JP3554311B2 - Ni-based alloy member and method of manufacturing the same - Google Patents
Ni-based alloy member and method of manufacturing the same Download PDFInfo
- Publication number
- JP3554311B2 JP3554311B2 JP2002051149A JP2002051149A JP3554311B2 JP 3554311 B2 JP3554311 B2 JP 3554311B2 JP 2002051149 A JP2002051149 A JP 2002051149A JP 2002051149 A JP2002051149 A JP 2002051149A JP 3554311 B2 JP3554311 B2 JP 3554311B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- coating layer
- boride
- metal
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 248
- 239000000956 alloy Substances 0.000 title claims description 248
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000034 method Methods 0.000 claims description 109
- 239000011247 coating layer Substances 0.000 claims description 100
- 239000000463 material Substances 0.000 claims description 54
- 229910052751 metal Inorganic materials 0.000 claims description 45
- 239000002184 metal Substances 0.000 claims description 45
- 239000010410 layer Substances 0.000 claims description 37
- 238000007751 thermal spraying Methods 0.000 claims description 26
- 239000000758 substrate Substances 0.000 claims description 22
- 238000009792 diffusion process Methods 0.000 claims description 20
- 229910052755 nonmetal Inorganic materials 0.000 claims description 20
- 238000005507 spraying Methods 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 15
- 239000000919 ceramic Substances 0.000 claims description 12
- 238000005524 ceramic coating Methods 0.000 claims description 12
- 238000005566 electron beam evaporation Methods 0.000 claims description 10
- 229910052735 hafnium Inorganic materials 0.000 claims description 10
- 238000005240 physical vapour deposition Methods 0.000 claims description 10
- 238000004544 sputter deposition Methods 0.000 claims description 10
- 238000004381 surface treatment Methods 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 6
- 229910052776 Thorium Inorganic materials 0.000 claims description 5
- 238000010894 electron beam technology Methods 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052746 lanthanum Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 238000002230 thermal chemical vapour deposition Methods 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 230000008595 infiltration Effects 0.000 claims description 3
- 238000001764 infiltration Methods 0.000 claims description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 229910000753 refractory alloy Inorganic materials 0.000 claims 1
- 239000013078 crystal Substances 0.000 description 84
- 238000012360 testing method Methods 0.000 description 37
- 239000007789 gas Substances 0.000 description 25
- 238000000576 coating method Methods 0.000 description 18
- 239000011248 coating agent Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 14
- 238000007750 plasma spraying Methods 0.000 description 14
- 238000001953 recrystallisation Methods 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- 238000009661 fatigue test Methods 0.000 description 13
- 239000000126 substance Substances 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 11
- 238000007740 vapor deposition Methods 0.000 description 11
- 238000005229 chemical vapour deposition Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 238000005728 strengthening Methods 0.000 description 10
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 9
- 229910052796 boron Inorganic materials 0.000 description 9
- 239000000567 combustion gas Substances 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000006378 damage Effects 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 230000035882 stress Effects 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000010285 flame spraying Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium(III) oxide Inorganic materials O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 6
- FIXNOXLJNSSSLJ-UHFFFAOYSA-N ytterbium(III) oxide Inorganic materials O=[Yb]O[Yb]=O FIXNOXLJNSSSLJ-UHFFFAOYSA-N 0.000 description 6
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005242 forging Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- -1 Originally Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229910001339 C alloy Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N chromium(III) oxide Inorganic materials O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
- C23C28/3215—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/324—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Coating By Spraying Or Casting (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ガスタービンやジェットエンジン等の高温被曝部分に用いられる高温強度部材、とくにNi基単結晶合金製およびNi基一方向凝固合金製の動・靜翼基材の表面に、塑性加工歪などに起因する高温強度の低下を防ぐための皮膜を設けてなるNi基合金部材とその製造方法に関するものである。また、本発明の技術は、Bを含まない多結晶Ni基合金および含BNi多結晶合金であっても、B含有量が本発明に係る表面皮膜中のB含有量より少ない場合には効果が期待できる。
【0002】
【従来の技術】
近年、ガスタービンは、熱効率の向上のために作動ガス温度の高温化を目指した研究が行われ、現在では既に、タービン入口温度が1500℃を超えるまでになっており、さらなる高温化技術の開発が求められている。
このようなガスタービンの高温化技術は、高温の燃焼ガスに直接曝されるタービン翼部材用材料の進歩(耐高温酸化性,熱遮断を目的とした皮膜の開発を含む)と、翼の冷却技術の開発に負うところが大きく、現在も重要な研究課題となっている。
特に、タービン動翼は、運転環境下における遠心力によるクリープ,タービンの起動,停止による熱疲労、機械的振動による高サイクル疲労、さらに燃焼ガス中に含まれる海塩粒子、硫黄、バナジウムなどの不純物による腐食作用を受けるため、翼部材研究の中心的対象となっている。
【0003】
従来のタービン翼部材としてのNi基合金の研究開発状況を概観すると、次のように要約される。
▲1▼ 多量のγ’相と呼ばれる金属間化合物[Ni3(Al,Ti)]の析出・分散による合金の強化、
▲2▼ 母相γとγ’両相の固溶強化、また両相の組成の微妙なバランスによる結晶界面の原子配列を考慮した合金手法の開発とその成果を利用した合金の開発、
▲3▼ 真空溶解技術の採用による微量不純物,気体類の影響の除去による高品質合金製造方法の確立、
▲4▼ 鍛造成形から精密鋳造技術への転換による高性能翼材の開発(冷却機構分野における自由度の拡大)、
▲5▼ 合金の一方向凝固法の開発による等軸晶から柱状晶翼材の製品化、
▲6▼ 多結晶合金の結晶粒界に起因する材料強度劣化を解消した単結晶翼材の開発、
▲7▼ 単結晶翼材の化学成分は、Ni:55〜70mass%を主成分として、その他にCr:2〜15mass%、Co:3〜13mass%、Mo:0.4〜8mass%、W:4.5〜8mass%、Ta:2〜12mass%、Re:3〜6mass%、Al:3.4〜6mass%、Ti:0.2〜4.7mass%、Hf:0.04〜0.2mass%、C:0.06〜0.15mass%,B:0.001〜0.02mass%,Zr:0.01〜0.1mass%,Hf:0.8〜1.5mass%など元素が添加されたものである。ただし、これらの合金類は、耐高温酸化性に有効なCrやAlの含有量が比較的少ないため、耐高温酸化性,耐高温腐食性(以下、耐高温環境性)の表面処理皮膜を施工することによって、はじめて、優れた高温強度を発揮するようになる。
▲8▼ ガスタービンやジェットエンジン等の高温被爆部材に対しては、その他、“MCrAlX合金”と呼ばれる耐高温酸化性に優れた合金皮膜が施工されている。ここで、Mは、Ni,CoあるいはFeの単独、あるいはこれらの複数の元素からなる合金、Xは、Y,Hf,Sc,Ce,La,Th,Bなどの元素を示す。
こうしたMCrAlX合金であっても、使用目的に応じた種々の化学組成のものが多数提案されており、これらの合金に関する先行技術を列挙すれば、次の通りである。
特開昭58−37145号公報、特開昭58−37146号公報、特開昭59−6352号公報、特開昭59−89745号公報、特開昭50−29436号公報、特開昭51−30530号公報、特開昭50−158531号公報、特開昭51−10131号公報、特開昭52−33842号公報、特開昭55−115941号公報、特開昭53−112234号公報、特開昭52−66836号公報、特開昭52−88226号公報、特開昭53−33931号公報、特開昭58−141355号公報、特開昭56−108850号公報、特開昭54−16325号公報、特開昭57−155338号公報、特開昭52−3522号公報、特開昭54−66342号公報、特開昭59−118847号公報、特開昭56−62956号公報、特開昭51−33717号公報、特開昭54−65718号公報、特開昭56−93847号公報、特開昭51−94413号公報、特開昭56−119766号公報、特開昭55−161041号公報、特開昭55−113871号公報、特開昭53−85829号公報、特開昭57−185955号公報、特開昭52−117826号公報、特開昭60−141842号公報、特開昭57−177952号公報、特開昭59−1654号公報。
これらの合金類は、主に多結晶合金翼材の耐高温環境性用皮膜として開発されてきたが、単結晶合金や一方向凝固合金にも有効であり、広く採用されている。
【0004】
一方、Ni基合金の中で、とくにNi基単結晶合金やNi基一方向凝固合金は、塑性加工や衝撃さらには、タービン翼として実機の運転環境下で疲労や熱疲労損傷を受けた状態で高温に加熱されると、加工や衝撃による残留歪の部分が変質して変質層を形成(図4参照)するという特徴がある。この変質層の部分は、光学顕微鏡による観察では、判別できないほどの微細な結晶の集合体、あるいはその予備状態にあるものと考えられるが、非常に脆く僅かな応力の負荷によって簡単に小さな亀裂を多数発生して破壊の起点となることが、本発明者らの実験によって確認された(図5参照)。
かかる基材表面に顕れる変質層に起因する高温強度の低下に対し、従来、これに着目してその防止を表面被覆によって図る技術については全く研究されておらず、先行のMCrAlX合金皮膜の用途は、もっぱら高温の燃焼ガスに起因する腐食損傷を対象とした耐高温環境性の向上にのみ向けられていることは周知の通りである。
【0005】
【発明が解決しようとする課題】
本発明は、Ni基合金、とくにNi基単結晶合金製およびNi基一方向凝固合金(以下、単に単結晶合金、一方向凝固合金と略称する)製の翼部材が抱えている次のような課題を溶射皮膜または蒸着皮膜の形成によって解決しようとするものである。
▲1▼ 単結晶合金製翼部材および一方向凝固合金製翼部材は、その製造工程,タービン翼としての運転中はもとより、保護皮膜の形成工程などにおいて、僅かな機械加工歪の発生やブラスト処理による粗面化などを受けた後、これが高温に加熱されると、それらの影響部に微細な結晶が多数生成した変質層を発生するという特徴がある。この変質層は、脆弱で小さな応力の負荷によって、微細な亀裂を多数発生し、これが起点となって高温強度が著しく劣化する。
▲2▼ 歪や機械加工を受けた状態の単結晶合金製および一方向凝固合金製翼部材の表面に対して、従来のMCrAlX合金溶射皮膜のみを形成した場合、前記変質層の生成に伴う高温強度の低下を防ぐことができない。
▲3▼ 以上の結果、材料工学的には優れた高温強度を有する単結晶合金および一方向凝固合金製の動・靜翼部材であっても、現状の技術では、その優位性を十分に発揮させることができない状況にある。
【0006】
【課題を解決するための手段】
本発明は、高温強度部材のNi基単結晶合金やNi基一方向凝固合金が抱えている上述した課題、すなわち塑性加工によって誘発される結晶制御の崩壊(広義の意味における再結晶)に起因する高温強度の低下を、表面被覆によって防止することを目的とするものであり、下記の技術思想に立脚して開発されたものである。
a. 単結晶合金や一方向凝固合金の表面に、金属硼化物および/または非金属硼化物からなる硼化物被覆層を形成することによって、基材が加熱されたときに、前記被覆層中から硼素(B)を該合金基材中に拡散浸透させ、このことによって、再結晶粒界の相互結合力を高めて、合金の高温強度の低下を防ぐようにすること。
b. 単結晶合金や一方向凝固合金の表面に、アンダーコートとして施工する金属(M)硼化物としては化学式がM1 〜 11、B11 〜 12で表示される1種もしくは2種以上の金属硼化物を使用することによって、Ni基合金中にBを優先的に拡散させるようにすること。
c. 単結晶合金や一方向凝固合金の表面に、アンダーコートとして施工する非金属硼化物としては、B4Cおよび/またはBNを使用することによって、BおよびCを拡散しようとすること。
d. 単結晶合金や一方向凝固合金の表面に、まずアンダーコートとして、金属硼化物および/または非金属硼化物からなる硼化物被覆層を形成した後、その上にオーバーコートとして、CO,Ni,CrおよびAlのうちから選ばれる少なくとも2種を含む合金に対し、さらにY,Hf,Ta,Cs,Ce,La,Th,W,Si,PtおよびMnのうちから選ばれる少なくとも1種の元素を添加してなる合金(以下、単に「MCrAlX合金」という)からなる耐熱合金被覆層を積層することによって、該合金の再結晶現象に起因する高温強度の低下を防ぐとともに前記MCrAlX合金皮膜(オーバーコート)によって耐高温環境性の向上を図るようにすること。
e. 硼化物被覆層(アンダーコート)もしくはMCrAlX耐熱合金被覆層(オーバーコート)の表面に、CVD法や粉末法によるAl拡散浸透処理を施して、これら被覆層のさらなる耐高温環境性の向上を図るようにすること。
f. 基材表面に形成した硼化物からなるアンダーコート上に、耐熱合金からなるオーバーコートを形成し、さらにそのオーバーコートの上に、Y2O3,CaO,MgO,CeO2,Yb2O3,Sc2O3などの酸化物を少なくとも1種を含むZrO2系セラミックス被覆層からなるトップコートを形成して、基材の高温強度の維持とさらなる耐高温環境性を付与するようにすること。
g. 単結晶合金や一方向凝固合金の表面に、金属硼化物および/または非金属硼化物からなる硼化物被覆層を形成する方法が、溶射法、電子ビーム蒸着法、スパッタリング法、熱CVD法、あるいはプラズマCVD法の如き表面処理法によって行われること。
h. 単結晶合金や一方向凝固合金の表面に、アンダーコートとして、溶射法、電子ビーム蒸着法、スパッタリング法、熱CVD法、あるいはプラズマCVD法の如き表面処理法によって金属硼化物および/または非金属硼化物からなる硼化物被覆層を形成した後、その上にオーバーコートとして、耐高温環境性を付与するためのMCrAlX耐熱合金被覆層を溶射法によって積層形成すること。
i. 単結晶合金や一方向凝固合金の表面に、アンダーコートとして、溶射法、電子ビーム蒸着法、スパッタリング法、熱CVD法、あるいはプラズマ溶射法の如き表面処理法によって金属硼化物および/または非金属硼化物からなる硼化物被覆層を形成した後、その上にオーバーコートとして、耐高温環境性のある耐熱合金被覆層を溶射法によって積層形成し、さらにその上にトップコートとして、Y2O3,CaO,MgO,Yb2O3,Sc2O3およびCeO2などから選ばれる少なくとも1種の酸化物を含むZrO2系セラミックスからなるセラミックス被覆層を溶射法、もしくは電子ビーム蒸着法によって形成すること。
【0008】
また、本発明は、Ni基合金、とくにNi基単結晶合金製基材もしくはNi基一方向凝固合金製基材の表面に、アンダーコートとして金属硼化物および/または非金属硼化物の硼化物被覆層が設けられ、その上に、オーバーコートとして耐高温環境性耐熱被覆層が設けられていることを特徴とするNi基合金部材を提案する。
【0009】
また、本発明は、Ni基合金、とくにNi基単結晶合金製基材もしくはNi基一方向凝固合金製基材の表面に、アンダーコートとして金属硼化物および/または非金属硼化物の硼化物被覆層が設けられ、その上に、オーバーコートとして耐高温環境性の耐熱合金被覆層が設けられている、さらにその上に、トップコートとしてY2O3,CaO,MgO,Yb2O3,Sc2O3およびCeO2などから選ばれる少なくとも1種の酸化物を含むZrO2系セラミックスからなるセラミックス被覆層が設けられてなることを特徴とするNi基合金部材である。
【0011】
また、本発明は、Ni基合金、とくにNi基単結晶合金製基材もしくはNi基一方方向凝固合金製基材の表面に、溶射法、電子ビーム蒸着法(EB−PVD)、スパッタリング法、熱CVD法、あるいはプラズマCVD法の如き表面処理法によって、金属硼化物および/または非金属硼化物からなる硼化物被覆層を形成し、次いでその硼化物被覆層の表面に、溶射法によって耐高温性合金被覆層を積層形成することを特徴とするNi基合金部材の製造方法である。
【0012】
そして、本発明は、Ni基合金、とくにNi基単結晶合金製基材もしくはNi基一方方向凝固合金製基材の表面に、溶射法、電子ビーム蒸着法(EB−PVD)、スパッタリング法、熱CVD法、あるいはプラズマCVD法の如き表面処理法によって、金属硼化物および/または非金属硼化物からなる硼化物被覆層を形成し、次いでその硼化物被覆層の表面に、溶射法にによって耐高温環境性の耐高温性合金被覆層を積層形成し、その後前記耐熱合金被覆層の上に、Y2O3,CaO,MgO,Yb2O3,Sc2O3およびCeO2などから選ばれる少なくとも1種の酸化物を含むZrO2系セラミックスからなるセラミックス被覆層を、溶射法もしくは電子ビーム蒸着法によって積層形成することを特徴とするNi基合金部材の製造方法を提案する。
【0013】
【発明の実施の形態】
以下、Ni基単結晶合金製基材およびNi基一方向凝固合金製基材の冶金的特徴を明らかにした後、その対策として適用する本発明に係る保護皮膜の作用機構を説明する。
(1)Ni基単結晶合金の冶金的特徴と実用上の問題点、
そもそもNi基単結晶合金は、従来から汎用されている多くのNi基多結晶合金が抱えている課題を解決するために開発されてきた経緯がある。すなわち、多結晶合金では、結晶粒界部にガスタービンの実用環境条件において、不純物元素をはじめ、各種の炭化物,金属間化合物などの濃縮や析出を起こしやすいうえ、これらが成長することによって、粒界の結合力が低下して、機械的な破壊の起点となる。
【0014】
また、結晶粒界では、燃焼ガス中に含まれている硫黄,バナジウム,塩化物さらには水蒸気などの酸化性物質の侵入が容易になるため、しばしば粒界腐食損傷を誘発する原因ともなっている。
【0015】
このような結晶粒界に起因する問題点を解消するため、従来、合金中に粒界強化元素(例えば、C,B,Zr,Hfなど)を添加した多結晶合金が開発されている。しかし、この合金は、融点の低い共晶γ’が生成されやすいため、溶体化処理温度を低くしなければならず、合金の高温強度向上の観点からは好ましくない。
【0016】
Ni基単結晶合金は、上述したような多結晶合金が抱えている冶金学的問題点を解消することを目指して開発されたものである。すなわち、Ni基単結晶合金では、破壊の原因となる結晶粒界がないうえ、共晶γ’相の析出の心配がないため、合金の高温溶体化処理が可能となる利点がある。そして、溶体化温度の高温化は、微細なγ’相を均等に析出−分散させることになるので、合金の高温強度を著しく向上させることができる。
【0017】
しかし、その一方で、Ni基単結晶合金には、多結晶合金には見られない新たな問題点のあることが顕在化してきた。それは、単結晶合金に予め数%程度(2%〜8%)の歪を付与したり、機械的な塑性加工を与えた後、熱処理をしたり、ガスタービンの運転環境に暴露したりすると、加工部およびその熱影響部が変質層となって現出し、このなかには微細な結晶が無数に発生しているらしいことが判明した(ここでは、この現象を「再結晶現象」と呼ぶ。図4参照)。かかる再結晶部は、非常に脆くかつ高温強度に乏しいため、僅かな応力の負荷によって、結晶粒界を起点とする多数の割れが発生し、単結晶合金全体の強度を甚だしく低下させるとういう問題点があった(図5参照)。
【0018】
このような再結晶の生成は、塑性加工時にはなく、その後、単結晶合金を加熱してはじめて発生するため、未然に防止策を施すことが非常に困難な状況にある。また、再結晶の現われる温度も比較的低く、例えば一般の多結晶合金製のガスタービン動靜翼に、耐高温環境性向上のために汎用されているMCrAlX合金溶射皮膜施工後、下記の溶体化処理はもとより時効処理などの熱処理を行っても発現する。
1273K〜1573K 1〜10h (溶体化処理)
973K〜1273K 1〜30h (時効処理)
【0019】
このため、耐高温環境性を向上させるには、単にMCrAlX合金を施工だけでは、基材の再結晶現象に伴う高温強度の著しい低下を防止することはできない。また、上述した理由によって、基材そのものに元素を添加する手法にも限界がある。
【0020】
Ni基単結晶合金製基材に、歪や塑性変形が発生する危険性のある環境条件としては、例えば翼材の場合、その製造工程、運転工程、ガスタービンの組立工程、溶射前処理として実施するブラスト粗面化工程、溶射粒子の衝突過程、溶射工程中における運搬工程、検査工程、ガスタービンの運転中燃焼ガス中に含まれている微細な固形粒子の衝突、単結晶合金翼表面に施工された保護皮膜のリコーディング時におけるブラスト処理あるいは研磨工程などが考えられる。
したがって、再結晶現象発生の有無を予想することは困難であり、Ni基単結晶合金製基材自身もしくは保護皮膜を設けて、該基材の高温強度を向上させることが必要である。
さらに、上記の例では、ガスタービンの運転中、Ni基単結晶合金翼材の表面には、局部的に熱疲労に伴う割れや焼損が発生することがしばしば観察される。このような補修には、該部材表面をグラインダーによって研削し、次いで溶接肉盛施工を行ない、形状を復元することが多い。ただし、かかる加工部には必ず、塑性加工に起因する変質層が不可避に生成する。
なお、上述したNi基単結晶合金に顕れる再結晶現象とその影響は、程度の差こそあれ、Ni基一方向凝固合金にも同じように認められるものである。ただし、以下は、Ni基単結晶合金の例について説明する。
【0021】
(2)本発明によるNi基単結晶合金の上記再結晶問題の解消
ガスタービンやジェットエンジン等の高温用部材の保護皮膜は、これまで、部材表面にMCrAlX合金を被覆することが一般的である。このMCrAlX合金の保護皮膜は、溶射法や蒸着法によって施工されているが、その目的は高温の燃焼ガスによる腐食作用から部材を保護するためにある。ただし、このことは、上述した合金基材の再結晶部に起因する問題点の解消を意図するものではない。もっとも、既知のMCrAlX合金の化学成分では、本発明の目的を達成することはできない
【0022】
本発明は、従来のMCrAlX合金の単層被覆とは異なり、以下に詳しく説明するような化学組成を有する金属硼化物および/または非金属硼化物を、溶射法、各種の蒸着法あるいはCVD法(含プラズマCVD法)などの方法によって、単結晶合金部材の基材表面に、所定の1層もしくは複数層の被覆層を形成することを基本とする技術である。以下、まず本発明における基本的な構成であるアンダーコート、すなわち、金属硼化物および非金属硼化物の被覆層について詳述する。
【0023】
本発明において使用可能な金属硼化物としては、次のような種類がある。ただし、金属硼化物としてはこの例示のものだけには限られない。
【0024】
【表1】
【0025】
上記表1(ここで、Mは金属元素を示す。)に明らかなように、本発明において使用可能な金属硼化物としては、金属元素の種類に関係なく、硼化物であればすべての化合物が適用できる。この理由は、これらの金属硼化物をNi基単結晶合金基材の表面に被覆した後、高温に加熱すると、硼素(B)が速やかに単結晶合金基材中に拡散して、変質層部分の強化作用に寄与することになる。
なお、硼素(B)の合金基材中への侵入によるこの変質層の強化メカニズムは、完全に解明したわけではないが、変質層中に生成した微細な再結晶の粒界にBが拡散浸透して、粒界の結合力を向上させる結果と考えている。
【0026】
上記反応において、硼化物を構成している金属もBと一緒に拡散するので、好ましくは、Ni基単結晶合金の成分と同じ金属、例えば、Ni,Cr,W,Mo,Co,Al,Ti,Nb,Ta,およびHfなどの金属硼化物が、Ni基単結晶合金中に異種の金属成分が拡散して新しい未知の金属間化合物が生成しないようにするためにも好ましいことである。なお、Zrの硼化物は、Zr金属自体が結晶粒界強化作用を発揮するため好都合である。
【0027】
上掲の表1に示すように、金属硼化物の化学式は、M1 〜 11B1 〜 12の化合物が知られているが、本発明では、その他のすべての金属硼化物も使用が可能である。なお、市販の金属硼化物の場合、TiB1やTi2Bが混在したり、NiB中にNi4B3、Ni2BときにはNi3Bも共存していることがあるが、これらの金属硼化物についても同様の効果が認められるので,金属(M)および硼素(B)の原子数はとくに限定されるものではない。
【0028】
一方、非金属硼化物の例としては、B4C,BNなどが好適に用いられる。これらの硼化物は、単独での使用が可能であるが、金属硼化物と混合したり、B4CとBNを混合しても、Ni基単結晶合金の熱疲労強度の低下を抑制する機能を発揮する。とくに、B4Cの被覆層は、Ni基単結晶基材が高温に加熱されると、BとともにCも基材内部に拡散すると共に、両者が共働して機材の再結晶に伴う微細な結晶粒界の強化に寄与する点で有効である。
また、本発明の硼化物被覆層は、Bを含まない多結晶Ni基合金やBを含むもののその含有量が本発明の硼化物被覆層中のB含有量より少ない多結晶Ni基合金に対しても、多結晶粒界の強化作用を発揮するので、これらの合金に対しても有効である。
【0029】
(3) 溶射法による硼化物被覆層(アンダーコート)の形成
Ni基単結晶合金基材表面に、金属硼化物および/または非金属硼化物からなる硼化物被覆層を形成する方法としては、代表的には溶射法を採用する。本発明の上述した作用効果を十分に発揮できるようにするためには、前記基材表面に、アンダーコートとしての硼化物被覆層を形成したとき、該硼化物被覆層(アンダーコート)から、Ni基単結晶合金基材の表面へのBの良好な拡散移動と該アンダーコート溶射被覆層自体の溶射粒子の相互結合力、さらには後で述べるオーバーコートとして形成するMCrAlX耐熱合金被覆層との良好な密着性を確保することが大切である。この目的を達成するための最大の課題は、アンダーコートの硼化物被覆層中に含まれる酸化物量の管理とその限界含有量を決定することである。例えば、アンダーコートを大気中で溶射法によって形成すると、溶射熱源中あるいは熱源近傍に多量の空気が混入して、溶射材料粒子を酸化するため、粒子の相互結合力や基材合金との付着力が低下する原因となるほか、これらの酸化物はBの拡散を抑制するとともに、オーバーコートとの結合力の低下などを招き、大きな障害となる。
【0030】
このため本発明では、アンダーコート中に含まれる酸化物量を、酸素量に換算して、1.5mass%以下に管理することとした。すなわち、大気プラズマ溶射法,減圧プラズマ溶射法,爆発溶射法,高速フレーム溶射法などのいずれかの方法によって溶射する場合でも、酸素含有量は1.5mass%以下に制御する。なお、溶射法の種類は、特に規制されるものではない。具体的には、高速フレーム溶射法,減圧プラズマ溶射法などの方法を採用することが好ましい。
【0031】
(4) 蒸着法等による硼化物被覆層(アンダーコート)の形成
硼化物被覆層中に含まれる酸素量を1.5mass%以下に抑制することができる方法であれば、溶射用でなくとも、例えば、PVD法(物理的蒸着法)を採用しても、本発明の要請に応えられるアンダーコートを形成することができる。たとえば、図1は、電子ビームを熱源としたPVD装置(EB−PVD)を用い、被覆材料1に電子銃2からビームを照射して材料の微細な蒸気(矢印)を蒸発させ、単結晶合金3に蒸着させる装置の図である。この装置は、真空容器4中に収納され、その容器には真空ポンプ5およびAr,Heなどの不活性ガスの導入管6が配設されているので、容器中の雰囲気はある程度、自由に調整できるようになっており、実質的に空気(酸素)がなく、不活性ガス雰囲気中で蒸着できるので、形成される皮膜中には殆んど酸化物が含まれない。なお、この装置には、単結晶合金を加熱するためのヒータ7が配設されているととともに、単結晶合金と被覆材料とをそれぞれ電極とするための直流電源8が設けられているため、電圧を負荷することによって、蒸着前処理としての不活性ガスによる浄化処理や蒸着粒子をイオン化し、単結晶合金面へ衝突させることができるので、高い密着性も期待できる。
なお、蒸着法としては、上記の方法以外の方法として、レーザやジュール熱源を用いる蒸着法、高周波励起式のEP−PVD法、スパッタリング法なども使用でき、熱CVD法、プラズマCVD法によっても上述したアンダーコートの形成は可能である。
【0032】
上記アンダーコート(硼化物被覆層)の厚さは、0.1〜50μm程度の範囲が好適である。その理由は硼化物の膜厚が0.1μmより薄いと、粒界強化作用が十分でなく、一方、50μmより厚くしても、その粒界強化に格別良好な作用が認められず、また合金基材の内部へ侵入したBが粒界強化以外に、他の合金成分と反応して、低融点共晶などを生成するので好ましくないからである。
【0033】
(5) 耐熱合金被覆層(オーバーコート)の形成
本発明の他の実施形態としては、Ni基単結晶合金等の基材表面に、まず金属硼化物および/または非金属硼化物からなる硼化物被覆層をアンダーコートとして形成した後、その上に耐高温環境性を付与するための耐熱合金被覆層をオーバーコートを形成したものが考えられる。この実施形態は、前記硼化物被覆層(アンダーコート)中の硼化物の作用を十分に発揮させるとともに、高温環境から受ける各種の作用、例えば燃焼ガスによる酸化反応やS化合物による硫化腐食などの化学的損傷にも耐え得るようにするものである。
そこで、本発明では、前記硼化物被覆層(アンダーコート)の上に、耐高温環境性を示す耐熱合金被覆層をオーバーコートとして、大気プラズマ溶射法、減圧プラズマ溶射法、高速フレーム溶射法などの溶射法を用いて積層形成することにしたのである。
アンダーコートの上にオーバーコートを重ねて積層する理由は,硼化物被覆層であるアンダーコートだけでは、耐高温環境性が十分でないうえ、特に高温下においてはアンダーコートが、酸化現象によって消耗するので、膜厚0.1〜50μm程度の膜厚では、アンダーコートの寿命が甚しく、短くなるおそれがあるためである。
【0034】
本発明において、オーバーコートである耐熱合金被覆層に用いる耐熱合金としては、上述した「MCrAlX合金」を用いることが望ましい。その主要化学成分はCo,Ni,Cr,FeおよびAlのうちから選ばれる少なくとも2種を含む合金に対し、Y,Hf,Ta,Cs,Ce,La,Th,W,Si,PtおよびMnのうちから選ばれる少なくとも1種の元素を添加してなるものである。そして、かかるオーバーコートは、前記MCrAlX合金を各種の溶射法により、膜厚を50〜500μm程度の厚みに溶射して被覆形成する。
【0035】
なお、上記MCrAlX合金からなる耐熱合金被覆層は、Ni基合金機材の表面に形成した硼化物被覆層と良好な密着性を示すとともに、高温ガスによる外部からの酸化反応や腐食反応に十分耐え得る役目を担うものであり、下記組成のものが好適に用いられる。
M成分として、Ni:0〜75mass%、Co:0〜70mass%、Fe:0〜30mass%、
Cr:5〜70mass%、Al:1〜29mass%、
X成分として、Y:0〜5mass%、Hf:0〜10mass%、Ta:1〜20mass%、Si:0.1〜14mass%、B:0〜0.1mass%、C:0〜0.25mass%、Mn:0〜10mass%、Zr:0〜3mass%、W:0〜5.5mass%、Pt:0〜2.0mass%
【0036】
ただし、MCrAlX合金からなる上記耐熱合金の溶射皮膜、すなわちオーバーコートの形成に当っては、このオーバーコート中に含まれる酸化物量の管理とその限界含有量を検討することが、アンダーコートの場合と同様に重要である。すなわち、前記MCrAlX合金を大気中で溶射すると、熱原中あるいは熱源近傍に多量の空気が混入して、溶射材料粒子を酸化させるため、粒子の相互結合力や合金基材との付着力を低下させる他、これらの酸化物が硼化物アンダーコート中のB原子の拡散を抑制し、さらには、皮膜表面においてAl2O3やCr2O3の如き均質な保護性酸化膜の均質かつ緻密な膜の生成を妨げるなど、大きな障害となるからである。
このため本発明では、オーバーコート中に含まれる耐熱合金(MCrAlX合金)中の酸化物量を、酸素量として1.5mass%以下に管理することとした。すなわち、大気プラズマ溶射法、減圧プラズマ溶射法、爆発溶射法、高速フレーム溶射法などのいずれの方法を施工する場合でも、溶射雰囲気中の酸素含有量を1.5mass%以下に制御することにしたのである。
【0037】
(6) Al拡散層の形成
また、本発明において、上記硼化物アンダーコートや耐熱合金オーバーコートの表面には、さらに、CVD法や粉末法などのアルミニウム拡散浸透処理法を適用してAl拡散層を形成することが好ましい。
たとえば、CVD法は、真空容器中に有機または無機アルミニウム化合物(主としてハロゲン化合物)ガスを導入し、これに熱や低温プラズマを照射して化学反応を促進させて、アルミニウム化合物からAlを遊離させる方法、あるいは、真空容器中にH2ガスを導入して、その化学的還元力によって、Alを遊離させた後(遊離したAl粒子は1μm以下の微粒子)、これを硼化物アンダーコートや耐熱合金オーバーコートの表面に析出させると同時に内部へ拡散浸透させる方法である。また、前記粉末法は、Al粉またはAl合金粉末とNH4Cl,NH4Fなどのハロゲン化合物、Al2O3粉末などの混合物中に非処理部材を埋没させ、その後、ArガスあるいはH2ガスを流しつつ、800〜1000℃,1〜20h加熱することによって、表面にAl濃度の高い拡散層を形成させる方法である。
【0038】
(7) セラミックス被覆層(トップコート)の形成
さらに、本発明では、前記硼化物アンダーコート、耐熱合金オーバーコート、または前記Al拡散層の表面に、大気プラズマ溶射法、減圧プラズマ溶射法および蒸着法(EB−PVD)などによって、必要に応じてさらに、酸化物含有ZrO2系セラミックスからなるトップコート(膜厚:30〜500μm)を形成し、高温強度のさらになる改善を図ることが、より好ましい実施態様となる。
上記ZrO2系セラミックスのトップコートは、Y2O3,CeO,CaO,Sc2O3,MgO,Yb2O3およびCeO2のうちから選ばれる1種以上の酸化物を含むZrO2系セラミックスが用いられる。これをトップコートとして用いる理由は、主として燃料の燃焼炎から放出される高温の輻射熱を防ぐためである。なお、このトップコート中にZrO2以外の酸化物を含有させる理由は、ZrO2単独では、高温に加熱されたり、冷却された際、その結晶形が単斜晶⇔正方晶⇔立方晶に変化し、それに伴って大きな体積変化(4〜7%)を招いて自ら壊すため、かかる酸化物は5〜40mass%程度として、体積変化率を緩和させることが望ましい。
【0039】
(8) 本発明に係るNi基合金部材の被覆層断面構造
図2は、本発明に係るNi基高温強度部材の断面構造例を示したものである。
▲1▼ 図2(a)は、Ni基単結晶合金基材の表面に、金属硼化物および/または非金属硼化物からなる硼化物被覆層(アンダーコートを形成した場合の断面である。ここで21は合金基材、22は溶射法、各種のPVD法、CVD法によって形成された硼化物被覆層である。
▲2▼ 図2(b)は、硼化物被覆層(アンダーコート)22の上に、アルミニウム拡散浸透処理を施した場合の断面構造図である。このAl拡散処理は高温処理(700〜1000℃)であるため、Alの一部が硼化物被覆層であるアンダーコート中に拡散するとともに、基材中にBとともに侵入したものになるが、ここではアンダーコート中への拡散現象のみを図示した。ここで、図中の23は、Al拡散層(含浸層)を示し、24はAl濃度の高い層を示したものである。
従って、Al拡散層とは、実質に基材中に拡散浸透(含浸)した部分とその表面を被う被覆層(Al皮膜)とからなるものと言える。
▲3▼ 図2(c)は、硼化物被覆層22(アンダーコート)の上に、耐熱合金被覆層としてMCrAlX合金によるオーバーコート25を形成した場合の断面構造図である。このオーバーコート25は、アンダーコートおよび基材の高温燃焼ガスによる酸化や腐食を防ぐとともに、硼化物アンダーコートとの優れた密着性を確保しつつ、アンダーコート中からBが基材中へ拡散して変質層の生成に伴う基材の高温強度の低下を抑制する役目を果すものである。ここで25は、耐高温環境性の耐熱合金被覆層としてのMCrAlX合金の溶射被覆層を示すものである。
▲4▼ 図2(d)は、(c)に示した構造の複合皮膜に対して、Al拡散浸透処理を施したものの断面構造を示したものである。この例は、上述した耐熱合金被覆層25のみでも、耐高温環境性を示しているが、Ni基単結晶合金製翼材が用いられている最近のガスタービンは、従来の多結晶合金製翼材よりも一段と高温になる。そこで、保護皮膜の耐高温環境性をより一層発揮させるために最外表層のAl濃度を向上させたものである。
なお、Al拡散浸透処理は、既知の気相法(CVD法)や粉末法(例えば、本発明者の一人が出願した特許第2960664号、特許第2960665号参照)に従うことが望ましい。
▲5▼ 図2(e)は、MCrAlX合金による耐熱合金オーバーコートの上に、さらにZrO2系のセラミックス被覆層26を、トップコートとして設けたものの断面構造図である。ガスタービンなどでは、燃焼フレームを熱源とする強い輻射熱が発生するため、熱伝導率の低い、ZrO2系セラミックス被覆層を最外層に設けて輻射熱障害を防止するものである。該ZrO2系セラミックスとしては、Y2O3,CeO2,CaO,Yb2O3,Sc2O3,MgOのなかから選ばれるいずれか少なくとも1種の酸化物を含むZrO2系セラミックスが好適である。
【0040】
【実施例】
<実施例1>
この実施例では、表2に示すような化学成分を有するNi基単結晶合金(A合金)Ni基一方向凝固合金(B合金)とともに、比較例としてNi基多結晶合金(C合金)を用い、合金の塑性加工に伴う変質層の発生の有無を調査した。これらの供試材の熱処理条件を表2の下段にそれぞれ記載した。
また、表3には、実施例において供試した本発明に係る金属硼化物と非金属硼化物の種類とその組合せ、表4には、MCrAlX合金の化学成分、表5には、塑性加工後に実施した熱処理条件について示した。
【0041】
【表2】
【0042】
【表3】
【0043】
【表4】
【0044】
【表5】
【0045】
(試験片の調整)
表2記載の単結晶合金(寸法:直径10mm×長10mm)に対し、室温で下記のような条件の塑性加工を施した。
(1) ブリネル硬度計の鋼球を980Nで押し付けた。
(2) 旋盤加工により、試験片の表面を約1mm切削
(3) JIS Z 0312に規定されている溶融アルミナグリット(1mm〜2mm)を用いて試験片に強く吹き付けたもの
加工後の試験片は、表5記載のAとCの条件で熱処理を施したのち冷却し、その断面を光学顕微鏡および走査型電子顕微鏡によって観察した。
表6は、顕鏡結果を要約したものである。塑性加工を与えない試験片(試験片No.1)は、変質層が全く認められなかった。これに対し、塑性加工を施した試験片(No.2〜7)は、熱処理条件の相違、塑性加工法の種類にかかわらず変質層が発生し、特に旋盤加工した試験片ではmax50μmに達する変質層が生成していた。この変質層は、粗大γ’析出相とγ相から構成されており、また、変質層と未変化部での境界では(健全部)高温強度因子のγ’相の分解らしい現象が認められ、高温強度の低下に結び付く要因の生成が確認された。
【0046】
【表6】
【0047】
(実施例2)
この実施例では単結晶合金と一方向凝固合金を用いて、塑性加工,熱処理,溶射皮膜などの影響を高温疲労試験によって調査した。
(1)疲労試験要領と試験片の調整
疲労試験には、最大負荷5ton,ストローク50mm(伸び圧縮とも),振動数0.01〜20Hzの性能を有する電気油圧サーボ弁式疲労試験装置を用い、試験片の加熱は、高周波誘導加熱方式を採用し、950℃大気中,応力比R=−1,正弦応力波形,周波数10Hzの条件で実施した。
【0048】
一方、疲労試験用材料としては、単結晶合金と一方向凝固合金の2種とし、また、塑性歪の付与方法には、次のような方法を採用した。
(a) 型鍛錬による圧縮歪の付与
図3(a)に示すような凸部付き丸棒を切り出した後、凸部に半径方向に換算して、室温で約8.3%に相当する圧縮歪を型鍛造(図3(b))して与えた。その後、表5記載の熱処理を行った後、試験片の中心部から図3(c)に示すように、平行部直径4mm,平行部長さ10mmの平滑棒疲労試験片に加工した。
(b) 旋盤加工による歪の付与
供試材を旋盤によって半径を約1mm切削し、その後1353K×100hの熱処理を施したものから、疲労試験片を切り出した。旋盤加工の条件は切り込む深さ0.2〜0.25mm,送り量0.051〜0.2mmの範囲に変化させた。
(2) 溶射皮膜の形成
疲労試験片の平行部全面にわたって、減圧プラズマ溶射法によって、表3に記載の硼化物または表4に記載のMCrAlX合金を、硼化物アンダーコート,MCrAlX合金オーバーコートとして、それぞれを単独に150μm厚に施工したものである。
(3) 疲労試験結果
単結晶合金について実施した結果を表7に要約した。この結果は、単結晶合金のバージン材(塑性加工しない試験片No.1)の強度を100として、他の試験片の平均強度比で比較したものである。この結果から明らかなように、塑性加工を与えない合金では、MCrAlX合金被覆層を成膜しても疲労強度上の変化は少なく、大気環境による酸化反応を幾分抑制している程度であった。
これに対し、試験片に予め型鍛錬(No.4)や旋盤加工を施したもの(No.8)では、熱処理によって再結晶化現象が発生するため、疲労強度は極端に低下し、単結晶合金として致命的な強度低下を示した。しかし、予め硼化物被覆層(アンダーコート)を施工しておくと、試験片No.5,9,11に見られるように疲労強度の低下は非常に少なく、再結晶化に伴う強度低下をほぼ防ぐことが可能であった。この傾向はMCrAlX合金の施工(試験片No.6,10)においても認められるが、硼化物に比較すると強度低下率の軽減効果は少ない。MCrAlX合金皮膜は、耐高温環境性の効果によるものと考えられる。
また、硼化物アンダーコートの効果は、試験片No.11,12の結果から明らかなように2種類の金属硼化物を用いても、また、金属/非金属硼化物の混合物を使用しても、単結晶合金の疲労強度の低下を抑制する効果が認められることがわかった。
【0049】
なお、試験片No.7,12に見られるように、硼化物をアンダーコート/MCrAlX合金をオーバーコートとした試験片では、ほぼ疲労強度が回復しているので、硼化物の施工は、単結晶合金と直接接触させることが必要である。
【0050】
【表7】
【0051】
一方、一方向凝固合金について実施した結果を表8に示した。一方向凝固合金では塑性加工の影響を単結晶合金ほど強く受けないが、ここでも疲労強度は低下する。硼化物の溶射皮膜は、一方向凝固合金の再結晶化に伴う強度低下に対しても軽減効率が認められている(試験片No.5,7,9,11,12)。
【0052】
【表8】
【0053】
(実施例3)
この実施例では、単結晶合金製の疲労試験片について、実施例2で採用した塑性加工法として旋盤による切削加工、熱処理条件として表5中のA条件の熱処理を行った後、皮膜形成法として、減圧プラズマ溶射法,電子ビーム蒸着法によって、表3記載の硼化物のうち(A)(B)(F)(G)を用いてアンダーコートを形成し、その上に、表4記載のMCrAlX合金をオーバーコートとして、高速フレーム溶射法によって150μm厚に施工した。なお、硼化物アンダーコートの膜厚は、溶射法20μm、電子ビーム蒸着法では2μmである。
以上のような要領で成膜した試験片について実施例2記載の熱疲労試験条件によって試験した。
上記試験片による1223Kにおける疲労試験結果を表9に示した。この結果から明らかなように、さきに実施例2で得られた比較例の塑性加工を与えない例(試験片No.1)、また塑性加工を与えたものの、硼化物のアンダーコートを形成していない条件(No.2)の疲労強度試験結果を併記し、これらの測定値を基準として比較した。こられの結果を要約すると、Ni基単結晶合金に塑性加工を与えると、その疲労強度はバージン材(No.1)32%程度に低下するが、蒸着法や溶射法によって硼化物アンダーコートを施工した後、MCrAlX合金オーバーコートを積層したもの(No.4〜7,9〜11)の疲労強度は、バージン材の強度とほぼ同等にまで回復し、変質層の生成による強度低下を防止していることが認められる。また、硼化物としては、金属硼化物単独(No4,5,9,10)、2種の金属硼化物の混合(No.6)また金属硼化物と非金属硼化物の混合物などのアンダーコートにおいても、ほぼ同等の強度低下防止の効果が認められた。さらに、アンダーコートの形成法として蒸着法と溶射法の差はほとんど認められず、両者とも硼化物アンダーコートの施工法として十分な性能を発揮している。
一方、塑性加工試験片の表面に、MCrAlX合金の溶射皮膜を直接施工したもの(No.3,8)では、耐高温環境性は発揮するものの、基材の疲労強度の低下の抑制には、硼化物アンダーコートほどの性能は認められなかった。
【0054】
【表9】
【0055】
(実施例4)
この実施例では、単結晶合金と一方向凝固合金の表面に形成した本発明に適合する被覆層についての耐熱衝撃性を調査した。
(1) 供試基材と試験片の形状寸法
供試基材として、表2記載の単結晶合金と一方向凝固合金を用い、これを直径15mm×長さ50mmの丸棒試験片に仕上げた。
(2) 試験片に対する塑性加工の有無
前記丸棒試験片の加工に対し、実施例1記載の旋盤加工条件のものを製作した。
(3) 供試被覆層の種類と被覆層形成方法
試験片に対する硼化物アンダーコートの形成法として、溶射法(減圧プラズマ)EB−PVD法およびスパッタリング法を用い、それぞれNiBを溶射法では20μm、PVD法では3μm、スパッタリング法では1μmの厚さに成膜した。その後、MCrAlX合金として、表4記載の合金を減圧プラズマ溶射法および高速フレーム溶射法によって、膜厚150μmに施工したものを作製し、その後、さらに、前記オーバーコートの上に、トップコートとして、Y2O3を8mass%含むZrO2セラミックスの被覆層を大気プラズマ溶射法で300μm厚形成したものを熱衝撃試験片とした。
(4) 熱衝撃試験条件
950℃に維持した電気炉に試験片を15min静置して加熱し、その後298Kの水中に投入して冷却する操作を1サクルとし、これを10サイクル繰返し、被覆層の外観変化と剥離の有無を調査した。
上記試験結果を表10に要約した。この結果から明らかなように、一般に広く使用されているMCrAlX合金の被覆層とY2O3・ZrO2セラミックス被覆層の組合せによる熱遮蔽皮膜(試験片No.1,2)は、10回の繰返しによる熱衝撃試験に耐え、トップコートの割れや剥離は認められなかった。本発明にかかる複合皮膜(No.3〜8)についてもトップコートのY2O3・ZrO2には、割れや局部剥離の兆候は全く認められず健全な状態を維持し、現行の熱遮蔽皮膜として汎用されている皮膜に対して遜色のない熱衝撃抵抗を保有していることが認められた。当然のことながら硼化物アンダーコートとMCrAlX合金のオーバーコートとの界面の接合力についても十分な性能を保持していることが見られ、剥離現象は確認されなかった。
【0056】
【表10】
【0057】
【発明の効果】
以上説明したように、予め歪や塑性加工を受けた従来のNi基単結晶合金およびNi基一方向凝固合金基材は、これらが高温に加熱されると、表面に再結晶化を伴う変質層を生成し、これが起点となって僅かな負荷応力によっても容易に破壊されるようになり、この種合金が保有する優れた高温強度を発揮することができないという致命的な欠陥があった。
これに対し、本発明は、このような合金基材の表面に、溶射法、PVD法、CVD法などによって直接、硼化物アンダーコートを形成することにより、高温環境下において硼素を優先的に合金基材中に拡散させて、再結晶粒界の相互結合力を強化することにより、高温強度の低下を効果的に低減し、もって前記基材本来の強度を発揮させるようにしたものである。
【0058】
そして、本発明の他の実施形態によれば、たとえば前記硼化物被覆層(アンダーコート)とMCrAlX合金被覆層(オーバーコート)との積層、さらには、ZrO2系セラミックス被覆層(トップコート)の積層形成などによって、高温環境中における燃焼ガス成分に対する物理・化学的作用を向上させることができる。
【0059】
これらの効果は、単結晶合金や一方向凝固合金製のガスタービン翼部材などのように、製造・組立工程はもとより、運転中または運転後の皮膜再処理工程などにおける歪の付与や塑性加工を伴う機会が多い高温強度部材に適用した場合に、上記危険因子を完全に払拭することができ有効である。
従って、本発明によれば、この種の合金製ガスタービン翼部材の品質および生産性の向上に資するとともにガスタービンの長期安定運転と発電単価の低減に大きく寄与することができる。
【図面の簡単な説明】
【図1】電子ビーム熱源を有するPVD装置の概要を示す略線図である。
【図2】本発明の硼化物被覆層を利用して単結晶合金または一方向凝固合金部材上に、耐高温用被覆層を構成した場合の積層構造の例を示す断面図である。
【図3】凸部付き丸棒素材に対する凸部の型鍛造による応力の負荷とその丸棒からの高温疲労強度試験片の採取要領を示す図である。
【図4】塑性加工部に生成する変質層の形状例を示す金属顕微鏡写真である。
【図5】疲労試験片の破断面の状況と変質層が、破壊の起点となっていることを示す金属顕微鏡写真である。
【符号の説明】
1 被覆材料
2 電子ビーム銃
3 単結晶合金基材
4 真空容器
5 真空ポンプ
6 不活性ガスの導入管
7 基材加熱用ヒータ
8 直流電源
21 基材
22 硼化物被覆層(アンダーコート)
23 Al拡散層(低濃度)
24 耐熱合金被覆層(オーバーコート)
25 Al拡散層(高濃度)
26 セラミックス被覆層(トップコート)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-temperature strength member used for a high-temperature exposed portion of a gas turbine, a jet engine, or the like, and in particular, to the surface of a moving / static vane substrate made of a Ni-based single crystal alloy and a Ni-based unidirectionally solidified alloy, plastic working strain is applied. The present invention relates to a Ni-based alloy member provided with a film for preventing a decrease in high-temperature strength due to the above-mentioned factors, and a method for producing the same. In addition, the technology of the present invention is effective even when the B content is smaller than the B content in the surface film according to the present invention, even for a polycrystalline Ni-based alloy containing no B and a BNi-containing polycrystalline alloy. Can be expected.
[0002]
[Prior art]
In recent years, research has been conducted on gas turbines aimed at increasing the working gas temperature in order to improve thermal efficiency. At present, the turbine inlet temperature has already exceeded 1500 ° C. Is required.
The technology for raising the temperature of gas turbines involves the development of materials for turbine blade members that are directly exposed to high-temperature combustion gas (including the development of coatings for high-temperature oxidation resistance and thermal insulation) and the cooling of blades. It depends heavily on the development of technology and is still an important research topic.
In particular, turbine blades are subject to creep due to centrifugal force in the operating environment, thermal fatigue due to starting and stopping of the turbine, high cycle fatigue due to mechanical vibration, and impurities such as sea salt particles, sulfur, and vanadium contained in combustion gas. Because of the corrosive action of the wing, it has become a central subject of wing member research.
[0003]
An overview of the research and development status of Ni-based alloys as conventional turbine blade members is summarized as follows.
(1) A large amount of intermetallic compound [Ni3(Al, Ti)] alloy strengthening by precipitation / dispersion,
(2) Development of an alloying method that takes into account the atomic arrangement of the crystal interface due to the solid solution strengthening of the mother phases γ and γ ′, and the delicate balance of the composition of both phases, and the development of an alloy using the results.
(3) Establishment of high quality alloy manufacturing method by removing the effects of trace impurities and gases by adopting vacuum melting technology,
(4) Development of high-performance blade materials by switching from forging to precision casting technology (expansion of flexibility in the field of cooling mechanisms),
(5) Commercialization of wing material from equiaxed to columnar wing material by development of directional solidification method of alloy,
(6) Development of single-crystal blade material that eliminates material strength deterioration caused by crystal grain boundaries in polycrystalline alloys,
{Circle around (7)} The chemical composition of the single-crystal blade material is mainly Ni: 55 to 70 mass%, Cr: 2 to 15 mass%, Co: 3 to 13 mass%, Mo: 0.4 to 8 mass%, W: 4.5 to 8 mass%, Ta: 2 to 12 mass%, Re: 3 to 6 mass%, Al: 3.4 to 6 mass%, Ti: 0.2 to 4.7 mass%, Hf: 0.04 to 0.2 mass %, C: 0.06 to 0.15 mass%, B: 0.001 to 0.02 mass%, Zr: 0.01 to 0.1 mass%, Hf: 0.8 to 1.5 mass%. It is a thing. However, since these alloys have relatively low Cr and Al contents that are effective for high-temperature oxidation resistance, a surface treatment film with high-temperature oxidation resistance and high-temperature corrosion resistance (hereinafter referred to as high-temperature environment resistance) is applied. By doing so, an excellent high-temperature strength is exhibited for the first time.
{Circle around (8)} For high-temperature exposed members such as gas turbines and jet engines, an alloy coating excellent in high-temperature oxidation resistance called “MCrAlX alloy” is applied. Here, M represents Ni, Co or Fe alone or an alloy composed of a plurality of these elements, and X represents an element such as Y, Hf, Sc, Ce, La, Th, and B.
Many such MCrAlX alloys having various chemical compositions according to the purpose of use have been proposed. Prior arts relating to these alloys are listed as follows.
JP-A-58-37145, JP-A-58-37146, JP-A-59-6352, JP-A-59-89745, JP-A-50-29436, JP-A-51-1979. No. 30530, JP-A-50-158531, JP-A-51-10131, JP-A-52-33842, JP-A-55-115941, JP-A-53-112234, JP-A-52-66836, JP-A-52-88226, JP-A-53-33931, JP-A-58-141355, JP-A-56-108850, and JP-A-54-16325. JP, JP-A-57-155338, JP-A-52-3522, JP-A-54-66342, JP-A-59-118847, and JP-A-56-62956. JP-A-51-33717; JP-A-54-65718; JP-A-56-93847; JP-A-51-94413; JP-A-56-119766; JP-A-161041, JP-A-55-113871, JP-A-53-85829, JP-A-57-185955, JP-A-52-117826, JP-A-60-141842, JP-A-57-177952 and JP-A-59-1654.
These alloys have been developed mainly as high temperature environment resistant coatings for polycrystalline alloy blade materials, but are also effective for single crystal alloys and directionally solidified alloys, and are widely used.
[0004]
On the other hand, among Ni-based alloys, particularly Ni-based single crystal alloys and Ni-based unidirectional solidified alloys are subjected to plastic working and impact, and furthermore, as turbine blades under fatigue or thermal fatigue damage under the operating environment of a real machine. When heated to a high temperature, there is a characteristic that a portion of the residual strain due to processing or impact is altered to form an altered layer (see FIG. 4). It is thought that this part of the altered layer is in an aggregate of fine crystals indistinguishable by observation with an optical microscope or in its preliminary state, but it is very fragile and easily cracks small by the application of slight stress. It was confirmed by experiments of the present inventors that a large number of them occurred and became a starting point of destruction (see FIG. 5).
With respect to such a decrease in high-temperature strength due to the deteriorated layer appearing on the surface of the base material, no technique has been studied so far by focusing on this and preventing it by surface coating. It is well known that the technique is directed solely to the improvement of high temperature environment resistance for corrosion damage caused by high temperature combustion gas.
[0005]
[Problems to be solved by the invention]
The present invention relates to a wing member made of a Ni-based alloy, in particular, a Ni-based single crystal alloy and a Ni-based one-way solidified alloy (hereinafter, simply referred to as a single crystal alloy, a one-way solidified alloy). An object of the present invention is to solve the problem by forming a thermal spray coating or a vapor deposition coating.
{Circle around (1)} The single-crystal alloy wing member and the unidirectionally solidified alloy wing member are subjected to slight machining distortion and blasting during the manufacturing process, the operation as a turbine blade, and the formation of a protective coating. When this is heated to a high temperature after being subjected to surface roughening or the like, an altered layer in which a large number of fine crystals are generated in the affected portion is generated. In this altered layer, a large number of fine cracks are generated by the application of a fragile and small stress, and the high-temperature strength is remarkably deteriorated starting from this.
{Circle around (2)} When only the conventional MCrAlX alloy thermal spray coating is formed on the surface of a single crystal alloy or unidirectionally solidified alloy wing member subjected to strain or mechanical processing, high temperature accompanying the formation of the altered layer is obtained. The strength cannot be prevented from decreasing.
(3) As a result, even with moving and stationary blade members made of single crystal alloys and unidirectional solidified alloys that have excellent high-temperature strength in terms of material engineering, the current technology fully demonstrates its superiority. It is in a situation that cannot be done.
[0006]
[Means for Solving the Problems]
The present invention is attributable to the above-mentioned problems of the Ni-based single crystal alloy and the Ni-based directionally solidified alloy of the high-temperature strength member, namely, the collapse of crystal control (recrystallization in a broad sense) induced by plastic working. The purpose of the present invention is to prevent a decrease in high-temperature strength by surface coating, and has been developed based on the following technical concept.
a. By forming a boride coating layer composed of a metal boride and / or a non-metal boride on the surface of a single crystal alloy or a directionally solidified alloy, when the substrate is heated, boron ( B) diffusing and infiltrating into the alloy substrate, thereby increasing the interconnectivity of the recrystallized grain boundaries so as to prevent a reduction in the high temperature strength of the alloy.
b. The metal (M) boride applied as an undercoat on the surface of a single crystal alloy or a directionally solidified alloy has a chemical formula of M1 ~ 11, B11 ~ 12B is preferentially diffused into the Ni-based alloy by using one or more metal borides represented by the following formula.
c. As a non-metallic boride to be applied as an undercoat on the surface of a single crystal alloy or a directionally solidified alloy, B4Attempt to spread B and C by using C and / or BN.
d. First, a boride coating layer composed of a metal boride and / or a non-metal boride is formed as an undercoat on the surface of a single crystal alloy or a directionally solidified alloy, and then CO, Ni, Cr is formed as an overcoat thereon. And at least one element selected from the group consisting of Y, Hf, Ta, Cs, Ce, La, Th, W, Si, Pt and Mn to an alloy containing at least two selected from Al and Al. By laminating a heat-resistant alloy coating layer made of an alloy (hereinafter, simply referred to as “MCrAlX alloy”), a decrease in high-temperature strength due to a recrystallization phenomenon of the alloy is prevented, and the MCrAlX alloy film (overcoat) is formed. To improve the high temperature environment resistance.
e. The surface of the boride coating layer (undercoat) or the MCrAlX heat-resistant alloy coating layer (overcoat) is subjected to Al diffusion / penetration treatment by a CVD method or a powder method to further improve the high-temperature environment resistance of these coating layers. To be.
f. An overcoat made of a heat-resistant alloy is formed on an undercoat made of boride formed on the surface of the base material, and Y is further formed on the overcoat.2O3, CaO, MgO, CeO2, Yb2O3, Sc2O3Containing at least one oxide such as2Forming a top coat consisting of a base ceramic coating layer to maintain the high-temperature strength of the base material and to impart further high-temperature environmental resistance.
g. A method of forming a boride coating layer composed of a metal boride and / or a non-metal boride on the surface of a single crystal alloy or a directionally solidified alloy is performed by a thermal spraying method, an electron beam evaporation method, a sputtering method, a thermal CVD method, or Performed by a surface treatment method such as a plasma CVD method.
h. A metal boride and / or a non-metallic boron is formed as an undercoat on a surface of a single crystal alloy or a directionally solidified alloy by a surface treatment method such as a thermal spraying method, an electron beam evaporation method, a sputtering method, a thermal CVD method, or a plasma CVD method. After forming a boride coating layer made of a nitride, an MCrAlX heat-resistant alloy coating layer for imparting high-temperature environment resistance is formed thereon by thermal spraying as an overcoat.
i. A metal boride and / or a non-metallic boron is formed as an undercoat on a surface of a single crystal alloy or a directionally solidified alloy by a surface treatment method such as a thermal spraying method, an electron beam evaporation method, a sputtering method, a thermal CVD method, or a plasma spraying method. After forming a boride coating layer composed of a nitride, a heat-resistant alloy coating layer having high-temperature environment resistance is formed thereon by thermal spraying as an overcoat, and a top coat is formed thereon as a top coat.2O3, CaO, MgO, Yb2O3, Sc2O3And CeO2Containing at least one oxide selected from the group consisting of2Forming a ceramic coating layer made of a base ceramic by thermal spraying or electron beam evaporation.
[0008]
The present invention also provides a boride coating of a metal boride and / or a non-metal boride as an undercoat on the surface of a Ni-base alloy, particularly a base made of a Ni-base single crystal alloy or a base made of a Ni-based directionally solidified alloy. The present invention proposes a Ni-based alloy member characterized in that a layer is provided thereon and a high-temperature environment-resistant heat-resistant coating layer is provided thereon as an overcoat.
[0009]
The present invention also provides a boride coating of a metal boride and / or a non-metal boride as an undercoat on the surface of a Ni-base alloy, particularly a base made of a Ni-base single crystal alloy or a base made of a Ni-based directionally solidified alloy. Layer is provided thereon, and a heat-resistant alloy coating layer having a high-temperature environment resistance is provided thereon as an overcoat.2O3, CaO, MgO, Yb2O3, Sc2O3And CeO2Containing at least one oxide selected from the group consisting of2A Ni-based alloy member provided with a ceramic coating layer made of a base ceramic.
[0011]
In addition, the present invention provides a method of spraying, electron beam vapor deposition (EB-PVD), sputtering, heat treatment on a surface of a Ni-based alloy, particularly a substrate made of a Ni-based single crystal alloy or a substrate made of a Ni-based unidirectionally solidified alloy. A boride coating layer composed of a metal boride and / or a non-metal boride is formed by a surface treatment method such as a CVD method or a plasma CVD method, and then the surface of the boride coating layer is subjected to high temperature resistance by thermal spraying. A method for producing a Ni-based alloy member, comprising laminating an alloy coating layer.
[0012]
The present invention provides a thermal spraying method, an electron beam evaporation method (EB-PVD), a sputtering method, a thermal spraying method on a surface of a Ni-based alloy, particularly a substrate made of a Ni-based single crystal alloy or a Ni-based unidirectionally solidified alloy. A boride coating layer made of a metal boride and / or a non-metal boride is formed by a surface treatment method such as a CVD method or a plasma CVD method, and then the surface of the boride coating layer is subjected to high temperature resistance by thermal spraying. An environmental high temperature resistant alloy coating layer is formed by lamination, and then Y is coated on the heat resistant alloy coating layer.2O3, CaO, MgO, Yb2O3, Sc2O3And CeO2Containing at least one oxide selected from the group consisting of2The present invention proposes a method for manufacturing a Ni-based alloy member, characterized in that a ceramic coating layer made of a base ceramic is laminated by a thermal spraying method or an electron beam evaporation method.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, after the metallurgical characteristics of the Ni-based single crystal alloy base material and the Ni-based unidirectionally solidified alloy base material are clarified, the operation mechanism of the protective film according to the present invention applied as a countermeasure will be described.
(1) Metallurgical characteristics and practical problems of Ni-based single crystal alloys,
Originally, Ni-based single crystal alloys have been developed in order to solve the problems of many Ni-based polycrystalline alloys that have been widely used in the past. That is, in a polycrystalline alloy, impurity elements, various carbides, intermetallic compounds, and the like are liable to concentrate and precipitate at crystal grain boundaries under practical environmental conditions of a gas turbine. The bonding strength of the field is reduced and becomes the starting point for mechanical destruction.
[0014]
Further, at the grain boundaries, oxidizing substances such as sulfur, vanadium, chloride, and water vapor contained in the combustion gas can easily enter, which often causes grain boundary corrosion damage.
[0015]
In order to solve such problems caused by crystal grain boundaries, polycrystalline alloys in which grain boundary strengthening elements (for example, C, B, Zr, Hf, etc.) are added to alloys have been developed. However, since eutectic γ 'having a low melting point is easily generated in this alloy, the solution treatment temperature must be lowered, which is not preferable from the viewpoint of improving the high-temperature strength of the alloy.
[0016]
The Ni-based single crystal alloy has been developed with the aim of solving the metallurgical problems of the polycrystalline alloy as described above. That is, the Ni-based single crystal alloy has no crystal grain boundaries that cause destruction, and there is no concern about the precipitation of the eutectic γ ′ phase, so that there is an advantage that the alloy can be subjected to high-temperature solution treatment. In addition, when the solution temperature is increased, the fine γ 'phase is uniformly precipitated and dispersed, so that the high-temperature strength of the alloy can be significantly improved.
[0017]
However, on the other hand, it has become apparent that the Ni-based single crystal alloy has a new problem not found in the polycrystalline alloy. When a single crystal alloy is given a strain of about several percent (2% to 8%) in advance or subjected to mechanical plastic working, and then heat-treated or exposed to the operating environment of a gas turbine, The processed part and its heat-affected zone appeared as an altered layer, and it was found that countless fine crystals seemed to be generated therein (here, this phenomenon is called "recrystallization phenomenon", FIG. 4). reference). Such a recrystallized portion is very brittle and has poor high-temperature strength, so that the application of a slight stress causes a large number of cracks originating from the crystal grain boundaries, which significantly reduces the strength of the entire single crystal alloy. There were spots (see FIG. 5).
[0018]
Since such recrystallization is not generated during plastic working but occurs only after the single crystal alloy is heated, it is very difficult to take preventive measures beforehand. In addition, the temperature at which recrystallization appears is relatively low. For example, after applying a general-purpose MCrAlX alloy thermal spray coating to improve the high temperature environment resistance on a general polycrystalline alloy gas turbine moving blade, the following solution treatment is performed. In addition, it appears even after heat treatment such as aging treatment.
1273K-1573K 1-10h (Solution treatment)
973K ~ 1273K 1 ~ 30h (aging treatment)
[0019]
For this reason, in order to improve the high-temperature environment resistance, it is not possible to prevent a remarkable decrease in high-temperature strength due to the recrystallization phenomenon of the base material by simply applying the MCrAlX alloy. In addition, for the reasons described above, there is a limit to the method of adding an element to the base material itself.
[0020]
Environmental conditions that may cause strain or plastic deformation on the base material made of Ni-based single crystal alloy include, for example, in the case of wing materials, the manufacturing process, the operation process, the gas turbine assembly process, and the thermal spray pretreatment. Blast surface roughening process, collision process of spray particles, transport process during spray process, inspection process, collision of fine solid particles contained in combustion gas during operation of gas turbine, construction on single crystal alloy blade surface For example, a blasting process or a polishing process at the time of recoding the protective film thus obtained may be considered.
Therefore, it is difficult to predict the occurrence of the recrystallization phenomenon, and it is necessary to improve the high-temperature strength of the Ni-based single crystal alloy substrate by providing the substrate itself or a protective film.
Further, in the above example, during the operation of the gas turbine, it is often observed that cracks and burnout due to thermal fatigue occur locally on the surface of the Ni-based single crystal alloy blade material. In such a repair, the surface of the member is often ground by a grinder, and then a weld overlay is performed to restore the shape. However, an altered layer caused by plastic working is inevitably generated in such a processed portion.
In addition, the recrystallization phenomenon which appears in the above-mentioned Ni-based single crystal alloy and its influence are recognized to the same extent in the Ni-based unidirectionally solidified alloy, though the degree thereof is different. However, the following describes an example of a Ni-based single crystal alloy.
[0021]
(2) Elimination of the recrystallization problem of the Ni-based single crystal alloy according to the present invention
Up to now, a protective film for a high-temperature member such as a gas turbine or a jet engine generally has a member surface coated with an MCrAlX alloy. The protective coating of the MCrAlX alloy is applied by a thermal spraying method or a vapor deposition method, and its purpose is to protect the member from the corrosive action of a high-temperature combustion gas. However, this is not intended to solve the above-mentioned problem caused by the recrystallized portion of the alloy base material. However, the chemical composition of the known MCrAlX alloy cannot achieve the object of the present invention.
[0022]
The present invention differs from the conventional single layer coating of MCrAlX alloy in that metal borides and / or non-metal borides having a chemical composition as described in detail below are spray-coated, various vapor-deposition methods or CVD methods ( This is a technique based on forming one or more predetermined coating layers on the surface of the base material of the single crystal alloy member by a method such as a plasma-containing CVD method. Hereinafter, the undercoat, which is the basic structure of the present invention, that is, the metal boride and nonmetal boride coating layers will be described in detail.
[0023]
Metal borides usable in the present invention include the following types. However, the metal boride is not limited to this example.
[0024]
[Table 1]
[0025]
As is clear from the above Table 1 (where M represents a metal element), as the metal boride usable in the present invention, regardless of the type of the metal element, any compound can be used if it is a boride. Applicable. The reason for this is that when these metal borides are coated on the surface of the Ni-based single crystal alloy base material and then heated to a high temperature, boron (B) is rapidly diffused into the single crystal alloy base material and the altered layer portion is formed. Will contribute to the strengthening action.
Although the mechanism of strengthening the altered layer due to the penetration of boron (B) into the alloy base material has not been completely elucidated, B diffuses and penetrates into the fine recrystallized grain boundaries generated in the altered layer. It is believed that the result is that the bonding strength of the grain boundaries is improved.
[0026]
In the above reaction, the metal constituting the boride also diffuses together with B. Therefore, preferably, the same metal as the component of the Ni-based single crystal alloy, for example, Ni, Cr, W, Mo, Co, Al, Ti , Nb, Ta, and Hf are also preferred in order to prevent dissimilar metal components from diffusing into the Ni-based single crystal alloy to form new and unknown intermetallic compounds. The boride of Zr is advantageous because the Zr metal itself exerts a grain boundary strengthening action.
[0027]
As shown in Table 1 above, the chemical formula of the metal boride is M1 ~ 11B1 ~ 12However, in the present invention, all other metal borides can be used. In the case of a commercially available metal boride, TiB1And Ti2B is mixed or NiB4B3, Ni2Ni at B3B may coexist, but the same effect is observed with these metal borides, so that the number of atoms of the metal (M) and boron (B) is not particularly limited.
[0028]
On the other hand, as an example of a non-metal boride, B4C and BN are preferably used. These borides can be used alone, but they can be mixed with metal borides,4Even when C and BN are mixed, they exhibit a function of suppressing a decrease in the thermal fatigue strength of the Ni-based single crystal alloy. Especially B4When the Ni-based single crystal base material is heated to a high temperature, C is diffused into the base material together with B, and both cooperate to form fine crystal grain boundaries accompanying recrystallization of the equipment. It is effective in contributing to reinforcement.
Further, the boride coating layer of the present invention is a polycrystalline Ni-based alloy containing no B or a polycrystalline Ni-based alloy containing B but containing less than the B content in the boride coating layer of the present invention. However, since it exerts the effect of strengthening the polycrystalline grain boundaries, it is also effective for these alloys.
[0029]
(3) Formation of boride coating layer (undercoat) by thermal spraying
As a method for forming a boride coating layer made of a metal boride and / or a non-metal boride on the surface of the Ni-based single crystal alloy substrate, a thermal spraying method is typically used. In order to sufficiently exhibit the above-mentioned effects of the present invention, when a boride coating layer as an undercoat is formed on the surface of the base material, Ni is removed from the boride coating layer (undercoat). Good diffusion and transfer of B to the surface of the base single crystal alloy substrate, the mutual bonding force of the sprayed particles of the undercoat sprayed coating layer itself, and the good compatibility with the MCrAlX heat-resistant alloy coating layer formed as an overcoat described later. It is important to ensure good adhesion. The greatest challenge for achieving this object is to control the amount of oxide contained in the boride coating of the undercoat and to determine its critical content. For example, when an undercoat is formed by spraying in air, a large amount of air is mixed into or near the heat source of the spray and oxidizes the sprayed material particles. In addition to these, these oxides suppress the diffusion of B and cause a decrease in the bonding force with the overcoat, which is a major obstacle.
[0030]
Therefore, in the present invention, the amount of oxide contained in the undercoat is controlled to 1.5 mass% or less in terms of the amount of oxygen. That is, the oxygen content is controlled to 1.5 mass% or less even when thermal spraying is performed by any method such as atmospheric plasma spraying, low pressure plasma spraying, explosive spraying, and high-speed flame spraying. The type of the thermal spraying method is not particularly limited. Specifically, it is preferable to adopt a method such as a high-speed flame spraying method or a low-pressure plasma spraying method.
[0031]
(4) Formation of boride coating layer (undercoat) by vapor deposition or the like
If it is a method that can suppress the amount of oxygen contained in the boride coating layer to 1.5 mass% or less, even if it is not for thermal spraying, for example, if a PVD method (physical vapor deposition method) is adopted, An undercoat meeting the requirements of the invention can be formed. For example, FIG. 1 shows that a coating material 1 is irradiated with a beam from an
In addition, as a vapor deposition method, as a method other than the above method, a vapor deposition method using a laser or a Joule heat source, a high frequency excitation type EP-PVD method, a sputtering method, or the like can be used. The formation of an undercoat is possible.
[0032]
The thickness of the undercoat (boride coating layer) is preferably in the range of about 0.1 to 50 μm. The reason is that if the thickness of the boride is less than 0.1 μm, the effect of strengthening the grain boundary is not sufficient, while if the thickness is more than 50 μm, no particularly good effect on strengthening the grain boundary is recognized. This is because B, which has entered the inside of the base material, reacts with other alloy components in addition to strengthening the grain boundary to form a low melting point eutectic and the like, which is not preferable.
[0033]
(5) Formation of heat-resistant alloy coating layer (overcoat)
According to another embodiment of the present invention, a boride coating layer composed of a metal boride and / or a non-metal boride is first formed as an undercoat on a surface of a substrate such as a Ni-based single crystal alloy, and then formed thereon. It is conceivable that an overcoat is formed on a heat-resistant alloy coating layer for imparting high-temperature environment resistance. In this embodiment, the boride in the boride coating layer (undercoat) fully exerts its function, and various actions received from a high-temperature environment, such as chemical reaction such as oxidation reaction by combustion gas and sulfurization corrosion by S compound. It is intended to be able to withstand the damage.
Therefore, in the present invention, a heat-resistant alloy coating layer exhibiting high-temperature environment resistance is used as an overcoat on the boride coating layer (undercoat), and the air plasma spraying method, the reduced pressure plasma spraying method, the high-speed flame spraying method, and the like are used. It was decided to form a laminate using a thermal spraying method.
The reason for laminating the overcoat on top of the undercoat is that the undercoat, which is a boride coating layer alone, does not have sufficient resistance to high-temperature environments, and especially at high temperatures, the undercoat is consumed by oxidation. If the thickness is about 0.1 to 50 μm, the life of the undercoat may be extremely long and may be shortened.
[0034]
In the present invention, it is desirable to use the above-mentioned “MCrAlX alloy” as the heat-resistant alloy used for the heat-resistant alloy coating layer that is the overcoat. Its main chemical components are Y, Hf, Ta, Cs, Ce, La, Th, W, Si, Pt and Mn of an alloy containing at least two kinds selected from Co, Ni, Cr, Fe and Al. It is obtained by adding at least one element selected from the above. The overcoat is formed by spraying the MCrAlX alloy to a thickness of about 50 to 500 μm by various spraying methods.
[0035]
The heat-resistant alloy coating layer made of the MCrAlX alloy has good adhesion to the boride coating layer formed on the surface of the Ni-based alloy equipment, and can sufficiently withstand an external oxidation reaction or corrosion reaction by a high-temperature gas. It plays a role, and those having the following composition are preferably used.
As the M component, Ni: 0 to 75 mass%, Co: 0 to 70 mass%, Fe: 0 to 30 mass%,
Cr: 5 to 70 mass%, Al: 1 to 29 mass%,
As the X component, Y: 0 to 5 mass%, Hf: 0 to 10 mass%, Ta: 1 to 20 mass%, Si: 0.1 to 14 mass%, B: 0 to 0.1 mass%, C: 0 to 0.25 mass %, Mn: 0 to 10 mass%, Zr: 0 to 3 mass%, W: 0 to 5.5 mass%, Pt: 0 to 2.0 mass%
[0036]
However, when forming the thermal sprayed coating of the heat-resistant alloy made of the MCrAlX alloy, that is, in forming the overcoat, it is difficult to control the amount of the oxide contained in the overcoat and to examine the limit content thereof. Just as important. That is, when the MCrAlX alloy is sprayed in the atmosphere, a large amount of air is mixed in the heat source or in the vicinity of the heat source to oxidize the sprayed material particles, thereby lowering the mutual bonding force of the particles and the adhesion force to the alloy base material. In addition to these, these oxides suppress the diffusion of B atoms in the boride undercoat, and further, Al2O3And Cr2O3This is a major obstacle such as preventing the formation of a homogeneous and dense film of a uniform protective oxide film as described above.
Therefore, in the present invention, the amount of oxides in the heat-resistant alloy (MCrAlX alloy) contained in the overcoat is controlled to 1.5 mass% or less as the amount of oxygen. That is, the oxygen content in the spraying atmosphere is controlled to 1.5 mass% or less in any of the methods such as the atmospheric plasma spraying method, the reduced pressure plasma spraying method, the explosive spraying method, and the high-speed flame spraying method. It is.
[0037]
(6) Formation of Al diffusion layer
In the present invention, it is preferable to further form an Al diffusion layer on the surface of the boride undercoat or the heat-resistant alloy overcoat by applying an aluminum diffusion and infiltration treatment method such as a CVD method or a powder method.
For example, in the CVD method, an organic or inorganic aluminum compound (mainly a halogen compound) gas is introduced into a vacuum vessel, and a gas is irradiated with heat or low-temperature plasma to promote a chemical reaction to release Al from the aluminum compound. Or H in a vacuum vessel2After introducing a gas to release Al by the chemical reducing power (the released Al particles are fine particles of 1 μm or less), this is deposited on the surface of a boride undercoat or a heat-resistant alloy overcoat, It is a method of diffusing and penetrating into Further, the powder method comprises the steps of forming an Al powder or an Al alloy powder and NH4Cl, NH4Halogen compounds such as F, Al2O3The non-processed member is buried in a mixture such as powder, and then Ar gas or H2This is a method in which a diffusion layer having a high Al concentration is formed on the surface by heating at 800 to 1000 ° C. for 1 to 20 hours while flowing a gas.
[0038]
(7) Formation of ceramic coating layer (top coat)
Further, in the present invention, the surface of the boride undercoat, the heat-resistant alloy overcoat, or the surface of the Al diffusion layer is subjected to an atmospheric plasma spraying method, a low-pressure plasma spraying method, a vapor deposition method (EB-PVD) or the like, if necessary. Furthermore, oxide-containing ZrO2A more preferred embodiment is to form a top coat (thickness: 30 to 500 μm) made of a system ceramic to further improve high-temperature strength.
The above ZrO2The top coat of ceramics is Y2O3, CeO, CaO, Sc2O3, MgO, Yb2O3And CeO2Containing at least one oxide selected from the group consisting of:2System ceramics are used. The reason for using this as a top coat is mainly to prevent high-temperature radiant heat emitted from the combustion flame of the fuel. In addition, ZrO2The reason for containing an oxide other than ZrO2By itself, when heated or cooled to a high temperature, its crystal form changes to monoclinic {tetragonal} cubic, which causes a large volume change (4-7%) and breaks itself, It is desirable that the volume of such an oxide be reduced to about 5 to 40% by mass to reduce the volume change rate.
[0039]
(8) Cross-sectional structure of coating layer of Ni-based alloy member according to the present invention
FIG. 2 shows an example of a cross-sectional structure of the Ni-based high-temperature strength member according to the present invention.
{Circle around (1)} FIG. 2 (a) is a cross-section when a boride coating layer (undercoat) made of a metal boride and / or a non-metal boride is formed on the surface of a Ni-based single crystal alloy substrate.
{Circle around (2)} FIG. 2 (b) is a cross-sectional structure diagram in the case where an aluminum diffusion and penetration treatment is performed on the boride coating layer (undercoat) 22. Since this Al diffusion treatment is a high-temperature treatment (700 to 1000 ° C.), a part of Al diffuses into the undercoat which is a boride coating layer and penetrates with B into the base material. Here, only the diffusion phenomenon into the undercoat is illustrated. Here, 23 in the drawing indicates an Al diffusion layer (impregnated layer), and 24 indicates a layer having a high Al concentration.
Therefore, it can be said that the Al diffusion layer is composed of a portion substantially diffused and infiltrated (impregnated) into the base material and a coating layer (Al coating) covering the surface thereof.
{Circle around (3)} FIG. 2 (c) is a cross-sectional structure diagram when an
{Circle around (4)} FIG. 2 (d) shows a cross-sectional structure of a composite film having the structure shown in FIG. In this example, the high-temperature environment resistance is exhibited only by the heat-resistant
The Al diffusion and infiltration treatment is preferably performed according to a known gas phase method (CVD method) or a powder method (for example, see Japanese Patent No. 2960664 and Japanese Patent No. 2960665 filed by one of the present inventors).
{Circle around (5)} FIG. 2 (e) shows that a heat-resistant alloy overcoat of MCrAlX2FIG. 2 is a cross-sectional structural view of a system in which a system
[0040]
【Example】
<Example 1>
In this example, a Ni-based polycrystalline alloy (C alloy) was used as a comparative example together with a Ni-based single crystal alloy (A alloy) and a Ni-based unidirectional solidified alloy (B alloy) having the chemical components shown in Table 2. In addition, the existence of an altered layer due to the plastic working of the alloy was investigated. The heat treatment conditions of these test materials are shown in the lower part of Table 2, respectively.
Table 3 shows the types and combinations of the metal borides and non-metal borides according to the present invention tested in the examples, Table 4 shows the chemical components of the MCrAlX alloy, and Table 5 shows the results after the plastic working. The conditions of the heat treatment performed are shown.
[0041]
[Table 2]
[0042]
[Table 3]
[0043]
[Table 4]
[0044]
[Table 5]
[0045]
(Adjustment of test piece)
The single crystal alloy (dimensions:
(1) A steel ball of a Brinell hardness tester was pressed at 980N.
(2) The surface of the test piece is cut about 1 mm by lathe processing
(3) A test piece was strongly sprayed using fused alumina grit (1 mm to 2 mm) specified in JIS Z 0312.
The processed test piece was subjected to a heat treatment under the conditions A and C shown in Table 5 and then cooled, and the cross section was observed with an optical microscope and a scanning electron microscope.
Table 6 summarizes the microscopy results. In the test piece not subjected to plastic working (test piece No. 1), no altered layer was observed at all. On the other hand, in the test pieces subjected to plastic working (Nos. 2 to 7), a deteriorated layer is generated regardless of the difference in the heat treatment conditions and the type of the plastic working method. A layer had formed. This altered layer is composed of a coarse γ 'precipitated phase and a γ phase, and at the boundary between the altered layer and the unchanged portion, a phenomenon that seems to be the decomposition of the γ' phase of the high-temperature strength factor (healthy portion) is recognized. The generation of a factor leading to a decrease in high-temperature strength was confirmed.
[0046]
[Table 6]
[0047]
(Example 2)
In this example, the effects of plastic working, heat treatment, thermal spray coating, etc. were investigated by a high temperature fatigue test using a single crystal alloy and a directionally solidified alloy.
(1) Fatigue test procedure and specimen adjustment
For the fatigue test, an electrohydraulic servovalve type fatigue test device having a maximum load of 5 tons, a stroke of 50 mm (both elongation and compression), and a frequency of 0.01 to 20 Hz was used. The test was performed under the conditions of 950 ° C. in the atmosphere, stress ratio R = −1, sinusoidal stress waveform, and frequency of 10 Hz.
[0048]
On the other hand, as a material for a fatigue test, two kinds of a single crystal alloy and a directionally solidified alloy were used, and the following method was applied as a method of imparting plastic strain.
(A) Applying compression strain by die forging
After cutting out a round bar with a convex portion as shown in FIG. 3 (a), the convex portion is converted into a radial direction, and a compression strain corresponding to about 8.3% at room temperature is subjected to die forging (FIG. 3 (b) ) And gave. Then, after performing the heat treatment described in Table 5, from the center of the test piece, as shown in FIG. 3C, the test piece was processed into a smooth bar fatigue test piece having a parallel portion diameter of 4 mm and a parallel portion length of 10 mm.
(B) Applying distortion by lathe processing
A fatigue test piece was cut out from a test material which was cut by a lathe to a radius of about 1 mm and then heat-treated at 1353 K × 100 h. The conditions of the lathe processing were changed to a range of a cutting depth of 0.2 to 0.25 mm and a feed amount of 0.051 to 0.2 mm.
(2) Formation of thermal spray coating
The boride shown in Table 3 or the MCrAlX alloy shown in Table 4 was individually applied as a boride undercoat and an MCrAlX alloy overcoat to a thickness of 150 μm over the entire parallel portion of the fatigue test piece by a reduced pressure plasma spraying method. It was constructed.
(3) Fatigue test results
Table 7 summarizes the results performed on the single crystal alloy. This result is a comparison of the average strength ratio of other test pieces, with the strength of a single crystal alloy virgin material (test piece No. 1 not subjected to plastic working) as 100. As is clear from these results, in the alloy not subjected to plastic working, the change in fatigue strength was small even when the MCrAlX alloy coating layer was formed, and the oxidation reaction due to the atmospheric environment was somewhat suppressed. .
On the other hand, when the test piece was previously subjected to die forging (No. 4) or lathing (No. 8), the recrystallization phenomenon occurred due to the heat treatment, so that the fatigue strength was extremely reduced and the single crystal was The alloy showed a fatal decrease in strength. However, if a boride coating layer (undercoat) is applied in advance, the test piece No. As seen in 5, 9, and 11, the decrease in fatigue strength was very small, and it was possible to substantially prevent the decrease in strength due to recrystallization. This tendency is also observed in the application of the MCrAlX alloy (test pieces Nos. 6 and 10), but the effect of reducing the strength reduction rate is smaller than that of boride. It is considered that the MCrAlX alloy film is due to the effect of high-temperature environment resistance.
Further, the effect of the boride undercoat was determined by the test piece no. As is clear from the results of 11 and 12, the effect of suppressing the decrease in the fatigue strength of the single crystal alloy can be obtained by using two types of metal borides or by using a mixture of metal / non-metal borides. It turned out to be acceptable.
[0049]
The test piece No. As can be seen in Figures 7 and 12, the specimens with boride undercoat / MCrAlX alloy overcoat have almost recovered fatigue strength, so the boride application should be in direct contact with the single crystal alloy. is necessary.
[0050]
[Table 7]
[0051]
On the other hand, Table 8 shows the results obtained for the directionally solidified alloy. Unidirectionally solidified alloys are not as strongly affected by plastic working as single crystal alloys, but here too, fatigue strength is reduced. The thermal spray coating of boride has been found to have a reduction efficiency even with respect to a decrease in strength due to recrystallization of the directionally solidified alloy (test pieces No. 5, 7, 9, 11, 12).
[0052]
[Table 8]
[0053]
(Example 3)
In this example, a fatigue test piece made of a single crystal alloy was subjected to cutting by a lathe as a plastic working method used in Example 2, heat treatment under the condition A in Table 5 as a heat treatment condition, and then a film forming method. An undercoat is formed by using the borides (A), (B), (F), and (G) of Table 3 by the low pressure plasma spraying method and the electron beam evaporation method, and the MCrAlX shown in Table 4 is formed thereon. The alloy was used as an overcoat to a thickness of 150 μm by a high-speed flame spraying method. The thickness of the boride undercoat is 20 μm by thermal spraying and 2 μm by electron beam evaporation.
The test pieces formed as described above were tested under the thermal fatigue test conditions described in Example 2.
Table 9 shows the results of a fatigue test at 1223 K using the test pieces. As is clear from the results, the example of the comparative example obtained in Example 2 which was not subjected to the plastic working (test piece No. 1), and the plastic working was applied, but the boride undercoat was formed. The results of the fatigue strength test under no condition (No. 2) were also described, and comparison was made based on these measured values. To summarize these results, when plastic working is applied to a Ni-based single crystal alloy, its fatigue strength is reduced to about 32% of a virgin material (No. 1), but the boride undercoat is formed by a vapor deposition method or a thermal spraying method. After the application, the fatigue strength of the laminate of the MCrAlX alloy overcoat (Nos. 4 to 7, 9 to 11) recovers to almost the same as the strength of the virgin material, and prevents the strength from being reduced due to the formation of the altered layer. Is recognized. As the boride, metal boride alone (Nos. 4, 5, 9, 10), a mixture of two kinds of metal borides (No. 6), and an undercoat such as a mixture of a metal boride and a non-metallic boride are used. In addition, almost the same effect of preventing a decrease in strength was observed. Further, almost no difference between the vapor deposition method and the thermal spraying method is recognized as a method for forming an undercoat, and both of them exhibit sufficient performance as a method for applying a boride undercoat.
On the other hand, when the sprayed coating of the MCrAlX alloy is directly applied to the surface of the plastically processed test piece (Nos. 3 and 8), although the high temperature environment resistance is exhibited, the reduction of the fatigue strength of the base material is suppressed. It did not perform as well as the boride undercoat.
[0054]
[Table 9]
[0055]
(Example 4)
In this example, the thermal shock resistance of a coating layer conforming to the present invention formed on the surface of a single crystal alloy and a directionally solidified alloy was investigated.
(1) Shape and dimensions of test substrate and test piece
As a test substrate, a single crystal alloy and a unidirectionally solidified alloy shown in Table 2 were used, which were finished into a round bar test piece having a diameter of 15 mm and a length of 50 mm.
(2) Whether or not plastic working is performed on the test piece
For the processing of the round bar test piece, a lathe processing condition described in Example 1 was manufactured.
(3) Type of coating layer to be tested and coating layer forming method
As a method of forming a boride undercoat on the test piece, a spraying method (reduced pressure plasma) EB-PVD method and a sputtering method are used. NiB is formed to a thickness of 20 μm by the spraying method, 3 μm by the PVD method, and 1 μm by the sputtering method. Filmed. Thereafter, as the MCrAlX alloy, an alloy described in Table 4 was applied to a film thickness of 150 μm by a low-pressure plasma spraying method and a high-speed flame spraying method, and then a top coat was formed on the overcoat as a top coat.2O3Containing 8 mass%2A thermal shock test piece was formed by forming a ceramic coating layer having a thickness of 300 μm by the atmospheric plasma spraying method.
(4) Thermal shock test conditions
The test piece was placed in an electric furnace maintained at 950 ° C. for 15 minutes, heated, and then put into 298K water to cool it as one cycle. This operation was repeated 10 cycles, and the appearance change and the presence or absence of peeling of the coating layer were repeated. investigated.
The test results are summarized in Table 10. As is apparent from the results, the coating layer of the MCrAlX alloy, which is generally widely used, and Y2O3・ ZrO2The heat-shielding films (test pieces Nos. 1 and 2) formed by the combination of the ceramic coating layers endured the thermal shock test by repeating 10 times, and no cracking or peeling of the top coat was observed. Regarding the composite coating (Nos. 3 to 8) according to the present invention, the top coat Y2O3・ ZrO2Has no signs of cracking or local peeling, maintains a healthy state, and has a thermal shock resistance comparable to that of the currently widely used thermal shield coating. Was. As a matter of course, it was found that the bonding strength at the interface between the boride undercoat and the MCrAlX alloy overcoat also maintained sufficient performance, and no peeling phenomenon was observed.
[0056]
[Table 10]
[0057]
【The invention's effect】
As described above, the conventional Ni-based single crystal alloy and the Ni-based unidirectionally solidified alloy base material which have been subjected to strain or plastic working in advance, when heated to a high temperature, have a deteriorated layer accompanied by recrystallization on the surface. Which is a starting point and can be easily broken even by a slight load stress, and there is a fatal defect that the high-temperature strength possessed by this kind of alloy cannot be exhibited.
In contrast, the present invention forms a boride undercoat directly on the surface of such an alloy substrate by a thermal spraying method, a PVD method, a CVD method, etc., so that boron is preferentially alloyed in a high-temperature environment. By diffusing into the base material to reinforce the mutual bonding force of the recrystallized grain boundaries, the decrease in high-temperature strength is effectively reduced, and thereby the original strength of the base material is exhibited.
[0058]
According to another embodiment of the present invention, for example, the lamination of the boride coating layer (undercoat) and the MCrAlX alloy coating layer (overcoat), and the lamination of the ZrO2 ceramic coating layer (topcoat) By the formation or the like, the physical and chemical action on the combustion gas component in a high temperature environment can be improved.
[0059]
These effects can be achieved by applying strain and plastic working in the film reprocessing step during or after operation, as well as in the manufacturing and assembly process, such as gas turbine blade members made of single crystal alloys and directionally solidified alloys. When the present invention is applied to a high-temperature strength member having many opportunities to accompany it, the above-mentioned risk factors can be completely wiped off, which is effective.
Therefore, according to the present invention, it is possible to contribute to the improvement of the quality and productivity of this kind of alloy gas turbine blade member, and to contribute significantly to long-term stable operation of the gas turbine and reduction of the unit cost of power generation.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an outline of a PVD apparatus having an electron beam heat source.
FIG. 2 is a cross-sectional view showing an example of a laminated structure in which a high-temperature resistant coating layer is formed on a single crystal alloy or a directionally solidified alloy member using the boride coating layer of the present invention.
FIG. 3 is a diagram showing a load of stress by die forging of a convex portion on a round bar material having a convex portion and a procedure for collecting a high-temperature fatigue strength test specimen from the round bar.
FIG. 4 is a metallurgical microscope photograph showing an example of the shape of a deteriorated layer generated in a plastically worked portion.
FIG. 5 is a metal micrograph showing that the state of the fracture surface of the fatigue test piece and that the altered layer is the starting point of the fracture.
[Explanation of symbols]
1 Coating material
2 electron beam gun
3 Single crystal alloy substrate
4 Vacuum container
5 vacuum pump
6 Inert gas inlet pipe
7 Heater for substrate heating
8 DC power supply
21 Substrate
22 boride coating layer (undercoat)
23 Al diffusion layer (low concentration)
24 Heat-resistant alloy coating layer (overcoat)
25 Al diffusion layer (high concentration)
26 Ceramics coating layer (top coat)
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002051149A JP3554311B2 (en) | 2002-02-27 | 2002-02-27 | Ni-based alloy member and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002051149A JP3554311B2 (en) | 2002-02-27 | 2002-02-27 | Ni-based alloy member and method of manufacturing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004079703A Division JP3893133B2 (en) | 2004-03-19 | 2004-03-19 | Ni-based alloy member and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003253467A JP2003253467A (en) | 2003-09-10 |
JP3554311B2 true JP3554311B2 (en) | 2004-08-18 |
Family
ID=28663195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002051149A Expired - Fee Related JP3554311B2 (en) | 2002-02-27 | 2002-02-27 | Ni-based alloy member and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3554311B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103484810B (en) * | 2013-09-23 | 2015-06-10 | 河海大学 | Plasma cladding in-situ synthesized TiB2-TiC-TiN reinforced high-entropy alloy coating material and preparation method thereof |
-
2002
- 2002-02-27 JP JP2002051149A patent/JP3554311B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003253467A (en) | 2003-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10265933A (en) | Thermal spray-coated member for use in high temperature environment, and its production | |
JP5905336B2 (en) | Gas turbine blade for power generation, gas turbine for power generation | |
EP1953253A1 (en) | Metal alloy compositions and articles comprising the same | |
US7445434B2 (en) | Coating material for thermal barrier coating having excellent corrosion resistance and heat resistance and method of producing the same | |
US5900102A (en) | Method for repairing a thermal barrier coating | |
JP2991990B2 (en) | Thermal spray coating for high temperature environment and method of manufacturing the same | |
US20190047253A1 (en) | Adhesion promoter layer for joining a high-temperature protection layer to a substrate, and method for producing same | |
JP5139768B2 (en) | Surface treatment method for Ti-Al alloy and Ti-Al alloy obtained thereby | |
EP1308535B1 (en) | High-temperature strength member | |
Das et al. | Thermal cyclic behavior of glass–ceramic bonded thermal barrier coating on nimonic alloy substrate | |
JP3566951B2 (en) | Ni-based high-temperature strength member, method for producing the same, and film-forming material for the member | |
JP6712801B2 (en) | Thermal barrier coating method and thermal barrier coating material | |
JP3554311B2 (en) | Ni-based alloy member and method of manufacturing the same | |
Khorram et al. | Surface modification of IN713 LC superalloy with Metco 204NS by laser surface alloying | |
Podchernyaeva et al. | Protective coatings on heat-resistant nickel alloys | |
JP3779228B2 (en) | Ni-base high-temperature strength member and manufacturing method thereof | |
JP3874406B2 (en) | Method for forming protective film on high-temperature strength member | |
JP3893133B2 (en) | Ni-based alloy member and manufacturing method thereof | |
JP4313459B2 (en) | High temperature exposed member and manufacturing method thereof | |
JP4011031B2 (en) | Ni-base high-temperature strength member and manufacturing method thereof | |
JP3522724B2 (en) | Ni-based high-temperature strength member and method of manufacturing the same | |
Alam et al. | High-Temperature Resistant Coatings for Strategic Aero-space Applications. | |
Imak et al. | PTA coating of austenitic stainless steels with NiAl-Al2O3+ TiB2 powders | |
JP3597709B2 (en) | High temperature spray coating | |
Jech et al. | Critical Weak Points of Atmospheric Plasma Sprayed Thermal Barrier Coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040420 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040506 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080514 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120514 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |