JP3569536B2 - Production method of inorganic fluoride gas at room temperature - Google Patents
Production method of inorganic fluoride gas at room temperature Download PDFInfo
- Publication number
- JP3569536B2 JP3569536B2 JP23262993A JP23262993A JP3569536B2 JP 3569536 B2 JP3569536 B2 JP 3569536B2 JP 23262993 A JP23262993 A JP 23262993A JP 23262993 A JP23262993 A JP 23262993A JP 3569536 B2 JP3569536 B2 JP 3569536B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- gas
- fluoride
- powder
- room temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Silicon Compounds (AREA)
Description
【0001】
【産業上の利用分野】
本発明は常温で気体の無機の非金属フッ化物の製造法に関する。さらに詳しくは、従来より半導体製造におけるイオン注入ガス(ドーパント)、フッ素化剤、イオン重合用触媒、有機ハロゲン化物の合成原料等として賞用されており、又、近年電池用電解質原料等としてもその有用性が注目されて来ているPF3 、PF5 、BF3 、AsF5等の製造方法に関するものである。
【0002】
【従来の技術】
従来より常温で気体の無機フッ化物の製造のために、以下に示すような種々の方法が提案されている。
又、常温で気体の無機フッ化物の製造法としては、通常単体の直接フッ素化が考えられるが、生成反応熱が大きいために実用的に反応コントロールが不可能である。例えばPF5 の場合を例にとると、2P + 5F2→ 2PF5 (ΔHf =−381Kcal/PF5・mol)であり、如何に反応熱の発生を緩和するかがポイントである。
上記1)〜4)の合成方法はいずれも反応熱の発生を緩和し、反応のコントロールを容易にするための間接フッ素化もしくはこれに類する方法である。
しかしながら、提案されているこれらの方法はいずれも工程的に複雑であり、2)、3)の気固反応、4)の固固反応の場合は反応を円滑に行う事が難しい。
又、1)、2)、4)の方法は原料としてフッ素以外のハロゲン化合物、もしくは酸化物を使用するために、生成ガス中には目的とするガス以外の副生ガスが混入する。これらの混合ガスから目的とする無機フッ化物ガスを蒸留等で分離することは、通常これらのガスが高度の腐食性を有するために、技術上からも材質面からも極めて困難であり、実用的でない。
特に2)の不均化による方法は中間体として異種ハロゲン化合物を経由するために、反応設定条件のわずかな変動により収率が低下し、工業的に受け入れられるには十分な方法とは言えない。
以上の理由により、国内では当該無機フッ化物の工業的規模での生産は殆ど行われず、その工業的規模での入手は困難であるのが実情である。
本発明の目的は、上記従来法の欠点を排除し、特別な装置、材質を必要とすることなく、効率よく常温で気体の無機フッ化物を製造することである。
【0003】
【課題を解決するための手段】
本発明者等は、上記目的を達成すべく鋭意検討した結果、金属フッ化物粉末と非金属粉末との混合物をフッ素と反応させることにより、容易かつ極めて効率的に常温で気体の無機の非金属フッ化物が製造できることを見出し、本発明を完成するに到った。
【0004】
本発明で使用し得る金属フッ化物としては、K 、Na、Cu、Ca、Zn、Al、Sn、Pb、Mn、Ni、Co、Fe等のフッ化物を挙げることができるが、このうち特に好ましいものはNaF 、CaF2、FeF3である。
本発明で使用し得る非金属粉末としては、B 、C 、S 、Si、P 、As等が挙げられるが、反応生成物がガス状であり反応系において上記金属フッ化物と分離が容易な非金属であるならば適用可能であり、これらの例に限定されるものではない。
金属フッ化物粉末と非金属粉末との混合比は任意でよいが、好適には金属フッ化物粉末と非金属粉末との重量比を約2:1〜10:1の間に調整し、金属フッ化物過剰で反応を実施することが望ましい。逆に非金属粉末過剰で反応を行うと反応熱の除去不十分の為、反応温度のコントロールが困難になる。
【0005】
又、反応温度は理論的には常温またはそれ以上であればよいが、反応速度を考慮すれば50℃以上が好ましい。上限温度は目的とする生成ガスの分解温度により決められる。反応温度、熱エネルギー消費量、その他の操業因子を併せて考慮すれば、実用的な反応温度は約70〜400 ℃の範囲であるのが好適である。反応温度が低いと実用的な反応速度が得られず、高過ぎると生成する無機フッ化合物が分解する。
又、反応時間は特に限定されず、原料の量、反応器の型式、反応温度等によって変わるが、一般的に30分〜5時間程度で良い。
フッ素ガスは希釈せずに供給、使用してもよいが、反応速度あるいは反応温度のコントロールを容易にするためには、予めN2、He、Ar等の不活性ガスで希釈してから反応に供給することもできる。希釈の程度は特に制限されないが、フッ素ガス濃度を10〜100 %に調整して供給することが望ましい。
本発明を実施するための反応器は静置型のバッチ反応器でも連続式反応器でも良く、原料である金属フッ化物粉末と非金属粉末はあらかじめ混合したものを回分的あるいは連続的に仕込んでも、あるいは両者を別々に仕込み反応器中で混合しつつフッ素ガスと反応させても良い。
【0006】
【実施例】
以下実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
内径40mmφ、長さ1000mmのニッケル製回分反応器にフッ化ナトリウム30g 、赤リン10g の混合物を仕込み、外部ヒーターで100 ℃に昇温後、N2で50%に希釈したF2を0.3 リットル/minの割合で1時間連続送入した。
反応生成ガスを随時サンプリングし、赤外分光光度計とガスクロマトグラフィーで分析し、その平均組成を求めたところ、以下の通りであった。
実施例2
実施例1と同じ反応器にフッ化カルシウム30g 、珪素粉末5g の混合物を仕込み、外部ヒーターで 140℃に昇温後、N2で50%に希釈したF2を0.5 リットル/minの割合で1時間送入した。
反応生成ガスを随時サンプリングし、赤外分光光度計とガスクロマトグラフィーで分析し、その平均組成を求めたところ、以下の通りであった。
実施例3
実施例2と同じ反応器にフッ化アルミニウム30g 、砒素粉末10g の混合物を仕込み、外部ヒーターで80℃に昇温後、N2で70%に希釈したF2を0.1 リットル/minの割合で1時間送入した。
反応生成ガスを随時サンプリングし、ガスクロマトグラフィーで分析し、その平均組成を求めたところ、以下の通りであった。
実施例4
実施例3と同じ反応器にフッ化ナトリウム20g 、ホウ素粉末5g の混合物を仕込み、外部ヒーターで 150℃に昇温後、N2で50%に希釈したF2を0.3 リットル/minの割合で1時間送入した。
反応生成ガスを随時サンプリングし、赤外分光光度計とガスクロマトグラフィーで分析し、その平均組成を求めたところ、以下の通りであった。
実施例5
内径 100mmφ、長さ1000mmの鉄製回分反応器(横型攪拌羽根付き)にフッ化ナトリウム1kg、ホウ素粉末0.2kg を仕込み、良く攪拌混合後、外部ヒーターで150 ℃に昇温した後、N2で50%に希釈したF2を10リットル/minの割合で2時間連続送入した。反応生成ガスを随時サンプリングし、赤外分光光度計とガスクロマトグラフィーで分析し、その平均組成を求めたところ、以下の通りであった。
実施例6
実施例5と同じ反応器にフッ化カルシウム1kg、赤リン粉末0.1kg を仕込み、良く攪拌混合後、外部ヒーターで80℃に昇温した後、 100%F2を1リットル/minの割合で3時間連続送入し、生成ガスを液体窒素で冷却した10リットル−SUSボンベに捕集した。捕集ガス重量は380gであった。捕集ガスをサンプリングし、赤外分光光度計とガスクロマトグラフィーで分析した結果、PF5 純度は99.9%以上であった。
【0007】
比較例1
実施例5と同じ反応器に珪素粉末1kgを仕込み、外部ヒーターで 100℃に昇温後、N2で50%に希釈したF2を1リットル/minの割合で送入した。反応熱により15分後に反応温度は460 ℃に上昇し、F2仕込み速度を0.5 リットル/minに低下させても温度の調節は不可能となった。
比較例2
実施例5と同じ反応器にフッ化ナトリウム1kg、赤リン粉末0.2kg を仕込み、外部ヒーターで40℃に昇温後、 100%F2を1リットル/minの割合で送入したが反応は殆ど進行せず、反応器の出口から高濃度の未反応F2が検出された。[0001]
[Industrial applications]
The present invention relates to a method for producing an inorganic nonmetallic fluoride which is gaseous at ordinary temperature. More specifically, it has hitherto been awarded as an ion implantation gas (dopant) in semiconductor manufacturing, a fluorinating agent, a catalyst for ion polymerization, a raw material for synthesizing an organic halide, and has recently been used as a raw material for an electrolyte for a battery. The present invention relates to a method for producing PF 3 , PF 5 , BF 3 , AsF 5 and the like, for which usefulness is attracting attention.
[0002]
[Prior art]
Conventionally, various methods as described below have been proposed for producing inorganic fluoride gaseous at room temperature.
As a method for producing an inorganic fluoride which is gaseous at normal temperature, direct fluorination of a simple substance can be usually considered, but practical control of the reaction is impossible due to a large heat of formation reaction. For example, taking the case of the PF 5 as an example, a 2P + 5F 2 → 2PF 5 ( ΔH f = -381Kcal / PF 5 · mol), a point or mitigate the occurrence of how reaction heat.
Each of the synthesis methods 1) to 4) above is an indirect fluorination or a method similar thereto for alleviating the generation of reaction heat and facilitating the control of the reaction.
However, all of these proposed methods are complicated in steps, and in the case of 2), 3) gas-solid reaction, and 4) solid-solid reaction, it is difficult to smoothly carry out the reaction.
In the methods 1), 2) and 4), since a halogen compound other than fluorine or an oxide is used as a raw material, a by-product gas other than a target gas is mixed into a generated gas. Separating the desired inorganic fluoride gas from these mixed gases by distillation or the like is usually very difficult from a technical and material viewpoint because these gases have a high degree of corrosiveness, and is practically practical. Not.
In particular, the disproportionation method 2) involves a different halogen compound as an intermediate, so that the yield is reduced due to slight fluctuations in the reaction setting conditions, and cannot be said to be a method sufficient for industrial acceptance. .
For the above reasons, the production of the inorganic fluoride on an industrial scale is hardly performed in Japan, and it is difficult to obtain the inorganic fluoride on an industrial scale.
An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional method and to efficiently produce a gaseous inorganic fluoride at room temperature without requiring any special equipment and material.
[0003]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, by reacting a mixture of a metal fluoride powder and a non-metal powder with fluorine, it is easy and extremely efficient to form a gaseous inorganic non-metal at room temperature. They have found that fluoride can be produced, and have completed the present invention.
[0004]
Examples of the metal fluoride that can be used in the present invention include fluorides such as K 2, Na, Cu, Ca, Zn, Al, Sn, Pb, Mn, Ni, Co, and Fe. ones NaF, a CaF 2, FeF 3.
Examples of the nonmetallic powder that can be used in the present invention include B 2, C 3, S 2, Si, P 2, and As. However, the reaction product is in a gaseous state and is easily separated from the metal fluoride in the reaction system. It is applicable if it is a metal, and is not limited to these examples.
The mixing ratio between the metal fluoride powder and the non-metal powder may be arbitrary, but preferably, the weight ratio of the metal fluoride powder to the non-metal powder is adjusted to about 2: 1 to 10: 1, and the metal fluoride is mixed. It is desirable to carry out the reaction with an excess of chloride. Conversely, if the reaction is carried out in excess of non-metallic powder, control of the reaction temperature becomes difficult due to insufficient removal of the heat of reaction.
[0005]
The reaction temperature may theoretically be room temperature or higher, but preferably 50 ° C. or higher in consideration of the reaction rate. The upper limit temperature is determined by the decomposition temperature of the target product gas. Considering the reaction temperature, heat energy consumption and other operating factors, the practical reaction temperature is preferably in the range of about 70 to 400 ° C. If the reaction temperature is low, a practical reaction rate cannot be obtained, and if it is too high, the generated inorganic fluorine compound is decomposed.
The reaction time is not particularly limited, and varies depending on the amount of the raw materials, the type of the reactor, the reaction temperature, and the like, but is generally about 30 minutes to 5 hours.
Fluorine gas may be supplied and used without dilution, but in order to facilitate the control of the reaction rate or reaction temperature, the fluorine gas is diluted with an inert gas such as N 2 , He, Ar, etc. It can also be supplied. Although the degree of dilution is not particularly limited, it is desirable to supply the fluorine gas at a concentration adjusted to 10 to 100%.
The reactor for carrying out the present invention may be a stationary batch reactor or a continuous reactor, and the metal fluoride powder and the non-metal powder as the raw materials may be mixed in batch or continuously in advance by mixing them in advance. Alternatively, both may be separately charged and reacted with fluorine gas while mixing in a reactor.
[0006]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
Example 1
A mixture of 30 g of sodium fluoride and 10 g of red phosphorus was charged into a batch reactor made of nickel having an inner diameter of 40 mm and a length of 1000 mm, heated to 100 ° C. with an external heater, and then 0.3% of F 2 diluted with 50% with N 2. It was continuously fed at a rate of liter / min for one hour.
The reaction product gas was sampled as needed, analyzed by an infrared spectrophotometer and gas chromatography, and the average composition was determined.
Example 2
A mixture of 30 g of calcium fluoride and 5 g of silicon powder was charged into the same reactor as in Example 1, heated to 140 ° C. by an external heater, and then F 2 diluted to 50% with N 2 at a rate of 0.5 L / min. For one hour.
The reaction product gas was sampled as needed, analyzed by an infrared spectrophotometer and gas chromatography, and the average composition was determined.
Example 3
A mixture of 30 g of aluminum fluoride and 10 g of arsenic powder was charged into the same reactor as in Example 2, heated to 80 ° C. by an external heater, and then F 2 diluted to 70% with N 2 at a rate of 0.1 liter / min. For one hour.
The reaction product gas was sampled as needed, analyzed by gas chromatography, and the average composition was determined.
Example 4
EXAMPLE 3 Sodium fluoride in the same reactor as 20g, was charged a mixture of boron powder 5g, the ratio of temperature was raised to 0.99 ° C. in external heater, the F 2 diluted to 50% N 2 0.3 L / min For one hour.
The reaction product gas was sampled as needed, analyzed by an infrared spectrophotometer and gas chromatography, and the average composition was determined.
Example 5
1 kg of sodium fluoride and 0.2 kg of boron powder were charged into an iron batch reactor (with a horizontal stirring blade) having an inner diameter of 100 mmφ and a length of 1000 mm, mixed well with stirring, heated to 150 ° C. with an external heater, and then N 2 . the F 2 diluted to 50% was 2 hours continuously fed at a rate 10 liters / min. The reaction product gas was sampled as needed, analyzed by an infrared spectrophotometer and gas chromatography, and the average composition was determined.
Example 6
1 kg of calcium fluoride and 0.1 kg of red phosphorus powder were charged into the same reactor as in Example 5, mixed well with stirring, heated to 80 ° C. with an external heater, and then 100% F 2 at a rate of 1 liter / min. The mixture was continuously fed for 3 hours, and the generated gas was collected in a 10-liter SUS cylinder cooled with liquid nitrogen. The weight of the collected gas was 380 g. The collected gas was sampled, was analyzed by infrared spectrophotometer and gas chromatography, PF 5 purity was 99.9%.
[0007]
Comparative Example 1
The same reactor as in Example 5 was charged with 1 kg of silicon powder, heated to 100 ° C. by an external heater, and fed with F 2 diluted to 50% with N 2 at a rate of 1 liter / min. After 15 minutes due to the reaction heat, the reaction temperature rose to 460 ° C., and the temperature could not be adjusted even if the F 2 charging rate was reduced to 0.5 liter / min.
Comparative Example 2
The same reactor as in Example 5 was charged with 1 kg of sodium fluoride and 0.2 kg of red phosphorus powder, heated to 40 ° C. by an external heater, and then fed with 100% F 2 at a rate of 1 liter / min. hardly proceed, from the outlet of the reactor is a high concentration of unreacted F 2 was detected.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23262993A JP3569536B2 (en) | 1993-09-20 | 1993-09-20 | Production method of inorganic fluoride gas at room temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23262993A JP3569536B2 (en) | 1993-09-20 | 1993-09-20 | Production method of inorganic fluoride gas at room temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0781903A JPH0781903A (en) | 1995-03-28 |
JP3569536B2 true JP3569536B2 (en) | 2004-09-22 |
Family
ID=16942318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23262993A Expired - Lifetime JP3569536B2 (en) | 1993-09-20 | 1993-09-20 | Production method of inorganic fluoride gas at room temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3569536B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4559570B2 (en) * | 1999-12-09 | 2010-10-06 | ステラケミファ株式会社 | Method for producing high purity zinc borofluoride hexahydrate |
JP4014451B2 (en) | 2001-09-11 | 2007-11-28 | セントラル硝子株式会社 | Method for producing silicon tetrafluoride |
JP5307409B2 (en) | 2007-08-16 | 2013-10-02 | ステラケミファ株式会社 | Method for producing phosphorus pentafluoride and hexafluorophosphate |
JP2010042937A (en) * | 2008-08-08 | 2010-02-25 | Stella Chemifa Corp | Method for producing phosphorus pentafluoride and hexafluorophosphates |
US8784763B2 (en) * | 2009-03-13 | 2014-07-22 | Honeywell International Inc. | Methods and reactor designs for producing phosphorus pentafluoride |
JP5865314B2 (en) * | 2013-08-21 | 2016-02-17 | ステラケミファ株式会社 | Method for producing phosphorus pentafluoride and hexafluorophosphate |
CN114570294B (en) * | 2022-04-21 | 2023-10-13 | 金宏气体股份有限公司 | Boron trifluoride continuous production device and method based on ebullated bed reactor |
-
1993
- 1993-09-20 JP JP23262993A patent/JP3569536B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0781903A (en) | 1995-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04175216A (en) | Production of high-purity hexafluorophosphoric acid compound | |
EP0123100B1 (en) | Process for the manufacture of silicon | |
JP3569536B2 (en) | Production method of inorganic fluoride gas at room temperature | |
JP2018062427A (en) | Process for producing chlorine trifluoride | |
US4668286A (en) | Process for making zero valent titanium from an alkali metal fluotitanate | |
US2830888A (en) | Process for the preparation of titanium and zirconium subchlorides | |
JP2008143777A (en) | Process for fluorination of boron hydrides | |
JPS63233007A (en) | Production of chloropolysilane | |
JPH046104A (en) | Production of anhydrous potassium flouride for synthesizing organic fluorine compound | |
JPS60186407A (en) | Preparation of finely powdered zirconium nitride | |
JP4842272B2 (en) | Method for fluorinating manganese compounds | |
US4106928A (en) | Chlorination process for producing aluminum | |
CA1225230A (en) | Process for the production of silane | |
JPS62265112A (en) | Production of graphite intercalation complex | |
JPS58181710A (en) | Manufacture of alkali monofluorophosphate | |
JPH0553723B2 (en) | ||
JP2930351B2 (en) | Manufacturing method of NF (3) | |
US3334151A (en) | Process for manufacturing organic containing fluorine | |
JP2613261B2 (en) | Method for producing trichlorosilane | |
JP2800838B2 (en) | Nitrogen trifluoride production method | |
US2794733A (en) | Method for preparing calcium | |
JP2856636B2 (en) | Production method of ammonium cryolite | |
JP2535525B2 (en) | Production method of silane | |
US3086842A (en) | Fluorination and oxidation of uranium tetrafluoride to uranium hexafluoride by perchloryl fluoride | |
US2813005A (en) | Process of producing alkali metal fluotitanates in which the titanium has a valence of at least two and not greater than three |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040621 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080625 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090625 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090625 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100625 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110625 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110625 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120625 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120625 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |