JP3560070B2 - Method for producing niobium-containing composite metal oxide - Google Patents
Method for producing niobium-containing composite metal oxide Download PDFInfo
- Publication number
- JP3560070B2 JP3560070B2 JP11269094A JP11269094A JP3560070B2 JP 3560070 B2 JP3560070 B2 JP 3560070B2 JP 11269094 A JP11269094 A JP 11269094A JP 11269094 A JP11269094 A JP 11269094A JP 3560070 B2 JP3560070 B2 JP 3560070B2
- Authority
- JP
- Japan
- Prior art keywords
- niobium
- raw material
- material solution
- solution
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、ニオブを含む複合金属酸化物の製造方法に関する。該複合金属酸化物は、触媒、特に炭化水素、含酸素化合物の気相部分酸化触媒、固体酸触媒などに用いられているほか、セラミックス、電極材料などとしても注目されている。
【0002】
【従来の技術】
ニオブを含む複合金属酸化物の公知の製造方法として、主に以下の方法が挙げられる。
第1の方法は、複合金属酸化物の構成金属元素の化合物、主に各々の金属酸化物を所定量ずつ採取し、粉砕、混合した後、高温下で処理して固相反応により製造する方法である。
【0003】
第2の方法は、ニオブおよびその他の構成元素を混合した溶液あるいはスラリーを調製し、場合によっては該溶液あるいはスラリーのpHを調整するなどにより積極的に沈澱物を生成させ、次いで、蒸発乾固法、噴霧乾燥法などにより固形物を回収し、該固形物を焼成する方法である。
【0004】
【発明が解決しようとする課題】
しかしながら、第1の固相反応による製造方法では、一般に、処理条件が600〜1000℃と極めて高温であり、かつ、通常1日から1週間といった長期の反応時間が必要である。また、この方法により製造された複合金属酸化物は、通常、比表面積が小さく、触媒として使用するには不適切である場合が多い。
【0005】
また、第2の方法では、ニオブ化合物は水性溶媒中で十分な溶解度を有するようなものが少なく、また、添加される他の元素の化合物の影響により、溶解状態を保持しにくく、一般に、均一溶液にならなかったり、均一溶液の状態になっても比較的短時間の間にニオブ化合物成分が析出することが多い。そこで、従来は、通常、不溶である固体のニオブ化合物成分を含むスラリーとして、その後の乾燥、加熱の処理に供していた。このようなニオブを含む複合金属酸化物の触媒は、活性が十分でなかったり、安定しないことが多く、これを改善するために、スラリーの攪拌条件などの検討も考えられるが、十分な効果は得られていない。
【0006】
【課題を解決するための手段】
本発明者らは、ニオブを含む金属酸化物の製造方法につき詳しく検討した結果、ニオブを含む複合金属酸化物の原料溶液中にニオブを主成分とする固体成分を含まない状態、すなわち、ニオブを主成分とする固体成分が析出していない状態で溶媒を除去する工程を含む方法を採用することにより、触媒性能に優れた品質の安定した複合金属酸化物を得ることができることを見いだし、本発明に到達した。すなわち、本発明の要旨は、ニオブとその他の成分からなる複合金属酸化物の製造方法であって、ニオブとその他の成分を含有する原料溶液を、該原料溶液から不溶物が析出する前に溶媒を除去する工程に供し、該原料溶液から不溶物を析出させ、該析出物を焼成することを特徴とするニオブを含む複合金属酸化物の製造方法に存する。
【0007】
以下、本発明を詳細に説明する。
本発明により製造されるニオブを含む複合金属酸化物のニオブ以外のその他の成分元素として、Mo,V,Te,Sb,Bi,Ta,W,Ti,Al,Zr,Cr,Mn,Fe,Ru,Co,Rh,Ni,Pd,Pt,B,In,Ce,Si,P,Cu,アルカリ金属,アルカリ土類金属から成る群から選ばれる1種以上が一般的である。
【0008】
本発明方法で使用される溶媒は水性溶媒が、溶媒除去工程の操作性、安全性を考慮すると好ましい。具体的には、水が最も一般的であるが、水溶性の物質、例えば、アルコール類、有機酸類、無機酸類などを含んでいても問題はない。複合金属酸化物の原料として使用されるニオブの化合物は、上記の溶媒に可溶性であれば特に制限はないが、有機ニオブ化合物、具体的には、有機酸、好ましくはシュウ酸、および/または酒石酸を含むニオブ原料、例えば、シュウ酸ニオブ、酒石酸ニオブ、および/またはこれらのアンモニウム塩、すなわち、シュウ酸ニオブアンモニウム、酒石酸ニオブアンモニウムなどが水性溶媒への溶解度が大きく、操作しやすいので好ましい。
【0009】
複合金属酸化物のニオブ以外の元素の原料化合物は、上記の水性溶媒に可溶性であれば特に制限はない。具体的には、Mo,Sb,Bi,Ta,Al,Cr,Mn,Fe,Ru,Co,Rh,Ni,Pd,Pt,Ce,Cu,アルカリ金属,アルカリ土類金属の硝酸塩、酢酸塩、あるいは、パラモリブデン酸アンモニウム、メタバナジン酸アンモニウム、シュウ酸バナジル、テルル酸、酒石酸溶解酸化アンチモン、モリブドリン酸、モリブドバナドリン酸、タングストリン酸、モリブドタングストリン酸などが用いられる。
【0010】
原料溶液の調製方法としては、原料成分の濃度や組成などに応じて適宜最適な方法が選択されるが、通常、ニオブ化合物および他の原料を一括して溶液を調製する方法、好ましくはニオブ化合物の溶液とニオブ以外の原料の溶液を別個に調製した後でそれらを混合する方法などが採用できる。また、原料溶液から不溶物が析出する前に速やかの溶媒を除去する工程に供するための手段として、適当量の原料溶液を調製した後、直ちに該調製原料溶液を送液ポンプなどにより溶媒除去工程に供し、原料溶液の調製とその溶媒除去を連続的に実施する方法も望ましい。上記のようにして調製されるニオブを含む原料溶液中のニオブの濃度は、通常0.005〜25重量%、好ましくは0.01〜10重量%である。また、ニオブ以外の元素の濃度については、目的とする複合金属酸化物の組成により異なるが、通常0.1〜25重量%の範囲である。
【0011】
このようにして調製されたニオブ含有溶液の内容の詳細は明らかではないが、含有する成分元素のポリオキソアニオンが多種存在し、ニオブについては、例えば、好適に共存するシュウ酸、酒石酸などの有機酸を配位子として組み込んだ錯体として、水性溶液中で安定に存在すると推定される。しかし、共存する元素によっては、ニオブよりも、シュウ酸、酒石酸などの有機酸との相互作用が強く、そのため、ニオブからこれら有機酸の配位子がほかの元素に移行し、その結果、水性溶液中でのニオブの安定性が失われ、溶液調製後、ある程度の時間が経過するとニオブを主成分とする不溶分が固体として析出してくることが考えられる。
【0012】
ニオブとその他の成分を含有する原料溶液を、該原料溶液から不溶物が析出する前、即ち、まだ不溶物が析出していない原料溶液を、溶媒を除去する工程に供し、該原料溶液から不溶物を析出させるための溶媒除去方法としては、噴霧乾燥法あるいは凍結乾燥法が好ましい。これらの方法は、多くの乾燥の中でも溶液中の均一状態をできる限り維持した状態で速やかに溶媒を除去できる点に特徴がある。かかる特徴を有する方法であれば他の乾燥方法でも適当であると考えられる。この結果として有効な複合金属酸化物の前駆体の形態が維持されたまま、例えば、すでに溶液中で形成されポリオキソアニオンのような形態を維持したまま溶媒が除去され、これが最終的に得られる複合金属酸化物の触媒活性の向上に寄与していると推定される。
【0013】
ここに、噴霧乾燥法は、溶液を噴霧し、微細な液滴を生じさせる工程を含む乾燥法をいい、市販の噴霧乾燥機を用いて実施することができる。噴霧乾燥の条件は、噴霧乾燥機の仕様、対象物の量などで適宜設定すればよいが、噴霧乾燥機の中心部の温度が通常80〜400℃、好ましくは120〜280℃とし、加熱した空気、窒素、アルゴン等の乾燥ガスを流通させる。乾燥ガスは、水性溶媒を蒸発させるのに必要な熱量以上を保有すべきであり、乾燥ガスの温度が低い場合には、より多量のガス量が必要となる。また、給液量とディスクの回転数を調節して、噴霧乾燥により得られる固体粒子の粒子径を調整することも可能であり、通常、平均粒径を例えば100ミクロン以下、特に20〜80ミクロン等に調整する。
【0014】
また、凍結乾燥法は溶液を凍結させた後、昇華により溶媒を除去する方法をいい、市販の凍結乾燥機を用いて実施することができる。原料溶液を、ドライアイス溶液、液体窒素などで冷却して速やかに凍結後、凍結乾燥機を用いて乾燥する方法が一般的である。乾燥条件は、各凍結乾燥機の仕様に応じた条件を設定すればよく、通常0.01〜10mmHg程度の減圧下で行なわれる。乾燥物の粒径分布については特に限定されるものでなく、また、凍結乾燥により恒量に到達したような乾燥物中に水分が数%程度残存していても触媒の性能に特に影響を与えるものではない。以上の噴霧乾燥法と凍結乾燥法の両者を組み合わせた噴霧凍結乾燥法なども可能である。
【0015】
以上のようにして得られた析出物固体を焼成する。焼成の方法は、その固体の成分、性状、規模により任意に方法を設定することが可能であるが、蒸発皿上での熱処理、あるいは、回転炉、流動焼成炉等の加熱炉による方法が一般的である。また、これらの熱処理操作を複数種組み合わせてもよい。焼成条件としては、通常300〜700℃、好ましくは400〜650℃で、0.5〜30時間程度である。焼成雰囲気は特に制限はなく、真空でもよいが、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気が好ましい。また、不活性ガス中には水素、炭化水素などの還元性ガスや水蒸気を含んでいてもよい。
【0016】
以上のように製造されたニオブを含む複合金属酸化物のうち、ニオブ以外の成分としてはモリブデン、バナジウムを含むものが特に触媒として有効であり、より好ましくは以下の実験式(1)で表されるものが有効であり、かかるものは、アルカンからニトリルを製造する触媒として使用したとき、顕著な効果が示される。
【0017】
【数2】
MoaVbNbcXxOn (1)
(式(1)において、XはTe,Sb,Bi,Ta,W,Ti,Al,Zr,Cr,Mn,Fe,Ru,Co,Rh,Ni,Pd,Pt,B,InおよびCeの中から選ばれた1つまたはそれ以上の元素を表わし、
a=1とするとき、
b=0.01〜1.0
c=0.01〜1.0
x=0〜1.0
であり、nは元素の酸化状態により決定される数値を表わす。)
ここで、XがTeまたはTeと他の金属とからなるときに触媒としての性能が特に優れる。また、アルカンとして、プロパン、またはイソブタンを使用したとき、触媒性能が顕著である。なお、プロパン、イソブタンを原料としたとき、その生成物、アクリロニトリル、メタクリロニトリルは工業的に重要である。
【0018】
アルカンとしてプロパンを、酸素源として空気を使用する場合について、本発明をさらに詳細に説明するに、反応器方式は固定床、流動層等いずれも採用できるが、発熱反応であるため、流動層方式の方が反応温度の制御が容易である。反応に供給する空気の割合は、生成するアクリロニトリルの選択率に関して重要であり、空気は、通常プロパンに対して25モル倍量以下、特に1〜18モル倍量の範囲が高いアクリロニトリル選択率を示す。また、反応に供与するアンモニアの割合は、プロパンに対して0.2〜5モル倍量、特に0.5〜3モル倍量の範囲が好適である。なお、本反応は通常大気圧下で実施されるが、低度の加圧下または減圧下で行なうこともできる。他のアルカンについても、プロパンの場合の条件に準じて供給ガスの組成が選択される。また、反応温度は、通常340〜480℃、好ましくは380〜440℃である。気相反応におけるガス空間速度SVは、通常100〜10000h−1、好ましくは300〜2000h−1の範囲である。なお、空間速度と酸素分圧を調整するための希釈ガスとして、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。本発明の方法により、プロパンのアンモ酸化反応を行なった場合、アクリロニトリルの他に一酸化炭素、二酸化炭素、アセトニトリル、青酸等が副生するが、その生成量は少ない。
【0019】
また、以上の複合金属酸化物触媒は単独で用いても、あるいは周知の担体、例えば、シリカ、アルミナ、チタニア、ジルコニア、アルミノシリケ−ト、珪藻土などと共に使用することもできる。この場合、上記したような担体を、溶媒を除去する工程の前にニオブを含む原料溶液中に添加しても、あるいは、溶媒を除去した後に、例えば、焼成の前後に添加・混合してもよい。これら担体成分を添加した場合は均一溶液ではなく、溶媒を除去する工程に供する前に既に担体由来の固体を含むとなることになるが、該固体は元々不溶であって一度溶解した後で析出するものではなく、溶液中のニオブを主成分とする不溶物が析出していなければ、担体成分を添加した原料溶液でも本発明の方法が適用される。該方法ではニオブを主成分とする不溶物の析出状況が必ずしも明確に判断できない場合があるが、かかる場合は、通常、担体成分のみを除いた原料溶液で不溶物が析出しない時間の範囲内で、原料溶液を溶媒を除去する工程に供するようにすればよい。
【0020】
【実施例】
以下、本発明を、実施例を挙げてさらに詳細に説明するが、本発明はその要旨を超えないかぎりこれらの実施例に限定されるものではない。
なお、以下の実施例における転化率(%)、選択率(%)および収率(%)は、各々次式で示される。
【0021】
【数3】
プロパンの転化率(%)=(消費プロパンのモル数/供給プロパンのモル数)×100
アクリロニトリルの収率(%)=(生成アクリロニトリルのモル数/供給プロパンのモル数)×100
アクリロニトリルの選択率(%)=(生成アクリロニトリルのモル数/ 消費プロパンのモル数)×100
【0022】
実施例1
実験式Mo1 V0.3Nb0.12Te0.23On を有する複合酸化物を次のように調製した。温水95mlにパラモリブデン酸アンモニウム4水塩10.59gを溶解し、これにメタバナジン酸アンモニウム2.11g、テルル酸3.17gを順次添加し、室温で均一な水溶液を調製した。この溶液にニオブの濃度が0.396mol/kgのシュウ酸ニオブアンモニウム水溶液18.2gを混合した。この溶液が目視で均一溶液状態にである間に、噴霧乾燥法により水分を除去し、析出固体を得た。この固体を打錠成型器を用いて5mmφ×3mmLに成型した後、粉砕して16〜28メッシュに篩別し、窒素気流中600℃で2時間焼成した。
【0023】
比較例1
モリブデン、バナジウム、テルル、ニオブを含む溶液を実施例1に記したものと同様に調製したが、約10分で固体が析出してくる様子が観察された。このようににして固体を析出させたスラリーを実施例1と同様に噴霧乾燥法により水分を除去し固体を得た。実施例1と同様にして成型、破砕、焼成を行なった。
【0024】
実施例2
実験式Mo1 V0.3 Nb0.12Te0.23On を有する複合酸化物を次のよう調製した。温水402mlにパラモリブデン酸アンモニウム4水塩70.9gを溶解し、これにメタバナジン酸アンモニウム14.1g、テルル酸21.2gを順次添加し、水溶液を調製した。この溶液を約5℃に冷却し、そこにニオブの濃度が0.396mol/kgのシュウ酸ニオブアンモニウム水溶液122gを混合した。この溶液が均一溶液状態にである間に、噴霧乾燥法により水分を除去し、析出物固体を得た。この固体を打錠成型器を用いて5mmφ×3mmLに成型した後、粉砕して16〜28メッシュに篩別し、窒素気流中600℃で2時間焼成した。
【0025】
実施例3
実験式Mo1 V0.3 Nb0.1 Te0.2 On を有する複合酸化物を次のように調製した。温水43mlにパラモリブデン酸アンモニウム4水塩4.7gを溶解し、これにメタバナジン酸アンモニウム0.94g、テルル酸1.2gを順次添加し、均一な水溶液を調製した。更に、ニオブの濃度が0.29mol/kgのシュウ酸ニオブアンモニウム水溶液9.2gを混合した。この溶液が均一溶液状態にである間に、凍結乾燥法により水分を除去し、析出物固体を得た。この固体を打錠成型器を用いて5mmφ×3mmLに成型した後、粉砕し、16〜28メッシュに篩別し、窒素気流中600℃で2時間焼成した。
【0026】
反応試験例1
実施例1で得た複合金属酸化物0.55gを反応器に充填し、反応温度400℃、空間速度SV1005h−1、プロパン:アンモニア:空気=1:1.2:15のモル比でガスを供給し、気相接触反応を行った結果を表−1に示す。
【0027】
反応試験例2
比較例1で得た複合金属酸化物を用いて、実施例1と同じ反応条件でプロパンとアンモニアとの気相接触酸化反応を行った。その結果を表−1に示す。
【0028】
反応試験例3
実施例2で得た複合金属酸化物0.38gを反応器に充填し、反応温度410℃、空間速度SV1000h−1、プロパン:アンモニア:空気=1:1.2:15のモル比でガスを供給し、気相接触反応を行なった結果を表−1に示す。
【0029】
反応試験例4
実施例3で得た触媒0.55gを反応器に充填し、反応温度400℃、空間速度SV923h−1、プロパン:アンモニア:空気=1:1.2:15のモル比でガスを供給し、気相接触反応を行なった結果を表−1に示す。
【0030】
【表1】
【0031】
【発明の効果】
本発明によれば、比較的簡便な方法により、安定した性質のニオブを含む複合金属酸化物を製造することができる。かかる複合金属酸化物は触媒としての性能が優れており、特にアルカンとアンモニアとの気相接触酸化反応によるニトリル製造用触媒として好適である。[0001]
[Industrial applications]
The present invention relates to a method for producing a composite metal oxide containing niobium. The composite metal oxide has been used as a catalyst, particularly as a catalyst for gas phase partial oxidation of hydrocarbons and oxygen-containing compounds, a solid acid catalyst and the like, and has also attracted attention as a ceramic, an electrode material and the like.
[0002]
[Prior art]
Known methods for producing a niobium-containing composite metal oxide mainly include the following methods.
The first method is a method in which a compound of a constituent metal element of a composite metal oxide, mainly each metal oxide, is sampled in a predetermined amount, crushed and mixed, and then processed at a high temperature to produce a solid phase reaction. It is.
[0003]
The second method is to prepare a solution or slurry in which niobium and other constituent elements are mixed, and in some cases, actively generate a precipitate by adjusting the pH of the solution or slurry, and then evaporate to dryness. This is a method in which a solid is recovered by a method such as a spray drying method, and the solid is fired.
[0004]
[Problems to be solved by the invention]
However, the first production method using the solid phase reaction generally requires extremely high processing conditions of 600 to 1000 ° C., and requires a long reaction time of usually one day to one week. In addition, the composite metal oxide produced by this method usually has a small specific surface area and is often unsuitable for use as a catalyst.
[0005]
Further, in the second method, the niobium compound is less likely to have a sufficient solubility in an aqueous solvent, and it is difficult to maintain a dissolved state due to the influence of a compound of another element to be added. In many cases, the niobium compound component precipitates in a relatively short time even if the solution does not become a solution or the solution becomes a homogeneous solution. Therefore, conventionally, a slurry containing an insoluble solid niobium compound component has conventionally been subjected to subsequent drying and heating treatments. Such a niobium-containing composite metal oxide catalyst often has insufficient activity or is not stable, and in order to improve the activity, it is conceivable to consider conditions such as slurry stirring. Not obtained.
[0006]
[Means for Solving the Problems]
The present inventors have studied in detail a method for producing a niobium-containing metal oxide, and found that the raw material solution of the niobium-containing composite metal oxide does not contain a solid component containing niobium as a main component, i.e., niobium. By adopting a method including a step of removing a solvent in a state where a solid component as a main component is not precipitated, it has been found that a stable composite metal oxide having excellent catalytic performance and high quality can be obtained. Reached. That is, the gist of the present invention is a method for producing a composite metal oxide comprising niobium and other components, wherein a raw material solution containing niobium and other components is dissolved in a solvent before insolubles precipitate from the raw material solution. And removing the insoluble matter from the raw material solution, and calcining the precipitate to produce a composite metal oxide containing niobium.
[0007]
Hereinafter, the present invention will be described in detail.
Other constituent elements other than niobium of the niobium-containing composite metal oxide produced according to the present invention include Mo, V, Te, Sb, Bi, Ta, W, Ti, Al, Zr, Cr, Mn, Fe, and Ru. , Co, Rh, Ni, Pd, Pt, B, In, Ce, Si, P, Cu, an alkali metal, and an alkaline earth metal.
[0008]
The solvent used in the method of the present invention is preferably an aqueous solvent in consideration of the operability and safety of the solvent removing step. Specifically, water is the most common, but there is no problem even if it contains a water-soluble substance such as alcohols, organic acids, and inorganic acids. The compound of niobium used as a raw material of the composite metal oxide is not particularly limited as long as it is soluble in the above-mentioned solvent, but is an organic niobium compound, specifically, an organic acid, preferably oxalic acid, and / or tartaric acid. A niobium raw material containing, for example, niobium oxalate, niobium tartrate, and / or an ammonium salt thereof, that is, niobium ammonium oxalate, niobium ammonium tartrate, and the like are preferable because of high solubility in an aqueous solvent and easy operation.
[0009]
The raw material compound of the element other than niobium of the composite metal oxide is not particularly limited as long as it is soluble in the above aqueous solvent. Specifically, Mo, Sb, Bi, Ta, Al, Cr, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, Ce, Cu, alkali metal, alkaline earth metal nitrate, acetate, Alternatively, ammonium paramolybdate, ammonium metavanadate, vanadyl oxalate, telluric acid, antimony oxide dissolved in tartaric acid, molybdophosphoric acid, molybdovanadophosphoric acid, tungstophosphoric acid, molybdotangstophosphoric acid, and the like are used.
[0010]
As the method of preparing the raw material solution, an optimal method is appropriately selected depending on the concentration and composition of the raw material components, but usually, a method of preparing a solution of the niobium compound and other raw materials collectively, preferably a niobium compound And a method of separately preparing a solution of a raw material other than niobium and then mixing them. Further, as a means for subjecting the solvent to a step of promptly removing the solvent before insoluble matter is precipitated from the raw material solution, after preparing an appropriate amount of the raw material solution, the prepared raw material solution is immediately subjected to a solvent removing step by a liquid sending pump or the like. It is also desirable to provide a raw material solution and remove the solvent thereof continuously. The concentration of niobium in the raw material solution containing niobium prepared as described above is usually 0.005 to 25% by weight, preferably 0.01 to 10% by weight. The concentration of elements other than niobium varies depending on the composition of the target composite metal oxide, but is generally in the range of 0.1 to 25% by weight.
[0011]
Although the details of the content of the niobium-containing solution thus prepared are not clear, there are many kinds of polyoxoanions of the contained component elements, and, for niobium, for example, oxalic acid and tartaric acid, which preferably coexist, are preferably present. It is presumed that the complex incorporating an acid as a ligand is stably present in an aqueous solution. However, depending on the coexisting elements, interaction with organic acids such as oxalic acid and tartaric acid is stronger than that of niobium, so that ligands of these organic acids are transferred from niobium to other elements, and as a result, aqueous It is conceivable that the stability of niobium in the solution is lost, and after a certain period of time has elapsed after the preparation of the solution, insolubles containing niobium as a main component precipitate as solids.
[0012]
The raw material solution containing niobium and other components is subjected to a step of removing the solvent before the insoluble matter is precipitated from the raw material solution, that is, the raw material solution in which the insoluble matter has not yet been precipitated. As a solvent removing method for precipitating a substance, a spray drying method or a freeze drying method is preferable. These methods are characterized in that the solvent can be quickly removed while maintaining a uniform state in the solution as much as possible, even during many types of drying. Other drying methods are considered to be suitable as long as they have such characteristics. As a result, the solvent is removed while the effective precursor form of the composite metal oxide is maintained, for example, while maintaining the form such as a polyoxoanion already formed in the solution, and this is finally obtained. It is estimated that this contributes to the improvement of the catalytic activity of the composite metal oxide.
[0013]
Here, the spray drying method refers to a drying method including a step of spraying a solution to generate fine droplets, and can be performed using a commercially available spray dryer. The conditions of the spray drying may be appropriately set depending on the specifications of the spray dryer, the amount of the object, and the like, and the temperature of the central portion of the spray dryer is usually 80 to 400 ° C, preferably 120 to 280 ° C, and heated. A dry gas such as air, nitrogen, or argon is passed. The dry gas should possess more heat than is necessary to evaporate the aqueous solvent, and a lower gas temperature will require a larger amount of gas. It is also possible to adjust the particle size of the solid particles obtained by spray drying by adjusting the amount of liquid supply and the number of revolutions of the disk. Usually, the average particle size is, for example, 100 μm or less, especially 20 to 80 μm. Adjust to etc.
[0014]
The lyophilization method is a method of removing a solvent by sublimation after freezing a solution, and can be performed using a commercially available lyophilizer. In general, the raw material solution is cooled with a dry ice solution, liquid nitrogen or the like, frozen immediately, and then dried using a freeze dryer. The drying conditions may be set according to the specifications of each freeze dryer, and are usually performed under reduced pressure of about 0.01 to 10 mmHg. The particle size distribution of the dried product is not particularly limited, and the performance of the catalyst is particularly affected even if about several% of water remains in the dried product, which has reached a constant weight by freeze-drying. is not. A spray freeze-drying method combining both of the above spray-drying methods and freeze-drying methods is also possible.
[0015]
The precipitate solid obtained as described above is fired. The method of baking can be arbitrarily set according to the solid component, properties and scale, but a method using heat treatment on an evaporating dish, or a heating furnace such as a rotary furnace or a fluidized baking furnace is generally used. It is a target. Further, a plurality of these heat treatment operations may be combined. The firing conditions are usually 300 to 700 ° C., preferably 400 to 650 ° C., for about 0.5 to 30 hours. The firing atmosphere is not particularly limited and may be a vacuum, but an inert gas atmosphere such as nitrogen, argon, and helium is preferable. Further, the inert gas may contain a reducing gas such as hydrogen or hydrocarbon, or water vapor.
[0016]
Of the composite metal oxides containing niobium produced as described above, those containing molybdenum and vanadium are particularly effective as catalysts as components other than niobium, and are more preferably represented by the following empirical formula (1). Those are effective, and when used as a catalyst for producing nitriles from alkanes, they show a remarkable effect.
[0017]
(Equation 2)
Mo a V b N b c X x On (1)
(In the formula (1), X represents Te, Sb, Bi, Ta, W, Ti, Al, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, B, In, and Ce. Represents one or more elements selected from:
When a = 1,
b = 0.01 to 1.0
c = 0.01-1.0
x = 0 to 1.0
And n represents a numerical value determined by the oxidation state of the element. )
Here, when X is made of Te or Te and another metal, the performance as a catalyst is particularly excellent. Further, when propane or isobutane is used as the alkane, the catalytic performance is remarkable. When propane and isobutane are used as raw materials, their products, acrylonitrile and methacrylonitrile are industrially important.
[0018]
In the case where propane is used as the alkane and air is used as the oxygen source, the present invention will be described in more detail.A fixed bed, a fluidized bed and the like can be adopted as the reactor system, but since it is an exothermic reaction, a fluidized bed system is used. Is easier to control the reaction temperature. The proportion of air supplied to the reaction is important with respect to the selectivity of acrylonitrile to be produced, and air usually exhibits a high acrylonitrile selectivity in the range of 25 mol times or less, particularly in the range of 1 to 18 mol times with respect to propane. . Further, the proportion of ammonia to be supplied to the reaction is preferably in a range of 0.2 to 5 mol times, more preferably in a range of 0.5 to 3 mol times with respect to propane. This reaction is generally carried out under atmospheric pressure, but can also be carried out under low pressure or low pressure. For other alkanes, the composition of the feed gas is selected according to the conditions for propane. The reaction temperature is usually 340 to 480 ° C, preferably 380 to 440 ° C. Gas space velocity SV in the gas phase reaction is usually 100~10000H -1, preferably in the range of 300~2000h -1. Note that an inert gas such as nitrogen, argon, or helium can be used as a diluent gas for adjusting the space velocity and the oxygen partial pressure. When propane is subjected to an ammoxidation reaction by the method of the present invention, carbon monoxide, carbon dioxide, acetonitrile, hydrocyanic acid, and the like are produced as by-products in addition to acrylonitrile, but the amount produced is small.
[0019]
The above composite metal oxide catalysts can be used alone or together with well-known carriers such as silica, alumina, titania, zirconia, aluminosilicate, diatomaceous earth and the like. In this case, the carrier as described above may be added to the raw material solution containing niobium before the step of removing the solvent, or after the solvent is removed, for example, added or mixed before and after firing. Good. When these carrier components are added, they are not homogeneous solutions and will contain solids derived from the carrier before being subjected to the step of removing the solvent, but the solids are originally insoluble and precipitate once dissolved. The method of the present invention can be applied to a raw material solution to which a carrier component has been added as long as no insolubles containing niobium as a main component are precipitated in the solution. In this method, the precipitation state of the insoluble matter containing niobium as a main component may not always be clearly determined, but in such a case, usually, the insoluble matter is not precipitated in the raw material solution excluding only the carrier component within a time period in which the insoluble matter does not precipitate. The raw material solution may be subjected to a step of removing the solvent.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples unless it exceeds the gist.
The conversion (%), the selectivity (%) and the yield (%) in the following examples are represented by the following formulas.
[0021]
(Equation 3)
Conversion rate of propane (%) = (mol number of propane consumed / mol number of supplied propane) × 100
Acrylonitrile yield (%) = (moles of acrylonitrile produced / moles of propane supplied) × 100
Acrylonitrile selectivity (%) = (moles of acrylonitrile formed / moles of propane consumed) × 100
[0022]
Example 1
It was prepared a composite oxide having the empirical formula Mo 1 V 0.3 Nb 0.12 Te 0.23 O n as follows. 10.59 g of ammonium paramolybdate tetrahydrate was dissolved in 95 ml of warm water, and 2.11 g of ammonium metavanadate and 3.17 g of telluric acid were sequentially added thereto to prepare a uniform aqueous solution at room temperature. To this solution, 18.2 g of an aqueous niobium ammonium oxalate solution having a niobium concentration of 0.396 mol / kg was mixed. While this solution was visually in a homogeneous solution state, water was removed by a spray drying method to obtain a precipitated solid. This solid was formed into a size of 5 mmφ × 3 mmL using a tablet press, crushed, sieved to 16 to 28 mesh, and fired at 600 ° C. for 2 hours in a nitrogen stream.
[0023]
Comparative Example 1
A solution containing molybdenum, vanadium, tellurium, and niobium was prepared in the same manner as described in Example 1, but a solid was observed to precipitate in about 10 minutes. The slurry from which the solid was precipitated in this manner was subjected to a spray-drying method in the same manner as in Example 1 to remove water to obtain a solid. Molding, crushing, and firing were performed in the same manner as in Example 1.
[0024]
Example 2
The composite oxide having the empirical formula Mo 1 V 0.3 Nb 0.12 Te 0.23 O n was prepared as follows. 70.9 g of ammonium paramolybdate tetrahydrate was dissolved in 402 ml of warm water, and 14.1 g of ammonium metavanadate and 21.2 g of telluric acid were sequentially added thereto to prepare an aqueous solution. This solution was cooled to about 5 ° C., and 122 g of an aqueous niobium ammonium oxalate solution having a niobium concentration of 0.396 mol / kg was mixed therein. While this solution was in a homogeneous solution state, water was removed by a spray drying method to obtain a solid precipitate. This solid was formed into a size of 5 mmφ × 3 mmL using a tablet press, crushed, sieved to 16 to 28 mesh, and fired at 600 ° C. for 2 hours in a nitrogen stream.
[0025]
Example 3
It was prepared a composite oxide having the empirical formula Mo 1 V 0.3 Nb 0.1 Te 0.2 O n as follows. 4.7 g of ammonium paramolybdate tetrahydrate was dissolved in 43 ml of warm water, and 0.94 g of ammonium metavanadate and 1.2 g of telluric acid were sequentially added thereto to prepare a uniform aqueous solution. Further, 9.2 g of an aqueous niobium ammonium oxalate solution having a niobium concentration of 0.29 mol / kg was mixed. While this solution was in a homogeneous solution state, water was removed by a freeze-drying method to obtain a solid precipitate. This solid was molded into a size of 5 mmφ × 3 mmL using a tablet molding machine, crushed, sieved to 16 to 28 mesh, and fired at 600 ° C. for 2 hours in a nitrogen stream.
[0026]
Reaction test example 1
0.55 g of the composite metal oxide obtained in Example 1 was charged into a reactor, and a gas was supplied at a reaction temperature of 400 ° C., a space velocity of SV1005 h −1 , and a molar ratio of propane: ammonia: air = 1: 1.2: 15. Table 1 shows the results of the supply and the gas-phase contact reaction.
[0027]
Reaction test example 2
Using the composite metal oxide obtained in Comparative Example 1, a gas phase catalytic oxidation reaction between propane and ammonia was performed under the same reaction conditions as in Example 1. Table 1 shows the results.
[0028]
Reaction test example 3
0.38 g of the composite metal oxide obtained in Example 2 was charged into a reactor, and gas was supplied at a reaction temperature of 410 ° C., a space velocity of SV1000 h −1 , and a molar ratio of propane: ammonia: air = 1: 1.2: 15. Table 1 shows the results of the supply and the gas phase contact reaction.
[0029]
Reaction test example 4
A reactor was charged with 0.55 g of the catalyst obtained in Example 3, a reaction temperature of 400 ° C., a space velocity of SV923 h −1 , and gas was supplied at a molar ratio of propane: ammonia: air = 1: 1.2: 15, Table 1 shows the results of the gas phase contact reaction.
[0030]
[Table 1]
[0031]
【The invention's effect】
According to the present invention, a composite metal oxide containing niobium having stable properties can be produced by a relatively simple method. Such a composite metal oxide has excellent performance as a catalyst, and is particularly suitable as a catalyst for nitrile production by a gas-phase catalytic oxidation reaction of an alkane and ammonia.
Claims (8)
MoaVbNbcXxOn …(1)
(式(1)において、XはTe、Sb、Bi、Ta、W、Ti、Al、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ni、Pd、Pt、B、InおよびCeより成る群から選ばれた元素を表わし、a=1とするとき
b=0.01〜1.0
c=0.01〜1.0
x=0〜1.0
であり、nは元素の酸化状態により決定される数値を表わす。)The method according to the composite oxide catalyst, any one of claims 1 to 6, characterized in that is represented by the following empirical formula (1) produced by calcination of the spray dried product.
MoaVbNbcXxOn (1)
In (Equation (1), X comprises Te, Sb, Bi, Ta, W, Ti, Al, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, B, from the In and Ce Represents an element selected from the group, and when a = 1, b = 0.01 to 1.0
c = 0.01-1.0
x = 0 to 1.0
And n represents a numerical value determined by the oxidation state of the element. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11269094A JP3560070B2 (en) | 1994-05-26 | 1994-05-26 | Method for producing niobium-containing composite metal oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11269094A JP3560070B2 (en) | 1994-05-26 | 1994-05-26 | Method for producing niobium-containing composite metal oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07315842A JPH07315842A (en) | 1995-12-05 |
JP3560070B2 true JP3560070B2 (en) | 2004-09-02 |
Family
ID=14593053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11269094A Expired - Fee Related JP3560070B2 (en) | 1994-05-26 | 1994-05-26 | Method for producing niobium-containing composite metal oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3560070B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ID20720A (en) * | 1997-08-05 | 1999-02-18 | Asahi Chemical Ind | WATER SOLUTIONS THAT CONTAIN NIOBIUMS FOR USE IN THE MAKING OF OXIDE CATALYSTS CONTAINING NIOBIUM |
UA57721C2 (en) * | 1997-08-11 | 2003-07-15 | Асахі Касеі Кабусікі Кайся | A process for producing acrylonitrile or methacrylonitrile from propane or isobutane |
CA2271397A1 (en) * | 1998-05-21 | 1999-11-21 | Rohm And Haas Company | A process for preparing a catalyst |
EP1260495B1 (en) * | 1998-05-21 | 2004-08-11 | Rohm And Haas Company | A process for preparing a multi-metal oxide catalyst |
JP4696331B2 (en) * | 1999-10-26 | 2011-06-08 | 三菱化学株式会社 | Method for producing niobium-containing composite metal oxide |
DE10044450C1 (en) * | 2000-09-08 | 2002-01-17 | Epcos Ag | Formation of insulated condenser electrode structure, includes barrier component diffusing into layer between oxide dielectric and body of electrode metal |
KR100407528B1 (en) | 2000-09-18 | 2003-11-28 | 아사히 가세이 가부시키가이샤 | Process for producing an oxide catalyst for oxidation or ammoxidation |
JP4667674B2 (en) * | 2001-09-06 | 2011-04-13 | 旭化成ケミカルズ株式会社 | Method for producing oxidation or ammoxidation catalyst |
US7253310B2 (en) | 2003-08-19 | 2007-08-07 | Basf Aktiengesellschaft | Preparation of (meth)acrylic acid |
KR100999983B1 (en) | 2006-03-20 | 2010-12-13 | 아사히 가세이 케미칼즈 가부시키가이샤 | Oxidation or ammoxidation catalyst and preparation method thereof |
US8980183B2 (en) | 2010-12-17 | 2015-03-17 | Asahi Kasei Chemicals Corporation | Apparatus and method for producing catalyst, and method for producing unsaturated acid or unsaturated nitrile |
-
1994
- 1994-05-26 JP JP11269094A patent/JP3560070B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07315842A (en) | 1995-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5422328A (en) | Process for preparing a catalyst useful for producing a nitrile | |
EP0767164B1 (en) | Method for producing a nitrile | |
US6841699B2 (en) | Recalcined catalyst | |
US6740620B2 (en) | Single crystalline phase catalyst | |
JP3769866B2 (en) | Method for producing catalyst for gas phase catalytic oxidation | |
US20040030172A1 (en) | Catalyst | |
US20080194871A1 (en) | Process for Preparing Improved Catalysts for Selective Oxidation of Propane Into Acrylic Acid | |
JP3560070B2 (en) | Method for producing niobium-containing composite metal oxide | |
JP2000143244A (en) | Production of multiple metal oxide | |
JP3669077B2 (en) | Nitrile production method | |
JPH08141401A (en) | Catalyst for production of nitrile | |
JPH06279351A (en) | Production of unsaturated carboxylic acid | |
JPH1057813A (en) | Manufacture of mixed metal oxide catalyst and acrylic acid production using thereof | |
JP4081824B2 (en) | Acrylic acid production method | |
JP2000070714A (en) | Production of catalyst for production of unsaturated nitrile | |
JP3938225B2 (en) | Catalyst preparation method | |
JP3500680B2 (en) | Method for producing catalyst for nitrile production | |
JPH11169716A (en) | Catalyst for preparing unsaturated nitrile and/or unsaturated carboxylic acid | |
JPH1157479A (en) | Gas phase catalytic oxidation reaction catalyst for hydrocarbon and preparation thereof | |
JPH1045664A (en) | Production of alpha,beta-unsaturated carboxylic acid | |
JPH07144132A (en) | Production of catalyst for producing nitrile | |
US20040230070A1 (en) | Catalyst for selective oxidation and amoxidation of alkanes and/or alkenes, particularly in processes for obtaining acrylic acid, acrylonitrile and the derivatives thereof | |
JP2002159853A (en) | Method for producing oxide catalyst for oxidation or ammoxidation | |
JP2002212139A (en) | METHOD FOR PRODUCING alpha-KETO ACID ESTER | |
JPH06227819A (en) | Preparation of compound metallic oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040506 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040519 |
|
LAPS | Cancellation because of no payment of annual fees |