【0001】
【発明の属する技術分野】
本発明は火炎面3次元測定方法およびその装置に関する。
【0002】
【従来の技術】
火炎において燃焼反応が始まった面を一般に火炎面と呼ぶ。この火炎面を可視化して測定することができれば、燃焼状態、特に火炎の形状を計測するのに有効である。
【0003】
従来から、平面レーザー誘起蛍光法(LIF:Laser Induced
Fluorescence法)でCHラジカルやC2 ラジカルの断面分布を計測することによって火炎面を測定する方法が知られている。この方法では、CHラジカルやC2 ラジカルが燃焼反応のごく最初の段階でのみ存在する物質であることを利用し、このCHラジカルやC2 ラジカルを計測することによって燃焼の始まる場所すなわち火炎面を測定している。
【0004】
【発明が解決しようとする課題】
ところが、平面LIF法は、レーザー光をシート状に成形して火炎に照射し、レーザー光の伝播方向に垂直な方向からカメラ等で蛍光を観測する方法であるため、火炎面の断面の分布しか計測することができず、火炎面の3次元的な形状を得ることはできない。このため、従来の火炎面計測方法では、火炎面の形状を3次元的にとらえることは不可能であった。
【0005】
本発明は上記の点にかんがみてなされたもので、火炎面の形状を3次元的にとらえることができる火炎面3次元測定方法およびその装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記の目的を達成するために、高温酸素のLIF信号を計測するための励起光としてのレーザー光を発生することができるレーザーからのレーザー光をシート状ビーム成形にさらに奥行方向の幅を持たせたビームパターン成形を行い、このビームパターン成形後のレーザー光を火炎に対して照射し、この火炎中の高温酸素からの蛍光を複数の角度から観測し、この観測結果のそれぞれに対して微分処理を施すことによって前記火炎の火炎面を3次元的に測定することを特徴とする。
【0007】
【発明の実施の形態】
以下本発明を図面に基づいて説明する。
【0008】
火炎面の形状を3次元的にとらえるためには、火炎に照射するレーザー光の断面積を広げて(レーザー光をシート状ビーム成形にさらに奥行方向の幅を持たせたビームパターン成形を行い)、レーザー光が火炎の多くの部分を通過するようにする必要があるが、CHラジカルやC2 ラジカルを計測するためのレーザーは色素レーザーであり、この色素レーザーは低出力で不安定なものしか実現していない。このため、色素レーザーを用いたのでは、レーザー光の断面積を広げてやると局部的なレーザー光強度が弱くなってしまい、火炎からのLIF信号が観測不可能な程に微弱なものになってしまう。
【0009】
そこで、本発明では、色素レーザーの代りにKrF(クリプトン−フッ素)エキシマレーザーまたはArF(アルゴン−フッ素)エキシマレーザー等を用いる。このKrFエキシマレーザー等であれば色素レーザーの10〜100倍もの出力があり、十分な強度のレーザー光を出力することができるからである。しかし、色素レーザー以外の他の高出力のレーザーを用いたのでは、CHラジカルやC2 ラジカルを測定することができない。
【0010】
このため、本発明では、CHラジカルやC2 ラジカルを測定する代わりに火炎中の高温の酸素をLIF測定する。KrFエキシマレーザー等を用いると、高温(1000℃以上)に加熱された酸素のみを選択的に計測することができる。火炎面においては、急激な温度上昇が起こっているため、高温の酸素のLIF信号が急速に立ち上がる。しかしながら、火炎面よりも後流の既燃領域においても引き続いて高温領域が続くので、高温酸素をLIF測定しただけでは火炎面の測定にはならない。
【0011】
そこで、本発明では、得られた高温酸素の分布画像を空間的に微分して、LIF信号量が急激に増加する部分すなわち急激に温度上昇する部分である火炎面を得るようにしている。このようにすることによって本発明は火炎面を計測することができる。
【0012】
すなわち、本発明では、レーザー光を照射した火炎を2台のカメラを用いてわずかに異なる角度から撮像し、得られた2つの画像のそれぞれを空間微分して表示し、微分後の2つの画像を交差法または平行法といった手法でステレオ視することにより、火炎面の3次元的形状を計測することができる。
【0013】
図1は、本発明による火炎面3次元測定装置の一実施の形態のブロック図である。
【0014】
図1の破線はKrFエキシマレーザー1からのレーザー光を示している。このレーザー光の波長はたとえば248nmである。レーザー1からのレーザー光は、レンズ2によって拡大されて火炎3に照射される。レーザー光が照射された火炎3からは高温酸素の量に応じた強度の蛍光が発生する。この蛍光は、高温酸素のLIF信号としてCCDカメラ5および6で撮像される。4は火炎3を通過したレーザー光を吸収し反射をなくすためのビームダンパーである。
【0015】
CCDカメラ5および6で撮像された2つの画像は、それぞれ画像微分演算装置7および8に入力される。画像微分演算装置7および8では、高温酸素のLIF信号による画像を微分処理して、高温酸素のLIF信号が急激に変化している部分を表示する画像を作成する。この微分処理を施された2つの画像は表示装置9において表示される。観測者は、表示装置9に表示された2つの画像のそれぞれを右目、左目別々に見ることにより、交差法または平行法といった手法でステレオ視することができ、火炎面の3次元的形状を計測することができる。
【0016】
なお、本実施の形態では、2台のCCDカメラを設けて2つの画像から火炎面を3次元的にとらえたが、本発明はこれに限られるものではなく、2か所以上の位置で高温酸素からの蛍光を計測するようにすればよい。
【0017】
【発明の効果】
以上説明したように、本発明によれば、高出力のエキシマレーザーを用いることによって、従来のシート状ビーム成形にさらに奥行方向の幅を持たせたビームパターンを成形して適用することができるため、3次元的に広がった領域を測定領域として十分にカバーすることができる。
【0018】
従来の方法による火炎面の断面観測では得られる情報が不十分な場合、特に爆轟等の火炎面が瞬間的に空間を伝播する現象の観測に、本発明は有効である。
【図面の簡単な説明】
【図1】本発明による火炎面3次元測定装置の一実施の形態のブロック図である。
【符号の説明】
1 レーザー
2 レンズ
3 火炎
4 ビームダンパー
5、6 CCDカメラ
7、8 画像微分演算装置
9 表示装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flame surface three-dimensional measurement method and apparatus.
[0002]
[Prior art]
The surface where the combustion reaction has started in the flame is generally called the flame surface. If the flame surface can be visualized and measured, it is effective for measuring the combustion state, particularly the shape of the flame.
[0003]
Conventionally, planar laser-induced fluorescence (LIF: Laser Induced)
There is known a method of measuring a flame surface by measuring a cross-sectional distribution of CH radicals or C 2 radicals by a Fluorescence method. This method makes use of the fact that CH radicals and C 2 radicals are substances that exist only at the very first stage of the combustion reaction. By measuring these CH radicals and C 2 radicals, the place where combustion starts, that is, the flame surface is determined. Measuring.
[0004]
[Problems to be solved by the invention]
However, the planar LIF method is a method in which a laser beam is formed into a sheet shape and irradiated onto a flame, and the fluorescence is observed with a camera or the like from a direction perpendicular to the propagation direction of the laser beam. Measurement cannot be performed, and a three-dimensional shape of the flame surface cannot be obtained. For this reason, it has been impossible for the conventional flame surface measuring method to capture the shape of the flame surface three-dimensionally.
[0005]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a flame surface three-dimensional measuring method and apparatus capable of three-dimensionally capturing the shape of a flame surface.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a sheet-shaped beam shaping device that generates a laser beam as an excitation beam for measuring a high-frequency oxygen LIF signal. The flame is irradiated with the laser beam after the beam pattern is formed, and the fluorescence from the high-temperature oxygen in the flame is observed from a plurality of angles. And performing a differential process to measure the flame surface of the flame three-dimensionally.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings.
[0008]
In order to capture the shape of the flame surface three-dimensionally, the cross-sectional area of the laser beam applied to the flame must be widened (the laser beam is shaped into a sheet-like beam and then shaped into a beam pattern with a greater width in the depth direction). It is necessary to make the laser beam pass through many parts of the flame, but the laser for measuring CH radicals and C 2 radicals is a dye laser, and this dye laser has only a low output and is unstable. Not realized. For this reason, if a dye laser is used, if the cross-sectional area of the laser beam is increased, the local laser beam intensity will be weakened, and the LIF signal from the flame will be too weak to be observed. Would.
[0009]
Therefore, in the present invention, a KrF (krypton-fluorine) excimer laser or an ArF (argon-fluorine) excimer laser is used instead of the dye laser. This is because such a KrF excimer laser or the like has an output that is 10 to 100 times that of the dye laser, and can output a laser beam of sufficient intensity. However, if a high-output laser other than the dye laser is used, CH radicals and C 2 radicals cannot be measured.
[0010]
Therefore, in the present invention, high-temperature oxygen in the flame is measured by LIF instead of measuring CH radicals or C 2 radicals. When a KrF excimer laser or the like is used, only oxygen heated to a high temperature (1000 ° C. or higher) can be selectively measured. On the flame front, since the temperature rises rapidly, the LIF signal of high-temperature oxygen rapidly rises. However, since the high-temperature region continues in the burned region downstream of the flame surface, measurement of the high-temperature oxygen by LIF alone does not result in measurement of the flame surface.
[0011]
Therefore, in the present invention, the obtained high-temperature oxygen distribution image is spatially differentiated to obtain a flame surface where the LIF signal amount sharply increases, that is, a portion where the temperature rapidly increases. By doing so, the present invention can measure the flame surface.
[0012]
That is, in the present invention, the flame irradiated with the laser light is imaged from slightly different angles using two cameras, and each of the obtained two images is spatially differentiated and displayed. Is viewed in stereo by a method such as a crossing method or a parallel method, whereby the three-dimensional shape of the flame surface can be measured.
[0013]
FIG. 1 is a block diagram of an embodiment of a flame surface three-dimensional measuring apparatus according to the present invention.
[0014]
The broken line in FIG. 1 indicates the laser light from the KrF excimer laser 1. The wavelength of this laser light is, for example, 248 nm. The laser light from the laser 1 is expanded by the lens 2 and is irradiated on the flame 3. From the flame 3 irradiated with the laser light, fluorescence having an intensity corresponding to the amount of high-temperature oxygen is generated. This fluorescence is imaged by the CCD cameras 5 and 6 as an LIF signal of high-temperature oxygen. Reference numeral 4 denotes a beam damper for absorbing laser light passing through the flame 3 and eliminating reflection.
[0015]
The two images picked up by the CCD cameras 5 and 6 are input to image differential operation devices 7 and 8, respectively. The image differentiation calculation devices 7 and 8 perform differentiation processing on the image based on the LIF signal of the high-temperature oxygen to create an image displaying a portion where the LIF signal of the high-temperature oxygen is rapidly changing. The two images subjected to the differentiation processing are displayed on the display device 9. The observer can view each of the two images displayed on the display device 9 with the right eye and the left eye separately, thereby performing stereoscopic viewing by a method such as an intersection method or a parallel method, and measuring the three-dimensional shape of the flame surface. can do.
[0016]
In the present embodiment, two CCD cameras are provided and the flame surface is three-dimensionally captured from the two images. However, the present invention is not limited to this. What is necessary is just to measure the fluorescence from oxygen.
[0017]
【The invention's effect】
As described above, according to the present invention, by using a high-output excimer laser, it is possible to form and apply a beam pattern having a width in the depth direction to the conventional sheet-shaped beam forming. In addition, it is possible to sufficiently cover a three-dimensionally spread area as a measurement area.
[0018]
The present invention is effective for observing a phenomenon in which the flame surface instantaneously propagates in space, such as a detonation, when the information obtained by the cross-sectional observation of the flame surface by the conventional method is insufficient.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of a flame surface three-dimensional measuring apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Laser 2 Lens 3 Flame 4 Beam damper 5, 6 CCD camera 7, 8 Image differential operation device 9 Display device