[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3574368B2 - 赤外線固体撮像素子 - Google Patents

赤外線固体撮像素子 Download PDF

Info

Publication number
JP3574368B2
JP3574368B2 JP37086499A JP37086499A JP3574368B2 JP 3574368 B2 JP3574368 B2 JP 3574368B2 JP 37086499 A JP37086499 A JP 37086499A JP 37086499 A JP37086499 A JP 37086499A JP 3574368 B2 JP3574368 B2 JP 3574368B2
Authority
JP
Japan
Prior art keywords
infrared
imaging device
state imaging
infrared absorbing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37086499A
Other languages
English (en)
Other versions
JP2000146686A5 (ja
JP2000146686A (ja
Inventor
雅章 木股
智広 石川
和彦 堤
久敏 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9012269A external-priority patent/JP3040356B2/ja
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP37086499A priority Critical patent/JP3574368B2/ja
Publication of JP2000146686A publication Critical patent/JP2000146686A/ja
Publication of JP2000146686A5 publication Critical patent/JP2000146686A5/ja
Application granted granted Critical
Publication of JP3574368B2 publication Critical patent/JP3574368B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は熱型光検出器を用いた2次元赤外線固体撮像素子に関する。
【0002】
【従来の技術】
熱型光検出器とは、赤外線が照射されると、赤外線を吸収して温度が上昇し、かつ温度変化を検出するものである。図21は、温度で抵抗値が変化するボロメータ薄膜を用いた従来の熱型光検出器を用いた2次元固体撮像素子の一個の画素の構造を示す斜視説明図である。図で、901はたとえばシリコンなどの半導体からなるシリコン基板であり、910は、シリコン基板から空間を隔てて設けられた赤外線検出器部(以下、単に検出器部ともいう)であり、911は赤外線検出器部上に形成されたボロメータ薄膜であり、921および922は、赤外線検出器部910をシリコン基板から浮かせて持ち上げるための支持脚であり、931および932は、ボロメータ薄膜に電流を流すための金属配線であり、940は、金属配線931および932とボロメータ薄膜911を通して流れる電流のON、OFFを行なうスイッチ・トランジスタであり、950は金属配線932に接続された信号線であり、960は、スイッチ・トランジスタのON、OFFを制御するための制御クロック線であり、970は、検出器部と光学的共振構造をつくり検出器部910での赤外線の吸収を増大させるための金属反射膜である。
【0003】
図22は、図21に示した構造の従来の2次元固体撮像素子の電流経路に沿った断面構造を示す断面説明図であり、図22において、図21に示した要素と同じ要素には同じ符号を付し(以下の図においても同様)てあり、980は絶縁膜であり、990は空洞部であり、930および933は絶縁膜であり、926および927はコンタクト部であり、本発明に直接関係のないスイッチ・トランジスタ、信号線、制御クロック線などは省略されている。前述したように検出器部910の上にはボロメータ薄膜が形成されており、ボロメータ薄膜には金属配線931および932が接続され、コンタクト部926および927を通してシリコン基板上に形成された(図示されていないが)信号読み出し回路と接続している。このボロメータ薄膜911と金属配線931および932は、シリコン酸化膜またはシリコン窒化膜などからなる絶縁膜930および933によって覆われており、この絶縁膜930および933が検出器部910と支持脚921および922の機械的構造を形づくっている。絶縁膜980はシリコン基板901上に形成された信号読み出し回路と金属配線931および932を絶縁するための絶縁膜であり、この絶縁膜980の上の金属反射膜970の上に空洞部990を介して検出器部910が配置されている。金属反射膜970の表面には別の絶縁膜が形成される場合もある。
【0004】
つぎにこの熱型光検出器を用いた2次元赤外線固体撮像素子の動作について説明する。赤外線は検出器部910が存在する側から入射し、検出器部910で吸収される。入射した赤外線は、金属反射膜970の存在により金属反射膜970の位置が節となるような定在波ができるので、検出器部と金属酸化反射膜の間隔をうまく設定することによって検出器部910における吸収を増大させることができる。検出器部910で吸収された赤外線のエネルギーは熱に変換され、検出器部910の温度を上昇させる。温度上昇は入射する赤外線の量に依存(入射する赤外線の量は撮像対象物の温度と放射率に依存)する。温度上昇の量はボロメータ薄膜の抵抗値の変化を測定することで知ることができるので、撮像対象物が放射している赤外線の量をボロメータの抵抗値の変化から知ることができる。
【0005】
ボロメータ薄膜の抵抗温度係数が同じであれば、検出器部の温度上昇が大きいほど同じ量の赤外線入射で得られる抵抗変化が大きくなり、感度が高くなるが、温度上昇を高くするためには検出器部910からシリコン基板901に逃げる熱をできるだけ小さくすることが効果的であり、このために支持脚921および922は熱抵抗をできるだけ大きくするように設計される。また、撮像素子のフレーム時間に比べ検出器部910の温度時定数が短くなるように検出器部910の熱容量を小さくすることも重要である。
【0006】
赤外線は画素内に全体に入射するが、検出器部910の温度上昇に寄与するのは検出器部910の部分に入射したものだけ(若干は検出器部910に近い支持脚に入射した赤外線も有効ではあるが)であり、それ以外の領域に入射した赤外線は無効となってしまう。このため、感度を高くするには開口率(画素面積に対する検出器部の面積の割合)を大きくすることも有効であることは容易に理解できる。
【0007】
【発明が解決しようとする課題】
図21および図22に示す従来の構造では、検出器部910は少なくとも支持脚921および922およびこの支持脚とシリコン基板上に形成された読み出し回路を接続するコンタクト部分を除いた領域に形成しなくてはならないため、開口率はこの支持脚とコンタクト部分、およびこれらの部分と検出器部910との間隔余裕の設計にしたがった制約を受けており、高感度化を阻害していた。
【0008】
さらに、この問題は画素が小さくなるほど顕著になり、感度を維持したまま小さな画素を用いて高解像度化してゆくことを難しくしていた。
【0009】
本発明は前述のような問題点を解消するためになされたものであり、信号読み出し回路と同一基板上に熱型光検出器を形成する2次元赤外線固体撮像素子において、断熱構造を形成する支持脚や金属配線、コンタクト部などの設計に依存せず高い開口率を達成できる画素の構造を有し、高感度化された2次元赤外線固体撮像素子を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子は、赤外線を吸収して検出器部を温度上昇させる赤外線吸収部と、ボロメータ薄膜を形成して温度上昇を検出する温度検出部とを別構造として形成するものである。
【0011】
本発明にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子は、赤外線吸収部と温度検出部とを別々の構造として形成するので、赤外線吸収部と温度検出部の設計を独立して行なうことができ、実効的に開口率を決める赤外線吸収部の面積を大きくすることができ、高感度化に有効である。
【0012】
本発明にかかわる2次元赤外線固体撮像素子は、熱型光検出器と、入射赤外線による前記熱型光検出器の特性変化を検出する手段とが集積されてなる温度検出機構が、半導体基板上に各画素ごとに2次元に配列された2次元赤外線固体撮像素子であって、
前記各画素ごとに、前記半導体基板への熱の流出を制御する熱抵抗の大きい材料からなる支持脚によって支えられておりかつ温度検出素子を含む温度検出部と、該温度検出部と少なくとも1本の接合柱で結合された赤外線吸収部とを前記半導体基板上に設け、前記赤外線吸収部は、2次元に配列された前記各画素と実質的に等しい面積を有している。
【0013】
前記温度検出部が、前記半導体基板中に形成された空洞部の上に設けられてなることが熱抵抗を大きくする点で好ましい。
【0014】
前記赤外線吸収部の少なくとも一部に反射膜および層間絶縁膜からなる赤外線吸収構造を有してなることが光吸収増大の点で好ましい。
【0015】
前記赤外線吸収部の少なくとも一部に反射膜、層間絶縁膜および金属赤外線吸収薄膜からなる光学的共振構造を有してなることが光吸収増大の点で好ましい。
【0016】
前記接合柱の少なくとも一部が前記赤外線吸収部と同一構成部材で形成されてなることが製造工程簡略化の点で好ましい。
【0017】
前記赤外線吸収部の少なくとも一部に反射膜、層間絶縁膜および金属赤外線吸収薄膜からなる光学的共振構造を有しており、かつ前記接合柱が前記金属赤外線吸収薄膜と一体に形成されてなることが製造工程簡略化の点で好ましい。
【0018】
前記接合柱の少なくとも一部が前記赤外線吸収部と同一構成部材で形成され、さらに前記赤外線吸収部のうち前記温度検出部に接する部分が除去されてなることが熱容量低減の点で好ましい。
【0019】
前記赤外線吸収部から前記空洞部に達するエッチングホールが前記空洞部の中心付近に少なくとも1つ設けられてなることが基板の不要なエッチングの減少と製造工程選択のときの自由度拡大との点で好ましい。
【0020】
前記空洞部の周囲の前記半導体基板中に、前記空洞部を形成する際に用いられるエッチャントに耐性のある材料からなるエッチングストップ層が設けられてなることが基板の不要なエッチングの減少と製造工程選択のときの自由度拡大との点で好ましい。
【0021】
前記温度検出素子が前記赤外線吸収部の上面に形成されてなることが半導体プロセス中で使用できない材料でボロメータを構成する場合好ましい。
【0022】
前記温度検出部が、前記半導体基板上に形成された読み出し回路の上方に形成されてなることが、空洞部形成のためのエッチング方法の選択の自由度を広げる点と空洞部下の領域に読み出し回路の構成要素の一部などを配置して面積の有効利用をする点で好ましい。
【0023】
前記赤外線吸収部の少なくとも一部に反射膜および層間絶縁膜からなる赤外線吸収構造を有してなることが光吸収増大の点で好ましい。
【0024】
前記赤外線吸収部の少なくとも一部に反射膜、層間絶縁膜および金属赤外線吸収薄膜からなる光学的共振構造を有してなることが光吸収増大の点で好ましい。
【0025】
前記接合柱の少なくとも一部が前記赤外線吸収部と同一構成部材で形成されてなることが製造工程簡略化の点で好ましい。
【0026】
前記赤外線吸収部の少なくとも一部に反射膜、層間絶縁膜および金属赤外線吸収薄膜からなる光学的共振構造を有しており、かつ前記接合柱が前記金属赤外線吸収薄膜と一体に形成されてなることが製造工程簡略化の点で好ましい。
【0027】
前記温度検出素子としてボロメータ薄膜が用いられてなることが温度変化を効果的に検出する点で好ましい。
【0028】
前記温度検出素子として焦電効果を有する強誘電体が用いられてなることが温度変化を効果的に検出する点で好ましい。
【0029】
前記温度検出素子としてサーモパイルが用いられてなることが温度変化を効果的に検出する点で好ましい。
【0030】
前記接合柱が、前記赤外線吸収部の重心に隣接した位置の下に配設されてなることが検出器部分の温度の均一性の点で好ましい。
【0031】
前記接合柱の熱抵抗が、前記支持脚の熱抵抗よりも小さいことが好ましい。
【0032】
本発明にかかわる2次元赤外線固体撮像素子の製法は、
a)半導体基板上に信号読み出し回路を形成したのち、絶縁膜、コンタクト部を形成し、さらに金属配線および温度検出素子を形成し、保護絶縁膜で全体を覆う工程、
b)前記保護絶縁膜上に犠牲層を形成し、該犠牲層のうち、のちに接合柱を形成する領域を写真製版技術で除去したのち、除去した部分に前記接合柱となる材料を埋め込む工程、
c)前記犠牲層および前記接合柱の上に赤外線吸収部となる薄膜を形成し、各画素ごとに赤外線吸収部が分離されるようにパターニングする工程、
d)前記犠牲層をエッチングして除去する工程、および
e)前記シリコン基板をエッチングして、該シリコン基板中に空洞部を形成する工程
からなることを特徴とする。
【0033】
前記b)工程ののち、さらに、前記犠牲層および前記接合柱の表面をエッチバックして平坦にする工程を含むことが赤外線吸収部の形成を容易にする点で好ましい。
【0034】
前記e)工程において、前記半導体基板を異方性エッチングして前記空洞部を形成することが空洞部の大きさを制御性よく製造する点で好ましい。
【0035】
水酸化カリウムおよび水酸化テトラメチルアンモニウムのうちのいずれか一方を用いて異方性エッチングすることが充分なエッチング速度を得る点で好ましい。
【0036】
【発明の実施の形態】
以下、本発明の実施の形態を添付図を参照しつつ説明する。
【0037】
実施の形態1
図1は、本発明の実施の形態1にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の1個の画素の電流経路に沿った断面構造を示す断面説明図である。図で簡単のために本発明と直接関係のない、シリコン基板1上に設けられた信号読み出し回路は省略している。図1において、1は半導体基板としてのシリコン基板であり、11は温度変化を検出する温度検出素子としてのボロメータ薄膜である。21および22は支持脚であり、この支持脚はシリコン基板1の中に形成した空洞部200の上にあり、かつ、ボロメータ薄膜を含む温度検出部300を浮かしている。31および32は金属配線であり、この金属配線はたとえばアルミニウム、チタン、タングステンおよび窒化チタンなどからなり、ボロメータ薄膜11と読み出し回路を接続している。100は絶縁膜(保護絶縁膜)であり、110は絶縁膜であり、この2つの絶縁膜は、シリコン基板への熱の流出を制御する熱抵抗の大きい材料であるシリコン酸化膜、シリコン窒化膜などからなり、かつ前記2つの絶縁膜は、支持脚21および22ならびに温度検出部300の機械的構造を構成して温度検出部を支えている。121および122は、金属配線31および32と信号読み出し回路とを接続するコンタクト部であり、アルミニウムやタングステンなどを用いてスパッタ法やCVD法などにより形成することができる。130は、赤外線を吸収して熱に変換する赤外線吸収部であり、酸化シリコン(SiO)や窒化シリコン(SiN)などを用いてCVD法などで形成することができる。さらに、赤外線吸収部は、これら酸化シリコンや窒化シリコンの積層膜として構成することもできる。140は接合柱であり、この接合柱は、赤外線吸収部を温度検出部300から離して保持するとともに赤外線吸収部130と温度検出部300を熱的に結合しており、酸化シリコンや窒化シリコンなどを用いてCVD法などで形成することができる。さらに、接合柱は、これら酸化シリコンや窒化シリコンの積層膜として構成することもできる。200はシリコン基板1の中に形成した空洞部であり、300は温度検出部である。ここで、熱型光検出器は、従来と同様に、赤外線が照射されると赤外線を吸収し、温度が上昇して、かつ温度変化を検出するものであり、本発明においては赤外線吸収部と温度検出素子とで構成される。温度検出素子は、入射赤外線によって赤外線吸収部に生じる温度変化が接合柱を介して伝えられ、たとえば電気抵抗の変化などの特性変化が検出されることによって温度変化を検出するものである。温度検出素子に生じた特性変化を検出する手段は、金属配線、信号読み出し回路およびコンタクト部からなる。本発明においては、温度検出素子として用いられる材料には、ボロメータ薄膜、焦電効果を有する強誘電体またはサーモパイルなどをあげることができる。ここで、ボロメータ薄膜の材料の例としては、酸化バナジウム、ポリシリコン、アモルファスシリコンなどをあげることができる。また、焦電効果を有する強誘電体の例としては、チタン酸ジルコン酸鉛(PZT)、チタン酸鉛(PT)およびチタン酸バリウム・ストロンチウム(BST)をあげることができる。また、サーモパイルの材料の例としては、p型ポリシリコンとn型ポリシリコンの接合や、ポリシリコンとアルミニウムの接合などをあげることができる。さらに、本発明にかかわる2次元赤外線固体撮像素子においては、前記熱型光検出器と、前記入射赤外線による熱型光検出器の特性変化を検出する手段とが集積されて温度検出機構を構成しており、該温度検出機構がシリコン基板上で各画素ごとに2次元に配列される。
【0038】
図2は、図1に示した構造の2次元赤外線固体撮像素子の1個の画素の赤外線吸収部130を除いた部分の平面レイアウトを示す平面説明図である。図2において、1000は1個の画素全体を示しており、400は、画素部分に設置したMOSトランジスタやダイオードなどからなる信号読み出し回路の一部であり、500は信号を読み出すための信号線であり、600は信号読み出し回路400を制御する制御クロックバスラインであり、33は信号読み出し回路400と制御クロックバスライン600を接続する金属配線であり、123および124は、金属配線33と信号読み出し回路400と制御クロックバスライン600を接続するコンタクト部である。その他の部分は図1に示した符号と同じ符号は同じものを表わしている。
【0039】
本発明にかかわる2次元赤外線固体撮像素子においては、入射赤外線による熱型光検出器の特性変化を検出する手段は、前述したように金属配線、信号読み出し回路およびコンタクト部からなるが、前記手段と熱型光検出器が集積されて各画素に設けられ、半導体基板としてのシリコン基板上に各画素ごとに2次元に配列される。温度検出部300は、2つの絶縁膜100および110ならびにボロメータ薄膜11からなり、該ボロメータ薄膜は、その上層に絶縁膜100および下層に絶縁膜110を配した構成によって機械的構造体として支えられている。さらに温度検出部は絶縁膜100上に接合柱が形成されており、該接合柱を介して赤外線吸収部130からの熱を受け、該熱によるボロメータ薄膜の抵抗変化は、金属配線31およびコンタクト部121を介した信号線500と、金属配線32およびコンタクト部122を介した信号読み出し回路400とのあいだで生じる。支持脚21は2つの絶縁膜100および110が金属配線31をはさんだ形態の機械的構造体とされ、かつ、支持脚22も支持脚21と同様の機械的構造体とされていて、たとえば各々厚さ数百nmの絶縁膜が幅1〜3μm程度、厚さの合計が1μm程度という形状に形成されている。このようにして2つの支持脚21および22が、温度検出部300ならびに金属配線31および32を支持しており、空洞部200上で浮かせた構造となっている。2つの絶縁膜100および110からなる支持脚21および22が支える機械的構造体としての温度検出部300は、ボロメータ薄膜11、支持柱140、および支持柱140によって支えられる赤外線吸収部を支持している。また、支持脚21および22は、前述したように、シリコン基板への熱の流出を制御する熱抵抗の大きい材料からなる絶縁膜によって構成されているが、さらに熱抵抗を大きくするために図に示すように金属配線31および32とともに蛇行させて長さをかせぐことが好ましい。
【0040】
図3は、図1および図2に示した画素をシリコン基板(図示せず)上に複数個配列した状態を示した平面説明図であり、簡単のために2×4個の画素の配列および、隣接する4個の赤外線吸収部のそれぞれの一部を示している。図3において、破線で示した長方形の部分1000〜1007はそれぞれ、図2で1000で示した画素と同じ画素を示しており、画素の中身の構造は、実線で示した接合柱140〜147以外は省略して示している。また、図3において、実線で示した長方形の部分130〜137は、図1で130で示した赤外線吸収部であり、該赤外線吸収部は、接合柱140〜147によりシリコン基板とは離れて支持されている。シリコン基板面に形成された画素1000〜1007と赤外線吸収部130〜137は、平面的にみて重なる同一領域に形成される必要はなく、図に示すようにずれていてもかまわない。図で明らかなように赤外線吸収部130〜137の各々の面積は画素面積から赤外線受光素子間のわずかな間隔を除いた面積となっており、この部分の開口率は非常に大きくなっている。したがって、従来は赤外線吸収部と、温度検出部とが一体であったために、赤外線吸収部の面積が大きくできない制約があったが、本発明により、赤外線吸収部の面積を大きくすることができた。
【0041】
つぎに本発明による熱型光検出器を用いた2次元赤外線固体撮像素子の画素の動作について説明する。赤外線は赤外線吸収部130側から入射する。入射した赤外線は赤外線吸収部130で吸収され、赤外線吸収部130の温度を上昇させる。赤外線吸収部130の温度変化は接合柱140を通して温度検出部300に伝わり、温度検出部300の温度を上昇させる。接合柱140の熱抵抗は支持脚21、22の熱抵抗に比べて、より小さく設計されており、温度検出部300、接合柱140、赤外線吸収部130の3つの構造体を合計した熱容量と、支持脚21、22の熱抵抗で決まる時定数は、フレーム時間(1画面分に相当する信号を全て読み出すのに要する時間または、固体撮像素子の全画素の信号を読み出すのに要する時間)よりも短かくなるように設計されているので、温度検出部300の温度上昇は赤外線吸収部130の温度上昇とほとんど同じになる。したがって、実効的な開口率は赤外線吸収部130の面積で決まっているので、前述に説明したように開口率を非常に大きくすることができる。
【0042】
つぎに、この実施の形態にかかわる構造の2次元赤外線固体撮像素子の製法について説明する。図4および5は、本実施の形態にかかわる2次元赤外線固体撮像素子の1個の画素についてみた工程断面説明図である。図4(a)では、シリコン基板1の上に信号読み出し回路(図示していない)を形成したあと、絶縁膜110、コンタクト部121および122を形成したのち、金属配線31および32ならびにボロメータ薄膜11を形成し、最後に絶縁膜(保護絶縁膜)100で表面を覆った状態を示している。ここまでの構造は通常の半導体製造プロセスで用いられる技術を利用して容易に作ることができる。
【0043】
図4(b)では、図4(a)の構造の上に、あとの工程で除去する犠牲層170を形成し、犠牲層170のうち接合柱を形成する部分を写真製版技術で除去し、接合柱となる材料で除去した部分を埋め込んでいる。犠牲層に用いられる材料は、接合柱を形成するうえで、接合柱をエッチングしにくいエッチャントで容易にエッチングできるものなら何でもよく、たとえば接合柱が酸化シリコン(SiO )の場合ならば、犠牲層はポリシリコンなどをあげることができる。また、犠牲層の厚さは、1〜2μm程度である。この工程では最表面が平らになるようにエッチバック技術などで平坦化することが好ましい。犠牲層を形成する前に、のちにシリコン基板をエッチングして基板内に空洞部200を形成するためのエッチング窓を写真製版で絶縁膜100、110を部分的に除去して形成しておく。
【0044】
図4(c)では、赤外線吸収部130となる薄膜を図4(b)の構造の上に形成し、図2に示す平面レイアウトのように各画素毎の赤外線吸収部が分離されるようにパターニングする。
【0045】
図5(a)は、赤外線吸収部130の周辺の開口部分から犠牲層170をエッチングして赤外線吸収部130の下を、接合柱140をのこしてシリコン基板1から浮かした状態を示している。
【0046】
図5(b)は、図1と同じ、最後の工程における本発明にかかわる2次元赤外線固体撮像素子の1個の画素構造を示しており、これより以前の工程で図4(b)の工程で説明したシリコン基板のエッチングホール部分のシリコンが露出するので、この部分からシリコン基板をエッチングし、シリコン基板中に空洞部200を形成した状態を示している。シリコンのエッチングは水酸化カリウム(KOH)や、水酸化テトラメチルアンモニウム(Tetramethyl ammonium hydroxide、略してTMAH)などの液を用いることによって、(111)結晶面が表面に露出するとエッチング速度が遅くなり、異方性エッチングができる。したがって、一般にMOS半導体素子やCMOS半導体素子に用いられる(100)結晶面をもったシリコン基板を用いることで空洞部の表面形状を一定の大きさから大きく広げることなく図のような断面形状の空洞部をつくることができる。
【0047】
本実施の形態では接合柱が1本の場合を説明したが、接合柱は複数であってもよい。この事情は以下に示すすべての実施の形態について共通に言えることである。
【0048】
また、平面的にみた場合の接合柱の位置は任意であるが、機械構造的に赤外線吸収部を支えることができ、赤外線吸収部に大きな温度分布を生じさせない位置が好ましい。この条件を満たす接合柱の位置としては赤外線吸収部の重心に隣接した位置の下が最適である。この事情は以下に示すすべての実施の形態について共通にあてはまることである。
【0049】
また、接合柱は太さ数μm角程度の大きさで形成されるが、形状は任意であり、赤外線吸収部の温度と温度検出部の温度に大きな差を生じさせないために温度検出部とシリコン基板とを熱的に接続する支持脚の熱抵抗に比べて充分小さな熱抵抗をもつように設計する必要がある。この事情は以下に示すすべての実施の形態について共通にあてはまることである。
【0050】
実施の形態2
図6は、本発明にかかる熱型光検出器を用いた2次元赤外線固体撮像素子の他の実施の形態を示す1個の画素の断面構造を示す断面説明図である。図において、150は反射膜としての金属反射膜であり、160は金属赤外線吸収膜である。この構造では、赤外線吸収部130の下に薄い金属反射膜150を、上に非常に薄い金属赤外線吸収膜160を設けて、3層構造の赤外線吸収部として光学的共振構造を形成している。または、図示していないが、金属反射膜150を赤外線吸収部130の下に設けて2層からなる赤外線吸収構造とすることもできる。本実施例の形態によれば、図1に示した構造の画素に比べて赤外線の吸収がより効率的に行なえる。金属反射膜150は、たとえばアルミニウムなどからなり、厚さは数百nmである。金属赤外線吸収膜160は、たとえばニッケルクロム合金などからなり、厚さは数nmであり、シート抵抗が377Ω程度となるのが好ましい。図示していないが、金属反射膜150の下にさらに層間絶縁膜としての他の絶縁膜を形成してもよい。また、金属反射膜150の下および金属赤外線吸収膜160の上にさらに層間絶縁膜として他の絶縁膜を形成してもよい。他の絶縁膜は犠牲層エッチング時に金属反射膜150を保護するという機能を有するものが適しており、たとえば酸化シリコン(SiO)などがあげられる。また、このような2層構造の赤外線吸収構造、または3層構造の光学的共振構造による赤外線の吸収構造を設ける位置は赤外線吸収部の一部のみであってもかまわない。赤外線吸収部に赤外線吸収構造または光学的共振構造を設けることの他は、実施の形態1と同様である。
【0051】
図22に示した従来例でも反射膜970により光学的共振構造を形づくっている。光学的共振構造の効果は反射膜と吸収体との距離に依存するが、従来の方式ではこの距離が金属反射膜970と赤外線検出器部910とのあいだの距離となり、支持脚などが膜の内部応力で変形する可能性があり、光学的共振構造による赤外線吸収の効果を制御するのは難しいのに対し、図6に示す構造では光学的共振構造による赤外線吸収の効果は赤外線吸収部130の膜厚と金属赤外線吸収膜160の膜厚とだけできまるので前記効果を制御しやすい。
【0052】
実施の形態3
図7は本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の1個の画素の断面構造を示す断面説明図である。図7で、330は、実施の形態1における接合柱が赤外線吸収部と同一構成部材で一体に形成されてなる赤外線吸収部である。この実施の形態では、図1に示した接合柱140のかわりに赤外線吸収部と温度検出部との接合を、赤外線吸収部330として一体に形成された一体構造によって構成している。接合柱を、赤外線吸収部との一体構造としたことの他は、実施の形態1と同様である。
【0053】
また、図8は、図7に示した赤外線吸収部330の一部を除去した実施の形態を示す断面説明図である。図において、340は、実施の形態2における赤外線吸収部330のうちの一部、すなわち温度検出部に接する部分(温度検出部の中央付近)が除去された赤外線吸収部である。除去する方法としては、写真製版法で除去することができる。この構造では図8に示したように温度検出部300に接した赤外線吸収部の一部を除去したので赤外線吸収部の熱容量を低減することができた。
【0054】
実施の形態4
図9は、本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の1個の画素の断面構造を示す断面説明図である。図8において、331は赤外線吸収部であり、350は金属反射膜であり、360は金属赤外線吸収膜である。金属反射膜および金属赤外線吸収膜には、実施の形態2および3に示したものと同様のものを用いることができる。この実施の形態4では実施の形態2における赤外線吸収部130、金属反射膜150および金属赤外線吸収膜160と温度検出部300との接合を、図6に示した接合柱140のかわりに、赤外線吸収部、金属反射膜および金属赤外線吸収膜を用いて、一体に形成した一体構造によって構成したものである。すなわち、接合柱の少なくとも一部が赤外線吸収部と同一の材料で形成されている。このように、赤外線吸収部に光学的共振構造を設けるとともに接合柱を、赤外線吸収部と光学的共振構造との一体構造によって構成したことの他は実施の形態1〜3と同様である。このように赤外線吸収部331、金属反射膜350および金属赤外線吸収膜360を一体構造に形成するには、CVD法またはスパッタ法で形成することができる。この構造においても実施の形態3の場合と同様に温度検出部300に接した赤外線吸収部331、金属反射膜350および金属赤外線吸収膜360の一部を除去した構造とし、温度検出部中央付近をむきだしとすることもできる。また、図示していないが、金属反射膜350の下および金属赤外線吸収膜360の上に他の絶縁膜(層間絶縁膜)を形成してもよい。また、このような3層構造の光学的共振構造による赤外線の吸収構造を設ける位置は実施の形態2の場合と同様に赤外線吸収部の一部のみであってもかまわない。
【0055】
実施の形態5
図10は、実施の形態2における接合柱の材料を変更した2次元赤外線固体撮像素子の1個の画素の断面構造を示す断面説明図である。図10において、335は赤外線吸収部であり、355は金属反射膜であり、365は金属赤外線吸収膜であり、接合柱が金属反射膜355と一体構造として一体に形成されている。この場合金属反射膜355は、赤外線吸収部を支持するのに必要な強度を得るために用いられる材料はアルミニウムが好ましく、また、支持柱としての寸法は、太さ数μm、長さ1〜2μmが好ましい。本実施の形態において、金属反射膜を、接合柱と一体構造として形成するには、犠牲層のうち、接合柱を形成する部分を写真製版技術で除去し、この除去した部分を、金属反射膜を形成する材料すなわち、アルミニウムで埋め込んだのち、引き続いて金属反射膜を形成すればよい。このように形成することによって製造工程を簡略化することができる。
【0056】
実施の形態6
図11は、実施の形態4における接合柱の形状を変更し、金属反射膜が赤外線吸収部の下にのみ設けられる構造とした2次元赤外線固体撮像素子の1個の画素の断面構造を示す断面説明図である。図11において、336は赤外線吸収部であり、356は金属反射膜であり、366は金属赤外線吸収膜であり、接合柱が、赤外線吸収部および金属赤外線吸収膜と同一構成部材で形成されている。すなわち、接合柱の少なくとも一部が赤外線吸収部と同一構成部材で形成されている。この場合、赤外線吸収部を支持するのに必要な強度を得るために赤外線吸収部に用いられる材料は酸化シリコン(SiO)もしくは窒化シリコン(SiN)またはそれらの積層膜が好ましく、また、支持柱としての寸法は、太さ数μm、長さ1〜2μmが好ましい。本実施の形態において、接合柱を赤外線吸収部および金属赤外線吸収膜と同一構成部材で形成するには、犠牲層のうち、接合柱を形成する部分を写真製版技術で除去し、除去した部分以外の犠牲層上に、金属反射膜を形成したのち、この除去した部分および犠牲層上に金属反射膜および金属赤外線吸収膜を形成すればよい。このように形成することによって製造工程を簡略化することができる。
【0057】
実施の形態7
図12は、本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の1個の断面構造を示す断面説明図である。図で簡単のために本発明と直接関係のない、シリコン基板上に設けられた信号読み出し回路は省略している。図12において、2は半導体基板としてのシリコン基板であり、710は温度検出部であり、711は温度変化を検出する温度検出素子としてのボロメータ薄膜である。721および722は支持脚であり、この支持脚はシリコン基板2の上に形成した空洞部790の上にあり、かつ、ボロメータ薄膜を含む温度検出部710を浮かしており、さらに、温度検出部はシリコン基板上に形成された読み出し回路の上方に位置するように形成されている。731および732は金属配線であり、この金属配線はボロメータ薄膜711と読み出し回路を接続している。750は絶縁膜(保護絶縁膜)であり、760は絶縁膜であり、この2つの絶縁膜は熱抵抗の大きなシリコン酸化膜、シリコン窒化膜などからなり、かつ前記2つの絶縁膜は、支持脚721および722ならびに温度検出部710の機械的構造を構成して温度検出部を支えている。771および772は、金属配線731および732と信号読み出し回路とを接続するコンタクト部であり、130は赤外線を吸収して熱に変換する赤外線吸収部である。140は接合柱であり、この接合柱は、赤外線吸収部を温度検出部710から離して保持するとともに赤外線吸収部130と温度検出器部710を熱的に結合している。780は絶縁膜であり、790はシリコン基板2の上に形成した空洞部である。それぞれの部分に用いられる材料および形成方法などは実施の形態1〜6と同様である。ここで、入射赤外線による熱型光検出器の特性変化を検出する手段は、金属配線、信号読み出し回路およびコンタクト部からなる点は実施の形態1〜6の場合と同じである。また、温度検出部710が、2つの絶縁膜750および760ならびにボロメータ薄膜711からなり、該ボロメータ薄膜は、その上に絶縁膜750および下に絶縁膜760を配した構成によって機械的構造体として支えられている点も、実施の形態1〜6の場合と同じである。このように、本実施の形態にかかわる2次元赤外線固体撮像素子は、図22に示した従来の2次元赤外線固体撮像素子の構造のうち、金属反射膜970を除いた構造の上に接合柱140を介して実施の形態1において示した赤外線吸収部130を設けた構造となっており、その他は実施の形態1〜6と同様である。また、このように、赤外線吸収部および接合柱を形成するには、実施の形態1の場合と同様に行うことができる。
【0058】
実施の形態8
図13は、本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の1個の画素の断面構造を示す断面説明図である。本実施の形態にかかわる2次元赤外線固体撮像素子は、図22に示した従来の2次元赤外線固体撮像素子の構造(金属反射膜970を除く)の上に、図12に示した接合柱140のかわりに赤外線吸収部130と温度検出部300との接合を赤外線吸収部130と同一構成部材で一体に形成された一体構造の赤外線吸収部330を設けた構造となっており、その他は実施の形態7と同様である。また、このように、接合柱を赤外線吸収部と一体構造に形成するには、実施の形態3の場合と同様に行うことができる。
【0059】
実施の形態9
図14は、本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の1個の画素の断面構造を示す断面説明図である。本実施の形態にかかわる2次元赤外線固体撮像素子は、図22に示した従来の2次元赤外線固体撮像素子の構造の上に接合柱140ならびに該接合柱を介して赤外線吸収部130、金属反射膜150および金属赤外線吸収膜160を設けて、3層構造の赤外線吸収部として光学的共振構造を形成した構造となっている。または、図示していないが、金属反射膜150を赤外線吸収部130の下に設けて2層からなる赤外線吸収構造とすることもできる。このように赤外線吸収部に赤外線吸収構造または光学的共振構造を設けたことの他は実施の形態6と同様である。また、図示していないが、赤外線吸収構造の金属反射膜150の下に他の絶縁膜を形成してもよく、さらに、光学的共振構造の金属反射膜150の下および金属赤外線吸収膜160の上に他の絶縁膜を形成してもよい。また、このような2層構造の赤外線吸収構造または3層構造の光学的共振構造による赤外線の吸収構造を設ける位置は赤外線吸収部の一部のみであってもかまわない。
【0060】
実施の形態10
図15は、本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の1個の画素の断面構造を示す断面説明図である。本実施の形態にかかわる2次元赤外線固体撮像素子は、図22に示した従来の2次元赤外線固体撮像素子の構造(金属反射膜970を除く)の上に、赤外線吸収部331、金属反射膜350および金属赤外線吸収膜360を一体に形成した一体構造として設けている。すなわち、接合柱の少なくとも一部が赤外線吸収部と同一の材料で形成され、金属反射膜350および金属赤外線吸収膜360からなる光学的共振構造付きの赤外線吸収部を設けた構造となっており、その他は実施の形態9と同様である。また、図示していないが、金属反射膜350の下および金属赤外線吸収膜360の上に他の絶縁膜を形成してもよい。また、3層構造の光学的共振構造による赤外線の吸収構造を設ける位置は赤外線吸収部の一部のみであってもかまわない。
【0061】
実施の形態11
図16は、実施の形態9における接合柱の材料を変更した2次元赤外線固体撮像素子の1個の画素の断面構造を示す断面説明図である。図16において、図22に示した従来の2次元赤外線固体撮像素子(金属反射膜970を除く)の上に、金属反射膜355が接合柱と一体構造として一体に形成されており、このように形成する方法は、実施の形態5の場合と同様であり、その他は、実施の形態9と同じである。また、図示していないが、金属反射膜355の下および金属赤外線吸収膜365の上に他の絶縁膜を形成してもよい。また、3層構造の光学的共振構造による赤外線の吸収構造を設ける位置は赤外線吸収部の一部のみであってもかまわない。
【0062】
実施の形態12
図17は、実施の形態10における接合柱の形状を変更し、金属反射膜356が赤外線吸収部の下にのみ設けられる構造とした2次元赤外線固体撮像素子の1個の画素の断面構造を示す断面説明図である。図17において、接合柱が赤外線吸収部および金属赤外線吸収膜366と同一構成部材で形成されている。すなわち、接合柱の少なくとも一部が赤外線吸収部と同一の材料で形成されている。このように形成する方法は、実施の形態6の場合と同様であり、その他は実施の形態10と同じである。また、図示していないが、金属反射膜356の下および金属赤外線吸収膜366の上に他の絶縁膜を形成してもよい。また、3層構造の光学的共振構造による赤外線の吸収構造を設ける位置は赤外線吸収部の一部のみであってもかまわない。
【0063】
実施の形態13
図18は、図7に示した実施の形態3のボロメータ薄膜の位置を変更した実施の形態の2次元赤外線固体撮像素子の1個の画素の断面構造を示す断面説明図である。図において、12は温度検出素子としてのボロメータ薄膜であり、125、126はコンタクト部であり、332は接合柱をかねて一体構造として形成された赤外線吸収部である。本実施の形態においては、図7に示す実施の形態のような接合柱140のかわりに、赤外線吸収部332と温度検出部300との接合を、赤外線吸収部332と同一構成部材で一体に形成された一体構造によって構成しており、ボロメータ薄膜12が赤外線吸収部332の上面に形成され、コンタクト部125で金属配線31と接続し、コンタクト部126で金属配線32と接続した構造となっている。ボロメータ薄膜12が赤外線吸収部の上面に形成されることの他は実施の形態3に示した場合と同様である。また、この構造でも温度検出部300に接した赤外線吸収部332の一部を除去した構造とすることもできる。
【0064】
実施の形態14
図19は、シリコン基板のエッチング方法として等方性エッチングを採用する場合の2次元赤外線固体撮像素子の1個の画素の断面構造を示す断面説明図である。図において、3は半導体基板としてのシリコン基板であり、13は温度検出素子としてのボロメータ薄膜であり、180はエッチングホールであり、201は空洞部であり、333は赤外線吸収部であり、441は接合柱である。本実施の形態においても、それぞれの部分を形成するために用いられる材料および形成方法などは実施の形態1と同様である。本実施の形態の場合はシリコン基板中に形成する空洞部のほぼ中心付近に位置した部分に、シリコン基板に対する、エッチングホール180を設けた構造となっており、エッチングホール180は、その直径が数μm程度であり、かつ、赤外線吸収部333から空洞部201に達している。図4で示した犠牲層170を除去する前にエッチングホール180を通してシリコンをエッチングすると図に示すように等方的にエッチングが進み、図に示すような空洞部201が形成できる。等方性エッチングは水酸化カリウムや水酸化テトラメチルアンモニウムによる異方性エッチングによって行うことができる。
【0065】
図19は、図1に対応してエッチングホールを設ける構造を示す断面説明図であるが、図6、図7、図8に示した構造に対しても同様なエッチングホールを設ける構造変更が可能である。また、図19に示した構造では接合柱140を貫通してエッチングホール180が形成されているが、エッチングホールが接合柱140を貫通する必要はなく、たとえば、支持脚が配置された場所以外に設けてもよい。またエッチングホールが空洞部201の中心付近に複数個配置されてもかまわない。この場合、基板内に空洞部を形成してから犠牲層170を除去することができ、製造工程の選択の自由度が増す。
【0066】
実施の形態15
図20は、シリコン基板のエッチング方法として等方性エッチングを採用する場合の構造を示す断面説明図である。図において、4は半導体基板としてのシリコン基板であり、190はエッチングストップ層であり、202は空洞部である。図に示すように、空洞部202の周囲にエッチングを止めるエッチングストップ層190が形成されている。このエッチングストップ層190を形成する材料としては、空洞部を形成する際に用いられるエッチャントに耐性のある材料として、たとえばシリコン酸化膜やイオン注入で形成した高濃度のp形不純物層等を用いることができ、読み出し回路を作る工程中でシリコン基板中に埋め込んで形成することができる。
【0067】
なお、これまでに示したすべての実施の形態では温度変化を検出する温度検出素子としてボロメータ薄膜を用いたものを示したが、本発明では温度変化を検出する手段として前述したように焦電体、サーモパイルなどを用いたものでも同様の効果を得る。
【0068】
本発明の実施の形態のうち、実用上最良の形態は、実施の形態1または11にもとづいて赤外線吸収部と温度検出部を別々の層に形成した形態である。かかる形態においては、赤外線吸収部は赤外線吸収可能な光学設計のできる材料であるCVD法などで形成された酸化シリコン(SiO)もしくは窒化シリコンまたはこれらの積層膜によって構成される。接合柱は機械構造的に充分な強度と小さな熱容量が実現できるCVD法などで形成する酸化シリコンまたは窒化シリコンおよびこれらの積層膜によって構成される。温度検出素子にはボロメータ薄膜が好ましく、ボロメータ薄膜の材料として抵抗温度係数が大きく、高感度化の実現に有利な酸化バナジウム、ポリシリコンまたはアルモファスシリコンなどが用いられる。
【0069】
このとき赤外線吸収部の面積は、画素の大きさを50μm、写真製版による赤外線吸収部のパターニング抜きの幅を2μmとすると48μmであり、開口率は92%となっており、従来構造に比べ非常に大きくなっているので、高感度化が達成できる。
【0070】
【発明の効果】
本発明では、以上のように赤外線吸収部と温度検出部を別の層として形成し、赤外線吸収部と温度検出部を機械的かつ熱的に接合する手段として接合柱を設けたので、温度検出部の設計とは独立に赤外線吸収部を設計することができ、高開口率化、高感度化が実現できる。
【0071】
本発明にかかわる2次元固体撮像素子は、画素ごとに、半導体基板への熱の流出を制御する熱抵抗の大きい材料からなる支持脚によって支えられておりかつ温度検出素子を含む温度検出部と、該温度検出部と少なくとも1本の接合柱で結合された赤外線吸収部とを前記半導体基板上に設け、温度検出部を機械的かつ熱的に接合する手段として接合柱を設け、前記赤外線吸収部は、2次元に配列された前記各画素と実質的に等しい面積を有するので、温度検出部の設計とは独立に赤外線吸収部を設計することができ、高開口率化、高感度化が実現できる効果を得る。
【0072】
前記温度検出部が、前記半導体基板中に形成された空洞部の上に設けられるので、熱抵抗を大きくして高感度化する効果を得る。
【0073】
本発明にかかわる2次元赤外線固体撮像素子は、前記赤外線吸収部の少なくとも一部に反射膜および層間絶縁膜からなる赤外線吸収構造を有しているので、赤外線の吸収が制御しやすく、より効率的に赤外線を吸収して高感度化する効果を得る。
【0074】
本発明にかかわる2次元赤外線固体撮像素子は、前記赤外線吸収部の少なくとも一部に反射膜、層間絶縁膜および金属赤外線吸収薄膜からなる光学的共振構造を有しているので、赤外線の吸収がさらに制御しやすく、さらに効率的に赤外線を吸収して高感度化する効果を得る。
【0075】
前記接合柱の少なくとも一部が前記赤外線吸収部と同一構成部材で形成されているので、製造工程を簡略化する効果を得る。
【0076】
前記赤外線吸収部の少なくとも一部に反射膜、層間絶縁膜および金属赤外線吸収薄膜からなる光学的共振構造を有しており、かつ前記接合柱が前記金属赤外線吸収薄膜と一体に形成されているので、製造工程を簡略化する効果を得る。
【0077】
前記接合柱の少なくとも一部が前記赤外線吸収部と同一構成部材で形成され、さらに前記赤外線吸収部のうち前記温度検出部に接する部分が除去されているので、前記赤外線吸収部の熱容量を低減して高感度化する効果を得る。
【0078】
本発明にかかわる2次元赤外線固体撮像素子には、前記赤外線吸収部から前記空洞部に達するエッチングホールが前記空洞部の中心付近に少なくとも1つ設けられているので、基板の不要なエッチングを減少し、製造工程選択のときの自由度を拡大する効果を得る。
【0079】
本発明にかかわる2次元赤外線固体撮像素子には、前記空洞部の周囲の前記半導体基板中に、前記空洞部を形成する際に用いられるエッチャントに耐性のある材料からなるエッチングストップ層が設けられているので、基板の不要なエッチングを減少し、製造工程選択のときの自由度を拡大する効果を得る。
【0080】
前記温度検出素子が前記赤外線吸収部の上面に形成されているので、半導体プロセス中で使用できないボロメータ材料による赤外線固体撮像素子の構成を可能にする効果を得る。
【0081】
本発明にかかわる2次元赤外線固体撮像素子は、前記温度検出部が、前記半導体基板上に形成された読み出し回路の上方に形成されているので、空洞部形成のためのエッチング方法の選択の自由度を広げ、空洞部下の領域に読み出し回路の構成要素の一部などを配置して面積の有効利用する効果を得る。
【0082】
前記温度検出部が、前記赤外線吸収部の少なくとも一部に反射膜および層間絶縁膜からなる赤外線吸収構造を有しているので、赤外線の吸収が制御しやすく、より効率的に赤外線を吸収して高感度化する効果を得る。
【0083】
前記温度検出部が、前記赤外線吸収部の少なくとも一部に反射膜、層間絶縁膜および金属赤外線吸収薄膜からなる光学的共振構造を有しているので、赤外線の吸収が制御しやすく、さらに効率的に赤外線を吸収して高感度化する効果を得る。
【0084】
前記接合柱の少なくとも一部が前記赤外線吸収部と同一構成部材で形成されているので、製造工程を簡略化する効果を得る。
【0085】
前記赤外線吸収部の少なくとも一部に反射膜、層間絶縁膜および金属赤外線吸収薄膜からなる光学的共振構造を有しており、かつ前記接合柱が前記金属赤外線吸収薄膜と一体に形成されているので、製造工程を簡略化する効果を得る。
【0086】
本発明にかかわる2次元赤外線固体撮像素子には、前記温度検出素子としてボロメータ薄膜が用いられているので、温度変化を効果的に検出し得る。
【0087】
本発明にかかわる2次元赤外線固体撮像素子には、前記温度検出素子として焦電効果を有する強誘電体が用いられているので、温度変化を効果的に検出し得る。
【0088】
本発明にかかわる2次元赤外線固体撮像素子には、前記温度検出素子としてサーモパイルが用いられているので、温度変化を効果的に検出し得る。
【0089】
本発明にかかわる2次元赤外線固体撮像素子においては、前記接合柱が、前記赤外線吸収部の重心に隣接した位置の下に配設されているので、赤外線吸収部を構造的に安定させる効果を得る。
【0090】
本発明にかかわる2次元赤外線固体撮像素子においては、前記接合柱の熱抵抗が、前記支持脚の熱抵抗よりも小さいので、温度検出部の温度を均一にする効果を得る。
【0091】
本発明の2次元赤外線固体撮像素子の製法が、
a)半導体基板上に信号読み出し回路を形成したのち、絶縁膜、コンタクト部を形成し、さらに金属配線および温度検出素子を形成し、保護絶縁膜で全体を覆う工程、
b)前記保護絶縁膜上に犠牲層を形成し、該犠牲層のうち、のちに接合柱を形成する領域を写真製版技術で除去したのち、除去した部分に前記接合柱となる材料を埋め込む工程、
c)前記犠牲層および前記接合柱の上に赤外線吸収部となる薄膜を形成し、各画素ごとに赤外線吸収部が分離されるようにパターニングする工程、
d)前記犠牲層をエッチングして除去する工程、および
e)前記シリコン基板をエッチングして、該シリコン基板中に空洞部を形成する工程
からなるので、生産性よく製造する効果を得る。
【0092】
本発明にかかわる製法は、前記b)工程ののち、さらに、前記犠牲層および前記接合柱の表面をエッチバックして平坦にする工程を含むので、赤外線吸収部の形成を容易にする効果を得る。
【0093】
本発明にかかわる製法は、前記e)工程において、前記半導体基板を異方性エッチングして前記空洞部を形成するので、空洞部の形状を制御性よく製造する効果を得る。
【0094】
本発明にかかわる製法は、水酸化カリウムおよび水酸化テトラメチルアンモニウムのうちのいずれか一方を用いて異方性エッチングするので、空洞部のエッチングを容易にする効果を得る。
【図面の簡単な説明】
【図1】本発明の一実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図2】本発明の一実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の赤外線吸収部を除いた平面説明図である。
【図3】本発明の一実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の配列状態を示す平面説明図である。
【図4】本発明の一実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の工程断面説明図である。
【図5】本発明の一実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の工程断面説明図である。
【図6】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図7】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図8】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図9】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図10】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図11】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図12】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図13】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図14】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図15】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図16】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図17】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図18】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図19】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図20】本発明の他の実施の形態にかかわる熱型光検出器を用いた2次元赤外線固体撮像素子の画素の断面説明図である。
【図21】従来の熱型光検出器を用いた2次元赤外線固体撮像素子の画素の構造を示す斜視説明図である。
【図22】従来の熱型光検出器を用いた2次元赤外線固体撮像素子の画素の構造を示す断面説明図である。
【符号の説明】
1、2、3、4 シリコン基板、11、12、711 ボロメータ薄膜、21、22、721、722 支持脚、31、32、731、732 金属配線、 100、110、750、760 絶縁膜、121〜126、771、772 コンタクト部、130〜137、330、331、332、333、335、336、340 赤外線吸収部、140〜147、441 接合柱、150、350、355、356 金属反射膜、160、360、365、366 金属赤外線吸収膜、170 犠牲層、180 エッチングホール、190 エッチングストップ層、200、201、202 空洞部、300 温度検出部、400 信号読み出し回路、500 信号線、1000〜1007 画素。

Claims (14)

  1. 熱型光検出器と、入射赤外線による前記熱型光検出器の特性変化を検出する手段とが集積されてなる温度検出機構が、半導体基板上に各画素ごとに2次元に配列された2次元赤外線固体撮像素子であって、
    前記各画素ごとに、前記半導体基板への熱の流出を制御する材料からなる支持脚によって支えられておりかつ温度検出素子を含む温度検出部と、該温度検出部と少なくとも1本の接合柱で結合された赤外線吸収部とを前記半導体基板上に設け、
    前記接合柱の熱抵抗は前記支持脚の熱抵抗よりも小さく、
    前記赤外線吸収部は、酸化シリコンまたは窒化シリコンあるいは酸化シリコンと窒化シリコンの積層膜から構成され、2次元に配列された前記各画素と等しく、かつ、画素ごとに等しい面積を有する赤外線固体撮像素子。
  2. 前記温度検出部が、前記半導体基板中に形成された空洞部の上に設けられてなる請求項1記載の赤外線固体撮像素子。
  3. 前記空洞部の周囲にはエッチングストップ層が設けられてなる請求項2記載の赤外線固体撮像素子。
  4. 熱型光検出器と、入射赤外線による前記熱型光検出器の特性変化を検出する手段とが集積されてなる温度検出機構が、半導体基板上に各画素ごとに2次元に配列された2次元赤外線固体撮像素子であって、
    前記各画素ごとに、前記半導体基板への熱の流出を制御する材料からなる支持脚によって支えられておりかつ温度検出素子を含む温度検出部と、該温度検出部と少なくとも1本の接合柱で結合された赤外線吸収部とを前記半導体基板上に設け、
    前記接合柱の熱抵抗は前記支持脚の熱抵抗よりも小さく、
    前記赤外線吸収部は、
    酸化シリコンまたは窒化シリコンあるいは酸化シリコンと窒化シリコンの積層膜から構成され、前記半導体基板中または前記半導体基板上に形成された空洞部の上に設けられ、前記赤外線吸収部は前記空洞部より大きな面積を有する赤外線固体撮像素子。
  5. 前記温度検出部が、前記半導体基板中に形成された空洞部の上に設けられ、該空洞部の周囲にはエッチングストップ層が設けられてなる請求項4記載の赤外線固体撮像素子。
  6. 前記赤外線吸収部の少なくとも一部に反射膜を有する赤外線吸収構造を備えたことを特徴とする請求項1または4記載の赤外線固体撮像素子。
  7. 前記赤外線吸収部の少なくとも一部に赤外線吸収膜を備えたことを特徴とする請求項1または4記載の赤外線固体撮像素子。
  8. 前記温度検出部が、前記半導体基板上に形成された読み出し回路の上方に形成されてなる請求項1、4、6、7のいずれかに記載の赤外線固体撮像素子。
  9. 前記接合柱の少なくとも一部が前記赤外線吸収部と同一部材で形成されてなる請求項1、4、6のいずれかに記載の赤外線固体撮像素子。
  10. 前記温度検出素子としてボロメータ薄膜が用いられてなる請求項1または4記載の赤外線固体撮像素子。
  11. 前記温度検出素子として焦電効果を有する強誘電体が用いられてなる請求項1または4記載の赤外線固体撮像素子。
  12. 前記温度検出素子としてサーモパイルが用いられてなる請求項1または4記載の赤外線固体撮像素子。
  13. 前記接合柱が、前記赤外線吸収部の重心に隣接した位置の下に配設されてなる請求項1または4記載の赤外線固体撮像素子。
  14. 請求項3または5記載の赤外線固体撮像素子の製法であって、
    a)半導体基板上に信号読み出し回路を形成したのち、絶縁膜、コンタクト部を形成し、さらに金属配線および温度検出素子を形成し、保護絶縁膜で全体を覆う工程、
    b)前記保護絶縁膜上に犠牲層を形成し、該犠牲層のうち、のちに接合柱を形成する領域を写真製版技術で除去したのち、除去した部分に前記接合柱となる材料を埋め込む工程、
    c)前記犠牲層および前記接合柱の上に赤外線吸収部となる薄膜を形成し、各画素ごとに赤外線吸収部が分離されるようにパターニングする工程、
    d)前記犠牲層をエッチングして除去する工程、および
    e)前記シリコン基板をエッチングストップ層までエッチングして、該シリコン基板中に空洞部を形成する工程
    からなる製法。
JP37086499A 1997-01-27 1999-12-27 赤外線固体撮像素子 Expired - Fee Related JP3574368B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37086499A JP3574368B2 (ja) 1997-01-27 1999-12-27 赤外線固体撮像素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9012269A JP3040356B2 (ja) 1997-01-27 1997-01-27 赤外線固体撮像素子
JP37086499A JP3574368B2 (ja) 1997-01-27 1999-12-27 赤外線固体撮像素子

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9012269A Division JP3040356B2 (ja) 1997-01-27 1997-01-27 赤外線固体撮像素子

Publications (3)

Publication Number Publication Date
JP2000146686A JP2000146686A (ja) 2000-05-26
JP2000146686A5 JP2000146686A5 (ja) 2004-07-08
JP3574368B2 true JP3574368B2 (ja) 2004-10-06

Family

ID=33312431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37086499A Expired - Fee Related JP3574368B2 (ja) 1997-01-27 1999-12-27 赤外線固体撮像素子

Country Status (1)

Country Link
JP (1) JP3574368B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8569698B2 (en) 2010-07-26 2013-10-29 Seiko Epson Corporation Thermal detector, thermal detection device, and electronic instrument

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7170059B2 (en) * 2003-10-03 2007-01-30 Wood Roland A Planar thermal array
JP4496751B2 (ja) * 2003-10-09 2010-07-07 日本電気株式会社 熱型赤外線固体撮像素子及びその製造方法
US7038623B2 (en) * 2003-12-04 2006-05-02 Raytheon Company Method and apparatus for detecting radiation at one wavelength using a detector for a different wavelength
FR2875298B1 (fr) * 2004-09-16 2007-03-02 Commissariat Energie Atomique Detecteur thermique de rayonnement electromagnetique comportant une membrane absorbante fixee en suspension
JP2007033154A (ja) * 2005-07-25 2007-02-08 Denso Corp 赤外線検出器
JP4441578B2 (ja) 2006-10-11 2010-03-31 パナソニック株式会社 電子デバイスおよびその制御方法
DE102008054481B4 (de) * 2008-12-10 2021-11-25 Robert Bosch Gmbh Sensor und Verfahren zu dessen Herstellung
WO2018193825A1 (ja) * 2017-04-17 2018-10-25 パナソニックIpマネジメント株式会社 焦電センサ素子及びこれを用いた焦電センサ
US20210265415A1 (en) * 2018-06-05 2021-08-26 Sony Semiconductor Solutions Corporation Imaging device
JP6854796B2 (ja) 2018-11-08 2021-04-07 三菱電機株式会社 半導体センサ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8569698B2 (en) 2010-07-26 2013-10-29 Seiko Epson Corporation Thermal detector, thermal detection device, and electronic instrument

Also Published As

Publication number Publication date
JP2000146686A (ja) 2000-05-26

Similar Documents

Publication Publication Date Title
JP3040356B2 (ja) 赤外線固体撮像素子
JP3921320B2 (ja) 熱型赤外線検出器およびその製造方法
JP3514681B2 (ja) 赤外線検出器
JP4011851B2 (ja) 赤外線固体撮像素子
JP3944465B2 (ja) 熱型赤外線検出器及び赤外線フォーカルプレーンアレイ
US6541298B2 (en) Method of making infrared sensor with a thermoelectric converting portion
US6667479B2 (en) Advanced high speed, multi-level uncooled bolometer and method for fabricating same
JP3589997B2 (ja) 赤外線センサおよびその製造方法
US6690014B1 (en) Microbolometer and method for forming
JP5636787B2 (ja) 熱型光検出器、熱型光検出装置及び電子機器
US20110175145A1 (en) Infrared Sensor
JP3574368B2 (ja) 赤外線固体撮像素子
JP3604130B2 (ja) 熱型赤外線検出素子およびその製造方法ならびに熱型赤外線検出素子アレイ
JP4697611B2 (ja) 熱型赤外線固体撮像素子及びその製造方法
JP2005043381A (ja) 熱型赤外線検出器およびその製造方法
JP2000146686A5 (ja)
JP2008039570A (ja) 熱型赤外線固体撮像装置及び赤外線カメラ
JP2000321125A (ja) 赤外線センサ素子
JP2011027650A (ja) 赤外線センサ
JP2011027652A (ja) 赤外線センサ
JP3136649B2 (ja) 複合型赤外線検出器
JP2000346704A (ja) ボロメーター型赤外線検出素子
JP4622511B2 (ja) 赤外線センサー
JP2010151736A (ja) 赤外線検出器およびその製造方法、並びに赤外線固体撮像装置
JPH09280957A (ja) 熱型温度センサ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees