JP3551537B2 - Flywheel equipment - Google Patents
Flywheel equipment Download PDFInfo
- Publication number
- JP3551537B2 JP3551537B2 JP10184095A JP10184095A JP3551537B2 JP 3551537 B2 JP3551537 B2 JP 3551537B2 JP 10184095 A JP10184095 A JP 10184095A JP 10184095 A JP10184095 A JP 10184095A JP 3551537 B2 JP3551537 B2 JP 3551537B2
- Authority
- JP
- Japan
- Prior art keywords
- rotating body
- bearing
- flywheel
- permanent magnet
- rotating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0474—Active magnetic bearings for rotary movement
- F16C32/0476—Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/0408—Passive magnetic bearings
- F16C32/041—Passive magnetic bearings with permanent magnets on one part attracting the other part
- F16C32/0417—Passive magnetic bearings with permanent magnets on one part attracting the other part for axial load mainly
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/0408—Passive magnetic bearings
- F16C32/0436—Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
- F16C32/0438—Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2300/00—Application independent of particular apparatuses
- F16C2300/40—Application independent of particular apparatuses related to environment, i.e. operating conditions
- F16C2300/62—Application independent of particular apparatuses related to environment, i.e. operating conditions low pressure, e.g. elements operating under vacuum conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2361/00—Apparatus or articles in engineering in general
- F16C2361/55—Flywheel systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Description
【0001】
【産業上の利用分野】
この発明は、余剰電力をフライホイールの回転運動エネルギに変換して貯蔵する電力貯蔵装置などに使用されるフライホイール装置に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
この種フライホイール装置として、従来、固定部に対してアキシアル方向およびラジアル方向の移動ならびに回転ができるように配置されかつ垂直軸を中心に回転する中実状回転軸と、回転軸の一端部の周囲に固定状に設けられたフライホイールと、回転軸を固定部に対してアキシアル方向およびラジアル方向に非接触支持する非接触型軸受と、回転軸を回転駆動する駆動源とを備えており、フライホイールが、回転軸の一端部の周囲に環状部材を圧入固定することにより形成されているものが知られている。
【0003】
しかしながら、このフライホイール装置では、電力貯蔵効率を向上させる目的で、たとえば直径1000mm以上の大型のフライホイールを用いた場合には、固有振動数を低下させないために回転軸の外径を大きくする必要があり、回転軸の重量が大きくなる。その結果、回転軸を固定部に対してアキシアル方向に安定的に非接触支持するには、アキシアル方向に非接触支持する軸受の剛性および負荷容量を大きくしなければならない。したがって、この軸受の構成が複雑になるとともに大型化するという問題がある。また、このフライホイール装置において、回転軸を高速回転させた場合に、環状部材が遠心力により膨張するので、環状部材と回転軸との間に隙間が発生し、フライホイールに振れやがたつきが生じるという問題がある。これを防止するためには、しめ代を大きくする必要があるが、その場合、回転軸が中実であるために環状部材の圧入固定作業が極めて困難であるという問題がある。
【0004】
このような問題を解決するために、垂直固定軸と、両端が開口し、かつ固定軸に対してアキシアル方向およびラジアル方向の移動ならびに回転ができるように固定軸の周囲に配置された垂直円筒状回転体と、回転体の一端部の周囲に固定状に設けられたフライホイールと、回転体を固定軸に対してアキシアル方向に非接触支持する非接触型軸受と、同じくラジアル方向に非接触支持する制御型磁気軸受と、回転体を回転駆動する駆動源とを備えており、フライホイールが、回転体の一端部の周囲に環状部材を圧入固定することにより形成されているフライホイール装置が考えられている。
【0005】
このフライホイール装置では、回転体が両端が開口した円筒状であるので、環状部材の圧入固定のさいに回転体がたわみ易く、その作業を容易に行うことができるが、回転体を高速回転させた場合に、回転体自身が遠心力により膨張し、回転体のラジアル方向の位置制御の精度が低下するという問題がある。
【0006】
この発明の目的は、上記問題を解決したフライホイール装置を提供することにある。
【0007】
【課題を解決するための手段】
この発明によるフライホイール装置は、
垂直固定軸と、一端が開口するとともに他端が閉鎖され、かつ固定軸に対してアキシアル方向およびラジアル方向の移動ならびに回転ができるように固定軸の周囲に配置された垂直円筒状回転体と、回転体の開口端部の周囲に固定状に設けられたフライホイールと、回転体を固定軸に対してアキシアル方向およびラジアル方向に非接触支持する非接触型軸受と、回転体を回転駆動する駆動源とを備えており、フライホイールが、回転体の開口端部の周囲に環状部材を圧入固定することにより形成されているものである。
【0008】
【作用】
回転体が、一端が開口するとともに他端が閉鎖された垂直円筒状であるので、回転体の重量が、従来装置の中実の回転軸に比べて小さくなる。したがって、回転軸を固定部に対してアキシアル方向に非接触支持する軸受の剛性および負荷容量を、従来装置の軸受に比べて小さくできる。
【0009】
また、回転体が、一端が開口するとともに他端が閉鎖された垂直円筒状であり、フライホイールが、回転体の開口端部の周囲に環状部材を圧入固定することにより形成されているので、環状部材の圧入固定作業時に回転体をたわませることが簡単になり、その結果圧入固定作業を容易に行うことができる。
【0010】
さらに、回転体が、一端が開口するとともに他端が閉鎖された垂直円筒状であるので、回転体を駆動源により高速回転させた場合にも、回転体が遠心力により膨張することが防止される。
【0011】
【実施例】
以下、この発明の実施例を、図面を参照して説明する。
【0012】
図1はフライホイール装置を適用した電力貯蔵装置の全体構成を概略的に示しており、この電力貯蔵装置は、真空チャンバ(1) と、真空チャンバ(1) の頂壁(1a)に垂下状に固定された垂直固定軸(2) と、上端が開口するとともに下端が閉鎖され、かつ固定軸(2) に対してアキシアル方向およびラジアル方向の移動ならびに回転ができるように固定軸(2) の周囲に配置された垂直円筒状回転体(3) と、回転体(3) の開口端部の周囲に固定状に設けられたフライホイール(4) とを備えている。
【0013】
垂直固定軸(2) は、アルミニウム合金、非磁性ステンレス鋼、銅合金などの非磁性体により形成されたものであり、その上端に外向きフランジ(2a)が一体に形成されている。回転体(3) は、アルミニウム合金、非磁性ステンレス鋼、銅合金などの非磁性体により形成されたものである。フライホイール(4) は、回転体(3) の上端に一体に形成された外向きフランジ(3a)と、外向きフランジ(3a)の外周に圧入固定されたCFRP(複合繊維強化プラスチック)製の環状補強部材(環状部材)(5) とよりなる。
【0014】
垂直固定軸(2) の外向きフランジ(2a)の下面と、回転体(3) の外向きフランジ(3a)の上面との間に制御型アキシアル磁気軸受(6) が設けられ、垂直固定軸(2) の下面と回転体(3) の下端閉鎖壁(3b)の上面との間に、磁気吸引力により回転体(3) を上向きに付勢する永久磁石軸受(7) が設けられ、回転体(3) の下端閉鎖壁(3b)の下面と真空チャンバ(1) の底壁(1b)上面との間に磁気反発力により回転体(3) を上向きに付勢する超電導軸受(8) が設けられ、垂直固定軸(2) の周面と回転体(3) の周壁内周面との間に、回転体(3) の互いに直交する2つのラジアル方向の位置を制御する上下2組の制御型ラジアル磁気軸受(9)(10) が設けられている。
【0015】
制御型アキシアル磁気軸受(6) は、垂直固定軸(2) の外向きフランジ(2a)の下面に垂直固定軸(2) と同心状に設けられかつ回転体(3) をアキシアル方向(Z軸方向)の上側から吸引して同方向の回転体(3) の位置を制御するための環状電磁石部(11)と、電磁石部(11)に対して上下方向に対向するように、回転体(3) の外向きフランジ(3a)の上面に設けられた環状強磁性体(12)とを備えている。垂直固定軸(2) の外向きフランジ(2a)の下面に、環状凹溝(13)が固定軸(2) と同心状に形成されており、環状凹溝(13)内に、環状電磁石(14)、ならびに電磁石(14)の内周面、上面、外周面および下面の外周側部分を覆うヨーク部材(15)が嵌められて固定されることにより電磁石部(11)が構成されており、ヨーク部材(15)の両側縁部にそれぞれ環状の下方突出部(15a) が一体に形成されている。強磁性体(12)の上面には、ヨーク部材(15)の2つの下方突出部(15a) と対向するように、2つの環状上方突出部(12a) が一体に形成されている。なお、図示は省略したが、アキシアル磁気軸受(6) は、回転体(3) のZ軸方向の変位を検出するための変位センサを備えており、電磁石(14)および変位センサが図示しない磁気軸受制御装置に接続されている。そして、磁気軸受制御装置により、変位センサの出力に基いて電磁石(14)の電流値すなわち吸引力が制御され、その結果回転体(3) のアキシアル方向の位置が制御されるようになっている。なお、アキシアル磁気軸受(6) およびその制御装置は公知のものであるから、詳細な説明は省略する。
【0016】
永久磁石軸受(7) は、垂直固定軸(2) の下面に設けられた固定永久磁石部(16)と、回転体(3) の下端閉鎖壁(3b)の上面に設けられた回転永久磁石部(17)とよりなる。固定軸(2) の下面の中心部に円筒状穴(18)が形成されるとともに、その周囲に環状凹溝(19)が固定軸(2) の軸心と同心状に形成され、円筒状穴(18)内に円柱状固定永久磁石(20)が嵌められて固定されるとともに、環状凹溝(19)内に環状固定永久磁石(21)が嵌められて固定されることにより、固定永久磁石部(16)が構成されている。両固定永久磁石(20)(21)は、それぞれその上下両端部が逆の極性の磁気を帯びているとともに、円柱状固定永久磁石(20)と環状固定永久磁石(21)の上下方向の両端部が逆の極性の磁気を帯びている。たとえば、円柱状固定永久磁石(20)の上端部はN極、下端部はS極の磁気を帯びており、環状固定永久磁石(21)の上端部はS極、下端部はN極の磁気を帯びている。回転体(3) の下端閉鎖壁(3b)の上面の中心部に円筒状穴(22)が形成されるとともに、その周囲に環状凹溝(23)が回転体(3) の軸心と同心状に形成され、円筒状穴(22)内に円柱状回転永久磁石(24)が嵌められて固定されるとともに、環状凹溝(23)内に環状回転永久磁石(25)が嵌められて固定されることにより、回転永久磁石部(17)が構成されている。各回転永久磁石(24)(25)は、各固定永久磁石(20)(21)と対向するように配置されている。両回転永久磁石(24)(25)は、それぞれその上下両端部が逆の極性の磁気を帯びているとともに、円柱状固定永久磁石(24)と環状回転永久磁石(25)の上下方向の両端部が逆の極性の磁気を帯びている。また、各回転永久磁石(24)(25)と各固定永久磁石(20)(21)の互いに対向する端部は逆の極性の磁気を帯びている。たとえば、円柱状回転永久磁石(24)の上端部はN極、下端部はS極の磁気を帯びており、環状回転永久磁石(25)の上端部はS極、下端部はN極の磁気を帯びている。
【0017】
超電導軸受(8) は、回転体(3) の下端閉鎖壁(3b)の下面に設けられた環状の永久磁石部(26)と、永久磁石部(26)に対して上下方向に間隔をおいて対向するように、真空チャンバ(1) の底壁(1b)上面に設けられた環状超電導体部(27)とよりなる。回転体(3) の下端閉鎖壁(3b)の下面に複数の環状凹溝(28)が回転軸心と同心状に形成され、各環状凹溝(28)内に環状の永久磁石(29)が嵌められて固定されることにより、永久磁石部(26)が構成されている。各永久磁石(29)は上下両端部が逆の極性の磁気を帯び、隣り合う永久磁石(29)の上下方向の同一端部が逆の極性の磁気を帯びている。たとえば、内側の永久磁石(29)の上端部はS極、下端部はN極の磁気を帯びており、外側の永久磁石(29)の上端部はN極、下端部はS極の磁気を帯びている。超電導体部(27)は、真空チャンバ(1) の底壁(1b)上面上に断熱材(30)を介して固定された環状の冷却ケース(31)を備えている。冷却ケース(31)は、たとえばアルミニウム合金、非磁性ステンレス鋼、銅合金などの非磁性体からなる。冷却ケース(31)内の空間に環状超電導体(32)が固定状に配置されている。冷却ケース(31)は冷却流体供給管(33)および同排出管(34)を介して図示しない冷却装置に接続されており、この冷却装置により、たとえば液体窒素などの冷却流体が供給管(33)、冷却ケース(31)内の空間および排出管(34)を介して循環させられ、これによって超電導体(32)が冷却されるようになっている。超電導体(32)は第2種超電導体であり、イットリウム系高温超電導体、たとえばYBa2 Cu3 O7−X からなるバルクの内部に常電導体(Y2 Ba1 Cu1 )を均一に混在させたものからなる。そして、超電導体(32)は、これを永久磁石(29)の磁界を受けない離隔位置に配置した後臨界温度以下の温度に冷却(以下、この冷却をゼロ磁場冷却という)することにより、反磁性を示すものである。
【0018】
各ラジアル磁気軸受(9)(10) は、詳細な図示は省略したが、回転体(3) を互いに直交する2つのラジアル方向(X軸およびY軸方向)の両側から吸引して同方向の回転体(3) の位置を制御するための電磁石、ならびに回転体(3) のX軸およびY軸方向の変位を検出するための変位センサを備えており、これらが図示しない磁気軸受制御装置に接続されている。そして、磁気軸受制御装置により、変位センサの出力に基いて電磁石の電流値すなわち吸引力が制御され、その結果回転体(3) のラジアル方向の位置が制御されるようになっている。なお、ラジアル磁気軸受(9)(10) およびその制御装置は公知のものであるから、詳細な説明は省略する。ラジアル磁気軸受(9)(10) の少なくとも1組は、回転体(3) の位置制御機能の他に、回転体(3) を回転駆動する電動駆動機能を有するものである。電動駆動機能を有する制御型ラジアル磁気軸受は、浮上回転モータあるいはベアリングレス・モータなどとして公知のものであるから、詳細な説明は省略する。
【0019】
上記の電力貯蔵装置には、次のように、運転前に真空チャンバ(1) の固定軸(2) と回転体(3) の相対位置を設定するための初期位置決め装置(35)が設けられている。
【0020】
回転体(3) の下方に、公知の適当な手段により昇降させられる昇降部材(36)が、真空チャンバ(1) の底壁(1b)を貫通して配置されている。昇降部材(36)の上面に凹球面状凹所(37)が形成されている。また、回転体(3) の下端閉鎖壁(3b)の下面の中心部に、凹所(37)に嵌まる半球面体(38)が下方突出状にかつ固定状に設けられている。そして、昇降部材(36)を上昇させると、半球面体(38)が凹所(37)内に嵌まった状態で停止状態の回転体(3) を持ち上げられ、回転体(3) のアキシアル方向の初期位置決めが行われる。なお、昇降部材(36)は、電力貯蔵装置の運転状態においては、半球面体(38)が凹所(37)の内面と接触しない下降位置にある。
【0021】
初期位置決め装置(35)の昇降部材(36)上面の凹所(37)と、半球面体(38)とにより、動圧軸受が形成されており、これが非常時に回転体(3) の下端を非接触支持するタッチダウン軸受(39)となっている。また、垂直固定軸(2) の上部に、非常時に回転体(3) の上部を支持する転がり軸受からなるタッチダウン軸受(40)が設けられている。
【0022】
回転体(3) の回転を開始するさいには、まず真空チャンバ(1) 内を真空状態にし、初期位置決め装置(35)により、停止状態の回転体(3) を所定の位置まで持ち上げて、回転体(3) のアキシアル方向の初期位置決めを行う。このとき、アキシアル磁気軸受(6) の電磁石部(11)のヨーク部材(15)における下方突出部(15a) と強磁性体(12)の上方突出部(12a) とのアキシアル方向の間隔が、ヨーク部材(15)の下方突出部(15a) 間のラジアル方向の間隔よりも小さくなるようにする。また、超電導軸受(8) の超電導体(32)が、永久磁石(29)の磁界を受けず、その磁束が侵入しないような位置にくるようにする。ついで、上下のラジアル磁気軸受(9)(10) の位置制御機能だけを作動させることによって、回転体(3) のラジアル方向の初期位置決めを行う。このとき、永久磁石軸受(7) の回転永久磁石(24)(25)が固定永久磁石(20)(21)から上向きの吸引力を受け、これにより回転体(3) の重量の一部が支持される。そして、アキシアル磁気軸受(6) の電磁石(14)に通電する。すると、アキシアル磁気軸受(6) の電磁石部(11)と強磁性体(12)との間に図1に破線で示すような磁気回路が形成され、強磁性体(12)が上向きの吸引力を受け、これによっても回転体(3) の重量の一部が支持される。回転永久磁石(24)(25)が受ける上向きの吸引力と、強磁性体(12)が受ける上向きの吸引力との和が、回転体(3) の重量とほぼ等しくなるようにしておく。ついで、冷却装置により超電導軸受(8) の冷却ケース(31)内に冷却流体を循環させ、超電導体(32)を臨界温度以下の温度に冷却して超電導状態にし、この状態で保持する。すなわち、超電導体(32)に反磁性状態を出現させる。ついで、昇降部材(36)を下降させると、永久磁石(29)と超電導体(32)との間に生じる磁気反発力により、回転体(3) は上向きに付勢される。したがって、回転体(3) は、極めて安定した状態でアキシアル方向およびラジアル方向に支持されることになる。このようにアキシアル磁気軸受(6) 、永久磁石軸受(7) 、超電導軸受(8) およびラジアル磁気軸受(9)(10) によって回転体(3) が支持されたならば、昇降部材(36)をさらに下降させて初期位置決め装置(35)による回転体(3) の支持をなくす。これにより、回転体(3) は、アキシアル磁気軸受(6) 、永久磁石軸受(7) 、超電導軸受(8) およびラジアル磁気軸受(9)(10) によって非接触支持されたことになる。回転体(3) が非接触支持されたならば、いずれかのラジアル磁気軸受(9)(10) の電動駆動機能を作動させて回転体(3) を回転させる。そして、回転体(3) が回転している間に、電気エネルギが回転運動エネルギに変換されてフライホイール(4) に貯蔵される。回転体(3) が回転しているさいに、アキシアル磁気軸受(6) およびラジアル磁気軸受(9)(10) の位置制御機能により、回転体(3) にアキシアル方向およびラジアル方向の振れが発生するのが防止される。
【0023】
回転体(3) が回転しているときに停電が発生した場合、いずれかのラジアル磁気軸受(9)(10) の電動駆動機能は停止するが、フライホイール(4) により、回転体(3) はわずかに減速するものの継続して回転させられる。その結果、電動駆動機能を有するラジアル磁気軸受(9)(10) が発電機として作動し、フライホイール(4) に貯蔵されていた回転運動エネルギが電気エネルギとして取り出され、図示しない蓄電池に蓄えられる。蓄電池に蓄えられた電力は、図示しない外部の電力消費財および超電導軸受(8) の冷却装置に送られ、電力消費財および超電導軸受(8) が作動を継続する。蓄電池に蓄えられた電力の一部はアキシアル磁気軸受(6) およびラジアル磁気軸受(9)(10) の磁気軸受制御装置に送られ、これによりこれらの磁気軸受(6)(9)(10)の位置制御機能が作動させられる。そして、フライホイール(4) に蓄えられていた回転運動エネルギが減少して回転体(3) が停止するまでの間、回転体(3) はアキシアル磁気軸受(6) 、永久磁石軸受(7) 、超電導軸受(8) およびラジアル磁気軸受(9)(10) によって非接触支持される。しかも、アキシアル磁気軸受(6) およびラジアル磁気軸受(9)(10) の位置制御機能により、回転体(3) にアキシアル方向およびラジアル方向の振れが発生するのが防止される。
【0024】
上記実施例においては、アキシアル磁気軸受(6) およびラジアル磁気軸受(9)(10) は、それぞれ変位センサを備えた磁気軸受であるが、これに代えて、公知のセンサレス磁気軸受を用いることもできる。この場合、センサ回路の故障による安全性の低下が防止される。
【0025】
また、上記実施例においては、ラジアル磁気軸受(9)(10) の少なくとも1組は、回転体(3) の位置制御機能の他に、回転体(3) を回転駆動する電動駆動機能を有するものであるが、これに限るものではなく、いずれのラジアル磁気軸受(9)(10) も位置制御機能だけを有していてもよい。この場合、固定軸(2) と回転体(3) との間に、高周波電動機などの回転駆動源が設けられる。
【0026】
また、上記実施例においては、超電導軸受(8) の超電導体(32)として第2種超電導体が用いられ、これをゼロ磁場冷却したさいの磁気反発力により、永久磁石(29)が上向きに付勢されるようになっているが、第2種超電導体を用いたとしても、永久磁石(29)から発生する磁束を、臨界温度以上の温度で超電導体(32)の内部に侵入させた後、超電導体(32)を臨界温度以下の温度に冷却(磁場冷却)して拘束し、いわゆるピン止め力により生じる磁気反発力によって永久磁石(29)が上向きに付勢されるようにしてもよい。さらに、超電導軸受(8) の超電導体として、第2種超電導体の変わりに、水銀、鉛などからなる完全反磁性を示す第1種超電導体を用いてもよい。この場合、超電導体のマイスナー効果による磁気反発力によって、永久磁石が超電導体により上向きに付勢される。
【0027】
【発明の効果】
この発明のフライホイール装置によれば、上述のように、回転体の重量が、従来装置の中実の回転軸に比べて小さくなるので、回転体を固定部に対してアキシアル方向に非接触支持する軸受の剛性および負荷容量を、従来装置の軸受に比べて小さくできる。したがって、軸受の構造が複雑になったり、軸受が大型化するのを防止することができる。
【0028】
また、回転体が、一端が開口するとともに他端が閉鎖された垂直円筒状であり、フライホイールが、回転体の開口端部の周囲に環状部材を圧入固定することにより形成されているので、環状部材の圧入固定作業時に回転体をたわませることが簡単になり、その結果圧入固定作業を容易に行うことができる。
【0029】
さらに、回転体が、一端が開口するとともに他端が閉鎖された垂直円筒状であるので、回転体を駆動源により高速回転させた場合にも、回転体が遠心力により膨張することが防止される。したがって、回転体のラジアル方向の位置制御の精度が向上する。
【図面の簡単な説明】
【図1】この発明の実施例を示すフライホイール装置を適用した電力貯蔵装置の概略縦断面図である。
【符号の説明】
(2) 垂直固定軸
(3) 垂直円筒状回転体
(3b) 下端閉鎖壁
(4) フライホイール
(5) 環状補強部材(環状部材)
(6) アキシアル磁気軸受
(7) 永久磁石軸受
(8) 超電導軸受
(9) ラジアル磁気軸受
(10) ラジアル磁気軸受[0001]
[Industrial applications]
The present invention relates to a flywheel device used for an electric power storage device or the like that converts surplus electric power into rotational kinetic energy of a flywheel and stores it.
[0002]
[Prior Art and Problems to be Solved by the Invention]
Conventionally, as a flywheel device of this kind, a solid rotary shaft that is arranged so as to be able to move and rotate in the axial direction and the radial direction with respect to the fixed portion and rotates around a vertical axis, and around one end of the rotary shaft A non-contact type bearing that supports the rotating shaft in a non-contact manner in the axial direction and the radial direction with respect to the fixed portion, and a drive source that rotationally drives the rotating shaft. There is known a wheel formed by press-fitting and fixing an annular member around one end of a rotating shaft.
[0003]
However, in this flywheel device, when a large flywheel having a diameter of 1000 mm or more is used for the purpose of improving power storage efficiency, it is necessary to increase the outer diameter of the rotating shaft so as not to lower the natural frequency. And the weight of the rotating shaft increases. As a result, in order to stably support the rotating shaft in the axial direction without contact with the fixed portion, the rigidity and load capacity of the bearing that is supported in the axial direction without contact must be increased. Therefore, there is a problem that the configuration of the bearing is complicated and the size is increased. Further, in this flywheel device, when the rotating shaft is rotated at high speed, the annular member expands due to centrifugal force, so that a gap is generated between the annular member and the rotating shaft, and the flywheel shakes and rattles. There is a problem that occurs. In order to prevent this, it is necessary to increase the interference allowance, but in this case, there is a problem that the press-fitting and fixing work of the annular member is extremely difficult because the rotating shaft is solid.
[0004]
In order to solve such a problem, a vertical fixed shaft and a vertical cylindrical shape which are open at both ends and which are arranged around the fixed shaft so as to be able to move and rotate in the axial and radial directions with respect to the fixed shaft. A rotating body, a flywheel fixedly provided around one end of the rotating body, and a non-contact type bearing that supports the rotating body in a non-contact manner in an axial direction with respect to a fixed shaft, and also in a non-contact support in a radial direction. A flywheel device comprising a control-type magnetic bearing and a drive source for rotating and driving the rotating body, wherein the flywheel is formed by press-fitting and fixing an annular member around one end of the rotating body is considered. Have been.
[0005]
In this flywheel device, since the rotating body is cylindrical with both ends open, the rotating body is easily bent when the annular member is press-fitted and fixed, and the work can be easily performed. In this case, there is a problem that the rotating body itself expands due to centrifugal force, and the accuracy of position control of the rotating body in the radial direction is reduced.
[0006]
An object of the present invention is to provide a flywheel device that solves the above problem.
[0007]
[Means for Solving the Problems]
The flywheel device according to the present invention includes:
A vertical fixed shaft, a vertical cylindrical rotating body disposed around the fixed shaft so that one end is open and the other end is closed, and can move and rotate in the axial direction and the radial direction with respect to the fixed shaft, A flywheel fixedly provided around the open end of the rotating body, a non-contact type bearing that supports the rotating body in a non-contact manner in the axial direction and the radial direction with respect to the fixed shaft, and a drive that rotationally drives the rotating body. And a flywheel, wherein the flywheel is formed by press-fitting and fixing an annular member around the open end of the rotating body.
[0008]
[Action]
Since the rotating body has a vertical cylindrical shape with one end opened and the other end closed, the weight of the rotating body is smaller than that of the solid rotating shaft of the conventional device. Therefore, the rigidity and load capacity of the bearing that supports the rotating shaft in a non-contact manner in the axial direction with respect to the fixed portion can be reduced as compared with the bearing of the conventional device.
[0009]
Also, since the rotating body is a vertical cylindrical shape having one end opened and the other end closed, and the flywheel is formed by press-fitting and fixing an annular member around the open end of the rotating body, It is easy to bend the rotating body during the press-fitting and fixing work of the annular member, and as a result, the press-fitting and fixing work can be easily performed.
[0010]
Furthermore, since the rotating body has a vertical cylindrical shape with one end opened and the other end closed, even when the rotating body is rotated at a high speed by a driving source, the rotating body is prevented from expanding due to centrifugal force. You.
[0011]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 schematically shows the entire configuration of a power storage device to which a flywheel device is applied. This power storage device has a vacuum chamber (1) and a drooping top wall (1a) on the vacuum chamber (1). A vertical fixed shaft (2) fixed to the fixed shaft (2) so that the upper end is open and the lower end is closed, and the fixed shaft (2) can move and rotate in the axial and radial directions with respect to the fixed shaft (2). It comprises a vertical cylindrical rotating body (3) disposed around the flywheel, and a flywheel (4) fixedly provided around the open end of the rotating body (3).
[0013]
The vertical fixed shaft (2) is formed of a non-magnetic material such as an aluminum alloy, a non-magnetic stainless steel, and a copper alloy, and has an outward flange (2a) integrally formed at an upper end thereof. The rotating body (3) is made of a non-magnetic material such as an aluminum alloy, a non-magnetic stainless steel, and a copper alloy. The flywheel (4) is made of an outward flange (3a) integrally formed at the upper end of the rotating body (3) and a CFRP (composite fiber reinforced plastic) press-fitted and fixed to the outer periphery of the outward flange (3a). An annular reinforcing member (annular member) (5).
[0014]
A control type axial magnetic bearing (6) is provided between the lower surface of the outward flange (2a) of the vertical fixed shaft (2) and the upper surface of the outward flange (3a) of the rotating body (3). A permanent magnet bearing (7) is provided between the lower surface of (2) and the upper surface of the lower end closing wall (3b) of the rotating body (3) to urge the rotating body (3) upward by magnetic attraction, A superconducting bearing (8) for urging the rotating body (3) upward by magnetic repulsion between the lower surface of the lower end closing wall (3b) of the rotating body (3) and the upper surface of the bottom wall (1b) of the vacuum chamber (1). ) Is provided between the peripheral surface of the vertical fixed shaft (2) and the inner peripheral surface of the peripheral wall of the rotating body (3) to control the positions of the rotating body (3) in two radial directions orthogonal to each other. A set of controlled radial magnetic bearings (9) (10) are provided.
[0015]
The control type axial magnetic bearing (6) is provided concentrically with the vertical fixed shaft (2) on the lower surface of the outward flange (2a) of the vertical fixed shaft (2) and moves the rotating body (3) in the axial direction (Z axis). Direction) and an annular electromagnet section (11) for controlling the position of the rotating body (3) in the same direction by suction from the upper side of the rotating body (3), and the rotating body (11) is vertically opposed to the electromagnet section (11). And 3) an annular ferromagnetic material (12) provided on the upper surface of the outward flange (3a). An annular groove (13) is formed concentrically with the fixed shaft (2) on the lower surface of the outward flange (2a) of the vertical fixed shaft (2), and an annular electromagnet ( 14) and a yoke member (15) covering the inner peripheral surface, the upper surface, the outer peripheral surface, and the outer peripheral portion of the lower surface of the electromagnet (14) are fitted and fixed to form an electromagnet portion (11). Annular downward projections (15a) are integrally formed on both side edges of the yoke member (15). On the upper surface of the ferromagnetic body (12), two annular upper protrusions (12a) are integrally formed so as to face the two lower protrusions (15a) of the yoke member (15). Although not shown, the axial magnetic bearing (6) includes a displacement sensor for detecting the displacement of the rotating body (3) in the Z-axis direction, and the electromagnet (14) and the displacement sensor are not shown. It is connected to a bearing control device. The current value of the electromagnet (14), that is, the attraction force is controlled by the magnetic bearing control device based on the output of the displacement sensor. As a result, the axial position of the rotating body (3) is controlled. . Since the axial magnetic bearing (6) and its control device are known, detailed description is omitted.
[0016]
The permanent magnet bearing (7) includes a fixed permanent magnet portion (16) provided on the lower surface of the vertical fixed shaft (2) and a rotating permanent magnet provided on the upper surface of the lower end closing wall (3b) of the rotating body (3). (17). A cylindrical hole (18) is formed in the center of the lower surface of the fixed shaft (2), and an annular groove (19) is formed around the cylindrical hole (19) concentrically with the axis of the fixed shaft (2). The cylindrical fixed permanent magnet (20) is fitted and fixed in the hole (18), and the annular fixed permanent magnet (21) is fitted and fixed in the annular groove (19), thereby securing the permanent magnet. A magnet section (16) is configured. Both fixed permanent magnets (20) and (21) have magnets of opposite polarities at their upper and lower ends, respectively, and both ends of a columnar fixed permanent magnet (20) and an annular fixed permanent magnet (21) in the vertical direction. The part is magnetized with the opposite polarity. For example, the upper end of the cylindrical fixed permanent magnet (20) is magnetized with N pole and the lower end is magnetized with S pole, and the upper end of the annular fixed permanent magnet (21) is S pole, and the lower end is magnetized with N pole. Is carried. A cylindrical hole (22) is formed in the center of the upper surface of the lower end closing wall (3b) of the rotating body (3), and an annular groove (23) is formed around the cylindrical hole (23) concentric with the axis of the rotating body (3). The cylindrical rotating permanent magnet (24) is fitted and fixed in the cylindrical hole (22), and the annular rotating permanent magnet (25) is fitted and fixed in the annular groove (23). Thus, a rotating permanent magnet section (17) is configured. The rotating permanent magnets (24) and (25) are arranged so as to face the fixed permanent magnets (20) and (21). Both rotating permanent magnets (24) and (25) have magnets of opposite polarities at the upper and lower ends, respectively, and have both ends in the vertical direction of the cylindrical fixed permanent magnet (24) and the annular rotating permanent magnet (25). The part is magnetized with the opposite polarity. Opposite ends of the rotating permanent magnets (24) and (25) and the fixed permanent magnets (20) and (21) are magnetized with opposite polarities. For example, the upper end of the cylindrical rotating permanent magnet (24) is magnetized with N pole and the lower end is magnetized with S pole. The upper end of the annular rotating permanent magnet (25) is magnetized with S pole and the lower end is magnetized with N pole. Is carried.
[0017]
The superconducting bearing (8) is vertically spaced from an annular permanent magnet (26) provided on the lower surface of the lower end closing wall (3b) of the rotating body (3). And an annular superconductor section (27) provided on the upper surface of the bottom wall (1b) of the vacuum chamber (1) so as to face the same. A plurality of annular grooves (28) are formed on the lower surface of the lower end closing wall (3b) of the rotating body (3) concentrically with the rotation axis, and an annular permanent magnet (29) is provided in each annular groove (28). The permanent magnet portion (26) is configured by being fitted and fixed. The upper and lower ends of each permanent magnet (29) have opposite polarity magnetism, and the same vertical end of adjacent permanent magnets (29) has opposite polarity magnetism. For example, the upper end of the inner permanent magnet (29) has S pole and the lower end has magnetism of N pole, and the upper end of the outer permanent magnet (29) has N pole and the lower end has magnetism of S pole. Takes on. The superconductor section (27) has an annular cooling case (31) fixed on the upper surface of the bottom wall (1b) of the vacuum chamber (1) via a heat insulating material (30). The cooling case (31) is made of a non-magnetic material such as an aluminum alloy, a non-magnetic stainless steel, and a copper alloy. An annular superconductor (32) is fixedly arranged in the space inside the cooling case (31). The cooling case (31) is connected to a cooling device (not shown) via a cooling fluid supply pipe (33) and the discharge pipe (34), and the cooling device supplies a cooling fluid such as liquid nitrogen to the supply pipe (33). ), And is circulated through the space in the cooling case (31) and the discharge pipe (34), whereby the superconductor (32) is cooled. Superconductor (32) is a second type superconductor, yttrium-based high temperature superconductor, for example YBa 2 Cu 3 O consists 7-X bulk inside normal conductor of (Y 2 Ba 1 Cu 1) uniformly mixed Consists of Then, the superconductor (32) is placed at a separated position where it does not receive the magnetic field of the permanent magnet (29), and then cooled to a temperature below the critical temperature (hereinafter, this cooling is referred to as zero magnetic field cooling), so that the superconductor (32) is cooled. It shows magnetism.
[0018]
Although not shown in detail, the radial magnetic bearings (9) and (10) attract the rotating body (3) from both sides in two radial directions (X-axis and Y-axis directions) orthogonal to each other, and rotate the rotating body (3) in the same direction. An electromagnet for controlling the position of the rotating body (3) and a displacement sensor for detecting the displacement of the rotating body (3) in the X-axis and Y-axis directions are provided to a magnetic bearing control device (not shown). It is connected. The magnetic bearing control device controls the current value of the electromagnet, that is, the attraction force, based on the output of the displacement sensor. As a result, the radial position of the rotating body (3) is controlled. Since the radial magnetic bearings (9) and (10) and the control device thereof are publicly known, detailed description will be omitted. At least one set of the radial magnetic bearings (9) and (10) has an electric drive function for rotationally driving the rotating body (3) in addition to the position control function of the rotating body (3). Since the control type radial magnetic bearing having the electric drive function is known as a levitation rotary motor or a bearingless motor, a detailed description thereof will be omitted.
[0019]
The above-mentioned power storage device is provided with an initial positioning device (35) for setting the relative position between the fixed shaft (2) of the vacuum chamber (1) and the rotating body (3) before operation as follows. ing.
[0020]
Below the rotator (3), an elevating member (36) which is raised and lowered by a suitable means known in the art is disposed through the bottom wall (1b) of the vacuum chamber (1). A concave spherical recess (37) is formed on the upper surface of the lifting member (36). At the center of the lower surface of the lower end closing wall (3b) of the rotating body (3), a hemispherical body (38) fitted into the recess (37) is provided so as to protrude downward and to be fixed. When the elevating member (36) is raised, the rotating body (3) in a stopped state is lifted with the hemispherical body (38) fitted in the recess (37), and the axial direction of the rotating body (3) is increased. Is performed. The elevating member (36) is in a lowered position where the hemispherical body (38) does not contact the inner surface of the recess (37) in the operation state of the power storage device.
[0021]
A concave portion (37) on the upper surface of the elevating member (36) of the initial positioning device (35) and a hemispherical body (38) form a dynamic pressure bearing. A touch-down bearing (39) for contacting and supporting is provided. In addition, a touchdown bearing (40) composed of a rolling bearing that supports the upper part of the rotating body (3) in an emergency is provided above the vertical fixed shaft (2).
[0022]
When the rotation of the rotating body (3) is started, the inside of the vacuum chamber (1) is first evacuated, and the stopped rotating body (3) is lifted to a predetermined position by the initial positioning device (35). Initial positioning of the rotating body (3) in the axial direction is performed. At this time, the axial distance between the lower protruding portion (15a) of the yoke member (15) of the electromagnet portion (11) of the axial magnetic bearing (6) and the upper protruding portion (12a) of the ferromagnetic material (12) is: The distance between the lower protrusions (15a) of the yoke member (15) in the radial direction is made smaller. Further, the superconductor (32) of the superconducting bearing (8) is positioned so as not to receive the magnetic field of the permanent magnet (29) and to prevent the magnetic flux from entering. Then, only the position control function of the upper and lower radial magnetic bearings (9) and (10) is operated to perform initial positioning in the radial direction of the rotating body (3). At this time, the rotating permanent magnets (24) and (25) of the permanent magnet bearing (7) receive an upward attractive force from the fixed permanent magnets (20) and (21), whereby a part of the weight of the rotating body (3) is reduced. Supported. Then, electricity is supplied to the electromagnet (14) of the axial magnetic bearing (6). Then, a magnetic circuit is formed between the electromagnet portion (11) of the axial magnetic bearing (6) and the ferromagnetic material (12) as shown by a broken line in FIG. This also supports a part of the weight of the rotating body (3). The sum of the upward attractive force received by the rotating permanent magnets (24) and (25) and the upward attractive force received by the ferromagnetic material (12) is set to be substantially equal to the weight of the rotating body (3). Next, a cooling fluid is circulated in a cooling case (31) of the superconducting bearing (8) by a cooling device, and the superconductor (32) is cooled to a temperature lower than a critical temperature to be in a superconducting state, and is maintained in this state. That is, a diamagnetic state appears in the superconductor (32). Next, when the elevating member (36) is lowered, the rotating body (3) is urged upward by a magnetic repulsive force generated between the permanent magnet (29) and the superconductor (32). Therefore, the rotating body (3) is supported in the axial direction and the radial direction in an extremely stable state. If the rotating body (3) is supported by the axial magnetic bearing (6), the permanent magnet bearing (7), the superconducting bearing (8) and the radial magnetic bearing (9) (10), the elevating member (36) Is further lowered to eliminate the support of the rotating body (3) by the initial positioning device (35). Thus, the rotating body (3) is non-contact supported by the axial magnetic bearing (6), the permanent magnet bearing (7), the superconducting bearing (8), and the radial magnetic bearings (9) (10). When the rotating body (3) is supported in a non-contact manner, the electric drive function of one of the radial magnetic bearings (9) and (10) is operated to rotate the rotating body (3). Then, while the rotating body (3) is rotating, the electric energy is converted into rotational kinetic energy and stored in the flywheel (4). When the rotating body (3) is rotating, axial and radial deflections occur in the rotating body (3) by the position control function of the axial magnetic bearing (6) and the radial magnetic bearings (9, 10). Is prevented.
[0023]
If a power failure occurs while the rotating body (3) is rotating, the electric drive function of one of the radial magnetic bearings (9) (10) is stopped, but the rotating body (3) is rotated by the flywheel (4). ) Is still rotating, albeit with a slight deceleration. As a result, the radial magnetic bearings (9) and (10) having an electric drive function operate as a generator, and the rotational kinetic energy stored in the flywheel (4) is extracted as electric energy and stored in a storage battery (not shown). . The electric power stored in the storage battery is sent to an external power consuming product (not shown) and a cooling device for the superconducting bearing (8), and the power consuming product and the superconducting bearing (8) continue to operate. Part of the electric power stored in the storage battery is sent to the magnetic bearing control devices of the axial magnetic bearing (6) and the radial magnetic bearings (9) (10), whereby the magnetic bearings (6) (9) (10) Is activated. The rotating body (3) is composed of an axial magnetic bearing (6) and a permanent magnet bearing (7) until the rotating kinetic energy stored in the flywheel (4) decreases and the rotating body (3) stops. , Superconducting bearings (8) and radial magnetic bearings (9), (10). In addition, the axial control and the radial magnetic bearings (9), (10) can prevent the rotating body (3) from running in the axial and radial directions by the position control function of the magnetic bearings.
[0024]
In the above embodiment, the axial magnetic bearing (6) and the radial magnetic bearings (9), (10) are magnetic bearings each having a displacement sensor. Alternatively, a known sensorless magnetic bearing may be used. it can. In this case, a decrease in safety due to a failure in the sensor circuit is prevented.
[0025]
Further, in the above embodiment, at least one set of the radial magnetic bearings (9) and (10) has an electric drive function for rotationally driving the rotary body (3) in addition to the position control function for the rotary body (3). However, the present invention is not limited to this, and any of the radial magnetic bearings (9) and (10) may have only the position control function. In this case, a rotary drive source such as a high-frequency motor is provided between the fixed shaft (2) and the rotating body (3).
[0026]
Further, in the above embodiment, the second type superconductor is used as the superconductor (32) of the superconducting bearing (8), and the permanent magnet (29) is turned upward by the magnetic repulsive force when the superconductor is cooled to zero magnetic field. Even if a second-class superconductor is used, the magnetic flux generated from the permanent magnet (29) penetrates into the superconductor (32) at a temperature equal to or higher than the critical temperature. Thereafter, the superconductor (32) is cooled to a temperature lower than the critical temperature (magnetic field cooling) and constrained, so that the permanent magnet (29) is urged upward by a magnetic repulsion generated by a so-called pinning force. Good. Further, as the superconductor of the superconducting bearing (8), instead of the second superconductor, a first superconductor composed of mercury, lead, or the like and exhibiting complete diamagnetism may be used. In this case, the permanent magnet is urged upward by the superconductor due to the magnetic repulsion caused by the Meissner effect of the superconductor.
[0027]
【The invention's effect】
According to the flywheel device of the present invention, as described above, since the weight of the rotating body is smaller than that of the solid rotating shaft of the conventional apparatus, the rotating body is supported in a non-contact manner in the axial direction with respect to the fixed portion. The rigidity and load capacity of the bearing can be reduced as compared with the bearing of the conventional device. Therefore, it is possible to prevent the structure of the bearing from becoming complicated and the bearing from being enlarged.
[0028]
Also, since the rotating body is a vertical cylindrical shape having one end opened and the other end closed, and the flywheel is formed by press-fitting and fixing an annular member around the open end of the rotating body, It is easy to bend the rotating body during the press-fitting and fixing work of the annular member, and as a result, the press-fitting and fixing work can be easily performed.
[0029]
Furthermore, since the rotating body has a vertical cylindrical shape having one end opened and the other end closed, even when the rotating body is rotated at a high speed by a driving source, the rotating body is prevented from expanding due to centrifugal force. You. Therefore, the accuracy of the position control of the rotating body in the radial direction is improved.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a power storage device to which a flywheel device according to an embodiment of the present invention is applied.
[Explanation of symbols]
(2) Vertical fixed shaft (3) Vertical cylindrical rotating body (3b) Lower end closing wall (4) Flywheel (5) Annular reinforcing member (annular member)
(6) Axial magnetic bearing (7) Permanent magnet bearing (8) Superconducting bearing (9) Radial magnetic bearing (10) Radial magnetic bearing
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10184095A JP3551537B2 (en) | 1995-04-26 | 1995-04-26 | Flywheel equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10184095A JP3551537B2 (en) | 1995-04-26 | 1995-04-26 | Flywheel equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08298745A JPH08298745A (en) | 1996-11-12 |
JP3551537B2 true JP3551537B2 (en) | 2004-08-11 |
Family
ID=14311268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10184095A Expired - Fee Related JP3551537B2 (en) | 1995-04-26 | 1995-04-26 | Flywheel equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3551537B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008039163A (en) * | 2006-08-10 | 2008-02-21 | Toshiba Corp | Superconductivity-using support mechanism |
KR101683674B1 (en) * | 2011-09-23 | 2016-12-08 | 한국전력공사 | Emergency bearing and Flywheel energy storage device using the same |
US8922081B2 (en) * | 2012-04-03 | 2014-12-30 | The Boeing Company | Nested-rotor open-core flywheel |
CN109891109B (en) * | 2016-08-18 | 2021-10-22 | 大金工业株式会社 | Magnetic bearing device and fluid mechanical system |
KR20220035033A (en) * | 2019-07-19 | 2022-03-21 | 가부시키가이샤 이와키 | Pump |
CN111541335B (en) * | 2020-05-27 | 2021-02-09 | 南京工业大学 | Magnetic suspension flywheel energy storage device |
WO2023053599A1 (en) * | 2021-09-30 | 2023-04-06 | 日本電産株式会社 | Rotary electric machine |
-
1995
- 1995-04-26 JP JP10184095A patent/JP3551537B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08298745A (en) | 1996-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0526903B1 (en) | Bearing device | |
JP2999607B2 (en) | Superconducting bearing device and its operation method | |
JPH05240249A (en) | Superconductive bearing device | |
JPH08178011A (en) | Flywheel device | |
JP3551537B2 (en) | Flywheel equipment | |
JP3665878B2 (en) | Bearing device and starting method thereof | |
JP3206044B2 (en) | Composite superconducting bearing device | |
US6369476B1 (en) | High temperature superconductor bearings | |
JP3577559B2 (en) | Flywheel equipment | |
Takahata et al. | Characterization of superconducting magnetic bearings (runnout performance at high speed rotation) | |
JPH08296645A (en) | Magnetic bearing device | |
JP3663472B2 (en) | Permanent magnet bearing device and permanent magnet rotating device | |
JP3632101B2 (en) | Power storage device | |
JPH0681845A (en) | Supercondctive bearing device | |
JP2003004041A (en) | Fly wheel type super conductivity magnetic bearing and its system | |
JP3663470B2 (en) | Superconducting bearing device | |
JP3928094B2 (en) | Starting method of superconducting bearing device | |
JPH10299772A (en) | Bearing device | |
JPH04165119A (en) | Superconductive bearing device | |
JP2852157B2 (en) | Flywheel generator | |
JP2958598B2 (en) | Power storage device | |
JP3236925B2 (en) | Superconducting bearing device | |
JP3735742B2 (en) | Superconducting bearing rotation loss measurement device | |
JP3622041B2 (en) | Superconducting bearing device | |
JP3616856B2 (en) | Bearing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20031226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040323 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040419 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080514 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |