[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3554373B2 - Distance measuring optical system - Google Patents

Distance measuring optical system Download PDF

Info

Publication number
JP3554373B2
JP3554373B2 JP23367294A JP23367294A JP3554373B2 JP 3554373 B2 JP3554373 B2 JP 3554373B2 JP 23367294 A JP23367294 A JP 23367294A JP 23367294 A JP23367294 A JP 23367294A JP 3554373 B2 JP3554373 B2 JP 3554373B2
Authority
JP
Japan
Prior art keywords
light
optical system
light beam
reflected
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23367294A
Other languages
Japanese (ja)
Other versions
JPH0894354A (en
Inventor
哲也 中村
一幸 高橋
悟 立原
Original Assignee
ペンタックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペンタックス株式会社 filed Critical ペンタックス株式会社
Priority to JP23367294A priority Critical patent/JP3554373B2/en
Publication of JPH0894354A publication Critical patent/JPH0894354A/en
Application granted granted Critical
Publication of JP3554373B2 publication Critical patent/JP3554373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【0001】
本発明は、測距光学系に関する。
【0002】
【従来技術およびその問題点】
測距光学系は、例えば、光波測距装置に用いられている。図3はその従来例の構成を示す図で、同図において、1はLEDなどの光源、2は受光素子、3はハーフミラー、4は対物レンズ系、5は光分岐のためのプリズムからなる光分割素子、6は像反転のためのプリズム、7は接眼レンズを示す。対物レンズ系4は前群4aと後群4bとからなり、両者の間に、光分割素子5が位置している。
【0003】
対物レンズ系4、光分割素子5、像反転プリズム6、および接眼レンズ7から構成される光学系は、測距対象物(一般的にコーナーキューブ)CCを目で、すなわち可視光で、確認するための望遠鏡を構成している。
【0004】
光源1は第1の光束として、赤外光を射出する。この赤外光は波長が850nm程度であり、第2の光束としての可視光とは異なる波長である。光源1から射出された赤外光は、ハーフミラー3を透過し、光分岐のための光分割素子5に達する。光分割素子5の分割面5aには、赤外光を反射し、可視光を透過するための誘電体多層膜からなるダイクロイックコートが形成されている。従って、光源1からの赤外光はこのダイクロイックコートで反射され、対物レンズ系4の前群4aを通過した後、コーナーキューブCCへ向かう。
【0005】
測距対象物で反射された赤外光は、対物レンズ系4の前群4aに戻り、ふたたび光分割素子5のダイクロイックコートで反射され、さらにハーフミラー3で反射されて受光素子2に入射する。
【0006】
光波測距装置は、原理的には周知のように、光源1からの赤外光を、所定の周波数でパルス的に射出させ、この赤外光(測距光)が光源を出てからコーナーキューブCCに反射され受光素子2に入射するまでの時間を、測距光と参照光のパルスの位相のずれにより検知して測定対象物までの距離を算出する。
【0007】
ところで、上記の構成に使用されるダイクロイックコートは、その分光特性がこのコートに入射する光の入射角に依存して変化するという性質がある。図4はこの分光特性を描いた線図で、縦軸は透過率(%)、横軸は光の波長である。実線は入射角が45°、破線は30°一点鎖線は15°の場合の波長と透過率の関係をそれぞれ示している。入射角は、垂直入射の場合が0゜である。この図から、入射角が15°の場合は、波長が可視光の限度である750nmあたりまではほぼ100%透過し、それ以上の長い波長はほぼ100%反射することが分かる。次に、入射角が30°の場合は、可視光の上限近くの700nm近辺から透過率が低下し始めるが、750nm程度までは50%近く透過でき、ほぼ目標どうりの特性を有すると言える。
【0008】
しかし、入射角が45°になると、可視光領域にある600nmあたりからの透過率が50%以下に落ち込んでおり、700nmから750nmの間では、透過率がほぼ0%になって、目で見る像の赤色成分が相当に減殺されてしまうことになる。また、観察者の眼が接眼レンズ7の光軸と直交する方向に少しずれただけで、観察している対象物の色調が変わってしまう。
【0009】
一方、ダイクロイックコートに入射する光は、光源1からの発散光、又は測定対象物から戻ってきた光である収束光なので、ダイクロイックコートに入射する角度に幅がある。例えば、この反射膜5aと対物レンズ4の光軸Oとのなす角αを60°とすると、主光線(光軸と重なる入射光線)の入射角βは30°である。しかし、上光線、下光線の入射角は、対物レンズのFナンバーにもよるが、±15°程度の幅があり、15°から45°の範囲に広がる。上述のように、入射角が30°程度までは分光特性が許容限度内にあるが、45°になると分光特性が悪化し、光の利用効率が大きく低下してしまうという問題がある。
【0010】
【発明の目的】
本発明は、上記の問題の解決を図ったもので、ダイクロイックコート面に対する入射光線の角度が変化せず、よって光の利用効率が高く、接眼レンズと目の位置関係がずれても対象物の色調が変わらない測距光学系を提供することを目的としている。
【0011】
【発明の概要】本発明は、測距用の光束を発する光源と;この光源からの光束を反射し、可視光を透過するダイクロイックコート面を有する光分割素子と;コリメータレンズ群、発散レンズ、及び、対物レンズ系を備え、ダイクロイック面で反射した光束を測距対象物に投光するとともに、該測距対象物で反射し再び該ダイクロイックコート面で反射した光束を集光する投受光光学系と;対物レンズ系、発散レンズ、集光光学系、及び、接眼レンズを備え、測距対象物で反射した光束のうち可視光束が光分割素子のダイクロイックコート面を透過する視準光学系と;を備えた測距光学系において、投受光光学系及び視準光学系中に、両光学系に共通する、光束が平行をなす平行光束系を設け、この平行光束系内に、光分割素子のダイクロイックコート面を位置させたことを特徴としている。
【0012】
このように、平行光束中に、光分割素子のダイクロイックコート面を配置すれば、該コート面には常に平行光束が入射するので、分光特性に悪影響が生じることがない。平行光束系は、例えば、対物レンズ系と発散レンズからなるアフォーカルな光学系、あるいは、対物レンズと集光レンズからなるアフォーカルな光学系によって構成することができる。前者の場合、光学系の全長が短くなって小型化できるという利点があり、後者の場合、平行光束系内で一度結像が行われれるので像反転の為のプリズムが不要となりコストダウンとなる。
【0013】
【発明の実施例】
以下に本発明の実施例を図面によって説明する。図1は本発明の第1実施例を示す構成図である。同図において、11は光源1から発散された第1の光束を平行光にするコリメータレンズ群である。コリメータレンズ群11、発散レンズ12、及び対物レンズ系4は、投受光光学系を構成する。対物レンズ系4と発散レンズ12はアフォーカル光学系20を構成している。
【0014】
一方、対物レンズ4、発散レンズ12、集光光学系13、及び接眼レンズ7は、視準光学系(望遠鏡)を構成する。発散レンズ12と集光光学系13との間は、この投受光光学系と視準光学系に共通する、光束が平行な平行光束系であり、この平行光束系内に、ダイクロイックコート面5aを有する光分割素子5が配置されている。視準光学系は、可視光により、コーナーキューブCCなどの測距対象物を探し出すのに使用される。
【0015】
すなわち、光源1から射出された測距光束としての赤外光は、波長が850nmのLED光で、ハーフミラー3を透過し、さらにコリメータレンズ群11を通過して平行な光束にされ光分割素子5に入射し、ダイクロイックコートされた分割面5aに達する。ダイクロイックコートは赤外光を反射するので、光源1からの光束はここで反射され、アフォーカルな光学系20を通ってコーナーキューブCCに照射される。
【0016】
コーナキューブCCから反射された測距光束である赤外光は、可視光と重畳してアフォーカルな光学系20を通過して平行光の状態で光分割素子5へと進む。そして分割面5aに達すると、赤外光は反射され、コリメータレンズ群11を逆行し、ハーフミラー3で反射されて受光素子2に達する。コーナキューブCC迄の距離は、前述のように、光源1を出てからコーナーキューブCCに反射され受光素子2に入射するまでの時間を、測距光と参照光のパルスの位相のずれにより検知することにより演算される。
【0017】
一方、可視光は分割面5aを透過し、集光光学系13を通過して像反転のためのプリズム6を経て接眼レンズ7に達する。集光光学系13の全部または一部を光軸方向に移動させることによって、視準光学系のピントを合わせることができる。
【0018】
以上の構成において、光分割素子5の分割面5aに入射する測距光束及び視準光束は、どちらも平行な光束にされているので、上光線と下光線は主光線と平行であり、主光線と同じ入射角となる。したがって、コリメータレンズ群11の光軸とアフォーカルな光学系20の光軸とのなす角γを適当に設定すれば、入射角を、分光特性に影響を与えない角度に設定できる。また、望遠鏡を使用する際に、目と接眼レンズ7の相対位置が変化しても色調が変化することはない。
【0019】
図2は、本発明の第2実施例である。この実施例では、視準光学系のアフォーカルな光学系20を、対物レンズ系4と正のパワーの集光レンズ15とで構成し、この対物レンズ系4と集光レンズ15との間で一度結像させている。また、集光光学系16と接眼レンズ7との間でもさらに一度結像させている。このように対物レンズ系4から接眼レンズ7の間で2回結像させるので、視準光学系における像は正立像となり、実施例1で使用していた像反転プリスム6が不要になった。したがって、構成が簡易化され、望遠鏡の製造コストを低下させることができる。この他の構成は、第1の実施例と共通であり、共通要素には共通の符号を付した。
【0020】
【発明の効果】
以上に説明したように本発明によれば、測距光束を反射して可視光を透過するダイクロイックコート面を有する光分割素子が、投受光光学系と視準光学系に共通に設けた平行光束系内に位置しているので、該ダイクロイックコート面に入射する測距光束及び可視光束の入射角度は常に一定であり、上光線や下光線の入射角が主光線の入射角と一致するので、分光特性に影響を受けることがなくなった。また、本発明の測距光学系を測距光学系の望遠鏡に適用すると、接眼レンズと目の位置関係がずれても、対象物の色調が変わることがない。
【図面の簡単な説明】
【図1】本発明の測距光学系の第1実施例の構成を示す図である。
【図2】本発明の第2実施例の構成を示す図である。
【図3】従来の測距光学系の構成を示す図である。
【図4】ダイクロイックコートの分光特性を示す線図である。
【符号の説明】
1 光源
4 対物レンズ系
5 光分割素子
5a 分割面
7 接眼レンズ
11 コリメータ
20 アフォーカルな光学系
[0001]
The present invention relates to a distance measuring optical system.
[0002]
[Prior art and its problems]
The ranging optical system is used, for example, in a lightwave ranging device. FIG. 3 is a view showing the configuration of a conventional example, in which 1 is a light source such as an LED, 2 is a light receiving element, 3 is a half mirror, 4 is an objective lens system, and 5 is a prism for splitting light. A light splitting element, 6 is a prism for image inversion, and 7 is an eyepiece. The objective lens system 4 includes a front group 4a and a rear group 4b, and a light splitting element 5 is located between the two groups.
[0003]
An optical system including the objective lens system 4, the light splitting element 5, the image inverting prism 6, and the eyepiece 7 confirms a distance measuring object (generally, a corner cube) CC with eyes, that is, with visible light. To make up a telescope.
[0004]
The light source 1 emits infrared light as a first light flux. This infrared light has a wavelength of about 850 nm, and has a different wavelength from the visible light as the second light flux. The infrared light emitted from the light source 1 passes through the half mirror 3 and reaches the light splitting element 5 for splitting light. A dichroic coat made of a dielectric multilayer film for reflecting infrared light and transmitting visible light is formed on the division surface 5a of the light dividing element 5. Therefore, the infrared light from the light source 1 is reflected by the dichroic coat, passes through the front group 4a of the objective lens system 4, and then travels to the corner cube CC.
[0005]
The infrared light reflected by the object to be measured returns to the front group 4a of the objective lens system 4, is reflected again by the dichroic coat of the light splitting element 5, is further reflected by the half mirror 3, and enters the light receiving element 2. .
[0006]
As is well known in principle, the lightwave distance measuring device emits infrared light from the light source 1 in a pulsed manner at a predetermined frequency. The time until the light is reflected by the cube CC and enters the light receiving element 2 is detected based on the phase shift between the pulses of the distance measuring light and the reference light, and the distance to the object to be measured is calculated.
[0007]
By the way, the dichroic coat used in the above configuration has a property that its spectral characteristic changes depending on the incident angle of light incident on this coat. FIG. 4 is a diagram illustrating this spectral characteristic, in which the vertical axis represents transmittance (%) and the horizontal axis represents light wavelength. The solid line shows the relationship between the wavelength and the transmittance when the incident angle is 45 °, the broken line shows the relationship at 30 ° and the dashed line shows the relationship at 15 °. The angle of incidence is 0 ° for normal incidence. From this figure, it can be seen that when the incident angle is 15 °, almost 100% of the light is transmitted up to a wavelength of about 750 nm, which is the limit of visible light, and almost 100% of the longer wavelength is reflected. Next, when the incident angle is 30 °, the transmittance starts to decrease from around 700 nm, which is near the upper limit of visible light, but it can be transmitted by about 50% up to about 750 nm, and it can be said that it has almost the same characteristics as the target.
[0008]
However, when the incident angle becomes 45 °, the transmittance from around 600 nm in the visible light region drops to 50% or less, and the transmittance becomes almost 0% between 700 nm and 750 nm. The red component of the image will be significantly reduced. In addition, a slight shift of the observer's eye in a direction orthogonal to the optical axis of the eyepiece 7 changes the color tone of the object being observed.
[0009]
On the other hand, the light incident on the dichroic coat is divergent light from the light source 1 or convergent light that is light returned from the measurement target, and thus has a wide angle at which the light enters the dichroic coat. For example, assuming that the angle α between the reflection film 5a and the optical axis O of the objective lens 4 is 60 °, the incident angle β of the principal ray (the incident ray overlapping with the optical axis) is 30 °. However, the incident angles of the upper ray and the lower ray have a width of about ± 15 ° and extend from 15 ° to 45 °, depending on the F-number of the objective lens. As described above, the spectral characteristic is within the allowable limit up to an incident angle of about 30 °, but when the incident angle is 45 °, the spectral characteristic deteriorates, and there is a problem that the light use efficiency is greatly reduced.
[0010]
[Object of the invention]
The present invention has been made to solve the above problem, and the angle of the incident light beam with respect to the dichroic coat surface does not change, so that the light use efficiency is high, and even if the positional relationship between the eyepiece and the eye is displaced, the object is not affected. It is an object of the present invention to provide a distance measuring optical system in which a color tone does not change.
[0011]
SUMMARY OF THE INVENTION The present invention provides a light source that emits a light beam for distance measurement; a light splitting element having a dichroic coated surface that reflects the light beam from the light source and transmits visible light; a collimator lens group, a divergent lens, An objective lens system for projecting the light beam reflected by the dichroic surface onto the object to be measured, and condensing the light beam reflected by the object to be measured and reflected again by the dichroic coat surface A collimating optical system including an objective lens system , a divergent lens, a condenser optical system, and an eyepiece, wherein a visible light beam among light beams reflected by the object to be measured passes through a dichroic coat surface of the light splitting element; In the distance measuring optical system provided with, in the light projecting and receiving optical system and the collimating optical system, a parallel light beam system in which light beams are parallel to each other is provided, and in this parallel light beam system, a light splitting element is provided. Dichroic It is characterized in that the coated surface is located.
[0012]
As described above, if the dichroic coat surface of the light splitting element is arranged in the parallel light beam, the parallel light beam always enters the coat surface, so that the spectral characteristics are not adversely affected. The parallel light beam system can be configured by, for example, an afocal optical system including an objective lens system and a diverging lens, or an afocal optical system including an objective lens and a condenser lens. In the former case, there is an advantage that the entire length of the optical system can be shortened and the size can be reduced. In the latter case, since the image is formed once in the parallel light beam system, a prism for image reversal becomes unnecessary and the cost is reduced. .
[0013]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing a first embodiment of the present invention. In FIG. 1, reference numeral 11 denotes a collimator lens group for converting a first light beam emitted from the light source 1 into parallel light . The collimator lens group 11 , the diverging lens 12, and the objective lens system 4 constitute a light projecting and receiving optical system. The objective lens system 4 and the diverging lens 12 constitute an afocal optical system 20.
[0014]
On the other hand, the objective lens 4, the diverging lens 12, the condenser optical system 13, and the eyepiece 7 constitute a collimating optical system (telescope). Between the diverging lens 12 and the condensing optical system 13, there is a parallel light system in which the light beams are parallel, which is common to the light projecting / receiving optical system and the collimating optical system. The light splitting element 5 is arranged. The collimating optical system is used to search for a distance measurement target such as a corner cube CC using visible light.
[0015]
That is, the infrared light emitted from the light source 1 as the distance measuring light beam is an LED light having a wavelength of 850 nm, transmits through the half mirror 3, further passes through the collimator lens group 11, is converted into a parallel light beam, and is split by the light splitting element. 5 and reaches a dichroic-coated division surface 5a. Since the dichroic coat reflects infrared light, the light beam from the light source 1 is reflected here and passes through the afocal optical system 20 to irradiate the corner cube CC.
[0016]
The infrared light, which is the distance measuring light beam reflected from the corner cube CC, is superimposed on the visible light, passes through the afocal optical system 20, and proceeds to the light splitting element 5 in a parallel light state. When the light reaches the division surface 5a, the infrared light is reflected, goes backward through the collimator lens group 11, is reflected by the half mirror 3, and reaches the light receiving element 2. As described above, the distance from the light source 1 to the light reflected from the corner cube CC and incident on the light receiving element 2 is detected from the phase shift between the pulses of the distance measuring light and the reference light. Is calculated.
[0017]
On the other hand, the visible light passes through the splitting surface 5a, passes through the condensing optical system 13, passes through the prism 6 for image inversion, and reaches the eyepiece 7. By moving all or part of the condensing optical system 13 in the optical axis direction, the collimating optical system can be focused.
[0018]
In the above configuration, since the distance measuring light beam and the collimating light beam incident on the division surface 5a of the light splitting element 5 are both parallel light beams, the upper light beam and the lower light beam are parallel to the main light beam. It has the same angle of incidence as the light beam. Therefore, by appropriately setting the angle γ between the optical axis of the collimator lens group 11 and the optical axis of the afocal optical system 20, the incident angle can be set to an angle that does not affect the spectral characteristics. Also, when using the telescope, the color tone does not change even if the relative position between the eye and the eyepiece 7 changes.
[0019]
FIG. 2 shows a second embodiment of the present invention. In this embodiment, the afocal optical system 20 of the collimating optical system is composed of the objective lens system 4 and the condenser lens 15 having a positive power. Once formed an image. Further, an image is formed once more between the condensing optical system 16 and the eyepiece 7. Since the image is formed twice between the objective lens system 4 and the eyepiece 7 in this manner, the image in the collimating optical system is an erect image, and the image inversion prism 6 used in the first embodiment becomes unnecessary. Therefore, the configuration is simplified, and the manufacturing cost of the telescope can be reduced. Other configurations are common to the first embodiment, and common components are denoted by common reference numerals.
[0020]
【The invention's effect】
As described above, according to the present invention, a light splitting element having a dichroic coat surface that reflects a distance measuring light beam and transmits visible light is provided by a parallel light beam commonly provided in a light projecting / receiving optical system and a collimating optical system. Since it is located in the system, the angle of incidence of the distance measuring light beam and the visible light beam incident on the dichroic coat surface is always constant, and the incident angle of the upper ray and the lower ray coincides with the incident angle of the principal ray. It is no longer affected by spectral characteristics. Further, when the distance measuring optical system of the present invention is applied to a telescope of the distance measuring optical system, the color tone of the object does not change even if the positional relationship between the eyepiece and the eye is shifted.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a first embodiment of a distance measuring optical system of the present invention.
FIG. 2 is a diagram showing a configuration of a second exemplary embodiment of the present invention.
FIG. 3 is a diagram showing a configuration of a conventional distance measuring optical system.
FIG. 4 is a diagram showing spectral characteristics of a dichroic coat.
[Explanation of symbols]
Reference Signs List 1 light source 4 objective lens system 5 light splitting element 5a splitting surface 7 eyepiece 11 collimator 20 afocal optical system

Claims (3)

測距用の光束を発する光源と、
この光源からの測距光束を反射し、可視光を透過するダイクロイックコート面を有する光分割素子と、
コリメータレンズ群、発散レンズ、及び、対物レンズ系を備え、前記ダイクロイック面で反射した光束を測距対象物に投光するとともに、該測距対象物で反射し再び該ダイクロイックコート面で反射した光束を集光する投受光光学系と、
前記対物レンズ系、前記発散レンズ、集光光学系、及び、接眼レンズを備え、前記測距対象物で反射した光束のうち可視光束が前記光分割素子のダイクロイックコート面を透過する視準光学系と、
を備えた測距光学系において、
前記投受光光学系及び視準光学系中に、両光学系に共通する、光束が平行をなす平行光束系を設け、この平行光束系内に、前記光分割素子のダイクロイックコート面を位置させたことを特徴とする測距光学系。
A light source that emits a light beam for distance measurement;
A light splitting element having a dichroic coat surface that reflects a distance measuring light beam from this light source and transmits visible light,
A collimator lens group, a diverging lens, and an objective lens system are provided, and the light beam reflected on the dichroic surface is projected on the object to be measured, and the light beam reflected on the object for distance measurement and reflected again on the dichroic coat surface. Optical system for condensing light,
A collimating optical system including the objective lens system , the diverging lens, a condenser optical system, and an eyepiece, wherein a visible light beam among light beams reflected by the object to be measured passes through a dichroic coat surface of the light splitting element. When,
In a ranging optical system with
In the light emitting and receiving optical system and the collimating optical system, a parallel light beam system in which light beams are parallel to each other is provided, and a dichroic coat surface of the light splitting element is located in the parallel light beam system. A distance measuring optical system characterized by the above.
請求項1において、前記平行光束系は、前記対物レンズ系と前記発散レンズからなるアフォーカルな光学系によって構成されている測距光学系。2. The distance measuring optical system according to claim 1, wherein the parallel light beam system is configured by an afocal optical system including the objective lens system and the diverging lens . 測距用の光束を発する光源と、
この光源からの測距光束を反射し、可視光を透過するダイクロイックコート面を有する光分割素子と、
コリメータレンズ群、集光レンズ、及び、対物レンズ系を備え、前記ダイクロイック面で反射した光束を測距対象物に投光するとともに、該測距対象物で反射し再び該ダイクロイックコート面で反射した光束を集光する投受光光学系と、
前記対物レンズ系、前記集光レンズ、集光光学系、及び、接眼レンズを備え、前記測距対象物で反射した光束のうち可視光束が前記光分割素子のダイクロイックコート面を透過する視準光学系と、
を備えた測距光学系において、
前記投受光光学系及び視準光学系中に、両光学系に共通する、光束が平行をなす平行光束系を設け、
この平行光束系内に、前記光分割素子のダイクロイックコート面を位置させ、
前記平行光束系は、前記対物レンズ系と前記集光レンズからなるアフォーカルな光学系によって構成され、この対物レンズと集光レンズの間で一回結像する測距光学系。
A light source that emits a light beam for distance measurement;
A light splitting element having a dichroic coat surface that reflects a distance measuring light beam from this light source and transmits visible light,
A collimator lens group, a condenser lens, and an objective lens system are provided, and the light beam reflected on the dichroic surface is projected on the object to be measured, reflected on the object for distance measurement, and reflected again on the surface of the dichroic coat. A light emitting and receiving optical system for condensing a light beam;
Collimating optics comprising the objective lens system, the condenser lens, the condenser optical system, and an eyepiece, wherein a visible light beam among light beams reflected by the object to be measured passes through a dichroic coat surface of the light splitting element. System and
In a ranging optical system with
In the light emitting and receiving optical system and the collimating optical system, a parallel light beam system in which the light beams are parallel to each other is provided,
In this parallel light flux system, the dichroic coat surface of the light splitting element is located,
The parallel beam system is an afocal optical system including the objective lens system and the condenser lens, and a distance measuring optical system that forms an image once between the objective lens and the condenser lens.
JP23367294A 1994-09-28 1994-09-28 Distance measuring optical system Expired - Fee Related JP3554373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23367294A JP3554373B2 (en) 1994-09-28 1994-09-28 Distance measuring optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23367294A JP3554373B2 (en) 1994-09-28 1994-09-28 Distance measuring optical system

Publications (2)

Publication Number Publication Date
JPH0894354A JPH0894354A (en) 1996-04-12
JP3554373B2 true JP3554373B2 (en) 2004-08-18

Family

ID=16958729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23367294A Expired - Fee Related JP3554373B2 (en) 1994-09-28 1994-09-28 Distance measuring optical system

Country Status (1)

Country Link
JP (1) JP3554373B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008099939A1 (en) * 2007-02-13 2010-05-27 株式会社ニコン・トリンブル Optical splitter, distance measuring device

Also Published As

Publication number Publication date
JPH0894354A (en) 1996-04-12

Similar Documents

Publication Publication Date Title
US5517297A (en) Rangefinder with transmitter, receiver, and viewfinder on a single common optical axis
JP4936818B2 (en) Surveyor with light splitting by dichroic prism
JPS58100840A (en) Finder of camera
JP2001050742A (en) Optical distance measuring device
JP4023572B2 (en) Automatic surveying machine
CN110044323B (en) Light and small multifunctional pulse laser ranging optical system
JPS59802B2 (en) Autofocusable binocular optics
JP3548282B2 (en) Optical branching optical system
JP2000066113A (en) Binoculars
EP0278929B1 (en) Alignment means for a light source emitting invisible laser light
US5701326A (en) Laser scanning system with optical transmit/reflect mirror having reduced received signal loss
JP2000329517A (en) Distance-measuring apparatus
JP3554373B2 (en) Distance measuring optical system
US4188102A (en) Mirror reflex camera with electronic rangefinder
CN116500771A (en) Erecting system and laser ranging binoculars
JPH0735856A (en) Optical range finder
JPH08327892A (en) Infrared ray projecting system for range finding
US2401706A (en) Range finder
JPH04319687A (en) Optical system for light wave distance meter
JPH0894739A (en) Light splitting optical system
JP2017072709A (en) Imaging optical member and optical system of surveying instrument
CN220137485U (en) Erecting system and laser ranging binoculars
JPH04370783A (en) Distance measuring apparatus
JPH0711601B2 (en) prism
JPS6020061Y2 (en) Lightwave ranging device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees