426030C2 (en) ASSEMBLY OF BURNERS WITH ULTRALOW NOx EMISSION
CN101135442B (en) Coanda gas burner apparatus and methods
CN102230626B (en) Flat-tube self-preheating burner of flow splitting plate
US20170307212A1 (en) Fuel nozzle assembly for a burner including a perforated flame holder
MXPA02004152A (en) Venturi cluster, and burners and methods employing such cluster.
EP0781962B1 (en) Low NOx burner
EP1335163A1 (en) Ultra low NOx burner for process heating
JP3580438B2 (en) Gaseous fuel-oxygen burner
US20160003482A1 (en) Combustion heater
EP3775687B1 (en) Low nox burner and flow momentum enhancing device
JP4132409B2 (en) Combustion device
TW200940908A (en) Burning heater
JPS62166209A (en) Burner
JP2022548420A (en) Combustion equipment that maximizes combustor operating efficiency and emissions performance
JP3591058B2 (en) Gaseous fuel-oxygen burner
JP4323686B2 (en) Low NOx burner and its operation method
WO2007145798A2 (en) Non-centric oxy-fuel burner for glass melting systems
WO1994029645A1 (en) Burner for liquid fuel
JPH11241810A (en) Burner for heating furnace
JP5182618B2 (en) Combustion heater
CN217843853U (en) Low-nitrogen combustor based on flue gas inner loop
CN216047632U (en) Furnace end of quick ignition
CN221611373U (en) Double low-emission circular flame super-adiabatic combustor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140730

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees