JP3579998B2 - Manufacturing method of density gradient airgel - Google Patents
Manufacturing method of density gradient airgel Download PDFInfo
- Publication number
- JP3579998B2 JP3579998B2 JP33238795A JP33238795A JP3579998B2 JP 3579998 B2 JP3579998 B2 JP 3579998B2 JP 33238795 A JP33238795 A JP 33238795A JP 33238795 A JP33238795 A JP 33238795A JP 3579998 B2 JP3579998 B2 JP 3579998B2
- Authority
- JP
- Japan
- Prior art keywords
- gel
- solution
- airgel
- compound
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Silicon Compounds (AREA)
- Silicon Polymers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、シリカの多孔質骨格からなる密度の分布を存在させた密度傾斜性エアロゲルの製法に関し、詳しくは、例えば、透明性を有するガラス等の板や中空容器の間に充填する採光性、光透過性、透明性及び断熱性に優れた高強度透明断熱層などを構成する充填材料等の様々な用途に用いることができる密度傾斜性エアロゲルの製法に関する。
【0002】
【従来の技術】
従来、熱伝導率が小さく、かつ、光透過性を有する材料として、シリカからなるエアロゲルが知られている。このエアロゲルは、USP4402927号、同4432956号、同4610863号の各明細書に開示されているように、アルコキシシラン(シリコンアルコキシド、アルキルシリケート等とも称される)を加水分解、重合して得られるシリカ骨格からなる湿潤状態のゲル状化合物を、アルコ−ル、又は液化二酸化炭素等の溶媒(分散媒)の存在下で、この溶媒の臨界点以上の超臨界状態で乾燥し、必要に応じてはその後にさらに500〜750℃程度もしくはそれ以上に加熱処理を施すことにより製造することができる。また、USP5137927号、同5124364号のように、ケイ酸ナトリウムを原料として同様にゲル状化合物を得、このゲル状化合物を超臨界乾燥することによっても製造することができる。このような製造方法により得られるエアロゲルは、例えば、光透過性を有する断熱材料等として有用な素材である。
【0003】
しかし、この前記のようなエアロゲルは非常に軽量であり、強度が小さく脆いため、割れや壊れが発生し易く、取り扱いが非常に困難であるという欠点を有していた。
【0004】
【発明が解決しようとする課題】
そこで、本発明者らは、一般的に、密度が大きいエアロゲルほど強度が大きくなるということに着目し、特願平7−105299号で開示したように、高密度エアロゲルを作製することに成功したが、エアロゲルの密度を大きくし過ぎると、肝心の断熱性や透明性が損なわれる傾向にあるという問題があった。また、発明者らは、特願平6−216870号で開示したように、高密度部分と低密度部分のサンドイッチ構造をしたエアロゲルを発明したが、この場合、取り扱いの際に、密度の異なる部分の界面で剥離を起こし易い傾向にあるという問題があった。
【0005】
本発明は前記の事実に鑑みてなされたもので、その目的とするところは、透明性、断熱性に優れ、かつ、取り扱い性良好な強度を有する密度傾斜性エアロゲルの製法を提供することにある。
【0006】
【課題を解決するための手段】
本発明の請求項1に係る密度傾斜性エアロゲルの製法は、縮重合性を有するアルコキシシランを加水分解したゾルを、縮重合反応によりゲル化させることによってゲル状化合物とし、このゲル状化合物を疎水化剤との反応により疎水化処理した後に、超臨界乾燥を施してエアロゲルにするエアロゲルの製法において、アルコキシシラン又は加水分解重合を促進させる触媒のいずれか一方のみを含む溶液を含浸させた溶液含浸フィルターと、アルコキシシラン、触媒、水及び溶媒を含む反応物とを当接した状態で、反応物を縮重合反応させることによりゲル状化合物にすることを特徴とする。
【0007】
本発明の請求項2に係る密度傾斜性エアロゲルの製法は、前記反応物がゾルであることを特徴とする。
【0008】
本発明の請求項3に係る密度傾斜性エアロゲルの製法は、前記反応物がゲルであることを特徴とする。
【0009】
本発明の請求項4に係る密度傾斜性エアロゲルの製法は、前記ゲルの両面に前記溶液含浸フィルターを当接することを特徴とする。
【0010】
本発明の請求項5に係る密度傾斜性エアロゲルの製法は、前記触媒がアンモニアであることを特徴とする。
【0011】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0012】
本発明に用いるアルコキシシランとは、下記の一般式▲1▼で表されるアルコキシシランであり、より具体的には、下記の一般式▲2▼で表される2官能のアルコキシシラン、下記の一般式▲3▼で表される3官能のアルコキシシラン、下記の一般式▲4▼で表される4官能のアルコキシシラン及び下記の一般式▲5▼で表されるアルコキシシランのオリゴマー等である。
【0013】
【化1】
【0014】
【化2】
【0015】
【化3】
【0016】
【化4】
【0017】
【化5】
【0018】
本発明に係るゲル状化合物(湿潤アルコゲル)は、前記の一般式▲3▼〜一般式▲5▼で表されるアルコキシシランからなる群から選択される少なくとも1種、又は前記の一般式▲3▼〜一般式▲5▼で表されるアルコキシシランからなる群から選択される少なくとも1種と前記の一般式▲2▼で表されるアルコキシシランとを含有する混合物を加水分解し、縮重合することによって得られる。
【0019】
本発明で用いられる前記の一般式▲2▼〜一般式▲4▼で表されるアルコキシシランの具体例を挙げると、2官能アルコキシシランとしては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジエトキシシラン、ジフェニルジメトキシシラン、メチルフェニルジエトキシシラン、メチルフェニルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン等があり、3官能アルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等があり、4官能アルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン等があるが特に、限定されない。
【0020】
前記の一般式▲5▼で表されるアルコキシシランのオリゴマーとしては、重合度が10(以下重合度がnのものはn量体と記す。)以下であることが好ましいが、無色透明な液状であれば、これに限定されない。前記アルコキシシランのオリゴマーは、この重合度が均一な化合物である必要はなく、重合度の分布が存在したり分子構造が鎖状、分岐状及び環状で混在していても構わない。物質としての安定性や、ゲル状化合物を作製するための反応時間を考慮すれば、2〜6量体のものが好ましい。前記アルコキシシランのオリゴマー内のRはアルキル基、フェニル基を表し、中でも、メチル基(−CH3 )、エチル基(−C2 H5 )が好ましい。具体的にはメトキシシランのオリゴマーの場合には平均分子量が250〜700、エトキシシランのオリゴマーの場合には平均分子量が300〜900のオリゴマーが好ましい。
【0021】
本発明で前記アルコキシシランを効率よく加水分解し、縮重合を行うためには、このアルコキシシランを含む反応溶液に、予め触媒を添加しておくことが好ましい。このような触媒としては、酸性触媒、塩基性触媒等が挙げられる。具体的に述べると、酸性触媒としては、塩酸、クエン酸、硝酸、硫酸、フッ化アンモニウム等が用いられ、塩基性触媒としては、アンモニア、ピペリジン等が用いられるが、これらに限定されるものではない。
【0022】
アルコキシシランの加水分解、縮重合に用いられる溶媒としては、通常、原料となるアルコキシシランと水とを均一に溶解混合するために、アルコ−ル、アセトン等が用いられるが、これらに限定されるわけではなく、アルコキシシランと水との両方が溶解しやすい溶媒であればよい。しかし、ゲル状化合物の生成過程の加水分解反応でアルコ−ルが生成すること、また、超臨界乾燥のことを考慮すると、溶媒としては、例えば、エタノール等のアルコールが好ましい。
【0023】
本発明に係る密度傾斜性エアロゲルは、後述する方法で得たゲル状化合物を疎水化剤との反応により疎水化処理した後に、超臨界乾燥を施して作製される。密度傾斜性エアロゲル作製のためのゲル状化合物の作製方法としては、例えば、次のような方法があるが、これらに限定されるものではない。
【0024】
図1は第1の実施の形態の概略説明図である。図1(a)に示すように、アルコキシシラン若しくはアルコキシシランのみをエタノール等の溶媒に溶解させたアルコキシシラン溶液、又は、水とアンモニア等の触媒若しくは水と触媒とを溶媒に溶解させた溶液を、例えば、フェルト状の多孔質材等のフィルターに含浸させておき、この溶液含浸フィルター1を容器2内で、アルコキシシラン、水及び触媒を溶媒に溶解させた反応物であるゾル3と接触させた状態で、ゾル3をゲル化させることにより、図1(b)に示すように、ゲル状化合物4を得る。すなわち、溶液含浸フィルター1の溶液からゾル3に、シリカの原料となるアルコキシシランが供給されるか、又は、アルコキシシランのシリカへの化学変化を促進させる水及び触媒が供給され、結果的に、溶液含浸フィルター1に接している面に近い程、シリカ濃度が高く、溶液含浸フィルター1に接している面から遠ざかる程、シリカ濃度が低くなるというシリカ濃度分布を有するゲル状化合物4が得られる。従って、このゲル状化合物4を疎水化処理後、超臨界乾燥すると、図3に示すように、溶液含浸フィルター1に接していた当接面に近い程、密度が高く、溶液含浸フィルター1に接している面から遠ざかる反対面に近い程、密度が低くなるという、密度に傾斜性を有するシリカエアロゲルが得られる。
【0025】
図2は第2の実施の形態の概略説明図である。図2(a)に示すように、アルコキシシラン、水及び触媒を溶媒に溶解させた反応物であるゾル3を容器2内に流し込み、図2(b)、図2(c)に示すように、ゾル3をゲル化した直後のゲル5の片面又は両面に前記溶液含浸フィルター1を当接して、さらに所定時間放置して、縮重合反応をさせることにより密度傾斜性のゲル状化合物4を得る。すなわち、溶液含浸フィルター1の溶液からゾル3に、アルコキシシランのシリカへの化学変化を促進させる水及び触媒が供給され、結果的に、溶液含浸フィルター1に接している面である当接面に近い程、シリカ濃度が高く、溶液含浸フィルター1に接している面から遠ざかる反対面に近い程、シリカ濃度が低くなるという、シリカ濃度分布を有するゲル状化合物4が得られる。従って、ゲル5の両面に前記溶液含浸フィルター1を当接した場合には、前記ゲル状化合物4を疎水化処理後、超臨界乾燥すると、図4に示すように、溶液含浸フィルター1に接していた上面及び下面に近い程、密度が高く、溶液含浸フィルター1に接していた面から遠ざかる程、すなわち、中心に近い程、密度が低くなるという、密度に傾斜性を有するシリカエアロゲルが得られる。
【0026】
また、ゾル調製の際の配合比は限定されず、透明性、断熱性、比表面積、密度、光屈折率など要求される性能によって様々に変化させることが可能である。本発明で作製される密度傾斜性エアロゲルの密度は特に限定されないが、0.01〜0.5g/cm3 であることが好ましく、さらには、0.04〜0.25g/cm3 であることがより好ましい。すなわち、このエアロゲルの密度が0.01g/cm3 未満の場合には、ゲル化させるのに多大の時間を要し、あるいは、超臨界乾燥時の収縮が避けられず、あまりに軽量な為、作業者の手や容器、部材など接触するものに付着して割れる等、現実的には取扱いが困難なものとなるといった問題が生じ、0.5g/cm3 を越える場合には、エアロゲルの熱伝導率もやや大きくなり、断熱性の点でさほど優れた素材ではなくなり、透光性等の性能も低下し、さらにはエアロゲルの調製が困難となる。したがって、超臨界乾燥後の密度が前記範囲であるようにゾルの配合比が決定される。
【0027】
得られたゲル状化合物に対しては、超臨界乾燥前に疎水化処理を行う。疎水化剤は、ゲル状化合物が有するシラノール基に対して反応する官能基と疎水基とを有しているものを用いる。シラノール基に対して反応する官能基としては、例えば、ハロゲン、アミノ基、イミノ基、カルボキシル基、アルコキシル基及び水酸基が挙げられる。疎水基としては、例えば、アルキル基、フェニル基及びそれらのフッ化物等が挙げられる。疎水化剤は前記官能基及び疎水基を、それぞれ1種のみを有してもよいし、2種以上を有してもよい。具体的には、ヘキサメチルジシラザン、ヘキサメチルジシロキサン、トリメチルクロロシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリエチルエトキシシラン、トリエチルメトキシシラン、ジメチルジメトキシシラン、ジメチルジクロロシラン、ジメチルジエトキシシラン、メチルトリメトキシシラン、メチルトリクロロシラン、エチルトリクロロシラン等の有機シラン化合物が挙げらる。
【0028】
ここで、疎水化処理は、超臨界乾燥を行う前に予め、液体を媒体として行うか、後述する超臨界乾燥中に超臨界流体を媒体として行う。これらの媒体としては、疎水化剤との反応性が低く、かつ、疎水化剤を溶解するものであればよく、特に限定されない。液体で疎水化処理を行う場合はアルコールなどの溶媒に前記疎水化剤を溶解させたものを疎水化溶液として調製し、この疎水化溶液中にゲル状化合物を浸漬することで行う。また、反応については必要に応じて加熱を行う。
【0029】
超臨界乾燥を行う際に用いられる溶媒としては、特に限定されないが、例えば、エタノ−ル、メタノ−ル、イソプロパノール、ジクロロジフルオロメタン、二酸化炭素、水等の単独系または2種以上の混合系を挙げることができる。混合系ではなく単一の溶媒で超臨界乾燥を行う場合は、一般的にはオ−トクレ−ブ中に溶媒と、同一の溶媒に溶媒置換を行ったゲル状化合物を一緒に入れ、その溶媒の臨界点以上の温度、圧力まで上昇させた後に溶媒を徐々に除き、最終的に常温常圧の状態に戻すことによって乾燥を終了する。また、2種以上の混合系で超臨界乾燥を行う場合は、乾燥容器内でその混合系での超臨界状態になるよう設定した温度、圧力まで上昇させる方法、乾燥容器内でゲル状化合物の第1の溶媒から超臨界状態にしたい第2の溶媒に置換し、ほぼ溶媒置換を完結させてから、第2の溶媒の超臨界状態で溶媒を除去する方法等がなされている。
【0030】
この発明のエアロゲルは、非常に微細なシリカ粒子からなる構造体で、その粒子径は光の波長よりもはるかに小さく空隙構造も非常に均質であることから、多孔体であるにもかかわらず透明性を有する。ここで光透過性とは、例えば、可視光波長領域等に対する視覚的な透明性や、赤外領域に対する透過性であるが、これに限定されない。しかも疎水性を有するため耐湿性に優れ、性能や寸法が経時的に安定な材料である。
【0031】
本発明に係る密度傾斜性エアロゲルの製法は、縮重合性を有するアルコキシシランを加水分解したゾルを、縮重合反応によりゲル化させることによってゲル状化合物とし、このゲル状化合物を疎水化剤との反応により疎水化処理した後に、超臨界乾燥を施してエアロゲルにするエアロゲルの製法において、アルコキシシラン又は加水分解重合を促進させる触媒のいずれか一方のみを含む溶液を含浸させた溶液含浸フィルターと、アルコキシシラン、触媒、水及び溶媒を含む反応物とを当接した状態で、反応物を縮重合反応させることによりゲル状化合物にするので、高密度部分から低密度部分へと密度が徐々に変化する密度傾斜性エアロゲルが得られる。すなわち、少なくとも一方の外殻部の密度が大きいために取り扱い性が良く、しかも低密度部分で断熱性を発現するので、良好な透明性断熱材料となる。また、本発明による密度傾斜性エアロゲルでは、低密度部分と高密度部分の明確な界面が存在しないため、取り扱いによる界面での剥離等による破損もなくなる。
【0032】
【実施例】
以下、本発明を実施例により具体的に説明する。
【0033】
以下に、この発明の具体的な実施例及び比較例を示すが、この発明は、下記実施例に限定されるものではない。
【0034】
(実施例1)
図1に示すように、溶液として、平均分子量470のテトラメトキシシランのオリゴマー〔コルコート株式会社製;商品名メチルシリケート51〕を用い、この溶液をフェルトに含浸させた溶液含浸フィルター1を容器2内に敷いた。
【0035】
前記テトラメトキシシランのオリゴマーと水と28重量%のアンモニア水溶液とをエタノールに溶解させたものを、モル比がテトラメトキシシランのオリゴマー:水:アンモニア:エタノール=1:20:0.14:33の混合比になるように調製し、反応物であるゾル3を得た。このゾル3を前記溶液含浸フィルター1を敷いた容器2内に流し込んだ後、室温下で放置することでゲル状化合物4を得た。次に、このゲル状化合物4を、容器3内から取り出し、さらに溶液含浸フィルター1も取り外した後に、ゲル状化合物4をエタノール洗浄し、その後、ヘキサメチルジシラザン〔トーレダウコーニングシリコーン株式会社製;品番SZ6079〕の1.2モル/リットルのエタノール溶液中に浸漬し、疎水化処理を施した。
【0036】
次に、高圧容器内にこのゲル状化合物を入れ、さらにエタノールを満たした後、この容器内に18℃、55kg/cm2 の二酸化炭素を添加し、ゲル内及び容器内のエタノ−ルを二酸化炭素に置換する操作を2〜3時間行った。その後、容器内を二酸化炭素の超臨界条件である、80℃、160kg/cm2 にして、超臨界乾燥(溶媒除去)を2時間行った後に減圧し、ゲル状化合物に含まれるエタノールを除去して、密度傾斜性シリカエアロゲル試料を作製した。
【0037】
(実施例2)
実施例1において、溶液含浸フィルター1に含浸させる溶液として、テトラメトキシシランのオリゴマーに代えて、1Nのアンモニア水を用いて、溶液含浸フィルター1を作製したこと以外は、実施例1と同様にして密度傾斜性シリカエアロゲル試料を作製した。
【0038】
(実施例3)
図2(a)に示すように、テトラメトキシシランのオリゴマーと水と28重量%のアンモニア水溶液とをエタノールに溶解させたものを、モル比がテトラメトキシシランのオリゴマー:水:アンモニア:エタノール=1:20:2.2:120の混合比になるように調製し、ゾル3を得た。このゾル3を前記容器2内に流し込んだ後、室温下で放置することで反応物であるゲル5を得た。溶液としてテトラメトキシシランのオリゴマーを用い、この溶液をフェルトに含浸させた溶液含浸フィルター1を図2(b)に示すように、別の容器2内に敷いた。この溶液含浸フィルター1の上に前記ゲル5を当接し、さらに、このゲル5の上にも、前記溶液含浸フィルター1を当接し、さらに室温で放置して、図2(c)に示すように、ゲル状化合物4を得た。
【0039】
次にこのゲル状化合物4を、ジメチルジメトキシシラン〔トーレダウコーニングシリコーン株式会社製;品番AY43−004〕の2.4モル/リットルエタノール溶液に浸漬し、疎水化処理を施した。さらに、このゲル状化合物を高圧容器内に入れ、エタノールを満たした後、この容器内に二酸化炭素を添加しながら加熱し、80℃、160kg/cm2 にした。この条件で容器内のエタノールを二酸化炭素に置換した後に減圧し、ゲル状化合物4に含まれるエタノールを除去して、密度傾斜性シリカエアロゲル試料を作製した。
【0040】
(実施例4)
実施例3において、溶液含浸フィルター1に含浸させる溶液として、テトラメトキシシランのオリゴマーに代えて、5Nのアンモニア水を用いて、溶液含浸フィルター1を作製したこと以外は、実施例3と同様にして、密度傾斜性シリカエアロゲル試料を作製した。
【0041】
(比較例1)
テトラメトキシシランのオリゴマーと水と28重量%のアンモニア水溶液とをエタノールに溶解させたものを、モル比がテトラメトキシシランのオリゴマー:水:アンモニア:エタノール=1:20:2.2:120の混合比になるように調製し、ゾル3を得て、このゾル3を前記容器2内に流し込んだ後、室温下で放置することでゲル状化合物4を得た以外は、実施例1と同様にして、疎水化処理及び超臨界乾燥を施し、シリカエアロゲル試料を作製した。
【0042】
(比較例2)
テトラメトキシシランのオリゴマーと水と0.075Nのアンモニア水溶液とをエタノールに溶解させたものを、モル比がテトラメトキシシランのオリゴマー:水:アンモニア:エタノール=1:7:0.027:3.8の混合比になるように調製し、ゾル3を得て、このゾル3を前記容器2内に流し込んだ後、室温下で放置することでゲル状化合物4を得た以外は、実施例3と同様にして、疎水化処理及び超臨界乾燥を施し、シリカエアロゲル試料を作製した。
【0043】
実施例1〜実施例4並びに比較例1及び比較例2で得たシリカエアロゲルの密度、可視光透過率、熱伝導率及び曲げ強度を測定した。
【0044】
ここで、熱伝導率は、英弘精機(株) 製の定常法による熱伝導率測定装置を使用して、ASTM−C518に準拠した方法で、設定温度20℃と40℃の条件で測定した。可視光透過率は、1cm厚み試料について、可視光域の光透過率分布を測定し、可視光透過率をJIS−R3106に基づいて求めた。
【0045】
試料の主な内容及び測定結果を表1に示した。
【0046】
【表1】
【0047】
表1の結果、実施例の密度傾斜性シリカエアロゲルは、比較例のシリカエアロゲルに比べて、断熱性、光透過性及び機械的強度のバランスに優れており、かつ、取り扱い性も良好なものであった。
【0048】
本発明によって得られる密度傾斜性シリカエアロゲルは、断熱性等、多孔質材料に特有の機能に優れ、かつ光透過性に優れている。しかも本発明による製法により得られる密度傾斜性シリカエアロゲルは、特性を最大限に生かしながら、取り扱い性等の強度も十分に有するものが得られる。
【0049】
本発明によって得られるエアロゲルは、例えば、太陽光集熱に有用な光透過性断熱材、または、音響材料、触媒担体、チェレンコフカウンター媒体等の様々な用途に用いることができる。
【0050】
【発明の効果】
本発明の請求項1乃至請求項5に係る密度傾斜性エアロゲルの製法は、アルコキシシラン又は加水分解重合を促進させる触媒のいずれか一方のみを含む溶液を含浸させた溶液含浸フィルターと、アルコキシシラン、触媒、水及び溶媒を含む反応物とを当接した状態で、反応物を縮重合反応させることによりゲル状化合物にするので、本発明の請求項1乃至請求項5に係るエアロゲルの製法によると、高密度部分から低密度部分へと密度が徐々に変化する密度傾斜性エアロゲルが得られ、少なくとも一方の外殻部の密度が大きいために取り扱い性が良く、しかも低密度部分で断熱性を発現するので、良好な透明性断熱材料となるとともに、低密度部分と高密度部分の明確な界面が存在しないため、取り扱いによる界面での剥離等による破損が低減される。すなわち、透明性、断熱性に優れ、かつ、取り扱い性良好な強度を有する密度傾斜性エアロゲルが得られる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る密度傾斜性ゲル状化合物の作製方法の概略説明図である。
【図2】本発明の第2の実施の形態に係る密度傾斜性ゲル状化合物の作製方法の概略説明図である。
【図3】本発明の第1の実施の形態に係る密度傾斜性シリカエアロゲルの密度分布図である。
【図4】本発明の第2の実施の形態に係る密度傾斜性シリカエアロゲルの密度分布図である。
【符号の説明】
1 溶液含浸フィルター
2 溶液
3 ゾル
4 ゲル状化合物
5 ゲル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a density gradient aerogel in which a density distribution composed of a porous skeleton of silica is present, and in particular, for example, a lighting property to be filled between a transparent glass plate or a hollow container, The present invention relates to a method for producing a density gradient airgel that can be used for various uses such as a filling material constituting a high-strength transparent heat-insulating layer having excellent light transmittance, transparency and heat insulating properties.
[0002]
[Prior art]
Conventionally, an airgel made of silica has been known as a material having a low thermal conductivity and light transmissivity. This aerogel is obtained by hydrolyzing and polymerizing alkoxysilane (also referred to as silicon alkoxide, alkyl silicate, etc.) as disclosed in US Pat. Nos. 4,402,927, 4,432,956 and 4,610,863. The wet gel compound comprising the skeleton is dried in the supercritical state above the critical point of this solvent in the presence of a solvent (dispersion medium) such as alcohol or liquefied carbon dioxide, and if necessary, Thereafter, it can be manufactured by further performing a heat treatment at about 500 to 750 ° C. or higher. Further, as in US Pat. Nos. 5,137,927 and 5,124,364, a gel-like compound can be similarly obtained using sodium silicate as a raw material, and the gel-like compound can be produced by supercritical drying. The airgel obtained by such a manufacturing method is a material useful as, for example, a heat-insulating material having light transmittance.
[0003]
However, such aerogels are very lightweight, have low strength and are brittle, and thus have the drawbacks that they are liable to crack or break and are very difficult to handle.
[0004]
[Problems to be solved by the invention]
Therefore, the present inventors have focused on the fact that aerogels having higher densities generally have higher strength, and have succeeded in producing high-density aerogels as disclosed in Japanese Patent Application No. 7-105299. However, when the density of the airgel is too high, there is a problem that the essential heat insulating properties and transparency tend to be impaired. In addition, the inventors have invented an airgel having a sandwich structure of a high-density portion and a low-density portion as disclosed in Japanese Patent Application No. 6-216870. There is a problem that peeling is likely to occur at the interface of.
[0005]
The present invention has been made in view of the above-mentioned facts, and it is an object of the present invention to provide a method for producing a density gradient airgel having excellent transparency, excellent heat insulation, and good strength in handling. .
[0006]
[Means for Solving the Problems]
In the method for producing a density gradient airgel according to
[0007]
The method for producing a gradient airgel according to
[0008]
The method for producing a gradient airgel according to
[0009]
The method for producing a gradient airgel according to claim 4 of the present invention is characterized in that the solution-impregnated filter is brought into contact with both surfaces of the gel.
[0010]
The method for producing a density gradient airgel according to claim 5 of the present invention is characterized in that the catalyst is ammonia.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0012]
The alkoxysilane used in the present invention is an alkoxysilane represented by the following general formula (1), and more specifically, a bifunctional alkoxysilane represented by the following general formula (2), Examples include trifunctional alkoxysilanes represented by the general formula (3), tetrafunctional alkoxysilanes represented by the following general formula (4), and oligomers of alkoxysilanes represented by the following general formula (5). .
[0013]
Embedded image
[0014]
Embedded image
[0015]
Embedded image
[0016]
Embedded image
[0017]
Embedded image
[0018]
The gel compound (wet alcogel) according to the present invention is at least one selected from the group consisting of alkoxysilanes represented by the general formulas (3) to (5) or the general formula (3). A mixture containing at least one selected from the group consisting of alkoxysilanes represented by formulas (1) to (5) and the alkoxysilanes represented by formula (2) is hydrolyzed and polycondensed. Obtained by:
[0019]
Specific examples of the alkoxysilanes represented by the general formulas (2) to (4) used in the present invention include, for example, dimethyldimethoxysilane, dimethyldiethoxysilane, and diphenyl. Diethoxysilane, diphenyldimethoxysilane, methylphenyldiethoxysilane, methylphenyldimethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, and the like.Examples of trifunctional alkoxysilanes include, for example, methyltrimethoxysilane, methyltriethoxysilane, Ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, etc., and as the tetrafunctional alkoxysilane, for example, tetramethoxysilane, tetraethoxysilane, etc. In particular, but are not limited.
[0020]
The oligomer of the alkoxysilane represented by the above general formula (5) preferably has a degree of polymerization of 10 or less (hereinafter, those having a degree of polymerization of n are referred to as n-mers). However, it is not limited to this. The oligomer of the alkoxysilane need not be a compound having a uniform degree of polymerization, and may have a distribution of the degree of polymerization or may have a mixed molecular structure of a chain, a branch, and a ring. In consideration of the stability as a substance and the reaction time for producing a gel compound, a dimer to hexamer is preferable. R in the oligomer of the alkoxysilane represents an alkyl group or a phenyl group, and among them, a methyl group (—CH 3 ) and an ethyl group (—C 2 H 5 ) are preferable. Specifically, in the case of an oligomer of methoxysilane, an oligomer having an average molecular weight of 250 to 700 is preferable, and in the case of an oligomer of ethoxysilane, an oligomer having an average molecular weight of 300 to 900 is preferable.
[0021]
In order to efficiently hydrolyze the alkoxysilane and carry out polycondensation in the present invention, it is preferable to add a catalyst in advance to the reaction solution containing the alkoxysilane. Examples of such a catalyst include an acidic catalyst and a basic catalyst. Specifically, as the acidic catalyst, hydrochloric acid, citric acid, nitric acid, sulfuric acid, ammonium fluoride and the like are used, and as the basic catalyst, ammonia, piperidine and the like are used, but not limited thereto. Absent.
[0022]
As a solvent used for hydrolysis and condensation polymerization of alkoxysilane, alcohol, acetone and the like are usually used in order to uniformly dissolve and mix alkoxysilane as a raw material and water, but are not limited thereto. However, the solvent may be any solvent in which both the alkoxysilane and water are easily dissolved. However, considering that alcohol is produced by a hydrolysis reaction in the process of producing a gel-like compound and that supercritical drying is performed, an alcohol such as ethanol is preferable as the solvent.
[0023]
The density gradient aerogel according to the present invention is produced by subjecting a gel compound obtained by a method described below to a hydrophobizing treatment by a reaction with a hydrophobizing agent and then performing supercritical drying. Examples of a method for producing a gel compound for producing a density gradient airgel include the following methods, but are not limited thereto.
[0024]
FIG. 1 is a schematic explanatory diagram of the first embodiment. As shown in FIG. 1A, an alkoxysilane solution in which alkoxysilane or only alkoxysilane is dissolved in a solvent such as ethanol, or a solution in which water and a catalyst such as ammonia or a solution in which water and a catalyst are dissolved in a solvent is used. For example, a filter such as a felt-like porous material is impregnated, and the solution-impregnated
[0025]
FIG. 2 is a schematic explanatory diagram of the second embodiment. As shown in FIG. 2 (a), a
[0026]
Further, the compounding ratio at the time of preparing the sol is not limited, and can be variously changed depending on required properties such as transparency, heat insulation, specific surface area, density, and light refractive index. The density of the gradient airgel produced in the present invention is not particularly limited, but is preferably 0.01 to 0.5 g / cm 3 , and more preferably 0.04 to 0.25 g / cm 3. Is more preferred. That is, when the density of this aerogel is less than 0.01 g / cm 3 , it takes a lot of time to gel, or shrinkage during supercritical drying is inevitable, and the airgel is too light. In actuality, it becomes difficult to handle, for example, by sticking to the hands, containers, members, etc. that come into contact with the objects, such as cracks, etc. If it exceeds 0.5 g / cm 3 , the heat conduction of the aerogel The ratio also becomes somewhat large, the material is not so excellent in terms of heat insulation, the performance such as translucency is reduced, and the preparation of aerogel becomes difficult. Therefore, the mixing ratio of the sol is determined so that the density after supercritical drying is within the above range.
[0027]
The obtained gel compound is subjected to a hydrophobic treatment before supercritical drying. As the hydrophobizing agent, one having a functional group that reacts with the silanol group of the gel compound and a hydrophobic group is used. Examples of the functional group that reacts with the silanol group include a halogen, an amino group, an imino group, a carboxyl group, an alkoxyl group, and a hydroxyl group. Examples of the hydrophobic group include an alkyl group, a phenyl group, and a fluoride thereof. The hydrophobizing agent may have only one type of the functional group and the hydrophobic group, or may have two or more types. Specifically, hexamethyldisilazane, hexamethyldisiloxane, trimethylchlorosilane, trimethylmethoxysilane, trimethylethoxysilane, triethylethoxysilane, triethylmethoxysilane, dimethyldimethoxysilane, dimethyldichlorosilane, dimethyldiethoxysilane, methyltrimethoxysilane Examples include organic silane compounds such as silane, methyltrichlorosilane, and ethyltrichlorosilane.
[0028]
Here, the hydrophobization treatment is performed in advance using a liquid as a medium before performing supercritical drying, or using a supercritical fluid as a medium during supercritical drying described later. These media are not particularly limited as long as they have low reactivity with the hydrophobizing agent and dissolve the hydrophobizing agent. When performing the hydrophobic treatment with a liquid, a solution obtained by dissolving the hydrophobic agent in a solvent such as alcohol is prepared as a hydrophobic solution, and the gel-like compound is immersed in the hydrophobic solution. In addition, heating is performed as necessary for the reaction.
[0029]
The solvent used when performing supercritical drying is not particularly limited. For example, a single system or a mixture of two or more of ethanol, methanol, isopropanol, dichlorodifluoromethane, carbon dioxide, and water is used. Can be mentioned. When supercritical drying is performed using a single solvent instead of a mixed system, generally, a solvent and a gel-like compound that has been subjected to solvent replacement in the same solvent are put together in an autoclave, and the solvent is added. After the temperature and the pressure are raised to the critical point or higher, the solvent is gradually removed, and finally the state is returned to the normal temperature and normal pressure state, thereby completing the drying. When supercritical drying is performed in a mixed system of two or more types, a method in which the temperature and pressure are set to a supercritical state in the mixed system in a drying container, and a method in which the gel-like compound is There is a method in which the first solvent is replaced with a second solvent to be brought into a supercritical state, the solvent is almost completely replaced, and then the solvent is removed in a supercritical state of the second solvent.
[0030]
The aerogel of the present invention is a structure composed of very fine silica particles, the particle size of which is much smaller than the wavelength of light, and the void structure is also very homogeneous, so that the airgel is transparent despite being porous. Has the property. Here, the light transmittance is, for example, visual transparency in a visible light wavelength region or the like, or transmittance in an infrared region, but is not limited thereto. Moreover, since it has hydrophobicity, it is excellent in moisture resistance, and is a material whose performance and dimensions are stable over time.
[0031]
The method for producing a density gradient airgel according to the present invention is a method in which a sol obtained by hydrolyzing an alkoxysilane having polycondensability is gelled by a polycondensation reaction to form a gel-like compound. After a hydrophobizing treatment by a reaction, in a method of producing an aerogel by performing supercritical drying and aerogel, a solution impregnated filter impregnated with a solution containing only one of alkoxysilane or a catalyst for promoting hydrolysis polymerization, In the state where the reactant containing the silane, the catalyst, water and the solvent is in contact with the reactant, the reactant is converted into a gel-like compound by a condensation polymerization reaction, so that the density gradually changes from a high-density portion to a low-density portion. A density gradient airgel is obtained. That is, since the density of at least one of the outer shell portions is large, the handleability is good, and the heat insulating property is exhibited in the low density portion, so that a good transparent heat insulating material is obtained. Further, in the density gradient airgel according to the present invention, since there is no clear interface between the low-density portion and the high-density portion, damage due to separation at the interface due to handling is also eliminated.
[0032]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
[0033]
Hereinafter, specific examples and comparative examples of the present invention will be described, but the present invention is not limited to the following examples.
[0034]
(Example 1)
As shown in FIG. 1, an oligomer of tetramethoxysilane having an average molecular weight of 470 [manufactured by Colcoat Co., Ltd .; trade name: methylsilicate 51] was used as a solution, and a solution-impregnated
[0035]
A solution obtained by dissolving the oligomer of tetramethoxysilane, water, and an aqueous ammonia solution of 28% by weight in ethanol has a molar ratio of oligomer of tetramethoxysilane: water: ammonia: ethanol = 1: 20: 0.14: 33. The mixture was adjusted to have a mixing ratio to obtain a
[0036]
Next, this gel compound is put in a high-pressure vessel, and after filling with ethanol, carbon dioxide at 18 ° C. and 55 kg / cm 2 is added to the vessel, and the ethanol in the gel and in the vessel is removed. The operation of replacing with carbon was performed for 2 to 3 hours. After that, the inside of the container was set to 80 ° C. and 160 kg / cm 2 , which is the supercritical condition of carbon dioxide, and subjected to supercritical drying (removal of solvent) for 2 hours, followed by pressure reduction to remove ethanol contained in the gel compound. Thus, a density gradient silica airgel sample was prepared.
[0037]
(Example 2)
In Example 1, in the same manner as in Example 1 except that the solution impregnated
[0038]
(Example 3)
As shown in FIG. 2 (a), a tetramethoxysilane oligomer, water and a 28% by weight aqueous ammonia solution dissolved in ethanol, and the molar ratio of tetramethoxysilane oligomer: water: ammonia: ethanol = 1 : 20: 2.2: 120 to obtain a
[0039]
Next, this gel compound 4 was immersed in a 2.4 mol / liter ethanol solution of dimethyldimethoxysilane [manufactured by Toray Dow Corning Silicone Co., Ltd .; product number AY43-004] to perform a hydrophobic treatment. The gelled compound was placed in a high-pressure container, filled with ethanol, and then heated while adding carbon dioxide to the container to reach 80 ° C. and 160 kg / cm 2 . After replacing the ethanol in the container with carbon dioxide under these conditions, the pressure was reduced and the ethanol contained in the gel compound 4 was removed to prepare a density gradient silica airgel sample.
[0040]
(Example 4)
In Example 3, in the same manner as in Example 3 except that the solution impregnated
[0041]
(Comparative Example 1)
A mixture of an oligomer of tetramethoxysilane, water and a 28% by weight aqueous ammonia solution dissolved in ethanol, and a molar ratio of oligomer of tetramethoxysilane: water: ammonia: ethanol = 1: 20: 2.2: 120. In the same manner as in Example 1 except that the
[0042]
(Comparative Example 2)
A solution obtained by dissolving an oligomer of tetramethoxysilane, water and an aqueous 0.075N ammonia solution in ethanol, and having a molar ratio of oligomer of tetramethoxysilane: water: ammonia: ethanol = 1: 7: 0.027: 3.8. The
[0043]
The density, visible light transmittance, thermal conductivity, and bending strength of the silica airgel obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were measured.
[0044]
Here, the thermal conductivity was measured at a set temperature of 20 ° C. and 40 ° C. by a method based on ASTM-C518, using a thermal conductivity measuring device by a steady method manufactured by Eiko Seiki Co., Ltd. The visible light transmittance was obtained by measuring the light transmittance distribution in the visible light range of a 1 cm thick sample, and determining the visible light transmittance based on JIS-R3106.
[0045]
Table 1 shows the main contents of the samples and the measurement results.
[0046]
[Table 1]
[0047]
As a result of Table 1, the density gradient silica aerogel of the example is excellent in the balance of heat insulation, light transmission and mechanical strength, and has good handleability as compared with the silica aerogel of the comparative example. there were.
[0048]
The density gradient silica airgel obtained by the present invention has excellent functions such as heat insulation and the like, which are unique to porous materials, and also has excellent light transmittance. In addition, the gradient silica aerogel obtained by the production method according to the present invention can be one having sufficient strength such as handleability while maximizing the properties.
[0049]
The airgel obtained by the present invention can be used for various applications such as a light-transmitting heat insulating material useful for solar heat collection, an acoustic material, a catalyst carrier, and a Cherenkov counter medium.
[0050]
【The invention's effect】
The method for producing a gradient airgel according to any one of
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of a method for producing a density gradient gel-like compound according to a first embodiment of the present invention.
FIG. 2 is a schematic explanatory view of a method for producing a density gradient gel-like compound according to a second embodiment of the present invention.
FIG. 3 is a density distribution diagram of a density gradient silica airgel according to the first embodiment of the present invention.
FIG. 4 is a density distribution diagram of a density gradient silica airgel according to a second embodiment of the present invention.
[Explanation of symbols]
1 solution impregnated
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33238795A JP3579998B2 (en) | 1995-12-20 | 1995-12-20 | Manufacturing method of density gradient airgel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33238795A JP3579998B2 (en) | 1995-12-20 | 1995-12-20 | Manufacturing method of density gradient airgel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09169515A JPH09169515A (en) | 1997-06-30 |
JP3579998B2 true JP3579998B2 (en) | 2004-10-20 |
Family
ID=18254406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33238795A Expired - Fee Related JP3579998B2 (en) | 1995-12-20 | 1995-12-20 | Manufacturing method of density gradient airgel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3579998B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4470627B2 (en) | 2004-07-15 | 2010-06-02 | 日本電気株式会社 | Optical substrate, light emitting element, and display device |
JP4893816B2 (en) * | 2009-12-15 | 2012-03-07 | 日本電気株式会社 | OPTICAL SUBSTRATE, LIGHT EMITTING ELEMENT, DISPLAY DEVICE AND METHOD FOR PRODUCING THEM |
CN107849287A (en) * | 2015-07-15 | 2018-03-27 | 日立化成株式会社 | Aerogel composite |
JP6288384B2 (en) * | 2015-09-01 | 2018-03-07 | 日立化成株式会社 | Airgel |
CN105753444A (en) * | 2016-01-29 | 2016-07-13 | 卓达新材料科技集团有限公司 | Preparation method of germanium oxide and magnesium oxide hybrid aerogel composite material |
CN114436268B (en) * | 2020-11-02 | 2023-01-10 | 航天特种材料及工艺技术研究所 | Ultralow-density aerogel with continuous density change characteristic and preparation method thereof |
-
1995
- 1995-12-20 JP JP33238795A patent/JP3579998B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09169515A (en) | 1997-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2725573B2 (en) | Manufacturing method of hydrophobic airgel | |
JP2659155B2 (en) | Method for producing hydrophobic airgel | |
JPH0834678A (en) | Aerogel panel | |
EP0849220B1 (en) | Process for producing aerogel | |
US5830387A (en) | Process of forming a hydrophobic aerogel | |
JP3339394B2 (en) | Manufacturing method of hydrophobic airgel | |
JP2001072408A (en) | Silica aerogel and its production | |
JPH08300567A (en) | Manufacture of aerogel panel | |
JP2000264620A (en) | Production of hydrophobic aerogel | |
JP2005154195A (en) | Aerogel material and article formed of the aerogel material | |
JP3579998B2 (en) | Manufacturing method of density gradient airgel | |
KR100840603B1 (en) | Method for preparing permanently hydrophobic aerogel and aerogel therefrom | |
EP0585456B1 (en) | Process for producing hydrophobic aerogel | |
JP3339393B2 (en) | Manufacturing method of hydrophobic airgel | |
JP2756366B2 (en) | Method for producing hydrophobic airgel | |
JPH10316414A (en) | Production of aerogel | |
JP3520601B2 (en) | Aerogel manufacturing method | |
JPH06191822A (en) | Production of aerogel composite material | |
Yoda et al. | Effects of ethanolamines catalysts on properties and microstructures of silica aerogels | |
JPH08151210A (en) | Production of aerogel filler | |
JP3048276B2 (en) | Airgel production method | |
JP2005132641A (en) | Manufacturing method of silica aerogel | |
JP3100856B2 (en) | Manufacturing method of bulk airgel | |
JP3520600B2 (en) | Aerogel manufacturing method | |
JP3045411B2 (en) | Method for producing inorganic microporous body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040629 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040712 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070730 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080730 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090730 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090730 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090730 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090730 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100730 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100730 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110730 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120730 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120730 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |