[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3565944B2 - Separated liquid monitoring device - Google Patents

Separated liquid monitoring device Download PDF

Info

Publication number
JP3565944B2
JP3565944B2 JP10973095A JP10973095A JP3565944B2 JP 3565944 B2 JP3565944 B2 JP 3565944B2 JP 10973095 A JP10973095 A JP 10973095A JP 10973095 A JP10973095 A JP 10973095A JP 3565944 B2 JP3565944 B2 JP 3565944B2
Authority
JP
Japan
Prior art keywords
tank
separated liquid
liquid
separation
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10973095A
Other languages
Japanese (ja)
Other versions
JPH08299996A (en
Inventor
良行 菅原
範晴 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environment Co Ltd
Original Assignee
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Technology Co Ltd filed Critical Nishihara Environmental Technology Co Ltd
Priority to JP10973095A priority Critical patent/JP3565944B2/en
Publication of JPH08299996A publication Critical patent/JPH08299996A/en
Application granted granted Critical
Publication of JP3565944B2 publication Critical patent/JP3565944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、原汚泥を分離液と脱水ケーキとに分ける遠心脱水機、又は分離液と濃縮液とに分ける濃縮機の運転によって得られる分離液の性状を監視し、原汚泥に混入すべき薬剤の量を最適に制御する分離液監視装置に関するものである。
【0002】
【従来の技術】
従来から、遠心脱水方法を採用した固液分離処理により、汚泥処理をする技術について種々提供されており、その固液分離処理を促進するため、例えば無機凝集剤及び両性ポリマー等の薬剤が原汚泥に混入されて用いられている。
【0003】
そして、これらの無機凝縮剤や両性ポリマー等の薬剤の原汚泥に対する混入量を所定の値とするために、分離液に浸されて設置された濁度計(IR計)により分離液性状が測定され、この測定結果に従って上記薬剤の流入量を任意に調節していた。
【0004】
なお、汚泥性状の変化により分離状態が良好でない場合には、分離液に発生する泡が黒くなることが知られている。
【0005】
【発明が解決しようとする課題】
従来の分離液監視装置にあっては、分離液中の泡や浮遊物質(SS)の影響や、残留薬剤等の影響で分離液の濃度が均一とならず、分離液性状の測定が困難であったため、薬剤注入の最適制御が行えず、結果的に汚泥分離が不均一になってしまう等の問題点があった。
【0006】
また、分離液性状は該分離液に浸漬した濁度計によって直接測定するため、濁度計が汚れやすく、その洗浄が必要となるので、手間がかかりコスト高となるという問題点があった。
【0007】
この発明は上記のような問題点を解消するためになされたもので、原汚泥の固液分離に際して分離液の性状を濁度計を使用せずに監視することにより、汚泥性状の変化に応じて原汚泥に混入すべき薬剤の量を最適に制御し、固液分離の処理を促進することができる分離液監視装置を得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る分離液監視装置は、遠心脱水機又は濃縮機から送出される分離液を整流して導入する整流導入手段と、該整流導入手段から前記分離液を導入可能に形成した第一槽と、該第一槽の上方に配置され該第一槽で浮上した浮上物若しくは分離液の性状を計測する第一計測手段と、前記第一槽と連通させて該第一槽の分離液を導入する第二槽と、該第二槽の上方に配置され該第二槽で浮上した浮上物若しくは分離液の性状を計測する第二計測手段とを備えたものである。
【0009】
【作用】
この発明における分離液監視装置は、以下の作用を奏する。すなわち、遠心脱水機又は濃縮機から送出された分離液は、整流導入手段によって整流され、第一槽内に導入される。第一槽で浮上した浮上物若しくは分離液は、その性状を第一計測手段によって計測される。なお、第一槽をオーバーフローした浮上物若しくは分離液は、適宜排出される。
【0010】
次に第一槽の分離液は第二槽に導入され、第二槽で浮上した浮上物若しくは分離液は、その性状を第二計測手段によって計測される。なお、第二槽をオーバーフローした浮上物若しくは分離液も適宜排出される。
【0011】
第一計測手段及び第二計測手段によって計測された分離液等の性状に応じて、原汚泥に混入すべき薬剤の量が最適制御される。この場合において、第一計測手段及び第二計測手段は分離液に浸されて設置されていないので、汚れ等の影響を受けずに分離液性状を測定することができる。
【0012】
【実施例】
実施例1.
以下、この発明の一実施例を図について説明する。先ず、本実施例に係る分離液監視装置が使用される汚泥処理システム全体について説明する。図1はこの発明の一実施例による分離液監視装置が使用される汚泥処理システムを示す概念図であり、図において、1は原汚泥が貯溜されている汚泥タンク、2はこの汚泥タンク1内の原汚泥をパイプ3を通じて外部へ送出するポンプである。4はポンプ2により送出された原汚泥を収容し、高速回転による遠心分離により脱水を行った原汚泥の脱水ケーキと分離液とを分離して取り出す遠心脱水機である。
【0013】
また、5は両性ポリマーを収容した両性ポリマータンク、6はこの両性ポリマータンク5からの両性ポリマーを上記パイプ3へ送出し原汚泥に混合させるポンプ、7はその両性ポリマーの送出量を制御する制御器であり、後述する第一光センサー(第一計測手段)22若しくは第二光センサー(第二計測手段)28の計測結果に応じて動作可能に形成されている。
【0014】
さらに、8は無機凝集剤を収容した無機凝集剤タンク、9はこの無機凝集剤タンク8からの無機凝集剤を上記パイプ3へ送出し原汚泥に混合させるポンプ、10はその無機凝集剤の送出量を制御する制御器であり、後述する第一光センサー22若しくは第二光センサー28の計測結果に応じて動作可能に形成されている。
【0015】
11は上記遠心脱水機4から排出される分離液を排出するパイプで、分離液の一部をバイパスするバイパスパイプ12が接続されている。15は両性ポリマー等の薬剤の注入量を制御するために、バイパスパイプ12の途中に配設され、分離液の性状を監視する分離液監視装置である。16はこのバイパスパイプ12の途中に配設され、バイパスパイプ12中の分離液を分離液監視装置15に送出させるポンプ、17は脱水ケーキの排出通路である。
【0016】
以下、この発明の一実施例に係る分離液監視装置15の詳細を図について説明する。図2はこの発明の一実施例による分離液監視装置の概念図、図3は分離液の状態と色センサー値との関係を示したグラフ図、図4は分離液の状態と色センサー値との関係を示した表図である。図において、18はバイパスパイプ12に接続され、遠心脱水機4から送出される前記分離液を整流して導入する整流導入手段、20は整流導入手段18に連通させて形成し、その整流導入手段18を通過した分離液を下向きの流れで導入可能に形成された第一槽である。すなわちこの第一槽20は、上部を開口とした箱状に形成されている。
【0017】
22は第一槽20の上方に配置され、該第一槽20で浮上した浮上物若しくは分離液の性状(例えば、気泡の色)を計測する色センサー等の第一光センサー(第一計測手段)であり、その測定値データを上記制御器7若しくは制御器10に供給可能に形成されたものである。
【0018】
24は第一槽20の下部と連通させて該第一槽20の分離液を第二槽26へ導入移送する連通移送手段であり、第二槽26の下部と連通してある。この第二槽26も第一槽20と同様に、上部を開口とした箱状に形成されている。
【0019】
28は第二槽26の上方に配置され、該第二槽26で浮上した浮上物若しくは分離液の性状(例えば、気泡の色)を計測する色センサー等の第二光センサー(第二計測手段)であり、その測定値データを上記制御器7若しくは制御器10に供給可能に形成されたものである。
【0020】
なお、第一槽20及び第二槽26をオーバーフローした浮上物若しくは分離液が前記パイプ11に排出されるように、図示しない排出手段が設けられている。
【0021】
次に動作について説明する。遠心脱水機4から排出された分離液は、パイプ11、ポンプ16、バイパスパイプ12を経て、整流導入手段18に導入され、整流されて第一槽20に下向き流れとなって導入される。そして、第一槽20で浮上した浮上物若しくは分離液は、その性状(気泡の色等)を第一光センサー22によって計測される。第一槽20をオーバーフローした浮上物若しくは分離液は、図示しない排出手段によってパイプ11に排出される。
【0022】
次に第一槽20の分離液は、連通移送手段24を経て第二槽26の下部から上向き流れで第二槽26内に導入され、第二槽26で浮上した浮上物若しくは分離液は、その性状を第二光センサー28によって計測される。第二槽26をオーバーフローした浮上物若しくは分離液は、図示しない排出手段によってパイプ11に排出される。
【0023】
これら第一光センサー22及び第二光センサー28によって計測された測定値データは、制御器7若しくは制御器10に供給される。
【0024】
測定値データと分離液性状との関係は、例えば、図3及び図4に示すように把握することができる。したがって、これら測定値データと分離液性状との関係や注入すべき薬剤の量を予め検定しておくことによって、分離液等の性状に応じて原汚泥に混入すべき薬剤の量が制御器7,10によって最適制御される。
【0025】
またこの場合において、第一光センサー22及び第二光センサー28は分離液に直接浸されて設置されていないので、汚れ等の影響を受けずに分離液性状を正確に測定することができる。
【0026】
また、二つの第一光センサー22及び第二光センサー28によって分離液性状を測定できるので、分離液中の泡や浮遊物質(SS)の影響や、残留薬剤等の影響を受けにくくなる。
【0027】
【発明の効果】
以上のように、この発明によれば、遠心脱水機又は濃縮機から送出される分離液を整流して導入する整流導入手段と、該整流導入手段から前記分離液を導入可能に形成した第一槽と、該第一槽の上方に配置され該第一槽で浮上した浮上物若しくは分離液の性状を計測する第一計測手段と、前記第一槽と連通させて該第一槽の分離液を導入する第二槽と、該第二槽の上方に配置され該第二槽で浮上した浮上物若しくは分離液の性状を計測する第二計測手段とを備えて構成したので、汚泥性状の変化に応じて原汚泥に混入すべき薬剤の量を最適に制御し、固液分離の処理を促進することができる分離液監視装置を得ることができる。
【図面の簡単な説明】
【図1】この発明の一実施例による分離液監視装置が使用される汚泥処理システムを示す概念図である。
【図2】この発明の一実施例による分離液監視装置の概念図である。
【図3】分離液の状態と色センサー値との関係を示したグラフ図である。
【図4】分離液の状態と色センサー値との関係を示した表図である。
【符号の説明】
4 遠心脱水機
15 分離液監視装置
18 整流導入手段
20 第一槽
22 第一光センサー(第一計測手段)
26 第二槽
28 第二光センサー(第二計測手段)
[0001]
[Industrial applications]
The present invention monitors the properties of a separated liquid obtained by operating a centrifugal dehydrator that separates raw sludge into a separated liquid and a dewatered cake, or a concentrator that separates raw liquid into a separated liquid and a concentrated liquid. The present invention relates to a separated liquid monitoring device for optimally controlling the amount of a separated liquid.
[0002]
[Prior art]
Conventionally, various technologies for sludge treatment have been provided by solid-liquid separation treatment employing a centrifugal dehydration method, and in order to promote the solid-liquid separation treatment, for example, an agent such as an inorganic flocculant and an amphoteric polymer is mixed with raw sludge. It is used by being mixed in.
[0003]
The properties of the separated liquid are measured by a turbidity meter (IR meter) installed soaked in the separated liquid in order to set the amount of mixing of these inorganic condensing agents and amphoteric polymers into the raw sludge to a predetermined value. The inflow of the drug was adjusted arbitrarily according to the measurement results.
[0004]
It is known that when the separation state is not good due to a change in sludge properties, bubbles generated in the separation liquid become black.
[0005]
[Problems to be solved by the invention]
In the conventional separation liquid monitoring device, the concentration of the separation liquid is not uniform due to the effects of bubbles and suspended solids (SS) in the separation liquid, and the effects of residual chemicals, and it is difficult to measure the properties of the separation liquid. Therefore, there was a problem that optimal control of chemical injection could not be performed, resulting in non-uniform sludge separation.
[0006]
In addition, since the properties of the separated liquid are directly measured by a turbidimeter immersed in the separated liquid, the turbidity meter is liable to be stained and needs to be cleaned, which is troublesome and costly.
[0007]
The present invention has been made in order to solve the above-mentioned problems, and in response to a change in sludge properties, the properties of the separated liquid are monitored without using a turbidity meter during solid-liquid separation of the raw sludge. It is an object of the present invention to obtain a separated liquid monitoring device capable of optimally controlling the amount of chemicals to be mixed into raw sludge and promoting solid-liquid separation.
[0008]
[Means for Solving the Problems]
A separation liquid monitoring device according to the present invention includes a rectification introduction unit that rectifies and introduces a separation liquid sent from a centrifugal dehydrator or a concentrator, and a first tank that is formed so that the separation liquid can be introduced from the rectification introduction unit. And a first measuring means disposed above the first tank for measuring properties of a floating substance or a separated liquid floating in the first tank, and communicating the separated liquid in the first tank with the first tank. It is provided with a second tank to be introduced, and second measuring means arranged above the second tank and measuring the properties of a floating substance or a separated liquid floating in the second tank.
[0009]
[Action]
The separated liquid monitoring device according to the present invention has the following operations. That is, the separated liquid sent from the centrifugal dehydrator or the concentrator is rectified by the rectification introducing means, and is introduced into the first tank. The properties of the floating material or the separated liquid that floated in the first tank are measured by the first measuring means. In addition, the floating material or the separated liquid overflowing the first tank is appropriately discharged.
[0010]
Next, the separated liquid in the first tank is introduced into the second tank, and the properties of the floating substance or the separated liquid that floated in the second tank are measured by the second measuring means. In addition, a floating substance or a separated liquid overflowing the second tank is also appropriately discharged.
[0011]
The amount of the chemical to be mixed into the raw sludge is optimally controlled according to the properties of the separated liquid and the like measured by the first measuring means and the second measuring means. In this case, since the first measuring means and the second measuring means are not installed soaked in the separation liquid, the properties of the separation liquid can be measured without being affected by dirt or the like.
[0012]
【Example】
Embodiment 1 FIG.
An embodiment of the present invention will be described below with reference to the drawings. First, an entire sludge treatment system using the separated liquid monitoring device according to the present embodiment will be described. FIG. 1 is a conceptual diagram showing a sludge treatment system in which a separated liquid monitoring device according to one embodiment of the present invention is used. In the figure, reference numeral 1 denotes a sludge tank in which raw sludge is stored; Is a pump that sends out the raw sludge to the outside through the pipe 3. Reference numeral 4 denotes a centrifugal dewatering machine that stores the raw sludge sent out by the pump 2 and separates and extracts a dewatered cake and a separated liquid of the raw sludge that has been dewatered by high-speed rotation centrifugation.
[0013]
Reference numeral 5 denotes an amphoteric polymer tank containing the amphoteric polymer, 6 a pump for sending the amphoteric polymer from the amphoteric polymer tank 5 to the pipe 3 and mixing it with the raw sludge, and 7 a control for controlling the amount of the amphoteric polymer sent. And is operable in accordance with the measurement result of a first optical sensor (first measuring means) 22 or a second optical sensor (second measuring means) 28 described later.
[0014]
Further, 8 is an inorganic coagulant tank containing an inorganic coagulant, 9 is a pump for sending the inorganic coagulant from the inorganic coagulant tank 8 to the pipe 3 and mixed with the raw sludge, and 10 is a supply of the inorganic coagulant. This is a controller that controls the amount, and is operably formed in accordance with the measurement result of the first optical sensor 22 or the second optical sensor 28 described later.
[0015]
Reference numeral 11 denotes a pipe for discharging the separated liquid discharged from the centrifugal dehydrator 4, and a bypass pipe 12 for bypassing a part of the separated liquid is connected. Reference numeral 15 denotes a separation liquid monitoring device that is provided in the middle of the bypass pipe 12 and controls the properties of the separation liquid in order to control the injection amount of a drug such as an amphoteric polymer. Reference numeral 16 denotes a pump provided in the middle of the bypass pipe 12 for sending the separated liquid in the bypass pipe 12 to the separated liquid monitoring device 15. Reference numeral 17 denotes a drainage passage for the dehydrated cake.
[0016]
Hereinafter, details of the separated liquid monitoring device 15 according to one embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a conceptual diagram of a separated liquid monitoring apparatus according to one embodiment of the present invention, FIG. 3 is a graph showing the relationship between the state of the separated liquid and the color sensor value, and FIG. FIG. 4 is a table showing the relationship of FIG. In the figure, reference numeral 18 denotes a rectifying and introducing means which is connected to the bypass pipe 12 and rectifies and introduces the separated liquid sent from the centrifugal dehydrator 4; This is a first tank formed so that the separated liquid passed through 18 can be introduced in a downward flow. That is, the first tank 20 is formed in a box shape with an upper part opened.
[0017]
Reference numeral 22 denotes a first optical sensor (first measuring means) such as a color sensor which is disposed above the first tank 20 and measures the properties (for example, the color of bubbles) of the floating material or the separated liquid floating in the first tank 20. ) So that the measured value data can be supplied to the controller 7 or the controller 10.
[0018]
Reference numeral 24 denotes a communication transfer means which communicates with the lower part of the first tank 20 to introduce and transfer the separated liquid in the first tank 20 to the second tank 26, and is in communication with the lower part of the second tank 26. Like the first tank 20, the second tank 26 is formed in a box shape with an opening at the top.
[0019]
Reference numeral 28 denotes a second optical sensor (second measuring means) such as a color sensor which is disposed above the second tank 26 and measures the properties (for example, the color of bubbles) of the floating material or the separated liquid floating in the second tank 26. ) So that the measured value data can be supplied to the controller 7 or the controller 10.
[0020]
A discharging means (not shown) is provided so that a floating substance or a separated liquid overflowing the first tank 20 and the second tank 26 is discharged to the pipe 11.
[0021]
Next, the operation will be described. The separated liquid discharged from the centrifugal dehydrator 4 is introduced into the rectification introduction means 18 via the pipe 11, the pump 16 and the bypass pipe 12, rectified and introduced into the first tank 20 as a downward flow. The properties (such as the color of bubbles) of the floating material or the separated liquid that floated in the first tank 20 are measured by the first optical sensor 22. The floating material or the separated liquid that has overflowed the first tank 20 is discharged to the pipe 11 by a discharge unit (not shown).
[0022]
Next, the separated liquid in the first tank 20 is introduced into the second tank 26 by the upward flow from the lower part of the second tank 26 via the communicating transfer means 24, and the floating material or the separated liquid that floats in the second tank 26 is The property is measured by the second optical sensor 28. The floating material or the separated liquid that has overflowed the second tank 26 is discharged to the pipe 11 by discharging means (not shown).
[0023]
The measurement value data measured by the first optical sensor 22 and the second optical sensor 28 is supplied to the controller 7 or the controller 10.
[0024]
The relationship between the measured value data and the properties of the separated liquid can be grasped, for example, as shown in FIGS. Therefore, by preliminarily examining the relationship between the measured value data and the properties of the separated liquid and the amount of the drug to be injected, the amount of the drug to be mixed into the raw sludge according to the properties of the separated liquid and the like is determined by the controller 7. , 10 are optimally controlled.
[0025]
Further, in this case, since the first optical sensor 22 and the second optical sensor 28 are not directly immersed in the separation liquid and are not installed, the properties of the separation liquid can be accurately measured without being affected by dirt or the like.
[0026]
In addition, since the properties of the separated liquid can be measured by the two first optical sensors 22 and the second optical sensor 28, the separated liquid is less susceptible to the effects of bubbles and suspended solids (SS) in the separated liquid and the effects of residual chemicals and the like.
[0027]
【The invention's effect】
As described above, according to the present invention, a rectifying and introducing means for rectifying and introducing a separated liquid sent from a centrifugal dehydrator or a concentrator, and a first rectifying and introducing means capable of introducing the separated liquid from the rectifying and introducing means. A tank, a first measuring means disposed above the first tank, for measuring properties of a floating substance or a separated liquid floated in the first tank, and a separated liquid in the first tank in communication with the first tank. And a second measuring means arranged above the second tank and measuring the properties of the floating material or the separated liquid floating in the second tank, so that the sludge property changes. Thus, it is possible to obtain a separated liquid monitoring device that can optimally control the amount of the chemical to be mixed into the raw sludge according to the above and promote the solid-liquid separation processing.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a sludge treatment system in which a separated liquid monitoring device according to one embodiment of the present invention is used.
FIG. 2 is a conceptual diagram of a separated liquid monitoring device according to one embodiment of the present invention.
FIG. 3 is a graph showing a relationship between a state of a separated liquid and a color sensor value.
FIG. 4 is a table showing a relationship between a state of a separated liquid and a color sensor value.
[Explanation of symbols]
4 Centrifugal dehydrator 15 Separated liquid monitoring device 18 Rectification introducing means 20 First tank 22 First optical sensor (first measuring means)
26 second tank 28 second optical sensor (second measuring means)

Claims (1)

原汚泥に薬剤を混入し固液分離を行って分離液と脱水ケーキとを生成する遠心脱水機又は前記分離液と濃縮液とを生成する濃縮機から送出される該分離液を整流して導入する整流導入手段と、該整流導入手段から前記分離液を導入可能に形成した第一槽と、該第一槽の上方に配置され該第一槽で浮上した浮上物若しくは分離液の性状を計測する第一計測手段と、前記第一槽と連通させて該第一槽の分離液を導入する第二槽と、該第二槽の上方に配置され該第二槽で浮上した浮上物若しくは分離液の性状を計測する第二計測手段とを備えた分離液監視装置。A chemical is mixed into the raw sludge and solid-liquid separation is performed to produce a separated liquid and a dewatered cake. Rectifying and introducing means, a first tank formed so as to be able to introduce the separation liquid from the rectifying and introducing means, and measuring properties of a floating substance or a separated liquid which is disposed above the first tank and floats in the first tank. A first measuring means, a second tank which communicates with the first tank and introduces the separated liquid in the first tank, and a floating substance or separation which is disposed above the second tank and floats in the second tank. A separated liquid monitoring device comprising: a second measuring means for measuring a property of the liquid.
JP10973095A 1995-05-08 1995-05-08 Separated liquid monitoring device Expired - Fee Related JP3565944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10973095A JP3565944B2 (en) 1995-05-08 1995-05-08 Separated liquid monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10973095A JP3565944B2 (en) 1995-05-08 1995-05-08 Separated liquid monitoring device

Publications (2)

Publication Number Publication Date
JPH08299996A JPH08299996A (en) 1996-11-19
JP3565944B2 true JP3565944B2 (en) 2004-09-15

Family

ID=14517792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10973095A Expired - Fee Related JP3565944B2 (en) 1995-05-08 1995-05-08 Separated liquid monitoring device

Country Status (1)

Country Link
JP (1) JP3565944B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966985B2 (en) * 2009-01-22 2012-07-04 株式会社石垣 Inspection apparatus, pollution aggregation processing apparatus, and pollution aggregation processing system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644815U (en) * 1979-09-14 1981-04-22
JPS60197300A (en) * 1984-03-21 1985-10-05 Nippon Kokan Kk <Nkk> Method and apparatus for dehydrating sludge
JP3006871B2 (en) * 1990-11-05 2000-02-07 アルファーラバル エービー Sludge dewatering operation control device for screw decanter centrifuge
JP3168608B2 (en) * 1991-06-19 2001-05-21 東京都 Sludge treatment equipment
JPH0829268B2 (en) * 1991-12-27 1996-03-27 株式会社西原環境衛生研究所 Centrifugal dehydrator chemical injection rate controller

Also Published As

Publication number Publication date
JPH08299996A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
US4282093A (en) Apparatus for detecting coagulation effect
US5902487A (en) Process and apparatus for dewatering a suspension
EP0415726A1 (en) Streaming current detector and fluid treatment system using same
JP3731292B2 (en) Operation control method of sludge centrifugal dehydrator
CN212214694U (en) A monitoring facilities and mud-water separation equipment for mud-water separation
JPH0529484B2 (en)
JP3565944B2 (en) Separated liquid monitoring device
EP0682555B1 (en) Process and apparatus for controlling the dewatering of suspensions
US6849190B2 (en) Methods for polymer addition control for water treatment
JP2960309B2 (en) Sludge treatment equipment
WO2000043322A1 (en) Sludge density measurement for controlling a sludge treatment stage
CN109521285A (en) One kind is based on travelling charge measurement technological system
JPH09150200A (en) Sludge concentrating device and its washing method
JPS60197300A (en) Method and apparatus for dehydrating sludge
KR200219763Y1 (en) Dehydrator of waste sludge
JPH11347599A (en) Flocculant injection amount determination device
JP2000334600A (en) Screen self cleaning method of screw press type dehydrator
JPS6335774Y2 (en)
JP2006272228A (en) Sludge dewatering method and dewatering device
JPH08224599A (en) Monitoring and controlling device for separation liquid
KR970004966B1 (en) Ready-mixed concrete sludge treatment system for manufacturing ready mixed concrete
JP4166624B2 (en) Method and apparatus for supplying flocculant in sludge dewatering machine
JPS59206199A (en) Method and device for controlling sludge dehydrator
JP2891278B2 (en) Operating method of filter press
JPH05345186A (en) Method for automatic control of ph in oil-containing waste water treatment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees