[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3568102B2 - 直接変換受信機 - Google Patents

直接変換受信機 Download PDF

Info

Publication number
JP3568102B2
JP3568102B2 JP20985498A JP20985498A JP3568102B2 JP 3568102 B2 JP3568102 B2 JP 3568102B2 JP 20985498 A JP20985498 A JP 20985498A JP 20985498 A JP20985498 A JP 20985498A JP 3568102 B2 JP3568102 B2 JP 3568102B2
Authority
JP
Japan
Prior art keywords
signal
low
pass filter
electric field
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20985498A
Other languages
English (en)
Other versions
JP2000049875A (ja
Inventor
浩 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP20985498A priority Critical patent/JP3568102B2/ja
Priority to US09/313,008 priority patent/US6356746B1/en
Priority to CNB99108943XA priority patent/CN1171421C/zh
Publication of JP2000049875A publication Critical patent/JP2000049875A/ja
Application granted granted Critical
Publication of JP3568102B2 publication Critical patent/JP3568102B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Circuits Of Receivers In General (AREA)
  • Superheterodyne Receivers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パーソナルハンディーホン、携帯電話、ページャ等の移動体通信装置に関し、より詳しくは直接変換方式を適用する直接変換受信機に関する。
【0002】
【従来の技術】
近年、パーソナルハンディーホン、携帯電話、無線呼び出し(ページャ)、コードレス電話などの主に移動体通信に用いる無線通信装置は劇的に普及している。これらの無線通信装置の受信システムとして、その構成が集積化しやすく小型化かつ軽量化に適した直接変換受信機が知られている。
【0003】
従来の直接変換受信機として、例えば、特開平7−135514号公報に開示されているような構成が知られている。従来の直接変換受信機の受信回路の構成例を図17に示す。図17は周波数偏移変調(Frequency Shift Keying、略してFSKと称する)を適用した場合の受信回路構成を示したものであり、以下にその構成および作用を説明する。
【0004】
直接変換受信機は、無線信号を受信する受信アンテナ101と、受信信号を減衰する信号減衰器(ATT)102と、信号減衰器102からの受信信号を増幅して変調信号103として出力する受信信号増幅器104と、ローカル信号105を生成する局部発振器106と、ローカル信号105の位相を90度移相する90度移相器107と、変調信号103とローカル信号105とを混合する第1の信号混合器108と、変調信号103とローカル信号105を90度移相した信号とを混合する第2の信号混合器109とを有して構成される。
【0005】
また、第1の信号混合器108の出力信号に含まれている受信信号と同相のベースバンド信号(ここでは高調波成分を除去したIベースバンド信号)のみを通過させてIベースバンド信号110を出力するI低域通過フィルタ111と、第2の信号混合器109の出力信号に含まれている受信信号を90度移相したベースバンド信号(ここでは高調波成分を除去したQベースバンド信号)のみを通過させてIベースバンド信号110と互いに直交するQベースバンド信号112を出力するQ低域通過フィルタ113とが設けられている。これらの低域通過フィルタ111,113は、遮断周波数が変化しない固定遮断周波数のフィルタで構成されている。
【0006】
さらに、Iベースバンド信号110およびQベースバンド信号112を入力として復調を行って復調信号114を出力する復調手段115と、Iベースバンド信号110を入力として受信信号レベルを検出し、信号減衰器102へ制御信号を出力するための電界強度検出手段116とが設けられている。
【0007】
次に、上記のように構成された従来の直接変換受信機の受信動作について説明する。まず、受信アンテナ101で受信した無線信号は、電界強度検出手段116の制御信号によって受信信号レベルを制御する信号減衰器102に入力される。信号減衰器102の出力信号は受信信号増幅器104で増幅され、変調信号103として第1および第2の信号混合器108,109にそれぞれ出力される。一方、局部発振器106から発生したローカル信号105は、第1の信号混合器108において変調信号103と混合されてI低域通過フィルタ111に出力されるのと同時に、90度移相器107でその位相が90度移相されて第2の信号混合器109において変調信号103と混合されてQ低域通過フィルタ113に出力される。
【0008】
そして、I低域通過フィルタ111およびQ低域通過フィルタ113を通過して得られたIベースバンド信号110およびQベースバンド信号112は、復調手段115に出力されてここで復調され、復調信号114が得られる。また、電界強度検出手段116において、Iベースバンド信号110を入力として受信信号レベルが検出され、この受信信号レベルに比例した制御信号が信号減衰器102へ出力される。
【0009】
無線受信機において、受信すべき所望の受信波以外に他の電波が妨害波として同時にアンテナで受信される場合、特に受信帯域に影響を及ばすほどの信号レベルの大きい複数の妨害波を受信した場合は、これらの受信した電波の信号間で相互変調(Inter Modulation)による歪みが発生し、受信すべき所望の受信波(希望波)の受信感度が劣化してしまう問題点がある。
【0010】
上記問題点を改善するために、一般にAGC(Auto Gain Control )と呼ばれる、受信した信号のレベルに応じて受信系のゲインを制御することにより、増幅器や信号混合器での歪みの発生を抑制し、受信すべき希望波の受信感度を改善しようとする技術が提案されている。これを図17の構成に当てはめると、電界強度検出手段116により受信信号レベルに応じた制御信号をアンテナの直後にある信号減衰器102に出力し、この制御信号に基づいて信号減衰器102により受信アンテナ101で受信した信号レベルを制御する構成要素により、AGC手段が構成される。このようなAGC手段によって、受信信号増幅器104や第1の信号混合器108および第2の信号混合器109における相互変調による歪みを抑えることが可能となる。
【0011】
【発明が解決しようとする課題】
最近では、携帯電話等の無線通信装置の劇的な普及に伴い、IC集積化に適した直接変換受信機の需要が増大しており、また、移動体通信のユーザの増大に伴って移動体通信に関する通信容量も急激に増加している。このような移動体通信装置の需要増大に対応するため、無線通信の伝送速度の高速化および通信周波数の狭帯域化を進める必要がでてきている。
【0012】
直接変換受信機の狭帯域化を行う際、隣接チャネルの電波(隣接波)による妨害波の影響を軽減することを優先して、I低域通過フィルタおよびQ低域通過フィルタの低域遮断周波数を低く設定した場合、局部発振器の発振周波数が受信波の搬送波周波数と大きくオフセットしてずれていると、所望の受信信号成分はI低域通過フィルタおよびQ低域通過フィルタにおいて通過帯域外となり、除去されて復調できなくなってしまうという問題点が生じる。
【0013】
従来の直接変換受信機では、使用されるI低域通過フィルタおよびQ低域通過フィルタのそれぞれの遮断周波数は通常固定となっているため、前記問題点を解決するために、隣接波の遮断特性を犠牲にしてI低域通過フィルタおよびQ低域通過フィルタの低域遮断周波数を高めに設定するような構成を用いる必要があった。
【0014】
本発明は、上記事情に鑑みてなされたもので、隣接波の信号レベルに応じて低域通過フィルタの遮断周波数を可変することによって、隣接波の影響を軽減できると共に、受信すべき変調信号の搬送波周波数に対するローカル信号の発振周波数の周波数オフセットの許容性を向上することが可能な直接変換受信機を提供することを目的とする。
【0025】
【課題を解決するための手段】
前述した目的を達成するために、本発明の直接変換受信機は、第1に、ローカル信号を発生する局部発振器と、受信信号に基づいた変調信号と前記ローカル信号とを混合する第1の信号混合器と、前記変調信号と前記ローカル信号を90度移相した信号とを混合する第2の信号混合器と、前記第1の信号混合器の出力信号の高周波成分を除去してIベースバンド信号を抽出するI低域通過フィルタと、前記第2の信号混合器の出力信号の高周波成分を除去してQベースバンド信号を抽出するQ低域通過フィルタと、前記Iベースバンド信号および前記Qベースバンド信号を処理して前記受信信号の復調信号を得る復調手段と、前記I低域通過フィルタと前記Q低域通過フィルタの少なくとも一方の出力に基づいて受信信号の信号レベルを検出する電界強度検出手段と、前記I低域通過フィルタまたは前記Q低域通過フィルタを少なくとも2つの異なる遮断周波数に設定した状態で前記電界強度検出手段により検出した信号レベルをそれぞれ保持する電界強度保持手段と、前記電界強度保持手段の出力に基づいて隣接波の信号レベルを検出する隣接波検出手段と、前記隣接波検出手段の出力信号により前記I低域通過フィルタと前記Q低域通過フィルタの遮断周波数を可変制御するベースバンドフィルタ制御手段と、を備えたものである。
【0026】
上記第1の直接変換受信機では、隣接波検出手段により検出した隣接波の信号レベル、例えば隣接波の有無に応じて、I低域通過フィルタおよびQ低域通過フィルタの遮断周波数を変化させることにより、隣接チャネルからの妨害が削減されて受信感度劣化が防止され、受信感度が向上すると共に、受信信号の搬送波周波数に対する局部発振器の発振周波数の周波数オフセットの許容性が向上する。
【0027】
本発明の直接変換受信機は、第2に、上記第1の直交変換受信機において、前記電界強度検出手段において電界強度検出する際の前記I低域通過フィルタおよび前記Q低域通過フィルタの遮断周波数の設定と、前記電界強度検出手段における信号保持タイミングとを制御する動作制御手段を備えたものである。
【0028】
上記第2の直接変換受信機では、動作制御手段により電界強度検出手段および電界強度検出手段を制御することにより、異なる複数の周波数帯域における受信信号の信号レベルが検出され、これに基づいて隣接波の大きさを検出することができ、隣接波の大きさに応じてI低域通過フィルタおよびQ低域通過フィルタの遮断周波数を変化させることが可能となる。これによって、隣接波の影響が低減されると共に、受信信号の搬送波周波数に対する局部発振器の発振周波数の周波数オフセットの許容性が向上する。
【0029】
本発明の直接変換受信機は、第3に、上記第1の直交変換受信機において、前記電界強度検出手段は、前記I低域通過フィルタおよび前記Q低域通過フィルタの出力を入力として受信信号の信号レベルを検出するものである。
【0030】
上記第3の直接変換受信機では、電界強度検出手段においてI低域通過フィルタおよびQ低域通過フィルタの出力を入力として受信信号の信号レベルを検出することにより、電界強度検出時の検波効率が向上する。
【0031】
本発明の直接変換受信機は、第4に、上記第1の直交変換受信機において、前記隣接波検出手段は、前記電界強度保持手段からの少なくとも2つの出力を入力として、これらの異なる周波数帯域における入力信号の信号レベルを比較して前記隣接波の大きさを示す信号を生成するものである。
【0032】
上記第4の直接変換受信機では、電界強度検出手段からの少なくとも2つの出力に基づいて、隣接波検出手段により異なる周波数帯域における信号レベルの比較によって隣接波の大きさ、例えば隣接波の有無を示す信号が得られ、この信号に応じて、I低域通過フィルタおよびQ低域通過フィルタの遮断周波数を変化させることが可能であり、隣接波の影響が低減されると共に、局部発振器の発振周波数と受信信号の搬送波周波数との周波数オフセットの許容量が拡大する。
【0033】
本発明の直接変換受信機は、第5に、上記第1の直交変換受信機において、前記I低域通過フィルタおよび前記Q低域通過フィルタは、遮断周波数変更手段を有しており、前記ベースバンドフィルタ制御手段は、前記隣接波検出手段の出力信号に基づき、前記I低域通過フィルタおよび前記Q低域通過フィルタの遮断周波数を可変制御するためのフィルタ制御信号を出力し、このフィルタ制御信号によって前記I低域通過フィルタおよび前記Q低域通過フィルタの遮断周波数を離散的または連続的に変化させるものである。
【0034】
上記第5の直接変換受信機では、ベースバンドフィルタ制御手段よりフィルタ制御信号を出力してI低域通過フィルタおよびQ低域通過フィルタの遮断周波数変更手段を制御し、これらの低域通過フィルタの遮断周波数を離散的もしくは連続的に変化させることが可能であり、隣接波の影響が低減されると共に、局部発振器の発振周波数と受信信号の搬送波周波数との周波数オフセットの許容量が拡大する。
【0035】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。本実施形態に係る直接変換受信機は、例えばパーソナルハンディーホン、携帯電話、ページャ等の移動体通信装置に設けられる受信手段に適用されるものである。
【0036】
[第1の実施形態]
図1は本発明の第1の実施形態に係る直接変換受信機の主要な受信回路構成を示すブロック図、図2は第1および第2の電界強度検出手段の出力特性を示す説明図、図3は電界強度検出手段の第1の構成例を示すブロック図、図4は図3の構成例における電界強度検出手段内部の出力波形を示す説明図、図5は電界強度検出手段の第2の構成例を示すブロック図、図6は図5の構成例における電界強度検出手段内部の出力波形を示す説明図、図7は隣接波検出手段の構成例を示すブロック図、図8はベースバンドフィルタ制御手段の第1の構成例を示すブロック図、図9は図8の構成例に対応する低域通過フィルタの第1の構成例を示すブロック図、図10は図8の構成例に対応する低域通過フィルタの第2の構成例を示すブロック図、図11はベースバンドフィルタ制御手段の第2の構成例を示すブロック図、図12は図11の構成例に対応する低域通過フィルタの構成例を示すブロック図、図13は復調手段の構成例を示すブロック図である。
【0037】
図1に示すように、本実施形態の直接変換受信機は、無線信号を受信する受信アンテナ1と、受信アンテナ1からの受信信号を増幅して変調信号3として出力する受信信号増幅器2と、受信した送信波の搬送波周波数にほぼ等しい周波数の第1のローカル信号5を発生する第1の局部発振器4と、第1のローカル信号5の位相を90度移相する90度移相器6と、変調信号3と第1のローカル信号5とを混合する第1の信号混合器7と、変調信号3と第1のローカル信号5を90度移相した信号とを混合する第2の信号混合器8とを有して構成される。
【0038】
また、第1の信号混合器7の出力信号から受信すべき変調成分を抽出してIベースバンド信号13を出力する第1のI低域通過フィルタ9aと、第1のI低域通過フィルタ9aの低域遮断周波数とは異なる固定の遮断周波数をもつ第2のI低域通過フィルタ9bと、第2の信号混合器8の出力信号から受信すべき変調成分を抽出してIベースバンド信号13と互いに直交するQベースバンド信号14を出力する第1のQ低域通過フィルタ10aと、第1のQ低域通過フィルタ10aの低域遮断周波数とは異なる固定の遮断周波数をもつ第2のQ低域通過フィルタ10bとが設けられている。第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aは、遮断周波数変更手段を有して構成され、後述のベースバンドフィルタ制御手段18から出力されるフィルタ制御信号19により遮断周波数を変更可能になっている。
【0039】
また、第1のI低域通過フィルタ9aから出力されるIベースバンド信号13と第1のQ低域通過フィルタ10aから出力されるQベースバンド信号14とを入力として検波、復調を行い復調信号12を出力する復調手段11と、第1のI低域通過フィルタ9aと第1のQ低域通過フィルタ10aの少なくとも一方の出力を入力として受信信号の信号レベルを出力する第1の電界強度検出手段15と、第2のI低域通過フィルタ9bと第2のQ低域通過フィルタ10bの少なくとも一方の出力を入力として受信信号の信号レベルを出力する第2の電界強度検出手段16と、第1の電界強度検出手段15および第2の電界強度検出手段16の出力を入力として隣接波の信号レベルを検出する隣接波検出手段17と、隣接波検出手段17の出力信号を入力として第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの遮断周波数を変更するためのフィルタ制御信号19を出力するベースバンドフィルタ制御手段18とが設けられている。
【0040】
次に、上記のように構成された本実施形態における直接変換受信機の受信動作について説明する。まず、受信アンテナ1で受信した無線信号は、受信信号増幅器2で増幅され、変調信号3として第1および第2の信号混合器7,8にそれぞれ出力される。一方、第1の局部発振器4から発生した第1のローカル信号5は、第1の信号混合器7において変調信号3と混合されて第1のI低域通過フィルタ9aに出力されるのと同時に、90度移相器6でその位相が90度移相されて第2の信号混合器8において変調信号3と混合されて第1のQ低域通過フィルタ10aに出力される。
【0041】
また、第1の信号混合器7の出力は、第1のI低域通過フィルタ9aとは異なる遮断周波数をもつ第2のI低域通過フィルタ9bにも出力され、第2の信号混合器8の出力は、第1のQ低域低通過フィルタ10aとは異なる遮断周波数をもつ第2のQ低域通過フィルタ10bにも出力される。
【0042】
第1のI低域通過フィルタ9aは、ベースバンドフィルタ制御手段18から出力されるフィルタ制御信号19の制御により遮断周波数を変更して、第1の信号混合器7の出力信号から高周波成分を除去し受信するのに必要な変調成分、すなわちベースバンド信号を含む低周波成分のみを抽出して低い周波数帯域のIベースバンド信号13を出力する。また、第1のQ低域通過フィルタ10aは、ベースバンドフィルタ制御手段18から出力されるフィルタ制御信号19の制御により遮断周波数を変更して、第2の信号混合器8の出力信号から高周波成分を除去し受信するのに必要な変調成分、すなわちベースバンド信号を含む低周波成分のみを抽出して、Iベースバンド信号13と互いに直交する低い周波数帯域のQベースバンド信号14を出力する。
【0043】
そして、復調手段11は、それぞれ第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aを通って抽出されたIベースバンド信号13およびQベースバンド信号14を入力として、検波および復調を行って復調信号12を生成し出力する。
【0044】
このとき、第1の電界強度検出手段15は、第1のI低域通過フィルタ9aと第1のQ低域通過フィルタ10aの少なくとも一方の出力を入力として、受信信号に関するこれらの低域通過フィルタ9a,10aの通過帯域内の信号レベル(以下、受信波レベルと称する)を出力する。また第2の電界強度検出手段16は、第2のI低域通過フィルタ9bと第2のQ低域通過フィルタ10bの少なくとも一方の出力を入力として、受信信号に関するこれらの低域通過フィルタ9b,10bの通過帯域内の受信波レベルを出力する。
【0045】
前記第1の電界強度検出手段15および第2の電界強度検出手段16は、一般に図2に示すように、電界強度検出手段に入力される受信波レベルが大きくなるにつれて出力信号も増えるような入出力特性を持つことが知られている。
【0046】
ここで、図3ないし図5を参照して第1の電界強度検出手段15および第2の電界強度手段16の構成および動作を説明する。
【0047】
図3および図4は電界強度検出手段の第1の構成例を示したものである。第1の電界強度検出手段15は、増幅器30、検波整流回路31、低域通過フィルタ33を有して構成される。この構成において、増幅器30により第1のI低域通過フィルタ9aまたは第1のQ低域通過フィルタ10aの出力信号を増幅する。次に、増幅器30より出力された信号を検波整流回路31によって検波整流する。最後に、低域通過フィルタ33により、検波整流回路31の出力信号を積分(平均化)し、その出力信号の直流成分を得る。この直流成分は、第1のI低域通過フィルタ9aまたは第1のQ低域通過フィルタ10aの通過帯域内平均電力を表すものであり、隣接波検出手段17へ出力される。図4は電界強度検出手段の内部の動作波形を示したものである。本図において、増幅器30で増幅された信号の出力波形の一例が増幅器出力として、検波整流回路31の出力信号が検波整流回路出力として、それぞれ示されている。
【0048】
同様に、第2の電界強度検出手段16も増幅器34、検波整流回路35、低域通過フィルタ37を有して構成されている。ただし、入力される信号が第2のI低域通過フィルタ9bあるいは第2の低域通過フィルタ10bからの出力信号であり、低域通過フィルタ37からの出力信号は第2のI低域通過フィルタ9bまたは第2のQ低域通過フィルタ10bの通過帯域内平均電力を表すものとなっている。
【0049】
図5および図6は電界強度検出手段の第2の構成例を示したものである。第1の電界強度検出手段15は、増幅器30a,30b、検波整流回路31a,31b、加算器32、低域通過フィルタ33を有して構成される。この構成において、増幅器30aにより第1のI低域通過フィルタ9aの出力を、増幅器30bにより第1のQ低域通過フィルタ10aの出力をそれぞれ増幅する。次に、増幅器30a,30bより出力されたそれぞれの信号を検波整流回路31a,31bによってそれぞれ検波整流する。そして、加算器32により、検波整流回路31a,31bのそれぞれの出力信号を加算し、低域通過フィルタ33へ加算した信号を出力する。最後に、低域通過フィルタ33により、加算器32の出力信号を積分(平均化)し、その出力信号の直流成分を得る。この直流成分は、第1のI低域通過フィルタ9aおよび第2の低域通過フィルタ10aの通過帯域内平均電力を表すものであり、隣接波検出手段17へ出力される。図6は電界強度検出手段の内部の動作波形を示したものである。本図において、増幅器30a,30bのそれぞれの出力信号a,bの一例が増幅器出力aおよび増幅器出力bとして、加算器32の出力信号の一例が加算器出力として、それぞれ示されている。
【0050】
同様に、第2の電界強度検出手段16も増幅器30a,30b、検波整流回路31a,31b、加算器32、低域通過フィルタ33を有して構成されている。ただし、入力される信号が第2のI低域通過フィルタ9bおよび第2の低域通過フィルタ10bからの出力信号であり、低域通過フィルタ37からの出力信号は第2のI低域通過フィルタ9bおよび第2のQ低域通過フィルタ10bの通過帯域内平均電力を表すものとなっている。
【0051】
この電界強度検出手段の第2の構成例は、第1の構成例と比較すると、第1の電界強度検出手段15および第2の電界強度検出手段16に入力される信号が、図6中の増幅器30a,30bの増幅器出力a,bに示すような互いに直交している信号であるため、加算器出力としてみると検波効率が高くなる。
【0052】
次に、隣接波検出手段17の構成例を図7に示す。隣接波検出手段17は、信号減衰器40を有して構成され、第1の電界強度検出手段15と第2の電界強度検出手段16の出力に基づいて、隣接チャネルからの妨害波、すなわち隣接波の信号レベルの検出を行うものである。本実施形態では、所定の信号レベル以上か否かによって隣接波の有無を検出する。信号減算器40は、第1の電界強度検出手段15の出力と第2の電界強度検出手段16の出力との信号レベル差を求めてベースバンドフィルタ制御手段18へ出力するようになっている。
【0053】
本発明の実施形態では、ベージャに用いられている高度無線呼出システム標準規格(RCR STD−43)に基づいて、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの低域遮断周波数を10KHz 、第2のI低域通過フィルタ9bおよび第2のQ低域通過フィルタ10bの低域遮断周波数を35KHz に設定しており、また、チャネル間隔は25KHz としている。もし隣接波が存在しており、受信信号に含まれている場合、第2のI低域通過フィルタ9bおよび第2のQ低域通過フィルタ10bは隣接波を通過させるが、第1のI低域通過フィルタ9aおよび第2のI低域通過フィルタ10aは隣接波を通過させない。その結果、第2の電界強度検出手段16の出力が第1の電界強度検出手段15の出力よりも大きくなり、これらの信号レベルを比較して差を求めることによって隣接波があるかどうかを検出することが可能である。
【0054】
次に、図8ないし図12を参照して、ベースバンドフィルタ制御手段18および第1のI低域通過フィルタ9a、第1のQ低域通過フィルタ10aの構成および動作を説明する。
【0055】
ベースバンドフィルタ制御手段18は、隣接波検出手段17の出力信号に基づいて、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの遮断周波数を切り換え制御するための制御信号であるフィルタ制御信号19を生成し出力するものである。
【0056】
図8はベースバンドフィルタ制御手段18の第1の構成例を示したものである。第1の構成例のベースバンドフィルタ制御手段18は、ウインドコンパレータ41を有して構成される。ウインドコンパレータ41は、隣接波検出手段17からの入力信号が予め設定しておいた所定値の範囲内であれば、ハイ(High)レベル(もしくはロー(Low )レベル)をフィルタ制御信号19として第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aへ出力する。このフィルタ制御信号19によって、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aは遮断周波数を変化させることができる。
【0057】
なお、図8に示した例ではウインドコンパレータを1つしか用いていないが、異なる入力信号範囲でハイレベル(またはローレベル)を出力するウインドコンパレータを2つ以上設けて構成することもできる。この場合、それぞれのコンパレータ出力信号を論理回路(ANDもしくはOR等の論理ゲート)を用いて判定することにより、隣接波検出手段17から入力された信号を多段階の範囲で領域判定し、この判定結果、すなわち隣接波のレベル量に応じて遮断周波数を多段階に(離散的に)変化させるような構成が可能である。
【0058】
実際に、前述した高度無線呼出システム標準規格(RCR STD−43)に基づく設定において隣接波を検出した場合、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの低域遮断周波数を10KHz から8KHz に狭帯域化することで、受信すべき所望の受信波の信号には影響を及ぼさずに、かつ隣接波の影響を軽減することが可能である。また、隣接波が検出されない場合、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの低域遮断周波数を8KHz から10KHz に広帯域化することで、第1の局部発振器4の発振周波数と受信信号の搬送波周波数との周波数オフセットの許容性を大きくすることが可能である。
【0059】
前述したベースバンドフィルタ制御手段の第1の構成例に対応する、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの構成例を図9および図10に示す。これらの構成例は、前述のフィルタ制御信号19に応じて遮断周波数を切り換える(離散的に変化させる)遮断周波数変更手段を有している。
【0060】
図9は第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの第1の構成例を示したものである。第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aは、これらの低域通過フィルタを構成する抵抗素子の合成抵抗を変化させて遮断周波数を切り換えるよう設定されており、この低域通過フィルタの構成は受動型低域通過フィルタの構成として知られている。以下、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aを総称して受動型低域通過フィルタと呼ぶことにする。
【0061】
受動型低域通過フィルタは、第1または第2の信号混合器7,8と接続された低域通過フィルタ入力端子72、並列接続されて設けられた抵抗素子70,74,76,78、これらの抵抗素子74,76,78に接続されたスイッチ75,77,79、一端が抵抗素子70に接続され他端が接地されている容量素子71、セレクタ42、復調手段11等に接続された低域通過フィルタ出力端子73を有して構成される。抵抗素子70は一端が低域通過フィルタ入力端子72になっており、他端が容量素子71の一端およびスイッチ75,77,79の一方の端子に接続された低域通過フィルタ出力端子73も兼ねている。
【0062】
受動型低域通過フィルタへの入力信号は、抵抗素子70,74,76,78および容量素子71の定数に基づいて低周波成分が通過され、低域通過フィルタ出力端子73からIもしくはQベースバンド信号13,14が出力される。セレクタ42は、ベースバンドフィルタ制御手段18からのフィルタ制御信号19に基づいて、スイッチ75,77,79をオン・オフするようになっている。ここで、抵抗素子74,76,78、スイッチ75,77,79およびセレクタ42により遮断周波数変更手段が構成される。
【0063】
例えば、図8のベースバンドフィルタ制御手段18において、ウインドコンパレータ41を1つで構成し、出力のフィルタ制御信号19がハイレベルまたはローレベルの2値の信号の場合、図9におけるセレクタ42では少なくとも1つのスイッチを制御する。ここで、スイッチ75だけがオフからオン(残りのスイッチはすべてオフのまま)となった場合、抵抗素子74が抵抗素子70と並列に接続され、低域通過フィルタとしての合成抵抗が減少して、結果として低域通過フィルタの遮断周波数が高くなる。反対に、スイッチ75がオフ(残りのスイッチはすべてオフのまま)となった場合、抵抗素子74が抵抗素子70から切断され、低域通過フィルタとしての合成抵抗が増加して、低域通過フィルタの遮断周波数が低くなる。このように、フィルタ内部の合成抵抗を変化させることで、受動型低域通過フィルタの遮断周波数を切り換えるようにしている。
【0064】
図10は第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの第2の構成例を示したものである。図9の第1の構成例は抵抗素子をスイッチによって切り換えているが、第2の構成例は抵抗素子の代わりに容量素子の方を切り換える構成としている。受動型低域通過フィルタは、第1または第2の信号混合器7,8と接続された低域通過フィルタ入力端子82、抵抗素子80、一端が抵抗素子80に接続され他端が接地されて並列に設けられた容量素子81,84,86,88、これらの容量素子84,86,88に接続されたスイッチ85,87,89、セレクタ42、復調手段11等に接続された低域通過フィルタ出力端子83を有して構成される。動作原理については前述の第1の構成例と同様であるため、詳細な説明はここでは割愛する。
【0065】
なお、図9の構成例では、抵抗素子を並列に配置しそれぞれの抵抗素子に対して直列にスイッチを配置して構成しているが、別な構成方法として、抵抗素子を直列に配置しそれぞれの抵抗素子に対して並列にスイッチを配置して構成することも可能である。
【0066】
また、図8のベースバンドフィルタ制御手段18においてウインドコンパレータ41を1つ以上で構成した場合、ベースバンドフィルタ制御手段18は、多重化した(シリアルまたはパラレルの)フィルタ制御信号19をセレクタ42に出力することによって、セレクタ42ではその多重化されたフィルタ制御信号によってスイッチをいろいろな組み合わせで切り換え制御することが可能である。
【0067】
また、本構成例において使用するスイッチ75,77,79(85,87,89)としては、例えばトランジスタ等のIC回路に使用しうるものであればいかなるものでも良い。また、低域通過フィルタの構成例として、本構成例では1次受動型低域通過フィルタの例を挙げたが、フィルタの次数は1次以上であればいずれでも良く、また能動型低域通過フィルタで構成しても良く、種々の構成のフィルタを適用可能である。
【0068】
図11はベースバンドフィルタ制御手段18の第2の構成例を示したものである。第2の構成例のベースバンドフィルタ制御手段18は、電圧・電流変換回路43を有して構成される。電圧・電流変換回路43は、一般的に知られているように、隣接波検出手段17からの出力信号の電圧を電流に変換し、フィルタ制御信号19として第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aへ出力する。このベースバンドフィルタ制御手段18に対応する第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aは、前記変換された電流に比例して抵抗成分(コンダクタンスgm)を変化させるgmアンプを用いて遮断周波数変更手段を構成することにより、隣接チャネルでの妨害波の量に応じて遮断周波数を連続的に変化させることが可能である。
【0069】
図12は第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの第3の構成例を示したものである。第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aは、前述したベースバンドフィルタ制御手段の第2の構成例に対応するもので、低域通過フィルタを構成する抵抗素子の値を連続的に変化させて遮断周波数を変更することが可能となっている。
【0070】
第3の構成例の低域通過フィルタは、第1または第2の信号混合器7,8と接続された低域通過フィルタ入力端子92、一般的に知られた差動増幅器で構成され入力電流に比例して抵抗成分(コンダクタンスgm)を変化させるgmアンプ90、一端がgmアンプ90と接続され他端が接地された容量素子91、復調手段11等に接続されIもしくはQベースバンド信号13,14を出力する低域通過フィルタ出力端子93を有して構成される。
【0071】
この構成においては、図11に示す第2の構成例のベースバンドフィルタ制御手段18から出力されるフィルタ制御信号19によって、以下に示す式のように、差動増幅器のコレクタ電流を連続的に変化させる。
gm=Ic /(2×Vt ) …(1)
Ic :差動増幅器のコレクタを流れる電流 Vt :熱電圧(常温で26mV)
上記差動増幅器のコレクタ電流の変化により、コンダクタンスgmを変化させて等価的に抵抗成分を変化させることによって、低域通過フィルタの遮断周波数を連続的に変化させることが可能である。
【0072】
なお、本構成例では、1次の低域通過フィルタの例を挙げたが、フィルタの次数は1次以上であればいずれでも良く、また受動型、能動型等、フィルタの型式に限定されない種々の構成が適用可能である。
【0073】
次に、図13を参照して復調手段11の構成および動作について説明する。復調手段11は、第2のローカル信号21を発生する第2の局部発振器20、第2のローカル信号21の位相を90度移相する90度移相器22、第3の信号混合器23、第4の信号混合器24、信号加算器25、波形整形フィルタ26、周波数検波器27を有して構成される。
【0074】
前述のように、Iベースバンド信号13とQベースバンド信号14とは互いに直交した信号である。第4の信号混合器24は、第2の局部発振器20の出力信号である第2のローカル信号21とQベースバンド信号14とを混合したものを出力する。一方、第3の信号混合器23は、第2のローカル信号21の位相を90度移相した信号とIベースバンド信号13とを混合したものを出力する。そして信号加算器25において、第3および第4の信号混合器23,24のそれぞれの出力信号を加算することにより、第2のローカル信号21の周波数を中心とした出力信号が得られる。
【0075】
受信した変調信号3が周波数偏移変調(FSK)の場合、信号加算器25の出力信号は前述のように第2のローカル信号21の周波数を中心として同じ周波数偏移のFSK信号となる。ここで、第2の局部発振器20の発振周波数を、第1の局部発振器4の発振周波数よりもかなり低い周波数となるように構成すれば、IC化しやすい回路構成をとることができる。
【0076】
波形整形フィルタ26は、信号加算器25からの出力信号を濾波して、第2のローカル信号21の周波数を中心とした変調信号が含まれる周波数帯域幅のみを通過させ、それ以外の高周波及び低周波成分を除去して波形整形を行う。そして、周波数検波器27は、波形整形フィルタ26からの変調信号が含まれる周波数帯域幅のみからなる信号を入力して周波数検波する。これにより、復調信号12を得ることができる。周波数検波器27の例としては、パルスカウント検波やクワドラチャ検波等、周波数検波できるものであればいずれでも用いることができる。
【0077】
上述したように、本実施形態では、第1および第2の電界強度検出手段15,16により第1のI低域通過フィルタ9aおよび第2の低域通過フィルタ10aの通過帯域内の受信波レベル(受信信号の平均電力)を検出し、隣接波検出手段17により前記2つの電界強度検出手段の出力信号差に基づいて隣接波(隣接チャネルの電波)があるかどうかを検出し、隣接波の有無に応じて第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの遮断周波数を変更制御するような構成となっている。ここで、隣接波があると判断された場合、ベースバンドフィルタ制御手段18は、隣接波検出手段17からの出力信号に基づいてフィルタ制御信号19を出力し、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの遮断周波数を下げて、隣接チャネルからの妨害波(すなわち隣接波)の影響を軽減する。一方、隣接波がないと判断された場合、ベースバンドフィルタ制御手段18は、隣接波検出手段17からの出力信号に基づいてフィルタ制御信号19を出力し、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの遮断周波数を上げて、受信すべき変調信号3の搬送波周波数に対する第1の局部発振器4の発振周波数の周波数オフセットの許容性を向上させる。
【0078】
これにより、隣接波がある場合は、隣接波による受信感度劣化を軽減することができ、隣接波の悪影響をなくして受信感度の向上を図ることが可能となる。また、隣接波がない場合は、第1のローカル信号の発振周波数と受信すべき変調信号の搬送波周波数との周波数オフセットの許容範囲を拡大することができ、ローカル信号を発生する局部発信器の周波数バラツキの許容量を大きくとることが可能となる。従って、簡単な構成で受信感度劣化のない直接変換受信機を構成でき、受信装置の小型化、低コスト化を図ることができる。
【0079】
[第2の実施形態]
図14は本発明の第2の実施形態に係る直接変換受信機の主要な受信回路構成を示すブロック図、図15は電界強度保持手段の構成例を示すブロック図、図15はベースバンドフィルタ制御手段の構成例を示すブロック図である。
【0080】
第2の実施形態の直接変換受信機は、図1に示した第1の実施形態における第2の電界強度検出手段の代わりに、電界強度保持手段28とCPU29とを有しており、CPU29により電界強度保持手段28およびベースバンドフィルタ制御手段18を制御するような構成となっている。その他の部分の構成は第1の実施形態とほぼ同様であり、ここでは異なる部分のみ説明する。
【0081】
第1の電界強度検出手段15は、第1のI低域通過フィルタ9aまたは第1のQ低域通過フィルタ10aの出力を入力として、受信信号に関するこれらの低域通過フィルタ9a,10aの通過帯域内の受信波レベルを出力する。第1の電界強度検出手段15の出力信号は、電界強度保持手段28に入力され、その保持タイミングはCPU29によって制御されるようになっている。
【0082】
電界強度保持手段28は、図15に示すように、第1のサンプルホールド回路50aおよび第2のサンプルホールド回路50bを有して構成され、第1の電界強度検出手段15の出力信号がそれぞれ入力されるようになっている。第1および第2のサンプルホールド回路50a,50bは、CPU29からの制御信号によって入力信号をそれぞれサンプルホールドし、個々に保持された信号を隣接波検出手段17に出力する。隣接波検出手段17は、電界強度保持手段28より入力される信号のレベル差によって隣接波の有無を検出し、その検出結果をベースバンドフィルタ制御手段18へ出力する。
【0083】
ベースバンドフィルタ制御手段18は、図16に示すように、ウインドコンパレータ51とセレクタ52とを有して構成され、隣接波検出手段17の出力信号およびCPU29からの制御信号に基づき、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの低域遮断周波数を制御するものである。ウインドコンパレータ51は、隣接波検出手段17からの入力信号が予め設定しておいた所定値の範囲内であれば、ハイ(High)レベル(もしくはロー(Low )レベル)をセレクタ52に出力する。セレクタ52は、ウインドコンパレータ51からの出力信号およびCPU29からの制御信号に基づき、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの低域遮断周波数を制御できるようなフィルタ制御信号19を出力する。
【0084】
なお、図16に示した例ではウインドコンパレータを1つしか用いていないが、異なる入力信号範囲でハイレベル(またはローレベル)を出力するウインドコンパレータを2つ以上設けて構成し、隣接波のレベル量に応じて遮断周波数を多段階に変化させるようにすることも可能である。
【0085】
次に、本実施形態におけるCPU29の制御について説明する。まず、CPU29はベースバンドフィルタ制御手段18へ制御信号を送り、ベースバンドフィルタ制御手段18によって、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの低域遮断周波数を10KHz に設定する。この状態で、第1の電界強度検出手段15は、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの通過帯域内の受信波レベルを検出し、その検出結果を電界強度保持手段28へ出力する。電界強度保持手段28では、CPU29の制御信号によって第1のサンプルホールド回路50aにおいて第1の電界強度検出手段15からの出力信号レベルを保持し、保持した信号を隣接波検出手段17へ出力する。
【0086】
次いで、CPU29はベースバンドフィルタ制御手段18へ制御信号を送り、ベースバンドフィルタ制御手段18によって、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの低域遮断周波数を35KHz に設定する。この状態で、第1の電界強度検出手段15は、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの通過帯域内の受信波レベルを検出し、その検出結果を電界強度保持手段28へ出力する。電界強度保持手段28では、CPU29の制御信号によって第2のサンプルホールド回路50bにおいて第1の電界強度検出手段15からの出力信号レベルを保持し、保持した信号を隣接波検出手段17へ出力する。
【0087】
そして、隣接波検出手段17は、電界強度保持手段28において保持された2つの信号を入力として、これらの信号レベルを比較することによって隣接波があるかどうか検出し、その検出結果をベースバンドフィルタ制御手段18へ出力する。
【0088】
ベースバンドフィルタ制御手段18は、隣接波検出手段17の出力信号およびCPU29からの制御信号に基づいて、隣接波がある場合は、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの低域遮断周波数を10KHz から8KHz に変更して狭帯域化する。これにより、隣接波の影響を低減することが可能となる。また、隣接波が検出されない場合は、第1のI低域通過フィルタ9aおよび第1のQ低域通過フィルタ10aの低域遮断周波数を8KHz から10KHz に変更して広帯域化する。これにより、第1の局部発振器4の発振周波数と受信信号の搬送波周波数との周波数オフセットの許容範囲を広く、すなわち受信信号の搬送波周波数に対する第1の局部発振器4の発振周波数の周波数オフセットの許容性を大きくすることが可能となる。
【0089】
このように、第2の実施形態によれば、前述した第1の実施形態と同様に、隣接波がある場合は、隣接波による悪影響を軽減することが可能となると共に、隣接波がない場合は、第1のローカル信号の発振周波数と受信すべき変調信号の搬送波周波数との周波数オフセットの許容範囲を拡大することが可能であり、簡単な構成で受信感度劣化のない直接変換受信機を構成でき、受信装置の小型化、低コスト化を図ることができる。
【0090】
また、第2の実施形態では、一つの電界強度手段(第1の電界強度手段15)だけで隣接波の検出を行うことができ、さらなる回路規模縮小および消費電流の削減を図ることができる。
【0091】
【発明の効果】
以上説明したように、本発明によれば、直接変換受信機において、隣接波検出手段により検出した隣接波の信号レベル、例えば隣接波の有無に応じて、隣接波の影響度合いが大きいときにはI低域通過フィルタおよびQ低域通過フィルタの遮断周波数を下げ、隣接波の影響度合いが小さいときにはI低域通過フィルタおよびQ低域通過フィルタの遮断周波数を上げるように、低域通過フィルタの遮断周波数を可変することによって、隣接波の影響を軽減できると共に、受信すべき変調信号の搬送波周波数に対するローカル信号の発振周波数の周波数オフセットの許容性を向上することが可能となる効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る直接変換受信機の主要な受信回路構成を示すブロック図である。
【図2】第1および第2の電界強度検出手段の出力特性を示す説明図である。
【図3】電界強度検出手段の第1の構成例を示すブロック図である。
【図4】図3の構成例における電界強度検出手段内部の出力波形を示す説明図である。
【図5】電界強度検出手段の第2の構成例を示すブロック図である。
【図6】図5の構成例における電界強度検出手段内部の出力波形を示す説明図である。
【図7】隣接波検出手段の構成例を示すブロック図である。
【図8】ベースバンドフィルタ制御手段の第1の構成例を示すブロック図である。
【図9】図8の構成例に対応する低域通過フィルタの第1の構成例を示すブロック図である。
【図10】図8の構成例に対応する低域通過フィルタの第2の構成例を示すブロック図である。
【図11】ベースバンドフィルタ制御手段の第2の構成例を示すブロック図である。
【図12】図11の構成例に対応する低域通過フィルタの構成例を示すブロック図である。
【図13】復調手段の構成例を示すブロック図である。
【図14】本発明の第2の実施形態に係る直接変換受信機の主要な受信回路構成を示すブロック図である。
【図15】電界強度保持手段の構成例を示すブロック図である。
【図16】ベースバンドフィルタ制御手段の構成例を示すブロック図である。
【図17】従来の直接変換受信機の受信回路構成例を示すブロック図である。
【符号の説明】
1 受信アンテナ
2 受信信号増幅器
3 変調信号
4 第1の局部発振器
5 第1のローカル信号
6,22 90度移相器
7 第1の信号混合器
8 第2の信号混合器
9a 第1のI低域通過フィルタ
9b 第2のI低域通過フィルタ
10a 第1のQ低域通過フィルタ
10b 第2のQ低域通過フィルタ
11 復調手段
12 復調信号
13 Iベースバンド信号
14 Qベースバンド信号
15 第1の電界強度検出手段
16 第2の電界強度検出手段
17 隣接波検出手段
18 ベースバンドフィルタ制御手段
19 フィルタ制御信号
20 第2の局部発振器
21 第2のローカル信号
23 第3の信号混合器
24 第4の信号混合器
25 信号加算器
26 波形整形フィルタ
27 周波数検波器
28 電界強度保持手段
29 CPU

Claims (5)

  1. ローカル信号を発生する局部発振器と、
    受信信号に基づいた変調信号と前記ローカル信号とを混合する第1の信号混合器と、
    前記変調信号と前記ローカル信号を90度移相した信号とを混合する第2の信号混合器と、
    前記第1の信号混合器の出力信号の高周波成分を除去してIベースバンド信号を抽出するI低域通過フィルタと、
    前記第2の信号混合器の出力信号の高周波成分を除去してQベースバンド信号を抽出するQ低域通過フィルタと、
    前記Iベースバンド信号および前記Qベースバンド信号を処理して前記受信信号の復調信号を得る復調手段と、
    前記I低域通過フィルタと前記Q低域通過フィルタの少なくとも一方の出力に基づいて受信信号の信号レベルを検出する電界強度検出手段と、
    前記I低域通過フィルタまたは前記Q低域通過フィルタを少なくとも2つの異なる遮断周波数に設定した状態で前記電界強度検出手段により検出した信号レベルをそれぞれ保持する電界強度保持手段と、
    前記電界強度保持手段の出力に基づいて隣接波の信号レベルを検出する隣接波検出手段と、
    前記隣接波検出手段の出力信号により前記I低域通過フィルタと前記Q低域通過フィルタの遮断周波数を可変制御するベースバンドフィルタ制御手段と、
    を備えたことを特徴とする直接変換受信機。
  2. 前記電界強度検出手段において電界強度検出する際の前記I低域通過フィルタおよび前記Q低域通過フィルタの遮断周波数の設定と、前記電界強度保持手段における信号保持タイミングとを制御する動作制御手段を備えたことを特徴とする請求項記載の直接変換受信機。
  3. 前記電界強度検出手段は、前記I低域通過フィルタおよび前記Q低域通過フィルタの出力を入力として受信信号の信号レベルを検出することを特徴とする請求項記載の直接変換受信機。
  4. 前記隣接波検出手段は、前記電界強度保持手段からの少なくとも2つの出力を入力として、これらの異なる周波数帯域における入力信号の信号レベルを比較して前記隣接波の大きさを示す信号を生成することを特徴とする請求項記載の直接変換受信機。
  5. 前記I低域通過フィルタおよび前記Q低域通過フィルタは、遮断周波数変更手段を有しており、
    前記ベースバンドフィルタ制御手段は、前記隣接波検出手段の出力信号に基づき、前記I低域通過フィルタおよび前記Q低域通過フィルタの遮断周波数を可変制御するためのフィルタ制御信号を出力し、このフィルタ制御信号によって前記I低域通過フィルタおよび前記Q低域通過フィルタの遮断周波数を離散的または連続的に変化させることを特徴とする請求項記載の直接変換受信機。
JP20985498A 1998-07-24 1998-07-24 直接変換受信機 Expired - Fee Related JP3568102B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20985498A JP3568102B2 (ja) 1998-07-24 1998-07-24 直接変換受信機
US09/313,008 US6356746B1 (en) 1998-07-24 1999-05-17 Direct converting receiver
CNB99108943XA CN1171421C (zh) 1998-07-24 1999-07-01 直接变换接收机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20985498A JP3568102B2 (ja) 1998-07-24 1998-07-24 直接変換受信機

Publications (2)

Publication Number Publication Date
JP2000049875A JP2000049875A (ja) 2000-02-18
JP3568102B2 true JP3568102B2 (ja) 2004-09-22

Family

ID=16579732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20985498A Expired - Fee Related JP3568102B2 (ja) 1998-07-24 1998-07-24 直接変換受信機

Country Status (3)

Country Link
US (1) US6356746B1 (ja)
JP (1) JP3568102B2 (ja)
CN (1) CN1171421C (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI112741B (fi) 1998-11-26 2003-12-31 Nokia Corp Menetelmä ja järjestely RF-signaalien lähettämiseksi ja vastaanottamiseksi tiedonsiirtojärjestelmien erilaisissa radiorajapinnoissa
JP2000307665A (ja) * 1999-04-22 2000-11-02 Matsushita Electric Ind Co Ltd 無線受信装置の復調回路及び復調方法
SE9903532D0 (sv) * 1999-09-28 1999-09-28 Jiren Yuan Versatile charge sampling circuits
JP3402298B2 (ja) * 2000-01-25 2003-05-06 日本電気株式会社 送信装置
DE10219362B4 (de) * 2002-04-30 2009-12-31 Advanced Micro Devices, Inc., Sunnyvale Automatische Verstärkungssteuerung für einen Direktumsetzer und Verfahren zum Steuern der Verstärkung eines Basisbandsignals in einem derartigen Empfänger
GB2394847B (en) * 2002-11-02 2005-09-07 Zarlink Semiconductor Ltd Digital receiver
JP5100966B2 (ja) * 2005-01-17 2012-12-19 ソニーモバイルコミュニケーションズ株式会社 非接触型近距離無線通信装置、携帯電話端末
CN101479948B (zh) * 2006-06-28 2012-07-25 松下电器产业株式会社 相邻信道干扰检测装置及方法
US8929840B2 (en) * 2007-09-14 2015-01-06 Qualcomm Incorporated Local oscillator buffer and mixer having adjustable size
US8599938B2 (en) * 2007-09-14 2013-12-03 Qualcomm Incorporated Linear and polar dual mode transmitter circuit
US8639205B2 (en) * 2008-03-20 2014-01-28 Qualcomm Incorporated Reduced power-consumption receivers
JP4766158B2 (ja) * 2009-06-30 2011-09-07 カシオ計算機株式会社 無線通信装置及び無線通信方法
US8787862B2 (en) 2011-10-17 2014-07-22 Broadcom Corporation Method of receiving and receivers
GB201119887D0 (en) 2011-10-17 2011-12-28 Renesas Mobile Corp Methods of receiving and receivers
GB201119888D0 (en) * 2011-11-17 2011-12-28 Renesas Mobile Corp Methods of receiving and receivers
US9118335B2 (en) * 2012-09-16 2015-08-25 Technische Universiteit Delft High resolution millimeter wave digitally controlled oscillator with reconfigurable distributed metal capacitor passive resonators
US10631752B2 (en) 2016-01-27 2020-04-28 Life Detection Technologies, Inc. Systems and methods for detecting physical changes without physical contact
US10080507B2 (en) 2016-01-27 2018-09-25 Life Detection Technologies, Inc. Systems and methods for detecting physical changes without physical contact
JP2018113547A (ja) * 2017-01-10 2018-07-19 株式会社村田製作所 ローパスフィルタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2280324B (en) * 1993-07-16 1998-07-22 Plessey Semiconductors Ltd Detectors
US5617451A (en) * 1993-09-13 1997-04-01 Matsushita Electric Industrial Co., Ltd. Direct-conversion receiver for digital-modulation signal with signal strength detection
GB2282030B (en) * 1993-09-14 1997-09-24 Plessey Semiconductors Ltd Direct conversion receiver
JP3073687B2 (ja) * 1996-02-09 2000-08-07 松下電器産業株式会社 フィルタに遮断周波数切替手段を備えた直接変換受信機
JPH09224059A (ja) * 1996-02-15 1997-08-26 General Res Of Electron Inc 直接変換fsk受信機

Also Published As

Publication number Publication date
CN1243371A (zh) 2000-02-02
US6356746B1 (en) 2002-03-12
JP2000049875A (ja) 2000-02-18
CN1171421C (zh) 2004-10-13

Similar Documents

Publication Publication Date Title
JP3568102B2 (ja) 直接変換受信機
JP3413060B2 (ja) 直接変換受信機
US20050147192A1 (en) High frequency signal receiver and semiconductor integrated circuit
JP3690889B2 (ja) 受信回路
US6577855B1 (en) Low IF receiver
JP4004553B2 (ja) 周波数変調されたデジタル信号のための集積可能な無線受信器回路
US8238858B2 (en) Communication device, multi-band receiver, and receiver
US8331895B2 (en) Receiving circuit
EP1083669B1 (en) Radio terminal device
WO2000051253A1 (fr) Unite de poste de radio
KR20000075616A (ko) 능동형 필터를 갖는 수신기 if 시스템
JP3073687B2 (ja) フィルタに遮断周波数切替手段を備えた直接変換受信機
JPH11234150A (ja) デジタル復調装置
JP2004048581A (ja) 受信装置及び利得制御システム
JP3411208B2 (ja) デジタル無線受信装置
US8675777B2 (en) Programmable if frequency filter for enabling a compromise between DC offset rejection and image rejection
JP2007228342A (ja) 受信装置およびそれを用いた送受信装置
US7511557B2 (en) Quadrature mixer circuit and RF communication semiconductor integrated circuit
JP2004297320A (ja) ダイバーシティ受信装置
KR100717438B1 (ko) Fm 수신기
JP2004080455A (ja) 受信回路およびこれを用いた無線通信装置
JP4598978B2 (ja) 無線受信機
JP2001244861A (ja) 無線受信装置及び方法
JP3964346B2 (ja) Fm信号受信器およびそれを用いる無線通信装置
JP4455699B2 (ja) 利得可変増幅回路および通信機器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees