JP3567034B2 - Purification method of alkoxysilane - Google Patents
Purification method of alkoxysilane Download PDFInfo
- Publication number
- JP3567034B2 JP3567034B2 JP31196295A JP31196295A JP3567034B2 JP 3567034 B2 JP3567034 B2 JP 3567034B2 JP 31196295 A JP31196295 A JP 31196295A JP 31196295 A JP31196295 A JP 31196295A JP 3567034 B2 JP3567034 B2 JP 3567034B2
- Authority
- JP
- Japan
- Prior art keywords
- alkoxysilane
- pressure
- compound
- ppm
- purifying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】
【発明の技術分野】
本発明はアルコキシシランに含まれる不純物を低減化する方法に関する。
【0002】
【発明の技術的背景とその問題点】
半導体工業用材料として利用されるアルコキシシランにおいて、その中に不純物として含まれる微量のハロゲン化有機化合物などのハロゲン化物が、半導体基板を侵し材料トラブルを起こすことが明らかになってきた。
アルコキシシラン中の不純物の低減化方法としては、特開昭63−238091号公報には不純物として含まれる塩素化合物の化学当量より過剰の金属アルコラートを用いる方法が記載されているが、この方法ではハロゲン化有機化合物の除去が不十分であるという問題がある。また、特開昭63−77887 号公報には有機ケイ素化合物を有機マグネシウム化合物と接触させ精製する方法が記載されているが有機マグネシウム化合物の調製が工業的に難しく、またアルコキシシランに使用した際には、アルコキシ基と有機マグネシウム化合物の有機残基が反応するため、アルコキシシランの収率が低下してしまうという問題もある。さらに特開平2−235887号公報には、アルコキシシラン中の塩素の除去において、周期律表IA族、IIA 族、またはIIB 族の金属からなる有機金属化合物と接触処理させる方法が示され、有機金属化合物として有機リチウム化合物、有機ナトリウム化合物、有機カリウム化合物、有機マグネシウム化合物、有機カルシウム化合物、有機亜鉛化合物が例示される。しかしこの方法では前述の公報記載の発明と同様な問題があり、また不純物であるハロゲン化有機化合物の除去が不十分であるという問題がある。また本出願人は、アルコキシシランの精製方法として、特定の有機亜鉛化合物を使用する方法を提案している(特開平4−26694 号公報)が、不純物であるハロゲン化有機化合物の除去の効率を上げることがさらに望まれている。
【0003】
【発明の目的】
本発明は簡便かつ効率的に不純物であるハロゲン化物をアルコキシシランから分離し、精製する方法を提供することを目的とするものである。
【0004】
【発明の構成】
本発明者等は、従来技術の欠点を解決するべく鋭意検討した結果、金属アルコラートを用いるアルコキシシランの精製方法において、加圧下で精製を行うことにより、ハロゲン化物含有量が大幅に減少することを見出し、本発明を完成するに至った。
即ち、本発明のアルコキシシランの精製方法は、ハロゲン化物を含有するアルコキシシランを金属アルコラートと加圧下に接触させたのち、アルコキシシランを分離することからなることを特徴とする。
【0005】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明において、精製の対象となるアルコキシシランとしては、トリメチルメトキシシラン、トリメチルエトキシシラン、トリエチルメトキシシラン、トリメチルイソプロポキシシラン、トリメチルブトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシラン、ジメチル−t−ブチルメトキシシラン、ジメチルフェニルメトキシシランなどのモノアルコキシシラン類、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシランなどのジアルコキシシラン類、メトリトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランなどのトリアルコキシシラン類、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシランなどのテトラアルコキシシラン類などが挙げられる。
【0006】
本発明の方法により除去されるハロゲン化物としては、メチルクロライド、メチルブロマイド、クロロベンゼン、ブロモベンゼン、クロロビフェニル、ブロモビフェニルのようなハロゲン化有機化合物あるいは塩化水素やクロロシラン化合物が例示されるが、これらに限定されず、これら以外のアルコキシシラン中に含まれる不純物としてのハロゲン化物も全て含まれる。
【0007】
本発明に使用される金属アルコラートとしては、ナトリウム、カリウム、マグネシウム、アルミニウム、チタン、ジルコニウムなどのメチラート、エチラート、イソプロピラート、n−プロピラート、n−ブチラートなどが例示され、中でも好ましくはアルカリまたはアルカリ土類金属のアルコラートが使用され、特に好ましくはカリウム、ナトリウムのアルコラートであり、さらに好ましくはナトリウムのアルコラートである。具体的にはナトリウムメチラート、カリウムメチラート、マグネシウムメチラート、アルミニウムメチラート、マグネシウムメチラートなどの金属メチラート類、ナトリウムエチラート、カリウムエチラート、マグネシウムエチラート、アルミニウムエチラート、マグネシウムエチラートなどの金属エチラート類、アルミニウムイソプロピラート、チタンテトライソプロピラートなどの金属イソプロピラート類、ジルコニウムテトラ−n−ブチラートなどの金属n−ブチラート類などが挙げられる。アルコールの種類からはメチラート、エチラートが好ましい。
金属アルコラートの使用量は、不純物であるハロゲン化物の塩素1当量に対して、1.0 〜10.0当量使用することが好ましい。使用量が少ない場合はハロゲン化物の除去が不十分となることがあるため 1.0当量以上使用することが好ましい。また、アルコキシシランを連続して処理する場合、金属アルコラートとハロゲン化物の反応物や金属アルコラート自身が固体の場合が多いため、金属アルコラートを多く使用すると精製後の残渣が多く発生することになり、残渣の除去の回数が多く必要となるため、精製の効率が低下する。そのため10.0当量以下の使用量とすることが好ましい。特に好ましくは 1.0〜3.0 当量使用する。
金属アルコラートは一般に固体の場合が多いため、取扱いを容易にするためにメタノール、エタノール、イソプロパノールなどのアルコールやトルエン、キシレンなどの有機溶剤の溶液として使用してもよい。
【0008】
本発明のアルコキシシランの精製方法においては、アルコキシシランと金属アルコラートを加圧下に接触させた後に、アルコキシシランを分離する。アルコキシシランと金属アルコラートの接触は、通常、アルコキシシランに金属アルコラートを加えて攪拌すればよい。本発明においては、加圧下に接触させることに特徴があり、大気圧との差(ゲージ圧)が好ましくは0.01〜10kg/cm2 となるように加圧して接触を行なう。0.01kg/cm2 未満では加圧によるハロゲン化物の除去の効果が十分でなく、10kg/cm2 よりも高いと、装置の設計や圧力の制御が繁雑になる。特に好ましくは 1.0〜3.0 kg/cm2 の範囲で加圧を行う。
本発明においては加圧下に接触を行う場合、加熱をすることが好ましく、50〜200 ℃、特に好ましくは90〜150 ℃に加熱をする。このように加熱をすることにより、アルコキシシラン中の不純物であるハロゲン化物が分解をして、例えばHCl を発生し、さらに加圧とすることによりHCl と金属アルコラートの反応が良好に進行し、その結果ハロゲン化物の除去が良好に行われると思われる。本発明における加圧下の接触は、好ましくは 0.5〜10時間、特に好ましくは2〜5時間行う。また、加圧下の接触の際、あるいは加圧下の接触の前後において、ハロゲン化物を減少させるために活性炭による処理を併用してもよく、特に接触と同時、あるいは接触後に併用することが好ましい。活性炭による処理は、アルコキシシランに活性炭の粉末を加えて攪拌すればよい。
【0009】
接触処理後は、蒸留、デカンテーション、濾過などの公知の方法でアルコキシシランを分離すればよく、例えば、そのまま、あるいは濾過後に、常圧下あるいは減圧下で、常法により蒸留することにより、アルコキシシランを分離し、目的の精製アルコキシシランを得ることができる。
【0010】
【発明の効果】
本発明の方法によれば、アルコキシシラン中の不純物であるハロゲン化物を効率よく除去することができ、さらに金属アルコラートの使用量か少なくてすむため、精製後の残渣の処理の回数を減らすことができ、生産性に優れるという特徴を有する。
【0011】
【実施例】
以下に実施例をあげ、本発明をさらに具体的に説明する。なお、実施例中の部および%は、特に断らない限りそれぞれ重量部および重量%を示し、粘度は25℃での値を示す。
実施例中の不純物の定量方法は、ケイ光X線により行い、また電気伝導度も併せて測定した。
【0012】
実施例1
塩素分が150ppm(この内、HCl 分が1.3ppm)、電気伝導度が15μs /cmのメチルトリメトキシシラン 150gを容器に入れ、これに粉末状のナトリウムメチラート 2.5gを添加し、 1.0kg/cm2 (ゲージ圧)の加圧下で、110 ℃で3.5 時間攪拌した。攪拌後、常圧下で蒸留し、メチルトリメトキシシラン 142gを得た。このものの塩素分は8ppm (HCl分は検出されず)であり、また電気伝導度は1.1 μs /cmであった。
【0013】
実施例2
圧力を 2.5kg/cm2 (ゲージ圧)とした他は、実施例1と同様に処理を行ない、メチルトリメトキシシラン 143gを得た。このものの塩素分(およびHCl 分)は検出されず、また電気伝導度は 0.3μs /cmであった。
【0014】
実施例3
ナトリウムメチラートの25%メタノール溶液10gを使用した他は、実施例1と同様に処理を行ない、メチルトリメトキシシラン 144gを得た。このものの塩素分は5ppm( HCl分は検出されず) であり、また電気伝導度は 0.8μs /cmであった。
【0015】
実施例4
塩素分が110ppm(この内、HCl 分が1.0ppm) 、電気伝導度が12μs/cmのジメチルジメトキシシランを使用し、ナトリウムエチラートを 1.0g添加した他は、実施例1と同様に処理を行ない、ジメチルジメトキシシラン 143gを得た。このものの塩素分は7ppm(HCl 分は検出されず)であり、また電気伝導度は 1.0μs /cmであった。
【0016】
実施例5
塩素分が80ppm(この内、HCl 分が0.8ppm) 、電気伝導度が10μs /cmのメチルトリエトキシシラン 150gを容器に入れ、これにカリウムメチラートの25%メタノール溶液10gを添加し、3.0 kg/cm2(ゲージ圧)の加圧下で、 120℃で 5.0時間攪拌した。攪拌後常圧下で蒸留し、メチルトリエトキシシラン 136gを得た。このものの塩素分(およびHCl 分)は検出されず、また電気伝導度は 0.3μs/cmであった。
【0017】
比較例1
加圧をせずに常圧で100 ℃で攪拌を行った他は、実施例1と同様に処理を行ない、メチルトリメトキシシラン 140gを得た。このものの塩素分は29ppm( HCl分は検出されず)であり、また電気伝導度は10.6μs /cmであった。
【0018】
比較例2
ナトリウムメチラートの25%メタノール溶液10gを使用し、加圧をせずに常圧で82℃で攪拌を行った他は、実施例1と同様に処理を行ない、メチルトリメトキシシラン 142gを得た。このものの塩素分は22ppm(HCl 分は検出されず)であり、また電気伝導度は 9.4μs /cmであった。
【0019】
比較例3
ナトリウムメチラートを使用せず、加圧をせずに常圧で約 102℃で還流を行った他は、実施例1と同様に処理を行ない、メチルトリトキシシラン 136gを得た。このものの塩素分は150ppm(HCl分は50ppm)であり、また電気伝導度は15.1μs /cmであった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for reducing impurities contained in alkoxysilane.
[0002]
Technical background of the invention and its problems
In alkoxysilanes used as materials for semiconductor industry, it has become clear that traces of halides, such as halogenated organic compounds, contained as impurities therein attack semiconductor substrates and cause material problems.
As a method for reducing impurities in the alkoxysilane, JP-A-63-238091 describes a method using a metal alcoholate in excess of the chemical equivalent of a chlorine compound contained as an impurity. However, there is a problem that the organic compound is not sufficiently removed. Japanese Patent Application Laid-Open No. 63-77887 discloses a method of contacting an organosilicon compound with an organomagnesium compound for purification, but the preparation of the organomagnesium compound is industrially difficult. However, since the alkoxy group reacts with the organic residue of the organomagnesium compound, there is also a problem that the yield of alkoxysilane is reduced. Further, JP-A-2-23587 discloses a method of removing chlorine in an alkoxysilane by contacting it with an organometallic compound comprising a metal belonging to Group IA, IIA, or IIB of the periodic table. Examples of the compound include an organic lithium compound, an organic sodium compound, an organic potassium compound, an organic magnesium compound, an organic calcium compound, and an organic zinc compound. However, this method has the same problem as the invention described in the above-mentioned publication, and also has the problem that the halogenated organic compound as an impurity is insufficiently removed. In addition, the present applicant has proposed a method of using a specific organic zinc compound as a method for purifying alkoxysilane (Japanese Patent Application Laid-Open No. 4-26694). It is further desired to raise.
[0003]
[Object of the invention]
An object of the present invention is to provide a method for simply and efficiently separating a halide as an impurity from alkoxysilane and purifying the same.
[0004]
Configuration of the Invention
The present inventors have conducted intensive studies to solve the disadvantages of the prior art, and as a result, have found that, in a method for purifying alkoxysilane using a metal alcoholate, by performing purification under pressure, the halide content is significantly reduced. As a result, the present invention has been completed.
That is, the method for purifying an alkoxysilane of the present invention is characterized by comprising contacting an alkoxysilane containing a halide with a metal alcoholate under pressure, and then separating the alkoxysilane.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, as an alkoxysilane to be purified, trimethylmethoxysilane, trimethylethoxysilane, triethylmethoxysilane, trimethylisopropoxysilane, trimethylbutoxysilane, triphenylmethoxysilane, triphenylethoxysilane, dimethyl-t-butyl Monoalkoxysilanes such as methoxysilane and dimethylphenylmethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diphenyldimethoxysilane, dialkoxy such as diphenyldiethoxysilane, methylphenyldimethoxysilane and methylphenyldiethoxysilane Silanes, metritrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltrimethoxy Silane, trialkoxy silanes such as phenyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, etc. tetraalkoxysilanes such as tetra-isopropoxy silane.
[0006]
Examples of the halide removed by the method of the present invention include methyl chloride, methyl bromide, chlorobenzene, bromobenzene, chlorobiphenyl, halogenated organic compounds such as bromobiphenyl, and hydrogen chloride and chlorosilane compounds. It is not limited, and includes all halides as impurities contained in the alkoxysilane other than these.
[0007]
Examples of the metal alcoholate used in the present invention include methylates such as sodium, potassium, magnesium, aluminum, titanium, and zirconium, ethylates, isopropylate, n-propylate, n-butyrate, and the like. Alcoholates of similar metals are used, particularly preferably potassium and sodium alcoholates, more preferably sodium alcoholates. Specifically, metal methylates such as sodium methylate, potassium methylate, magnesium methylate, aluminum methylate, magnesium methylate, sodium ethylate, potassium ethylate, magnesium ethylate, aluminum ethylate, magnesium ethylate, etc. Examples include metal ethylates, metal isopropylates such as aluminum isopropylate and titanium tetraisopropylate, and metal n-butylates such as zirconium tetra-n-butylate. From the type of alcohol, methylate and ethylate are preferred.
The amount of the metal alcoholate to be used is preferably 1.0 to 10.0 equivalents to 1 equivalent of chlorine of the halide as an impurity. If the amount used is small, the removal of the halide may be insufficient, so it is preferable to use 1.0 equivalent or more. In addition, when the alkoxysilane is continuously treated, since a reaction product of the metal alcoholate and the halide or the metal alcoholate itself is often a solid, if a large amount of the metal alcoholate is used, many residues after purification will be generated. Since the number of times of removing the residue is required, the purification efficiency is reduced. Therefore, it is preferable that the amount used is 10.0 equivalents or less. Particularly preferably, 1.0 to 3.0 equivalents are used.
Since metal alcoholates are generally solid in many cases, they may be used as solutions of alcohols such as methanol, ethanol and isopropanol and organic solvents such as toluene and xylene for easy handling.
[0008]
In the method for purifying an alkoxysilane of the present invention, the alkoxysilane and the metal alcoholate are brought into contact with each other under pressure, and then the alkoxysilane is separated. In general, the contact between the alkoxysilane and the metal alcoholate may be performed by adding the metal alcoholate to the alkoxysilane and stirring the mixture. The present invention is characterized in that the contact is performed under pressure, and the contact is performed under pressure so that the difference (gauge pressure) from the atmospheric pressure is preferably 0.01 to 10 kg / cm 2 . 0.01 kg / cm is less than 2 not sufficient effect of removal of halide by the pressure, the greater than 10 kg / cm 2, the control of the design and the pressure of the apparatus is complicated. Particularly preferably, pressure is applied in a range of 1.0 to 3.0 kg / cm 2 .
In the present invention, when the contact is carried out under pressure, it is preferred to heat, preferably to 50 to 200 ° C, particularly preferably 90 to 150 ° C. By heating in this way, the halides, which are impurities in the alkoxysilane, are decomposed to generate, for example, HCl, and by further increasing the pressure, the reaction between HCl and the metal alcoholate proceeds favorably. The result appears to be good removal of halide. The contact under pressure in the present invention is preferably performed for 0.5 to 10 hours, particularly preferably 2 to 5 hours. Further, at the time of contact under pressure, or before and after the contact under pressure, treatment with activated carbon may be used in combination to reduce halides, and it is particularly preferable to use the treatment simultaneously with or after the contact. The treatment with activated carbon may be performed by adding activated carbon powder to alkoxysilane and stirring the mixture.
[0009]
After the contact treatment, the alkoxysilane may be separated by a known method such as distillation, decantation, or filtration.For example, the alkoxysilane may be distilled as it is or after filtration under normal pressure or reduced pressure by a conventional method. To obtain the desired purified alkoxysilane.
[0010]
【The invention's effect】
According to the method of the present invention, halides as impurities in the alkoxysilane can be efficiently removed, and furthermore, the amount of metal alcoholate used can be reduced, so that the number of treatments of the residue after purification can be reduced. It has the feature that it can be manufactured and is excellent in productivity.
[0011]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In the examples, parts and% indicate parts by weight and% by weight, respectively, unless otherwise specified, and the viscosity indicates a value at 25 ° C.
The method of quantifying impurities in the examples was performed by fluorescent X-rays, and the electric conductivity was also measured.
[0012]
Example 1
150 g of methyltrimethoxysilane having a chlorine content of 150 ppm (including HCl content of 1.3 ppm) and an electric conductivity of 15 μs / cm was placed in a container, and 2.5 g of powdery sodium methylate was added thereto. The mixture was stirred at 110 ° C. for 3.5 hours under a pressure of 0.0 kg / cm 2 (gauge pressure). After stirring, the mixture was distilled under normal pressure to obtain 142 g of methyltrimethoxysilane. Its chlorine content was 8 ppm (HCl content was not detected), and its electrical conductivity was 1.1 μs / cm.
[0013]
Example 2
The same treatment as in Example 1 was performed except that the pressure was changed to 2.5 kg / cm 2 (gauge pressure) to obtain 143 g of methyltrimethoxysilane. The chlorine content (and HCl content) was not detected, and the electric conductivity was 0.3 μs / cm.
[0014]
Example 3
The same treatment as in Example 1 was performed except that 10 g of a 25% methanol solution of sodium methylate was used to obtain 144 g of methyltrimethoxysilane. The chlorine content thereof was 5 ppm (HCl content was not detected), and the electric conductivity was 0.8 μs / cm.
[0015]
Example 4
Treatment was performed in the same manner as in Example 1 except that dimethyldimethoxysilane having a chlorine content of 110 ppm (of which HCl content was 1.0 ppm) and an electric conductivity of 12 μs / cm was used, and 1.0 g of sodium ethylate was added. Was carried out to obtain 143 g of dimethyldimethoxysilane. The chlorine content was 7 ppm (HCl content was not detected), and the electrical conductivity was 1.0 μs / cm.
[0016]
Example 5
150 g of methyltriethoxysilane having a chlorine content of 80 ppm (of which the HCl content is 0.8 ppm) and an electric conductivity of 10 μs / cm was placed in a container, and 10 g of a 25% methanol solution of potassium methylate was added thereto. The mixture was stirred at 120 ° C. for 5.0 hours under a pressure of 0.0 kg / cm 2 (gauge pressure). After stirring, the mixture was distilled under normal pressure to obtain 136 g of methyltriethoxysilane. The chlorine content (and HCl content) was not detected, and the electric conductivity was 0.3 μs / cm.
[0017]
Comparative Example 1
The same treatment as in Example 1 was carried out except that stirring was performed at 100 ° C. under normal pressure without pressurization, to obtain 140 g of methyltrimethoxysilane. Its chlorine content was 29 ppm (HCl content was not detected), and its electrical conductivity was 10.6 μs / cm.
[0018]
Comparative Example 2
A treatment was carried out in the same manner as in Example 1, except that 10 g of a 25% methanol solution of sodium methylate was used and stirring was performed at 82 ° C. without applying pressure, to obtain 142 g of methyltrimethoxysilane. . Its chlorine content was 22 ppm (HCl content was not detected), and its electrical conductivity was 9.4 μs / cm.
[0019]
Comparative Example 3
The same treatment as in Example 1 was carried out except that reflux was carried out at about 102 ° C. at normal pressure without pressurization without using sodium methylate, to obtain 136 g of methyltriethoxysilane. Its chlorine content was 150 ppm (HCl content was 50 ppm) and its electrical conductivity was 15.1 μs / cm.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31196295A JP3567034B2 (en) | 1995-11-30 | 1995-11-30 | Purification method of alkoxysilane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31196295A JP3567034B2 (en) | 1995-11-30 | 1995-11-30 | Purification method of alkoxysilane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09151190A JPH09151190A (en) | 1997-06-10 |
JP3567034B2 true JP3567034B2 (en) | 2004-09-15 |
Family
ID=18023541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31196295A Expired - Fee Related JP3567034B2 (en) | 1995-11-30 | 1995-11-30 | Purification method of alkoxysilane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3567034B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19849196A1 (en) * | 1998-10-26 | 2000-04-27 | Degussa | Process for neutralizing and reducing residual halogen content in alkoxysilanes or alkoxysilane-based compositions |
JP5247688B2 (en) * | 2006-06-20 | 2013-07-24 | ダウ・コーニング・コーポレイション | Process for the preparation of alkoxysilanes with reduced halide content |
ES2727702T3 (en) * | 2008-07-15 | 2019-10-18 | Callery Llc | Procedure to purify dialkyl sulfides |
JP5942926B2 (en) * | 2013-05-16 | 2016-06-29 | 信越化学工業株式会社 | Method for purifying alkoxysilane |
CA3114661C (en) | 2019-09-11 | 2022-03-22 | Dow Silicones Corporation | Method for the preparation use of an alkoxy-functional organohydrogensiloxane oligomer using purified starting materials and use of the oligomer |
WO2021050325A1 (en) | 2019-09-11 | 2021-03-18 | Dow Silicones Corporation | Method for the preparation of an alkoxy-functional organohydrogensiloxane oligomer and use of said oligomer |
-
1995
- 1995-11-30 JP JP31196295A patent/JP3567034B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09151190A (en) | 1997-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4714198B2 (en) | Purification method of chlorosilanes | |
EP2634142B1 (en) | Method for purifying chlorosilanes | |
CN102844322B (en) | Prepare the method for two organic dihalide halosilanes | |
EP0457175B1 (en) | Method of purification of alkoxysilanes | |
US20120183464A1 (en) | Process and use of amino-functional resins for dismutating halosilanes and for removing extraneous metals | |
JP3567034B2 (en) | Purification method of alkoxysilane | |
WO2024109453A1 (en) | Purification method for alkoxy silane composition | |
JP3786986B2 (en) | Recovery method of chloride in bent gas stream | |
EP0459499B1 (en) | Process for preparing silacycloalkanes | |
US4730074A (en) | Vapor phase alcoholysis of aminosilanes and carbamatosilanes | |
US4717773A (en) | Silicate esters and organosilicon compounds | |
EP3168190A1 (en) | Method for purifying chlorosilane | |
CN1837221B (en) | Production processes for triorganomonochlorosilanes | |
JP6014771B2 (en) | Monosilane production method using trialkoxysilane | |
CN101437830B (en) | Method for preparation of alkoxysilanes having reduced halide content | |
JP4435333B2 (en) | Method for producing alkoxysilane with low halogen content | |
JPH0742297B2 (en) | Method for producing dialkylzinc compounds | |
JPH10265480A (en) | Processing of gas containing silanes | |
JP2004250317A (en) | Process for refining chlorosilanes | |
TWI811520B (en) | Process for producing purified chlorosilanes | |
JP2523123B2 (en) | Silane gas manufacturing method | |
JP4172165B2 (en) | Method for producing organohalogenated silane compound having phenolic hydroxyl group protected with t-butoxy group | |
JPH11152290A (en) | Reduction in chlorocarbon content of crude organochlorosilane mixture | |
TWI726508B (en) | Method for reducing the content of boron compounds in a halosilane-containing composition | |
JP4603636B2 (en) | Process for producing organosiloxane from monohalosilane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040525 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040614 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
SG99 | Written request for registration of restore |
Free format text: JAPANESE INTERMEDIATE CODE: R316G99 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 4 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 4 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 4 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
SG99 | Written request for registration of restore |
Free format text: JAPANESE INTERMEDIATE CODE: R316G99 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 5 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 5 |
|
SG99 | Written request for registration of restore |
Free format text: JAPANESE INTERMEDIATE CODE: R316G99 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 5 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 5 |
|
SG99 | Written request for registration of restore |
Free format text: JAPANESE INTERMEDIATE CODE: R316G99 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 5 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 5 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
SG99 | Written request for registration of restore |
Free format text: JAPANESE INTERMEDIATE CODE: R316G99 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110618 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110618 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120618 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120618 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 9 |
|
S803 | Written request for registration of cancellation of provisional registration |
Free format text: JAPANESE INTERMEDIATE CODE: R316803 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |