JP3573307B2 - Resin-coated steel sheet with excellent electrodeposition paintability and press formability - Google Patents
Resin-coated steel sheet with excellent electrodeposition paintability and press formability Download PDFInfo
- Publication number
- JP3573307B2 JP3573307B2 JP33081795A JP33081795A JP3573307B2 JP 3573307 B2 JP3573307 B2 JP 3573307B2 JP 33081795 A JP33081795 A JP 33081795A JP 33081795 A JP33081795 A JP 33081795A JP 3573307 B2 JP3573307 B2 JP 3573307B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- coated steel
- steel sheet
- resin film
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、家庭用電気製品、建材、家具、自動車用部材等に使用される電着塗装性およびプレス成形性に優れた樹脂塗装鋼板に関するものである。
【0002】
【従来の技術】
家電メーカーや自動車メーカーでは、亜鉛または亜鉛系めっき鋼板の耐食性等を改善するために鋼板表面に樹脂皮膜を形成させた樹脂塗装鋼板が広く用いられている。しかし、これらの樹脂塗装鋼板は、電着塗装を施すとピンホールや凹凸等の欠陥が生じて商品の価値が著しく低下するといった問題が従来から指摘されてきた。すなわち樹脂皮膜は導電性が低く電気抵抗が高いので、電着塗装中は、樹脂皮膜の欠陥部といった電気抵抗の小さい部分に電流が集中してスパークが発生し、このスパークの発熱が電着塗膜を変質させるため、平滑な電着塗膜が得られないのである。
【0003】
この問題解決のため、種々の組成の有機樹脂あるいは有機・無機複合型樹脂を樹脂皮膜用組成物として用いた樹脂塗装鋼板が提案されている。例えば皮膜用組成物として、ウレタン化エポキシ樹脂、親水性ポリアミド樹脂、シリカ粒子等を含むもの(特公平3−32638号)、ポリアミド、ポリアミン、ポリイミン樹脂の少なくとも1種とシリカの凝集粒子をバインダーであるエポキシ樹脂に配合したもの(特開平7−76785号)等が挙げられる。これらの提案によって、電着塗装後に中塗りや上塗り塗装が行われるため比較的薄い電着塗膜を形成するだけで良いエポキシ系カチオン電着塗装工程においては、ピンホールや表面凹凸等の欠陥発生はある程度抑えられる様になってきた。しかし、耐候性等の特性が良くワンコート(電着塗装のみ)で厚い塗膜を形成するために用いられるアクリル系カチオン電着塗料の場合、ピンホールの発生は抑えられず、ユーザーが満足できる塗装後外観は依然として得られていない。
【0004】
一方、樹脂塗装鋼板は、プレス油を用いなくても良好なプレス加工性が発揮できるため、プレス加工の際のプレス油飛散による環境悪化を改善する目的で、特に強加工される製品や加工後に脱脂を省略する製品に適用されている。このようなプレス加工性を重視した樹脂皮膜の素材としては、本願発明と同一出願人によって、ウレタン変成ポリオレフィン樹脂に固体潤滑剤としてフッ素系樹脂粒子とシリカ粒子を添加したもの(特開平03−17189号)、ウレタン系樹脂に球状ワックス粒子とシリカ粒子を添加したもの(特開平6−292859号)、ウレタン系樹脂に球状ワックス粒子と鎖状シリカを添加したもの(特開平7−171498号)等が提案されており、これらの樹脂を被覆した樹脂塗装鋼板が広く用いられている。しかしこれらの樹脂塗装鋼板に電着塗装を施すと、やはりピンホール等の塗膜欠陥や塗料のはじき等の問題が発生するため、改善が強く要望されていた。
【0005】
【発明が解決しようとする課題】
そこで本発明では、塗装後の外観に優れた電着塗膜を形成することができ、かつプレス成形性にも優れている樹脂塗装鋼板を提供することを課題とするものである。
【0006】
【課題を解決するための手段】
本発明の電着塗装性およびプレス成形性に優れた樹脂塗装鋼板は、樹脂皮膜によって被覆された樹脂塗装鋼板であって、その樹脂皮膜は、ウレタン系樹脂、潤滑剤、無機コロイド化合物と共に、シランカップリング剤を固形分換算で1.0〜20重量%含む組成物を用いて形成されたものであり、かつ樹脂皮膜の付着量が0.1〜1.5g/m2 であるところに要旨を有する。
【0007】
シランカップリング剤として、(メタ)アクリロイル基、ビニル基、アミノ基、エポキシ基よりなる群から選択される1個以上の官能基を有する基と、Si原子に直結する3個のアルコキシ基を有する化合物を1種、または2種以上用いることが、電着塗装性向上のための本発明の好ましい実施態様である。
【0008】
前記樹脂皮膜は、固形分換算で、潤滑剤を0.5〜20重量%、また無機コロイド化合物を1〜30重量%含む組成物を用いて形成すると、より優れたプレス成形性を得ることができる。潤滑剤としては、ポリエチレンワックス、パラフィンワックス等のワックス類;フッ素樹脂、塩化ビニル樹脂等の潤滑性樹脂;ステアリン酸亜鉛、ステアリン酸カルシウム等の金属石けん類;黒鉛、二硫化モリブデン、窒化ホウ素、メラミン・シアヌル酸付加物(例えば、三菱油化製「MCA」)等の劈開性を有する固体潤滑剤等を1種または2種以上使用することが推奨される。無機コロイド化合物としては、シリカゾル、アルミナゾル、チタニアゾル、ジルコニウムゾル等の1種または2種以上の使用が好適である。
【0009】
【発明の実施の形態】
上記のように、本発明の電着塗装性およびプレス成形性に優れた樹脂塗装鋼板は、樹脂皮膜として、ウレタン系樹脂とシランカップリング剤を組み合わせた組成物を用いて形成されたものを選択し、さらにこの樹脂皮膜の最適付着量を見出したところに最大のポイントを有する。本発明ではこの構成の採用によって、プレス油を使わずにプレス加工ができ、脱脂やりん酸塩処理電着塗装前処理も不要で、しかも電着塗装後の外観に優れるという高性能な樹脂塗装鋼板を提供することに成功した。以下本発明を詳細に説明する。
【0010】
本発明の樹脂塗装鋼板では、樹脂皮膜の主体となる樹脂成分としてウレタン系樹脂を使用する。アクリル樹脂やポリエステル樹脂に比べ、得られる樹脂皮膜の物性(密着性、耐衝撃性、加工性)等に優れるからである。ウレタン系樹脂としては特に限定されず、ウレタン系塗料として市販されているもの、イソシアネートモノマーと種々のポリオールによって合成されるもの等、いずれも用いることができ、特に、得られる樹脂皮膜のショアーD硬度(JIS−K7215により測定)が30〜70であり、鉛筆硬度がH以上となるものがプレス加工性および耐食性の点から好ましく使用できる。なお、ウレタン系樹脂成分としては、プレス加工性および耐食性を損なわない範囲で、各種の変成が行われたものでもよい。
【0011】
本発明では、シランカップリング剤の添加によって、樹脂塗装鋼板の電着塗装性が飛躍的に向上することが見出されたため、樹脂皮膜が、シランカップリング剤を1.0〜20重量%含む組成物を用いて形成されたものであることを必須要件とした。尚、シランカップリング剤については固形分換算である。シランカップリング剤の添加によって、電着塗膜と樹脂皮膜の密着性そして樹脂皮膜と鋼板の密着性が向上し得られる塗装鋼板は高性能なものとなる。これは、シランカップリング剤中の有機官能基によって、ウレタン系樹脂と鋼板表面が化学的に結合して密着性を向上させる作用と、シランカップリング剤の官能基が架橋剤的に働くことにより緻密な皮膜が形成される作用と、水の存在下でシランカップリング剤が加水分解して生成する親水性のシラノール基によって水系の電着塗料との親和性が高まり、樹脂皮膜表面と電着塗料との濡れ性が向上する作用等の相乗効果によるものと考えられる。
【0012】
またシランカップリング剤の添加によって、電着塗膜の外観が非常に美麗なものとなるが、これは、シランカップリング剤の添加によって樹脂皮膜の表面に微細な凹凸が生成し、この凹部が通電点となり得るためであると推測される。
【0013】
本発明におけるシランカップリング剤としては、アルコキシ基か塩素といった加水分解性基と、官能基を有するシラン化合物であれば特に限定されず使用することができる。中でも本発明で好ましく利用できるのは、官能基自身の反応性や、ウレタン系樹脂中の官能基(例えばカルボキシル基やヒドロキシル基)との反応性に優れた(メタ)アクリロイル基、ビニル基、アミノ基、エポキシ基よりなる群から選択される1個以上の官能基を有する基と、Si原子に直結した3個のアルコキシ基(メトキシ基および/またはエトキシ基)を有する化合物である。ウレタン系樹脂との相溶性が良く、しかも液安定性の良い最も好ましいシランカップリング剤の具体例としては、γ−(メタクリロキシプロピル)トリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等であり、これらの1種または2種以上を使用することができる。
【0014】
シランカップリング剤は、樹脂皮膜の形成に用いられる組成物中に固形分換算で1.0〜20重量%含まれるべきである。1.0重量%より少ない場合は、樹脂皮膜の通電点が確保できず、電着塗料の樹脂皮膜への浸透性が不充分となって電着塗装性が改善されない。また、樹脂皮膜が緻密に形成されないため、耐食性および加工時の耐疵付き性が劣ったものとなる。一方、20重量%を超えると、樹脂皮膜表面の凹凸が大きくなり過ぎて電着塗膜の外観を損ない、また耐食性が劣化する。より好ましいシランカップリング剤の量は5〜20重量%である。
【0015】
本発明では、上記ウレタン系樹脂とシランカップリング剤の他に、潤滑剤と無機コロイド化合物も必須的に含んだ組成物を用いて樹脂皮膜が形成される。潤滑剤はプレス成形性向上のために必要な成分である。プレス成形の際、樹脂塗装鋼板は金型との間で厳しい摺動を受けるが、ウレタン系樹脂とシランカップリング剤のみからなる組成物を用いて形成された樹脂皮膜では表面の摩擦が大き過ぎる。このため金型と鋼板との摺動部では局部的に200℃を超える高温になり、皮膜の一部が軟化・分解して、疵付きが発生する。潤滑剤を加えることにより、樹脂皮膜表面の摩擦係数が低下して潤滑性が向上するので、耐疵付き性、プレス成形性は良好になる。
【0016】
潤滑剤の種類は特に限定されないが、ポリエチレンワックス、パラフィンワックス等のワックス類;フッ素樹脂、塩化ビニル樹脂等の潤滑性樹脂;ステアリン酸亜鉛、ステアリン酸カルシウム等の金属石けん類;黒鉛、二硫化モリブデン、窒化ホウ素、メラミン・シアヌル酸付加物(例えば、三菱油化製「MCA」)等の劈開性を有する固体潤滑剤等を1種または2種以上用いることが推奨される。
【0017】
潤滑剤の含有量は、樹脂皮膜の形成に用いられる組成物中0.5〜20重量%(固形分換算)であることが好ましい。潤滑剤が0.5重量%よりも少ないときには、得られる樹脂皮膜の潤滑性やプレス成形性の充分な向上が望めず、一方20重量%を超えると、潤滑性能の点では特に問題がないものの、得られる樹脂皮膜と鋼板との密着性が悪くなり、プレス加工時に皮膜が剥離して金型に付着することによる黒化現象が起こるため好ましくない。より好ましい潤滑剤の含有量は、1〜10重量%である。
【0018】
次に本発明において用いられる無機コロイド化合物について述べる。無機コロイド化合物としては、シリカゾル、アルミナゾル、チタニアゾル、ジルコニウムゾルの1種もしくは2種以上用いることができる。無機コロイド化合物を樹脂皮膜に含有させることにより、シランカップリング剤の加水分解基と反応し、より緻密な皮膜が形成するので、耐食性が向上する上、プレス成形時の樹脂皮膜の疵付きを抑制する。
【0019】
無機コロイド化合物は、樹脂皮膜の形成に用いられる組成物中1〜30重量%(固形分換算)含有させることが好ましい。1重量%より少ないと、得られる皮膜の耐食性およびプレス成形時の耐疵付き性が不充分となり、30重量%を超えると、無機コロイド化合物が増摩剤として作用するようになり、皮膜の摩擦係数を高めて潤滑性を低下させ、その結果加工後の外観を劣化させることがある。特に無機コロイド化合物の効果を最大限に発揮させるには、含有量を5〜20重量%の範囲にすることが推奨される。
【0020】
本発明においては、上記各種成分からなる樹脂皮膜を鋼板表面に設けるに当たり、各種成分の作用を効果的に発現させるために、樹脂皮膜の付着量を0.1〜1.5g/m2 とする必要がある。鋼板への付着量が0.1g/m2 よりも少ない場合、目的とする潤滑効果を得ることができず、プレス加工時の塗膜の疵付きが大きい。また、耐食性も充分とは言えない。一方、付着量が1.5g/m2 より多いと、プレス加工性・耐食性は良好となるものの、電着塗装時にピンホールが発生し外観を損ない、電着塗膜の密着性が低下する。従って、電着塗装性、プレス成形性、耐食性を全ての特性をバランス良く発揮させるために、樹脂皮膜の付着量は0.1〜1.5g/m2 と定めた。
【0021】
本発明において使用される鋼板の種類は、特に限定されない。好適には、例えば溶融めっき法、電気めっき法、蒸着めっき法等の製造方法によって作製された亜鉛系めっき鋼板(純Znめっき、Zn−Niめっき、Zn−Feめっき、Zn−Crめっき等)、あるいはこれらにクロメート処理等の表面処理が施されたものが挙げられる。
【0022】
次に、本発明の樹脂塗装鋼板の製造方法について説明する。樹脂塗装鋼板は、ウレタン系樹脂、潤滑剤、無機コロイド化合物およびシランカップリング剤を必須成分として含む塗布液を、任意の塗布方法で、原板鋼板(亜鉛系めっき鋼板やクロメート処理した亜鉛系めっき鋼板等)の表面に塗布し、乾燥させることによって製造すればよい。塗布方法には一切制限がなく、例えば、表面を清浄化し、あるいはクロメート処理を施した亜鉛系めっき鋼板表面に、ロールコーター法、スプレー法、カーテンフローコーター法等を用いて塗布する方法が挙げられる。塗膜厚さの均一性や処理コスト、塗布効率等を総合的に考慮して、最も実用上好ましいのは、ロールコーターで塗布する方法である。なお、本発明の樹脂塗装鋼板には、鋼板の片面のみ、または両面に樹脂皮膜が形成されたもののいずれも含まれる。
【0023】
塗布液は、溶液タイプ、エマルジョンタイプのいずれも使用可能であり、ウレタン系樹脂の樹脂塗装鋼板の電着塗装性およびプレス成形性を大きく変化させない範囲で、顔料、部分架橋剤、希釈溶媒、界面活性剤、消泡剤、浸透剤、造膜助剤、増粘剤等の各種添加剤を加えてもよい。
【0024】
【実施例】
以下実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術範囲に包含される。
【0025】
実施例1…樹脂系の検討
まず、最適ベース樹脂を選択するために、樹脂系の検討を行った。樹脂塗布用の原板として、電気亜鉛めっき鋼板(亜鉛付着量:20g/m2 )にクロメート処理(Cr付着量:20mg/m2 )を施したものを用いた。一方、樹脂皮膜形成用組成物(樹脂塗布液)に使用するベース樹脂としては、ショアーD硬度51のウレタン系樹脂(第一工業製薬社製スーパーフレックス)、アクリル樹脂(大日本インキ化学社製ボンコート)、ポリエステル樹脂(三井東圧化学社製アルマテックス)を選択した。それぞれの樹脂塗布液には、シランカップリング剤としてγ−グリシドキシプロピルトリメトキシシラン:10重量%、潤滑剤としてポリエチレンワックス:10重量%、無機コロイド化合物としてコロイダルシリカをSiO2 として10重量%を配合した。樹脂塗布液を良く撹拌して均一に混合・分散させた後、原板表面に絞りロールを用いて、乾燥後付着量1g/m2 となるように塗布した。これを80℃で乾燥させて樹脂皮膜を形成させ、樹脂塗装鋼板を得た。
【0026】
得られた樹脂塗装鋼板は、動摩擦係数、プレス性能(疵付き、黒化)および耐食性の評価用供試材と、電着塗装工程用の供試材に分けた。電着塗装条件は以下の通りである。
電着塗料:日本油脂社製アクリルカチオン電着塗料「アクア4800」
浴温度 :28℃
通電時間:2分間
通電電圧:160〜230V
塗膜膜厚:25μm
通電方法:ドカン法
水洗 :上水スプレー水洗
焼付条件:180℃×20分間
【0027】
電着塗装後には、外観、密着性、耐衝撃性の評価を行った。
樹脂塗装鋼板と、樹脂・電着塗装鋼板の各性能評価結果を表1に示した。なお測定・評価方法は以下の通りである。
(1)動摩擦係数の測定
樹脂塗装鋼板に対して、摺動試験装置を用いて加圧力150kgにおける摺動を行い、その荷重から動摩擦係数を求めた。動摩擦係数は両面同時に測定し、測定結果は両面の平均で表示した。
(2)プレス性能(疵付き、黒化)
単発プレス試験機を用いて樹脂塗装鋼板をプレス成形した後、成形品の摺動面の疵付きおよび黒化を評価した。
【0028】
(3)耐食性
JIS Z 2371に記載された方法に準じて樹脂塗装鋼板の塩水噴霧試験を行い、耐食性について調べた。測定結果は平板裸材のSST白錆1%発生時間を示す。
(4)電着塗膜の外観
電着塗装後の塗膜の外観について、ゆず肌状であるか否か、またピンホールの発生があるかないかを、目視によって総合的に評価した。
【0029】
(5)電着塗装後の塗膜密着性
・碁盤目試験
電着塗装後、鋼板表面にカッターナイフで1mm間隔の碁盤目を設け、セロハンテープによる剥離試験を行って、塗膜の剥離状況を目視評価した。
・エリクセン試験
エリクセン試験装置を用いて、電着塗装後の鋼板を4.5mm押し出した後、塗膜のクラックの発生状況を目視評価した。
【0030】
(6)耐衝撃性試験
デュポン衝撃試験装置を用い、重さ500g×ポンチ径1/2インチの衝撃子を高さ300mmから落下させる衝撃試験を行って、塗膜のクラック発生状況、またセロハンテープ貼着後の塗膜の剥離状態を評価した。
【0031】
【表1】
【0032】
表1から、ベース樹脂としてウレタン系樹脂を使用すると、アクリル樹脂やポリエステル樹脂に比べ、プレス性能、耐食性、電着塗装性に優れていることが明らかである。
【0033】
実施例2…シランカップリング剤の添加量についての検討
次にシランカップリング剤の添加量を検討した。実施例1で用いたウレタン系樹脂塗布液において、ポリエチレンワックスとコロイダルシリカは種類、量とも変えず、シランカップリング剤(γ−グリシドキシプロピルトリメトキシシラン)の量を表2に示した様に0〜20重量%の範囲で変化させた。各樹脂塗布液を、実施例1と同じ原板の表面に、絞りロールによって乾燥後付着量が1g/m2 となる様に塗布し、80℃で乾燥させて樹脂皮膜を形成させ、樹脂塗装鋼板を得た。実施例1と同じ条件で電着塗装も行い、樹脂塗装鋼板と樹脂・電着塗装鋼板について実施例1と同様にして性能評価を行い、表2にその結果を示した。表2から、シランカップリング剤が1.0〜20.0重量%であれば、良好なプレス性能と電着塗装性が得られることが確認された。
【0034】
【表2】
【0035】
実施例3…潤滑剤の添加量についての検討
次に潤滑剤の添加量を検討した。実施例1で用いたウレタン系樹脂塗布液において、シランカップリング剤(γ−グリシドキシプロピルトリメトキシシラン)とコロイダルシリカは種類、量とも変えず、潤滑剤の種類と量を表3および4に示した様に変化させた。各樹脂塗布液を、実施例1と同じ原板の表面に、絞りロールによって乾燥後付着量が1g/m2 となる様に塗布し、80℃で乾燥させて樹脂皮膜を形成させ、樹脂塗装鋼板を得た。また実施例1と同条件で電着塗装も行った。得られた樹脂塗装鋼板と樹脂・電着塗装鋼板について実施例1と同様にして性能評価を行い、結果を表3および4に示した。
【0036】
【表3】
【0037】
【表4】
【0038】
表3および表4から、潤滑剤が含まれていないとプレス性能が悪く、また多過ぎると電着塗装性が悪化する傾向にあることがわかる。本発明例は、どの潤滑剤においても優れたプレス特性と電着塗装性が得られた。
【0039】
実施例4…無機コロイド化合物の添加量についての検討
次に無機コロイド化合物の添加量を検討した。実施例1で用いたウレタン系樹脂塗布液において、シランカップリング剤とポリエチレンワックスは種類、量とも変えず、無機コロイド化合物の種類と量を表5および6に示した様に変化させた。各樹脂塗布液を、実施例1と同じ原板の表面に、絞りロールによって乾燥後付着量が1g/m2 となる様に塗布し、80℃で乾燥させて樹脂皮膜を形成させ、樹脂塗装鋼板を得た。また実施例1と同条件で電着塗装も行った。得られた樹脂塗装鋼板と樹脂・電着塗装鋼板について実施例1と同様にして性能評価を行い、結果を表5および6に示した。
【0040】
【表5】
【0041】
【表6】
【0042】
表5および表6から、無機コロイド化合物が含まれていなくても、また多過ぎてもプレス性能と耐食性が悪いことがわかる。本発明例は、どの無機コロイド化合物においても優れたプレス特性と電着塗装性が得られた。
【0043】
実施例5…樹脂付着量についての検討
実施例1で用いたウレタン系樹脂塗布液を実施例1と同じ原板の表面に、乾燥後付着量が0.05〜2.0g/m2 となる様に変化させて、絞りロールで塗布した。80℃で乾燥させて樹脂皮膜を形成させ、樹脂塗装鋼板を製造した。実施例1と同条件の電着塗装(アクリル系)と、下記条件でのエポキシ系電着塗装を行った。得られた樹脂塗装鋼板と樹脂・電着塗装鋼板について実施例1と同様にして性能評価を行い、結果を表7に示した。
電着塗料:日本ペイント社製エポキシカチオン電着塗料「U−100」
浴温度 :28℃
通電時間:3分間
通電電圧:250V
塗膜膜厚:20μm
通電方法:ドカン法
水洗 :上水スプレー水洗
焼付条件:170℃×20分間、30秒間立ち上がり制御
【0044】
【表7】
【0045】
表7から、樹脂皮膜の付着量を0.1〜1.5g/m2 とすることによって、プレス性能と電着塗装性の両立が図れることが確認された。また、エポキシ系電着塗装ではアクリル系電着塗装より優れた結果が得られた。一方、比較例7は、樹脂皮膜の効果が発現せず、電着塗装後の外観のみが良好で、それ以外の項目は全て劣る結果となった。比較例8では樹脂皮膜が厚いため、エポキシ系電着塗装(20μm)では特に問題はなかったが、アクリル系電着塗装(25μm)では電着塗膜にピンホールが発生し、外観や密着性が悪化した。
【0046】
【発明の効果】
本発明の樹脂塗装鋼板は、ウレタン系樹脂とシランカップリング剤、さらに潤滑剤および無機コロイド化合物を含有する皮膜を鋼板表面に形成させたものであり、樹脂皮膜が被覆されたままで、外観や密着性に優れた電着塗膜を形成することができる。また本発明の樹脂塗装鋼板はプレス成形性にも優れており、プレス成形時の塗油および脱脂作業や、電着塗装前処理(リン酸塩処理等)が省略できるため、作業環境が改善されると共に、省工程による生産性向上およびコストダウンが可能になった。この樹脂塗装鋼板は優れた耐食性もあわせ持つので、例えばオーディオのシャーシ類に塗装無しで使用する等、広範な用途展開が可能である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin-coated steel sheet having excellent electrodeposition coatability and press formability used for household electric appliances, building materials, furniture, automobile members, and the like.
[0002]
[Prior art]
Home appliance manufacturers and automobile manufacturers widely use resin-coated steel sheets having a resin film formed on the surface of the steel sheet in order to improve the corrosion resistance and the like of zinc or galvanized steel sheet. However, it has been pointed out that these resin-coated steel sheets have a problem in that when they are subjected to electrodeposition coating, defects such as pinholes and irregularities occur, thereby significantly reducing the value of products. That is, since the resin film has low conductivity and high electric resistance, during electrodeposition coating, current concentrates on a portion of the resin film having a low electric resistance such as a defective portion, and sparks are generated. Since the film is deteriorated, a smooth electrodeposition coating film cannot be obtained.
[0003]
In order to solve this problem, resin-coated steel sheets using various compositions of organic resins or organic / inorganic composite resins as compositions for resin films have been proposed. For example, as a coating composition, a composition containing urethane epoxy resin, hydrophilic polyamide resin, silica particles, etc. (Japanese Patent Publication No. 3-32638), and aggregated particles of at least one kind of polyamide, polyamine, polyimine resin and silica with a binder. Examples thereof include those mixed with a certain epoxy resin (Japanese Patent Application Laid-Open No. 7-76785). According to these proposals, it is only necessary to form a relatively thin electrodeposition coating because the intermediate coating and top coating are performed after the electrodeposition coating.In the epoxy cationic electrodeposition coating process, defects such as pinholes and surface irregularities are generated. Has been reduced to some extent. However, in the case of an acrylic cationic electrodeposition coating material which has good properties such as weather resistance and is used for forming a thick coating film with one coat (only electrodeposition coating), generation of pinholes is not suppressed and the user can be satisfied. The appearance has not yet been obtained after painting.
[0004]
On the other hand, resin-coated steel sheets can exhibit good press workability without using press oil, so for the purpose of improving the environmental deterioration due to press oil scattering during press work, especially products that are subjected to strong processing and after processing Applied to products that do not require degreasing. As a material of such a resin film emphasizing press workability, a material obtained by adding fluorine-based resin particles and silica particles as a solid lubricant to a urethane-modified polyolefin resin by the same applicant as the present invention (Japanese Patent Application Laid-Open No. 03-17189). ), Those obtained by adding spherical wax particles and silica particles to a urethane resin (JP-A-6-292959), those obtained by adding spherical wax particles and chain silica to a urethane resin (JP-A-7-171498), etc. And resin-coated steel sheets coated with these resins are widely used. However, when electrodeposition coating is applied to these resin-coated steel sheets, problems such as coating film defects such as pinholes and repelling of the paint occur, so that improvement has been strongly demanded.
[0005]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a resin-coated steel sheet that can form an electrodeposited coating film having excellent appearance after coating and has excellent press formability.
[0006]
[Means for Solving the Problems]
The resin-coated steel sheet having excellent electrodeposition coatability and press formability of the present invention is a resin-coated steel sheet coated with a resin film, and the resin film is formed of a silane, together with a urethane resin, a lubricant, and an inorganic colloid compound. It is formed using a composition containing a coupling agent in an amount of 1.0 to 20% by weight in terms of solid content, and has a resin film adhesion amount of 0.1 to 1.5 g / m 2. Having.
[0007]
The silane coupling agent has a group having at least one functional group selected from the group consisting of a (meth) acryloyl group, a vinyl group, an amino group, and an epoxy group, and three alkoxy groups directly connected to a Si atom. The use of one or more compounds is a preferred embodiment of the present invention for improving electrodeposition coating properties.
[0008]
When the resin film is formed using a composition containing 0.5 to 20% by weight of a lubricant and 1 to 30% by weight of an inorganic colloid compound in terms of solid content, more excellent press formability can be obtained. it can. Lubricants include waxes such as polyethylene wax and paraffin wax; lubricating resins such as fluororesins and vinyl chloride resins; metal soaps such as zinc stearate and calcium stearate; graphite, molybdenum disulfide, boron nitride, melamine. It is recommended to use one or more solid lubricants having a cleavage property such as a cyanuric acid adduct (for example, “MCA” manufactured by Mitsubishi Yuka). As the inorganic colloid compound, one or more kinds of silica sol, alumina sol, titania sol, zirconium sol and the like are preferably used.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, the resin-coated steel sheet having excellent electrodeposition coatability and press-formability of the present invention selects, as the resin film, one formed using a composition combining a urethane-based resin and a silane coupling agent. Further, the point where the optimum adhesion amount of the resin film is found has a maximum point. In the present invention, by adopting this configuration, high-performance resin coating that can perform press working without using press oil, does not require degreasing or phosphate treatment, and has excellent appearance after electrodeposition coating. Succeeded in providing steel plates. Hereinafter, the present invention will be described in detail.
[0010]
In the resin-coated steel sheet of the present invention, a urethane-based resin is used as a resin component that is a main component of the resin film. This is because the resulting resin film has excellent physical properties (adhesion, impact resistance, workability) and the like, as compared with acrylic resin and polyester resin. The urethane-based resin is not particularly limited, and may be any of those commercially available as urethane-based coatings, those synthesized with isocyanate monomers and various polyols, and particularly, the Shore D hardness of the obtained resin film. (Measured by JIS-K7215) of from 30 to 70 and having a pencil hardness of H or more can be preferably used from the viewpoint of press workability and corrosion resistance. As the urethane-based resin component, various modified ones may be used as long as the press workability and corrosion resistance are not impaired.
[0011]
In the present invention, it has been found that the addition of a silane coupling agent dramatically improves the electrodeposition coatability of a resin-coated steel sheet, so that the resin film contains the silane coupling agent in an amount of 1.0 to 20% by weight. It was an essential requirement that the composition was formed using the composition . The silane coupling agent is calculated on a solid basis. By the addition of the silane coupling agent, the adhesion between the electrodeposition coating film and the resin film and the adhesion between the resin film and the steel plate are improved, and the coated steel plate obtained has high performance. This is because the urethane resin and the steel sheet surface are chemically bonded by the organic functional groups in the silane coupling agent to improve adhesion, and the functional group of the silane coupling agent acts as a crosslinking agent. The action of forming a dense film and the hydrophilic silanol group generated by the hydrolysis of the silane coupling agent in the presence of water increase the affinity with the aqueous electrodeposition paint, and the electrodeposit It is thought to be due to a synergistic effect such as an effect of improving the wettability with the paint.
[0012]
Also, the addition of the silane coupling agent makes the appearance of the electrodeposition coating film very beautiful, but this is because the addition of the silane coupling agent creates fine irregularities on the surface of the resin film, It is presumed that this is because it can be an energization point.
[0013]
As the silane coupling agent in the present invention, any silane compound having a hydrolyzable group such as an alkoxy group or chlorine and a functional group can be used without particular limitation. Among them, the (meth) acryloyl group, vinyl group, and amino group having excellent reactivity with the functional group itself and the functional group (for example, carboxyl group or hydroxyl group) in the urethane resin are preferably used in the present invention. And a compound having one or more functional groups selected from the group consisting of a group and an epoxy group, and three alkoxy groups (methoxy group and / or ethoxy group) directly bonded to a Si atom. Specific examples of the most preferred silane coupling agent having good compatibility with the urethane resin and having good liquid stability include γ- (methacryloxypropyl) trimethoxysilane and β- (3,4-epoxycyclohexyl) ethyl Trimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, etc., and one or more of these can be used.
[0014]
The silane coupling agent should be contained in the composition used for forming the resin film in an amount of 1.0 to 20% by weight in terms of solid content . If the amount is less than 1.0% by weight, the current-carrying point of the resin film cannot be secured, and the penetration of the electrodeposition paint into the resin film becomes insufficient, so that the electrodeposition paintability is not improved. Further, since the resin film is not formed densely, the corrosion resistance and the scratch resistance during processing are inferior. On the other hand, if it exceeds 20% by weight, the irregularities on the surface of the resin film become too large, impairing the appearance of the electrodeposition coating film and deteriorating the corrosion resistance. A more preferred amount of the silane coupling agent is 5 to 20% by weight.
[0015]
In the present invention, a resin film is formed by using a composition that essentially contains a lubricant and an inorganic colloid compound in addition to the urethane resin and the silane coupling agent . A lubricant is a component necessary for improving press formability. During press molding, the resin-coated steel sheet undergoes severe sliding with the mold, but the friction of the surface is too large with a resin film formed using a composition consisting only of a urethane resin and a silane coupling agent. . For this reason, the temperature of the sliding portion between the mold and the steel plate locally becomes higher than 200 ° C., and a part of the coating is softened and decomposed, thereby causing flaws. The addition of the lubricant lowers the coefficient of friction of the resin film surface and improves the lubricity, so that the scratch resistance and press formability are improved.
[0016]
Although the kind of the lubricant is not particularly limited, waxes such as polyethylene wax and paraffin wax; lubricating resins such as fluororesin and vinyl chloride resin; metal soaps such as zinc stearate and calcium stearate; graphite, molybdenum disulfide; It is recommended to use one or more solid lubricants having a cleavage property such as boron nitride and melamine / cyanuric acid adduct (for example, “MCA” manufactured by Mitsubishi Yuka).
[0017]
The content of the lubricant is preferably 0.5 to 20% by weight (in terms of solid content) in the composition used for forming the resin film. When the amount of the lubricant is less than 0.5% by weight, sufficient improvement in lubricity and press formability of the obtained resin film cannot be expected. On the other hand, when the amount exceeds 20% by weight, there is no problem in terms of lubricating performance. In addition, the adhesiveness between the obtained resin film and the steel plate is deteriorated, and the film is peeled off during press working and blackening occurs due to adhesion to a mold, which is not preferable. A more preferable content of the lubricant is 1 to 10% by weight.
[0018]
Next, the inorganic colloid compound used in the present invention will be described. As the inorganic colloid compound, one or more of silica sol, alumina sol, titania sol, and zirconium sol can be used. By containing an inorganic colloid compound in the resin film, it reacts with the hydrolyzable groups of the silane coupling agent to form a denser film, which improves corrosion resistance and suppresses scratching of the resin film during press molding. I do.
[0019]
The inorganic colloid compound is preferably contained in the composition used for forming the resin film in an amount of 1 to 30% by weight (in terms of solid content). If the amount is less than 1% by weight, the corrosion resistance of the resulting film and the scratch resistance during press molding become insufficient. If the amount exceeds 30% by weight, the inorganic colloid compound acts as a lubricant, and the friction of the film is increased. Increasing the coefficient may reduce lubricity and consequently deteriorate the appearance after processing. In particular, in order to maximize the effect of the inorganic colloid compound, it is recommended that the content be in the range of 5 to 20% by weight.
[0020]
In the present invention, in providing the resin film composed of the above-mentioned various components on the surface of the steel sheet, the amount of the resin film deposited is set to 0.1 to 1.5 g / m 2 in order to effectively exert the effects of the various components. There is a need. If the amount of adhesion to the steel sheet is less than 0.1 g / m 2 , the intended lubricating effect cannot be obtained, and the coating film will have large flaws during press working. Also, the corrosion resistance is not sufficient. On the other hand, when the adhesion amount is more than 1.5 g / m 2 , although the press workability and the corrosion resistance are good, pinholes are generated at the time of electrodeposition coating, the appearance is impaired, and the adhesion of the electrodeposition coating film is reduced. Therefore, the adhesion amount of the resin film was determined to be 0.1 to 1.5 g / m 2 in order to exhibit all the properties of the electrodeposition coatability, press formability, and corrosion resistance in a well-balanced manner.
[0021]
The type of the steel plate used in the present invention is not particularly limited. Preferably, for example, a zinc-based plated steel sheet (pure Zn plating, Zn-Ni plating, Zn-Fe plating, Zn-Cr plating, etc.) produced by a production method such as hot-dip plating, electroplating, or vapor deposition plating, Alternatively, those obtained by subjecting them to a surface treatment such as a chromate treatment may be used.
[0022]
Next, a method for producing the resin-coated steel sheet of the present invention will be described. Resin-coated steel sheets can be coated with a coating solution containing urethane resin, lubricant, inorganic colloid compound and silane coupling agent as essential components by using any coating method. Etc.) and dried. The coating method is not limited at all, and examples thereof include a method of applying a roll-coater method, a spray method, a curtain flow coater method, or the like to a surface of a zinc-based plated steel sheet whose surface has been cleaned or subjected to chromate treatment. . In consideration of the uniformity of the coating film thickness, the processing cost, the coating efficiency, and the like, the most practically preferable method is a coating method using a roll coater. In addition, the resin-coated steel sheet of the present invention includes any one of which has a resin film formed on only one side or both sides of the steel sheet.
[0023]
The coating liquid can be used as either a solution type or an emulsion type.A pigment, a partial cross-linking agent, a diluting solvent, an Various additives such as an activator, an antifoaming agent, a penetrant, a film forming aid, and a thickener may be added.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples.However, the following examples do not limit the present invention, and all modifications and alterations that do not depart from the spirit of the preceding and the following are included in the technical scope of the present invention. You.
[0025]
Example 1 Study of Resin System First, a study of a resin system was conducted in order to select an optimum base resin. An electrogalvanized steel sheet (zinc adhesion amount: 20 g / m 2 ) that had been subjected to chromate treatment (Cr adhesion amount: 20 mg / m 2 ) was used as a base plate for resin application. On the other hand, as a base resin used for the resin film forming composition (resin coating liquid), urethane resin having Shore D hardness of 51 (Superflex manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and acrylic resin (Boncoat manufactured by Dainippon Ink and Chemicals, Inc.) ) And a polyester resin (Almatex manufactured by Mitsui Toatsu Chemicals, Inc.). In each resin coating solution, γ-glycidoxypropyltrimethoxysilane: 10% by weight as a silane coupling agent, polyethylene wax: 10% by weight as a lubricant, colloidal silica as an inorganic colloid compound, 10% by weight as SiO 2 Was blended. The resin coating solution was stirred well and uniformly mixed and dispersed, and then applied to the surface of the original plate using a squeezing roll so as to have an adhesion amount of 1 g / m 2 after drying. This was dried at 80 ° C. to form a resin film, and a resin-coated steel sheet was obtained.
[0026]
The obtained resin-coated steel sheet was divided into a test material for evaluation of dynamic friction coefficient, press performance (scratch, blackening) and corrosion resistance, and a test material for an electrodeposition coating process. The electrodeposition coating conditions are as follows.
Electrodeposition paint: Acrylic cationic electrodeposition paint “Aqua 4800” manufactured by NOF Corporation
Bath temperature: 28 ° C
Energizing time: 2 minutes Energizing voltage: 160-230V
Film thickness: 25 μm
Energizing method: Dokan method water washing: Tap water spray water washing Baking condition: 180 ° C. × 20 minutes
After the electrodeposition coating, the appearance, adhesion and impact resistance were evaluated.
Table 1 shows the performance evaluation results of the resin-coated steel sheet and the resin-electrodeposited steel sheet. The measurement and evaluation methods are as follows.
(1) Measurement of dynamic friction coefficient The resin-coated steel sheet was slid at a pressure of 150 kg using a sliding test apparatus, and the dynamic friction coefficient was determined from the load. The coefficient of kinetic friction was measured simultaneously on both sides, and the measurement results were expressed as the average of both sides.
(2) Press performance (scratch, blackening)
After press-molding the resin-coated steel plate using a single-shot press tester, scratches and blackening of the sliding surface of the molded product were evaluated.
[0028]
(3) Corrosion Resistance A salt spray test of a resin-coated steel sheet was performed according to the method described in JIS Z 2371, and the corrosion resistance was examined. The measurement results show the time of SST white rust 1% generation of the bare plate material.
(4) Appearance of Electrodeposited Coating The appearance of the coating after electrodeposition coating was visually evaluated comprehensively to determine whether it was in the form of citron skin and whether or not pinholes occurred.
[0029]
(5) Coating adhesion and grid test after electrodeposition coating After electrodeposition coating, the steel plate surface was set with grids at 1 mm intervals with a cutter knife, and a peel test was performed with cellophane tape to check the peeling state of the coating film. It was evaluated visually.
-Ericksen test The steel plate after the electrodeposition coating was extruded by 4.5 mm using an Erichsen test device, and then the occurrence of cracks in the coating film was visually evaluated.
[0030]
(6) Impact resistance test Using a DuPont impact tester, an impact test was conducted in which an impactor having a weight of 500 g and a punch diameter of 1/2 inch was dropped from a height of 300 mm, and the occurrence of cracks in the coating film and cellophane tape The state of peeling of the coating film after application was evaluated.
[0031]
[Table 1]
[0032]
From Table 1, it is clear that when a urethane-based resin is used as the base resin, the press performance, the corrosion resistance, and the electrodeposition coating property are superior to those of the acrylic resin and the polyester resin.
[0033]
Example 2 Investigation on the amount of silane coupling agent added Next, the amount of silane coupling agent added was examined. In the urethane resin coating solution used in Example 1, the types and amounts of polyethylene wax and colloidal silica were not changed, and the amounts of the silane coupling agent (γ-glycidoxypropyltrimethoxysilane) were as shown in Table 2. In the range of 0 to 20% by weight. Each resin coating solution was applied on the surface of the same original plate as in Example 1 using a squeezing roll so as to have an adhesion amount of 1 g / m 2 after drying, and was dried at 80 ° C. to form a resin film. Got. Electrodeposition coating was also performed under the same conditions as in Example 1. Performance evaluation was performed on the resin-coated steel sheet and the resin-electrodeposited steel sheet in the same manner as in Example 1, and Table 2 shows the results. From Table 2, it was confirmed that when the silane coupling agent was 1.0 to 20.0% by weight, good press performance and electrodeposition coating property were obtained.
[0034]
[Table 2]
[0035]
Example 3 Study on the amount of lubricant added Next, the amount of lubricant added was studied. In the urethane-based resin coating solution used in Example 1, the silane coupling agent (γ-glycidoxypropyltrimethoxysilane) and the colloidal silica were not changed in type and amount, and the types and amounts of the lubricants were changed in Tables 3 and 4. Was changed as shown in FIG. Each resin coating solution was applied on the surface of the same original plate as in Example 1 using a squeezing roll so as to have an adhesion amount of 1 g / m 2 after drying, and was dried at 80 ° C. to form a resin film. Got. Electrodeposition coating was also performed under the same conditions as in Example 1. Performance evaluation was performed on the obtained resin-coated steel sheet and resin-electrodeposited steel sheet in the same manner as in Example 1, and the results are shown in Tables 3 and 4.
[0036]
[Table 3]
[0037]
[Table 4]
[0038]
From Tables 3 and 4, it can be seen that the press performance is poor when the lubricant is not contained, and the electrodeposition coating property tends to deteriorate when the amount is too large. In the examples of the present invention, excellent press characteristics and electrodeposition coating properties were obtained with any of the lubricants.
[0039]
Example 4 Investigation on the Addition Amount of the Inorganic Colloid Compound Next, the addition amount of the inorganic colloid compound was examined. In the urethane resin coating solution used in Example 1, the types and amounts of the silane coupling agent and the polyethylene wax were not changed, and the types and amounts of the inorganic colloid compounds were changed as shown in Tables 5 and 6. Each resin coating solution was applied on the surface of the same original plate as in Example 1 using a squeezing roll so as to have an adhesion amount of 1 g / m 2 after drying, and was dried at 80 ° C. to form a resin film. Got. Electrodeposition coating was also performed under the same conditions as in Example 1. The performance of the obtained resin-coated steel sheet and resin-electrodeposited steel sheet was evaluated in the same manner as in Example 1, and the results are shown in Tables 5 and 6.
[0040]
[Table 5]
[0041]
[Table 6]
[0042]
From Tables 5 and 6, it can be seen that the press performance and corrosion resistance are poor even when the inorganic colloid compound is not contained or when the amount is too large. In the examples of the present invention, excellent press characteristics and electrodeposition coating properties were obtained with any of the inorganic colloid compounds.
[0043]
Example 5 Examination of Resin Amount The urethane resin coating solution used in Example 1 was dried on the same original plate surface as in Example 1 so that the adhesion amount after drying was 0.05 to 2.0 g / m 2 . And applied with a squeezing roll. It was dried at 80 ° C. to form a resin film, and a resin-coated steel sheet was manufactured. Electrodeposition coating (acrylic) under the same conditions as in Example 1 and epoxy electrodeposition coating under the following conditions were performed. The performance of the obtained resin-coated steel sheet and resin-electrodeposited steel sheet was evaluated in the same manner as in Example 1, and the results are shown in Table 7.
Electrodeposition paint: Epoxy cationic electrodeposition paint "U-100" manufactured by Nippon Paint Co., Ltd.
Bath temperature: 28 ° C
Energizing time: 3 minutes Energizing voltage: 250V
Film thickness: 20 μm
Energizing method: Dokan method water washing: Water spray spray water baking condition: 170 ° C. × 20 minutes, rise control for 30 seconds
[Table 7]
[0045]
From Table 7, it was confirmed that by setting the adhesion amount of the resin film to 0.1 to 1.5 g / m 2 , both the press performance and the electrodeposition coating property can be achieved. In addition, in the case of the epoxy electrodeposition coating, a result superior to that of the acrylic electrodeposition coating was obtained. On the other hand, in Comparative Example 7, the effect of the resin film was not exhibited, only the appearance after electrodeposition coating was good, and all other items were inferior. In Comparative Example 8, since the resin film was thick, there was no particular problem with the epoxy-based electrodeposition coating (20 μm), but with the acrylic-based electrodeposition coating (25 μm), pinholes were generated in the electrodeposition coating, and the appearance and adhesion were observed. Got worse.
[0046]
【The invention's effect】
The resin-coated steel sheet of the present invention is obtained by forming a film containing a urethane resin and a silane coupling agent, a lubricant and an inorganic colloid compound on the surface of the steel sheet. An electrodeposition coating film having excellent properties can be formed. The resin-coated steel sheet of the present invention is also excellent in press formability, and oiling and degreasing work during press forming and pretreatment for electrodeposition coating (such as phosphate treatment) can be omitted, so that the working environment is improved. In addition, it is possible to improve productivity and reduce costs by saving steps. Since this resin-coated steel sheet also has excellent corrosion resistance, it can be used in a wide range of applications, for example, when used without coating on audio chassis.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33081795A JP3573307B2 (en) | 1995-12-19 | 1995-12-19 | Resin-coated steel sheet with excellent electrodeposition paintability and press formability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33081795A JP3573307B2 (en) | 1995-12-19 | 1995-12-19 | Resin-coated steel sheet with excellent electrodeposition paintability and press formability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09169078A JPH09169078A (en) | 1997-06-30 |
JP3573307B2 true JP3573307B2 (en) | 2004-10-06 |
Family
ID=18236882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33081795A Expired - Fee Related JP3573307B2 (en) | 1995-12-19 | 1995-12-19 | Resin-coated steel sheet with excellent electrodeposition paintability and press formability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3573307B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010114171A1 (en) | 2009-03-31 | 2010-10-07 | Jfeスチール株式会社 | Surface-treating agent, process for manufacturing plated steel sheet using the surface-treating agent, and plated steel sheet |
WO2011105101A1 (en) | 2010-02-26 | 2011-09-01 | Jfeスチール株式会社 | Surface-treating agent for zinc-plated steel sheet, and zinc-plated steel sheet and process for production thereof |
WO2012039128A1 (en) | 2010-09-24 | 2012-03-29 | Jfeスチール株式会社 | Surface treatment fluid for zinc-plated steel sheet, zinc-plated steel sheet, and manufacturing method for same |
WO2012043864A1 (en) | 2010-09-29 | 2012-04-05 | Jfeスチール株式会社 | Hot-dip galvanized steel sheet and manufacturing method therefor |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100897311B1 (en) * | 2002-03-08 | 2009-05-14 | 도요 세이칸 가부시키가이샤 | Resin coated steel sheet and can formed by pressing the same |
JP4801879B2 (en) * | 2003-12-26 | 2011-10-26 | 学校法人日本大学 | Hard film and method for forming the same |
JP2006188067A (en) * | 2006-02-06 | 2006-07-20 | Toppan Printing Co Ltd | Vapour deposition film and packaging material using it |
JP2006188066A (en) * | 2006-02-06 | 2006-07-20 | Toppan Printing Co Ltd | Manufacturing method of vapour deposition film and packaging material using vapor deposition film |
JP2006192901A (en) * | 2006-02-06 | 2006-07-27 | Toppan Printing Co Ltd | Vapor deposition film for boil sterilization and retort sterilization, and for packaging container which holds contents including moisture, and packaging material using this vapor deposition film |
JP5512940B2 (en) * | 2008-08-21 | 2014-06-04 | 株式会社シミズ | Electrodeposition coating pretreatment composition and electrodeposition coating method |
JP5293050B2 (en) * | 2008-09-26 | 2013-09-18 | 新日鐵住金株式会社 | Automotive parts |
-
1995
- 1995-12-19 JP JP33081795A patent/JP3573307B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010114171A1 (en) | 2009-03-31 | 2010-10-07 | Jfeスチール株式会社 | Surface-treating agent, process for manufacturing plated steel sheet using the surface-treating agent, and plated steel sheet |
US8648135B2 (en) | 2009-03-31 | 2014-02-11 | Jfe Steel Corporation | Surface-treatment agent, method for producing coated steel sheet using the surface-treatment agent, and coated steel sheet |
WO2011105101A1 (en) | 2010-02-26 | 2011-09-01 | Jfeスチール株式会社 | Surface-treating agent for zinc-plated steel sheet, and zinc-plated steel sheet and process for production thereof |
US9512331B2 (en) | 2010-02-26 | 2016-12-06 | Jfe Steel Corporation | Surface treatment agent for zinc or zinc alloy coated steel sheet, zinc or zinc alloy coated steel sheet, and method of producing the steel sheet |
WO2012039128A1 (en) | 2010-09-24 | 2012-03-29 | Jfeスチール株式会社 | Surface treatment fluid for zinc-plated steel sheet, zinc-plated steel sheet, and manufacturing method for same |
US9200165B2 (en) | 2010-09-24 | 2015-12-01 | Jfe Steel Corporation | Surface treatment liquid for zinc or zinc alloy coated steel sheet, zinc or zinc alloy-coated steel sheet, and method for manufacturing the same |
WO2012043864A1 (en) | 2010-09-29 | 2012-04-05 | Jfeスチール株式会社 | Hot-dip galvanized steel sheet and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JPH09169078A (en) | 1997-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0344717B1 (en) | Lubricating resin coated steel strips having improved formability and corrosion resistance | |
JP3573307B2 (en) | Resin-coated steel sheet with excellent electrodeposition paintability and press formability | |
JP3547414B2 (en) | Non-coating type lubricated plated steel sheet with excellent corrosion resistance and low environmental load | |
JPH10237478A (en) | Water-based metal-surface-treating composition excellent in corrosion inhibition of injured part | |
JP3029798B2 (en) | Lubricated steel sheet and its film-forming composition | |
JPH0339485A (en) | Lubricating resin treated steel sheet excellent in powdering resistance at the time of forming | |
KR101103661B1 (en) | Composition for metal surface treatment | |
JPH0243040A (en) | Lubricating resin treated steel plate excellent in corrosion resistance | |
JPH1052881A (en) | Resin coated metal plate with mold drag resistance and corrosion resistance and its manufacture | |
JPH0316726A (en) | Lubricating resin-treated steel plate with excellent moldability | |
JP2511497B2 (en) | Lubricant resin treated steel sheet with excellent formability | |
JP2003183587A (en) | Composition for lubricating film and metal plate excellent in lubricity using the same | |
JP2696461B2 (en) | Hard lubricated plated steel sheet with excellent pressability and sliding wear resistance | |
JPH05237449A (en) | Lubricating resin treated steel panel excellent in press moldability and processed part corrosion resistance | |
JP2000073180A (en) | Water-based surface treating agent for metal material and surface treated metal material | |
JPH0565667A (en) | Production of high-performance lubricative plated steel sheet | |
JPH09173971A (en) | Lubricating resin-treated metallic sheet excellent in press workability, spot weldability and corrosion resistance | |
JP4441297B2 (en) | Inorganic organic composite-treated zinc-based plated steel sheet for blade support members | |
JP3122616B2 (en) | Lubricious resin-coated metal sheet with excellent deep drawing workability and coating film adhesion | |
RU2412278C2 (en) | Steel sheet with coating | |
JPH09323376A (en) | Colored lubricatively treated steel sheet and manufacture thereof | |
JPH07258895A (en) | Double layer galvanized steel sheet excellent in press workability and corrosion resistance | |
JPH0813156A (en) | Colored lubrication-treated galvanized steel sheet having high edge face corrosion resistance and its production | |
JP2972126B2 (en) | Colored lubricated steel sheet and its manufacturing method | |
JPH03284942A (en) | Alloyed galvanized steel sheet coated with organic resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20000718 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040624 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070709 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100709 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100709 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110709 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110709 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120709 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |