JP3549444B2 - Method for producing hydrogen by microorganisms - Google Patents
Method for producing hydrogen by microorganisms Download PDFInfo
- Publication number
- JP3549444B2 JP3549444B2 JP19116699A JP19116699A JP3549444B2 JP 3549444 B2 JP3549444 B2 JP 3549444B2 JP 19116699 A JP19116699 A JP 19116699A JP 19116699 A JP19116699 A JP 19116699A JP 3549444 B2 JP3549444 B2 JP 3549444B2
- Authority
- JP
- Japan
- Prior art keywords
- photosynthetic
- under
- microalgae
- hydrogen
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
- C12M27/18—Flow directing inserts
- C12M27/24—Draft tube
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/04—Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、微生物による水素の生産方法に関する。さらに詳しくは、光合成能力を有する微細藻と光合成能力を有する細菌とを用いて、太陽エネルギーを利用し、効率よく水素を生産する方法に関する。
【0002】
【従来の技術】
近年地球温暖化が世界的な異常気象並びに地球生態系の調和を崩す大きな原因とされ、地球温暖化の防止が全世界的な緊急の課題となっている。そして、この地球温暖化が、主に石油、石炭をはじめとする化石燃料の大量消費とそれに伴う二酸化炭素(CO2)等の温暖化ガスが原因であることが明確となり、地球温暖化ガス放出を抑制する新たな技術の探索、生物機能を利用した水素等のエネルギー源創生、温暖化ガスの固定・分解等の研究が必要となってきた。
【0003】
この中で、水素エネルギーは燃料電池として高い効率で電気エネルギーへ変換できること、発熱量が石油の3〜4倍で、燃焼後は水を生じて環境汚染の恐れがない、原料の水は無制限にある等の利点を有している。
【0004】
生物機能を利用した水素エネルギーの創生研究は、種々行われており、例えば、特開昭58−60992号公報には、光合成能と水素生産能を有する緑藻を明好気条件下培養し、光合成で蓄積した物質を暗微好気条件下分解して、水素を発生させる方法が開示されている。また、ファルマシア:vol.26、419−422(1990)には、緑藻の中でもクラミドモナス(Chlamydomonas)属のMGA161株の水素生産能が高いことが記載されている。さらに、Biosci.Biotech.Biochem.:vol.56、751−754(1992)には、このクラミドモナス属のMGA161株の光合成産物を、暗嫌気条件下、分解し、これに光合成能力を有する細菌(以下、光合成細菌という)を作用させて、水素を効率よく発生させることが記載されている。この文献では、光合成細菌による水素生産は、緑藻光合成産物の発酵分解物であるエタノール、酢酸、ギ酸、乳酸等をエレクトロンドナーとして用いて行われていることが記載されている一方、単にエタノール、酢酸からでは水素生産が行われないことが記載されており、どのような機構で水素生産されるかは未だ明確でなく、従って、最適な水素生産の条件が未だ確立されていない状況である。
【0005】
他方で、微生物による水素生産方法が工業的規模で行われない理由は、培養装置の問題である。例えば、光合成緑藻および光合成細菌の培養は、光を必要とするが、光が培養槽の深部まで到達できない。そこで、培養槽を浅くする必要があり、従って、大量培養するためには床面積を大きくしなければならないという立地上の問題、および、培養槽が浅いため、二酸化炭素の培養液への溶解が不十分となり、培養が非効率的であるという培養条件上の問題点があった。また、連続培養も困難であった。
【0006】
これらの問題点解決のために、人工光を当てて攪拌培養する方法も検討されたが、内部への光の到達が十分でないことと細胞への光の照射時間、照射量に問題があり、さらに、人工光のコストの問題等もあって、水素の大量生産へ向けての問題点が未解決のままであった。
【0007】
【発明が解決しようとする課題】
従って、微細藻と光合成細菌とを用いて水素を生産する系において、光合成微細藻の効率的な培養並びに光合成産物の発酵分解物を基質とする光合成細菌の最適な水素生産条件の確立が待望されていた。
【0008】
【課題を解決するための手段】
本発明は、上記問題点を解決するために行われたものであり、光合成微細藻の効率的な培養並びに光合成産物の発酵分解物を基質とする光合成細菌の最適水素生産条件並びに微生物による水素の大量生産方法を提供するものである。
【0009】
本発明は、光合成能力を有する微細藻を明好気条件下培養して光合成産物を得る工程、該微細藻を暗嫌気条件下培養し、該光合成産物の発酵液を得る工程、および該発酵液に、明嫌気条件下、光合成能力を有する細菌を作用させる工程を含む水素の生産方法において、該明好気条件下の微細藻の培養及び/又は明嫌気条件下で該発酵液に細菌を作用させる工程が透明塔型エアーリフト培養槽で行われることを特徴とする水素の生産方法に関する。
【0010】
好適な実施態様においては、前記塔型エアーリフト培養槽が2重円筒構造を有する。
【0011】
また、好適な実施態様においては、前記塔型エアーリフト培養槽がヘリカルフローを生じる構造を有する。
【0012】
さらに好適な実施態様においては、前記光合成能力を有する微細藻を明好気条件下培養して光合成産物を得る工程、該微細藻を暗嫌気条件下培養し、該光合成産物の発酵液を得る工程、および該発酵液に、明嫌気条件下、光合成能力を有する細菌を作用させる工程が連続で行われる。
【0013】
また、好適な実施態様においては、前記発酵液に、明嫌気条件下、光合成能力を有する細菌を作用させる工程が、乳酸含有量を少なくとも0.3mMに調節して行われる。
【0014】
本発明は、また、光合成能力を有する微細藻を明好気条件下培養して光合成産物を得る工程、該微細藻を暗嫌気条件下培養し、該光合成産物の発酵液を得る工程、および該発酵液に、明嫌気条件下、光合成能力を有する細菌を作用させる工程を含む水素の生産方法において、該暗嫌気条件下の該発酵液の乳酸含量を少なくともに0.3mMに調節することを特徴とする方法に関する。
【0015】
【発明の実施の形態】
本発明に用いられる微細藻としては、光合成能力を有する微細藻であれば、特に制限されることなく使用される。特に、緑藻、藍藻等が好適に用いられる。緑藻としては、クラミドモナス(Chlamydomonas)属に属するクラミドモナス・ラインハルディ(Chlamydomonas reinhardtii)、クラミドモナス・モエブシイ(Chlamydomonas moewusii)、クラミドモナス属のMGA161株、クラミドモナス ユーガメタス(Chlamydomonas eugametos)、クラミドモナス セグニス(Chlamydomonas segnis)、クロレラ(Chlorella)属に属するクロレラ ブルガリス(Chlorella vulgaris)、セネデスムス(Senedesmus)属に属するセネデスムス オブリガス(Senedesmus obliguus)およびデュナリエラ(Dunaliella)属に属するデュナリエラ テルトロレクタ(Dunaliella tertrolecta)等が挙げられる。藍藻類としては、アナべナ属(Anabaena)に属するアナべナ・バリアビリス(Anabanena variabilis)ATCC 29413、シアノテセ(Cyanothece)属の Cyanothece sp. ATCC 51142、シネノコッカス(Synechococcus)属に属するSynechococcus sp. PCC 7942およびアナシスティス(Anacystis)属に属するアナシスティス ニデュランス(Anacystis nidulans)等が挙げられる。
【0016】
この中でも、緑藻クラミドモナスMGA161株は、海水から常法により単離された株であり、明好気条件下の光合成能力が高い上に、暗嫌気条件下における発酵が速く、また、明好気条件下に戻したときに、速やかに光合成系に適応できるという優れた能力を有しているので、好適である。クラミドモナスMGA161株あるいはこれに相当する株は、海水サンプルから光合成能力と分解能とで当業者が容易に単離することができる株である。
【0017】
明好気条件下での微細藻の培養は、無機成分を含んだ培地中、太陽光および/または人工光の照射下、透明塔型エアーリフト培養槽を用いて行う。培養温度は約15℃〜40℃、好ましくは25〜35℃である。
【0018】
微細藻、特に、緑藻を培養する培地としては、適切な窒素供給源と無機成分とを含む培地であれば制限されない。無機成分を含む培地としては海水が好適に用いられるが、以下の組成の改変岡本培地(以下、MOM培地という):
NaCl 30 g
CaCl2・2H2O 200 mg
MgSO4・7H2O 250 mg
FeSO4・7H2O 20 mg
KH2PO4 40.8mg
K2HPO4 495 mg
ビタミンB1 100 μg
ビタミンB12 1 μg
1M NH4Cl 5 ml
微量金属混合物A5 1.0 ml
蒸留水 1000 ml pH8.0
も用いられる。
ここで、微量金属混合物A5の組成は、以下の通りである。
H3BO4 2.85 g
MnCl2・4H2O 1.81 g
ZnSO4・7H2O 0.22 g
CuSO4・5H2O 0.08 g
Na2MoO4 0.021g
CaCl2・6H2O 0.01 g
EDTA・2Na 50 g
蒸留水 1000 ml
【0019】
ところで、明嫌気条件下における光合成細菌による水素生産は、一般的に、ニトロゲナーゼに依存している。そして、このニトロゲナーゼ活性は、窒素源(例えば、塩化アンモニウム、グルタミン酸)の濃度に依存した阻害を受ける。本発明においては、明好気培養液をそのままあるいは微細藻を濃縮して暗嫌気条件下、光合成産物を発酵分解して、これを明嫌気条件下の水素生産に用いる場合がある。そこで、明好気条件下の培地の窒素源濃度はできるだけ低くする方がよく、塩化アンモニウムの場合は5mM以下、好ましくは、2.5mM以下、より好ましくは、0.5mM以下に調整する。その他の窒素源の場合は、できるだけ濃度を低くしてニトロゲナーゼを阻害しないようにすることが好ましい。
【0020】
従って、微細藻、特に緑藻の培養においても、上記MOM培地(NH4Cl濃度:5mM)を改変し、できるだけ低い塩化アンモニウム濃度、好ましくは0.5mM以下に調整して行うことが好ましい。塩化アンモニウム濃度を0.5mM以下に調整して行うことにより、5mMの場合よりもデンプンの蓄積濃度を高くすることができる。
【0021】
本発明においては、微細藻の培養には、炭素源として、二酸化炭酸が必要であるので、空気あるいは空気と二酸化炭素との混合気体を通気する。二酸化炭素を混合する場合は、約2〜10%、好ましくは、約2〜5%二酸化炭素を混合する。
【0022】
本発明においては、透明塔型エアーリフト培養槽を用いて太陽光を利用するので、光の照射は特に必要ではないが、曇天、雨天等日照時間が不足すること等を考慮して、光照射設備を設けてもよい。また、夜間連続して培養する場合には、光照射設備を設ける必要がある。
【0023】
透明塔型エアーリフト培養槽の材質は、透明で太陽光および/または人工光を透過させることができる材質であればどのようなものでも良い。例えば、(強化)アクリル樹脂、ポリカーボネート、ポリプロピレン、ポリテレフタレートなどの透明プラスチック、あるいはガラスなどが挙げられる。
【0024】
また、培養槽の上部及び/又は下部に、培養液の温度を調節するために、加熱及び/又は冷却装置を設けることができる。
【0025】
エアーリフト培養槽としては、ノズル、リング状スパージャー、多孔板等の通気装置を有し、これにより液体を循環させることができるものであれば形態は問わない。エアーリフト培養槽に照射された光(太陽光または人工光)は、培養槽の槽壁付近の細胞(微細藻)に一番良く当たるが、細胞量が増加すると内部に到達しにくくなるため光合成(増殖)が不十分となる。また、あまりに光が当りすぎると細胞の生育に悪影響を及ぼす。従って、適度な細胞の流動性と、槽の内側の細胞と槽の外側(表面側)の細胞との適度な混合性とが要求される。
【0026】
本発明においては、透明塔型エアーリフト培養槽の内部を2重円筒構造にすることが好ましい。以下、図1に基づいて、説明する。本発明に用いる培養槽1は、好ましくは円筒形であり、培養槽1の下部に、液が流れる程度のスペースを持たせて、内部円筒2(以下、単に「円筒」ということがある)を設置し、円筒2の内側の培養液3と円筒2の外側の培養液4とが循環するように構成される。培養槽内に設けられた円筒2の内側の下部から、通気装置5(例えば、リング状スパージャー)から通気することにより、円筒2の内部の下部から上部への培養液の流れを作り、円筒2の内側の上面から円筒2の外側へ培養液が流れるようにする。そして、この培養液が槽壁6と円筒2との間の空間に沿って培養槽の下部へ流れることにより、培養液の循環状態を作り出す。培養液は、槽壁6と円筒外壁7との間を流れる間に最も強く、光(太陽光)の照射を受け、光合成が進行する。このように、透明塔型エアーリフト培養槽1の内部を2重円筒構造とすることにより、槽壁6と円筒外壁7との間に微細藻培養液が流れ、微細藻への光照射時間を長くできるとともに、微細藻が効率よく循環されるので、従来の攪拌型の培養槽を用いる場合に比べて、効率よく、微細藻の光合成(増殖)が行われる。
【0027】
本発明に用いる円筒も透明であることが好ましい。材質は、透明な培養槽と同じ材質でもよいし、異なる材質であってもよい。
【0028】
本発明においては、塔型エアーリフト培養槽にヘリカルフローを生じる構造を持たせることが好ましい。ヘリカルフローに関しては、メルチュク(Merchuk)らの文献(3RD INERNATIONAL CONFERENCE ON Bioreactor and Bioprocess FluidDynamicsの第61〜68頁)に記載されている。一般に、従来の循環式エアーリフト培養槽では、槽内の流れは上下流のみであり、外部表面近くの細胞は強い光を受け、増殖阻害が生じ、内部の細胞は光合成に必要な光を受けることができない。そこで、放射状の流れを与え、すべての細胞に光合成に必要な光エネルギーを均等に与えるようにする。そのために、例えば、ヘリカルフローを生じる装置(ヘリカルフロープロモーター)8を用いることができる。この装置8は、図1に示すように、数枚のひれあるいは邪魔板9を、水中で回転させた場合に、螺旋状あるいは放射状の流れを生み出すように配設したものであり、エアーリフト培養槽1の内部円筒2の上部に取り付けることにより、下流に向かって、放射状あるいは螺旋状に培養液を流し出す。この装置を、内部円筒2の上部に配置すると、槽壁6と円筒外壁7との間を流れる間にも攪拌が起こるために、微細藻が光(太陽光)を過度に浴びることなく、培養液に、均一にかつ長時間、光が照射され、単に2重円筒構造とした場合よりも、より効率的に光合成が進行する。
【0029】
本発明のエアーリフト培養槽の大きさ、内部円筒の大きさは、材質、培養スケールを考慮して適宜決定すればよい。
【0030】
本発明において、通気量は培養速度を考慮して決定すればよい。一般にヘリカルフロー装置を用いる場合には、ヘリカルフロー装置がない場合より通気量が小さくても細胞が流動化できる。通気量があまり多すぎるとヘリカルフロー装置でエアーポケットが生じて好ましくない。
【0031】
この微細藻の培養工程では、できるだけ対数増殖期の微細藻を集めることが望ましい。次の暗嫌気条件下での発酵(光合成産物の分解)がスムーズに行われるからである。また、微細藻の培養を連続培養で行う方が、微細藻が高い増殖速度を有し、対数増殖期を維持できるので好ましい。
【0032】
得られた微細藻は発酵槽に移送され、暗嫌気条件下で光合成産物を発酵させる工程が行われる。この工程では、光合成産物、例えばデンプンが分解され、発酵されて、ぎ酸、酢酸、乳酸等の有機酸、エタノール、グリセロール等のアルコールが微細藻体外に放出される。これらの有機物が電子供与体として、光合成細菌による水素生産に用いられる。従って、この暗嫌気条件は、いわゆる有機物の発酵生産がスムーズに行われる条件が好ましく、特に、乳酸が多く発酵する条件が好ましい。
【0033】
暗嫌気条件下の発酵に用いられる発酵槽としては、特に制限はない。発酵槽の上部気相空間はできるだけ小さくすることが好ましい。嫌気条件維持のために、上部空間に二酸化炭素あるいは二酸化炭素と不活性ガスとの混合気体を導入して、酸素がないか酸素が少ない雰囲気にして光合成産物の分解を促進し、微細藻による水素の発生をできるだけ抑制することが好ましい。不活性ガスのバブリングは好ましくない。攪拌も非常に緩やかでよい。
【0034】
暗嫌気条件下での微細藻の発酵は、微細藻濃度を高くして行う方が、次の明嫌気条件下における光合成細菌の基質とされる分解液中の有機酸あるいはアルコール濃度を高くする観点から、好ましい。従って、明好気条件下の微細藻培養液を、例えば、膜分離、遠心分離等の濃縮・分離手段を用いて濃縮することが好ましい。また、明好気条件の培養を連続的に行う場合には、連続的に微細藻を濃縮しながら、暗嫌気条件の発酵槽に移送する。
【0035】
暗嫌気下の微細藻の発酵温度は、約10℃〜40℃、好ましくは約25〜35℃である。
【0036】
暗嫌気条件下の微細藻の発酵は、分解液中に乳酸が分泌されるようにすることが好ましい。本発明において、乳酸がニトロゲナーゼの生産を誘導することが明らかにされた。すなわち、乳酸が存在して初めて水素が発生する。乳酸濃度は、少なくとも0.3mM以上となることが好ましい。
【0037】
また、暗嫌気条件下で発酵液を得る工程において、希釈率が比較的少ない、すなわち、滞留時間の長い連続発酵を行うことにより、光合成産物の分解の程度の高い発酵液を連続的に得ることができ、それを次の明嫌気条件下の水素発生工程に連続的に供給できるので好ましい。
【0038】
暗嫌気条件下で微細藻を発酵させて得られた分解液(発酵液)は、微細藻から分離され、次の明嫌気条件下における光合成細菌による水素生産の基質とされる。微細藻の全部または一部は、再び、明好気条件下の光合成のために用いられる。
【0039】
明嫌気条件下、光合成細菌を作用させる工程で用いられる透明塔型エアーリフト培養槽は、上記微細藻の明好気条件での培養に用いられるのと同じ培養槽が用いられる。
【0040】
嫌気条件は、アルゴン等の不活性気体、水素、あるいは二酸化炭素と水素の混合気体等を通気することにより作り出す。発生する気体の回収という点からは、水素か、二酸化炭素と水素との1:2の混合気体が好ましい。水素は、一部抜き出しつつ、循環させる方が好ましい。光合成細菌の培養温度は、約10℃〜40℃、好ましくは約25〜35℃である。
【0041】
光合成細菌としては、光合成無機栄養細菌および光合成有機栄養細菌(紅色無硫黄細菌、緑色滑走細菌等)が用いられる。本発明においては、光合成産物を分解して生じる有機物を基質(電子供与体)とするので、光合成有機栄養細菌が好適に用いられる。光合成有機栄養細菌としては、ロドスピリルム科(Rhodospirillaceae)に属する紅色無硫黄細菌、クロロフレクスス科(Chloflexaceae)に属する緑色滑走細菌等が挙げられる。
【0042】
このような光合成有機栄養細菌は、例えば、海水サンプルから乳酸(例えば、0.3mM)を基質として水素を発生する微生物を選択することにより選択できる。光合成細菌としては、例えば、ロドシュードモナス(Rhodopseudomonas)属に属するロドシュードモナス パラストリス(Rhodopseudomonas palustris)およびロドシュードモナス アシドフィラ(Rhodopseudomonas acidophila)、ロドスピリラム(Rhodospirillum)属に属するロドスピリラム ルブラム(Rhodospirillum rubrum)ATCC 11170、同IFO 3986等、ロドバクター(Rhodobacter)属に属するロドバクター スフェロイデス(Rhodobacter sphaeroides)、ロドバクターカプスレイタス(Rhodobacter capsulatus)ATCC 23782、ATCC 17013 等、ロドブラム(Rhodovulum)属に属するロドブラム ストリクタム(Rhodovulum strictum)ロドブラム アドリアティカム(Rhodovulum adriaticum)、ロドブラム・サルフィドフィラム(Rhodovulum sulfidophilum)等が挙げられる。
本発明においては、海水サンプルから単離したロドブラム・サルフィドフィラムW−1S(以下、単にW−1Sということがある)と名付けた株およびこれと同等の活性を有する光合成細菌が好適に用いられる。
【0043】
明嫌気条件下の光合成細菌は、担体に固定化されていることが好ましい。リサイクル可能であり、特に生育を必要とせず、かつ、発酵液を連続的に処理する上で好ましいからである。
【0044】
光合成細菌の固定化には、例えば、担体結合法、架橋法および包括法等の公知の方法が適用できが、担体結合法が最適である。担体結合法には、イオン交換性の樹脂に吸着させる化学的吸着法あるいは物理的吸着法が含まれる。本発明に用いる担体の材質としては、例えば、多孔質ガラスビーズ、ポリビニルアルコール、ポリウレタンフォーム、ポリスチレンフォーム、ポリアクリルアミド、ポリビニルフォルマール樹脂多孔質体、シリコンフォーム、セルロース多孔質体等の発泡体あるいは樹脂が好ましい。多孔質体の開口部の大きさは、約10μm〜500μmが好適である。
【0045】
また、担体の形状は問わないが、担体の強度、培養効率等を考慮すると、球状あるいは立方体状で、大きさは、球状の場合、直径が2mm〜50mm、立方体状の場合、2mm〜50mm角が好ましい。
【0046】
さらに、上記のように、光合成細菌の水素生産に関与するニトロゲナーゼは窒素により阻害を受けるので、明嫌気条件下での反応液中の窒素源濃度はできるだけ低い方が好ましい。
【0047】
また、暗嫌気条件下での発酵液には、光合成産物の分解物である有機酸(ギ酸、
酢酸、乳酸等)、アルコール類(エチルアルコール、グリセロール等)が含まれており、これらが電子供与体となって、水素が発生する。中でも、実施例1に示すように、乳酸が水素の発生に関与するニトロゲナーゼの誘導剤であることが、本発明者によって見出され、特定の乳酸濃度(約0.3mM)まで、濃度に比例してニトロゲナーゼが誘導されることが確認された。従って、乳酸濃度を少なくとも0.3mM以上に保つことが、水素の発生を促進する上で好ましい。従って、乳酸を添加しつつ、明嫌気条件下、水素を発生させる形態も、本発明の範囲に含まれる。
【0048】
さらに、乳酸以外の有機酸、例えば、リンゴ酸、コハク酸もニトロゲナーゼを誘導し得るので、リンゴ酸、コハク酸も乳酸の代わりに使用でき、また、乳酸と併用してもよい。
【0049】
さらに、明好気条件下の微細藻の培養を連続的に行い(すなわち、夜間は光を照射し)、得られた微細藻藻体を順次、暗嫌気条件下の発酵に供給し、ついで、暗嫌気条件下の発酵液を連続的に明嫌気条件下の光合成細菌に供給することにより、連続的な培養および水素生産が可能となる。
【0050】
【実施例】
以下、微細藻として緑藻を用いる実施例を挙げて本発明を説明するが、本発明はこの実施例に限定されない。
(実施例1)
(透明塔型エアーリフト培養槽を用いる緑藻の培養)
図1に、本発明で用いた明好気及び明嫌気条件下に用いた培養槽1を示す。内径28cm、高さ380cm(容積約230L)の、円筒形のアクリル樹脂製の培養槽1の、底面から4cmのところに、内径17.5cm、高さ346cmのアクリル樹脂製の円筒2を配置し、培養槽1内の培養液が円筒内部と外部(培養槽壁6と円筒の外表面7とで構成される空間)との間で循環することができる、2重円筒構造とした。この円筒の内部の、底面から10cmの所に、直径12cmのリング状スパージャー5を配置した。このスパージャーは、直径1cmの管であり、1mmの孔が、50個開けられていた。円筒上部にはヘリカルフロープロモーター8を配置し、培養槽上部から下部に向かって、培養槽の内壁6と内部円筒の外壁7との間の空間にヘリカルフローが生じるようにした。
【0051】
明好気条件は、太陽光と光源(18W/m2)とを用いて行った。培地は、改変岡本培地をさらに改変し、塩化アンモニウムを0.5mMとなるように溶解して用いた。200Lの培地に緑藻クラミドモナスMGA161株を3.5μg乾燥菌体量/mlの割合で植菌し、二酸化炭素を5%含む空気を0.3vvm通気して、培養を開始し、対数増殖期に入ったときに連続培養を開始した。希釈率は0.083/hrであった。
【0052】
この培養における緑藻MGA161株の増殖速度は0.267g/L/hrであった。この値は、同じ容量の培養液を、18W/m2の光照射しながら、深さ35cmのレースウエイ型培養槽(実容積200L)で、二酸化炭素を5%含む空気を0.3vvm通気しながら培養したときの値の約2倍に相当した。また、本実験に用いた透明エアーリフト型培養槽の床面積は、レースウエイ型培養槽の約1/10であった。従って、透明エアーリフト型培養槽の単位床面積あたりの藻体生産量は、レースウエイ型培養槽の約20倍となり、透明エアーリフト型培養槽の有効性が示された。
【0053】
(光合成産物の分解と明嫌気条件下の水素生産)
連続培養で抜き出した培養液を小型の連続膜分離器にかけ、緑藻の濃度を約2倍に濃縮しつつ、暗嫌気条件下の発酵槽に移した。この発酵槽は、ステンレス製の100L容であり、攪拌翼が1枚ついていた。暗嫌気下の発酵は、約30℃で行い、二酸化炭素を気相中に循環させつつ、極めて緩やかに攪拌して行った。
【0054】
暗嫌気条件下の発酵は12時間行い、発酵終了後緑藻と発酵液とを分離し、緑藻は、一部を明好気下の培養に戻して、さらに光合成を行わせた。一方、発酵液の乳酸濃度は、0.32mMであった。なお、乳酸濃度は、HPLC(高速液体クロマトグラム)で分離し、210nmの吸光度で定量分析して求めた。
【0055】
明嫌気条件に用いた光合成細菌は、W−1Sであり、予め、コハク酸ナトリウム1.0g/l、酢酸ナトリウム1.0g/l、リンゴ酸ナトリウム1.0g/l、ピルビン酸ナトリウム1.0g/l、塩化アンモニウム1mMを含む改変岡本培地で、30℃、24時間好気的に培養して得られたものである。この光合成細菌(W−1S)を、発酵液1L当り、2gの乾燥菌体量となるように添加した。明嫌気条件下の培養は、二酸化炭素と水素の1:2の混合ガスを1vvmで通気循環させながら、30℃で行った。発生した水素はアルカリ溶液を通過させる方法で二酸化炭素から分離して、回収した。
【0056】
用いた培養槽は、実施例1の緑藻の培養に用いたものと同型であり、添加する発酵液の量、ヘリカルフロープロモーターの位置も同じであった。
【0057】
12時間の反応の結果、水素は、585ml/g乾燥菌体量、発生した。この水素発生量は、同一条件下で、高さ50cmの同容積のパラレルプレート型フォトバイオリアクターを用いて水素を発生させた場合の約2.6倍に相当した。また、透明エアーリフト型培養槽の床面積は、パラレルプレート型フォトバイオリアクターの約1/7.5であった。従って、透明エアーリフト型培養槽の単位床面積あたりの水素発生量は、パラレルプレート型フォトバイオリアクターの約19倍となり、透明エアーリフト型培養槽の有効性が示された。
【0058】
(実施例2)
有機酸の、光合成細菌による明嫌気条件下の水素生産に及ぼす影響について検討した。0.6mMの酢酸、1.5mMのエタノールおよび0.5mMのグリセロールを含む改変岡本培地に、乳酸をそれぞれ、0、0.1、0.2、0.3、0.4、0.5および1mM添加して、W−1Sの水素の発生量を測定した。結果を図2に示す。図2において、乳酸無添加の培地では全く水素が発生しなかったのに対し、乳酸を添加した培地は、水素を発生した。この結果から、乳酸は、ニトロゲナーゼの生産を誘導することがわかった。水素の発生は、0.3mMまでは、濃度依存的に増加したが、それ以上は増加しなかった。従って、少なくとも0.3mM以上の乳酸が含まれれば、水素は、ほぼ一定した発生量を示すことがわかった。
【0059】
なお、データとしては記載していないが、リンゴ酸、コハク酸でもニトロゲナーゼの生産が誘導されることが明らかになった。
【0060】
【発明の効果】
微生物を用いる水素の生産において、明好気的条件下における微細藻の培養及び/又は明嫌気条件下における光合成細菌による水素生産を、透明塔型エアーリフト培養槽を用いることにより、効率よく行うことができる。
【図面の簡単な説明】
【図1】本発明に用いる培養槽の模式図である。
【図2】乳酸が水素生産に必須であることおよび最適乳酸濃度が0.3mM以上であることを示す図である。
【符号の説明】
1 培養槽
2 内部円筒
3 内部円筒の内側の培養液
4 内部円筒の外側の培養液
5 通気装置
6 培養槽の槽壁
7 内部円筒の外壁
8 ヘリカルフロープロモーター
9 邪魔板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing hydrogen by a microorganism. More specifically, the present invention relates to a method for efficiently producing hydrogen using solar energy by using microalgae having photosynthetic ability and bacteria having photosynthetic ability.
[0002]
[Prior art]
In recent years, global warming has been regarded as a major cause of global unusual weather and disrupting the harmony of the global ecosystem, and prevention of global warming has become an urgent issue worldwide. This global warming is caused mainly by the massive consumption of fossil fuels, mainly oil and coal, and the accompanying carbon dioxide (CO2). 2 It is clear that greenhouse gases are the cause, and the search for new technologies to control global warming gas emissions, creation of energy sources such as hydrogen using biological functions, fixation and decomposition of greenhouse gases, etc. Research has become necessary.
[0003]
Among them, hydrogen energy can be converted to electric energy with high efficiency as a fuel cell, the calorific value is 3 to 4 times that of petroleum, water is generated after combustion, and there is no risk of environmental pollution. It has certain advantages.
[0004]
Various researches on the creation of hydrogen energy using biological functions have been carried out. For example, JP-A-58-60992 discloses that a green algae having photosynthetic ability and hydrogen-producing ability is cultured under light and aerobic conditions. A method for decomposing a substance accumulated in photosynthesis under dark aerobic conditions to generate hydrogen is disclosed. Also, Pharmacia: vol. 26, 419-422 (1990), describes that among the green algae, the MGA161 strain of the genus Chlamydomonas has a high hydrogen-producing ability. Further, Biosci. Biotech. Biochem. : Vol. 56, 751-754 (1992) discloses that the photosynthetic product of the Chlamydomonas sp. Is described as being generated efficiently. In this document, it is described that hydrogen production by photosynthetic bacteria is performed using ethanol, acetic acid, formic acid, lactic acid, and the like, which are fermentation degradation products of a green algal photosynthetic product, as electron donors. Describes that hydrogen production is not carried out, and it is not clear by what mechanism hydrogen is produced, and thus the conditions for optimal hydrogen production have not yet been established.
[0005]
On the other hand, the reason why the method for producing hydrogen by microorganisms is not performed on an industrial scale is a problem of a culture device. For example, culture of photosynthetic green algae and photosynthetic bacteria requires light, but the light cannot reach the deep part of the culture tank. Therefore, it is necessary to make the culture tank shallow, and therefore, there is a locational problem that the floor area must be increased for mass cultivation, and because the culture tank is shallow, dissolution of carbon dioxide in the culture solution is difficult. There was a problem in culture conditions that the culture was insufficient and the culture was inefficient. Also, continuous culture was difficult.
[0006]
In order to solve these problems, a method of culturing with stirring by applying artificial light was also studied.However, there was a problem in that the light did not reach the inside sufficiently, the irradiation time of light to the cells, and the irradiation amount, In addition, the problem of mass production of hydrogen has not been solved due to the cost of artificial light and the like.
[0007]
[Problems to be solved by the invention]
Therefore, in a system for producing hydrogen using microalgae and photosynthetic bacteria, efficient cultivation of photosynthetic microalgae and establishment of optimal hydrogen production conditions for photosynthetic bacteria using fermentation degradation products of photosynthetic products as substrates are expected. I was
[0008]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to efficiently culture photosynthetic microalgae and optimal hydrogen production conditions for photosynthetic bacteria using a fermentation degradation product of a photosynthetic product as a substrate and hydrogen production by microorganisms. It provides a mass production method.
[0009]
The present invention provides a step of culturing microalgae having photosynthetic ability under light and aerobic conditions to obtain a photosynthetic product, a step of culturing the microalgae under dark anaerobic conditions to obtain a fermented liquid of the photosynthetic product, and the fermented liquid A method for producing hydrogen comprising a step of allowing a bacterium having photosynthetic ability to act under light and anaerobic conditions, wherein the microalga is cultured under the light and aerobic conditions and / or the bacteria are allowed to act on the fermented liquid under light and anaerobic conditions. The present invention relates to a method for producing hydrogen, wherein the step of performing is performed in a transparent tower type air lift culture tank.
[0010]
In a preferred embodiment, the tower-type air lift culture tank has a double cylindrical structure.
[0011]
In a preferred embodiment, the tower-type air lift culture tank has a structure that generates a helical flow.
[0012]
In a further preferred embodiment, a step of culturing the microalgae having photosynthetic ability under light and aerobic conditions to obtain a photosynthetic product, and a step of culturing the microalgae under dark anaerobic conditions to obtain a fermented liquid of the photosynthetic product And a step of allowing bacteria having photosynthetic ability to act on the fermentation broth under light and anaerobic conditions.
[0013]
In a preferred embodiment, the step of allowing bacteria having photosynthetic ability to act on the fermentation broth under light-anaerobic conditions is performed by adjusting the lactic acid content to at least 0.3 mM.
[0014]
The present invention also provides a step of culturing microalgae having photosynthetic ability under light and aerobic conditions to obtain a photosynthetic product, a step of culturing the microalgae under dark anaerobic conditions to obtain a fermented solution of the photosynthetic product, and A method for producing hydrogen comprising a step of allowing bacteria having photosynthetic ability to act on a fermentation liquor under bright anaerobic conditions, wherein the lactic acid content of the fermentation liquor under the dark anaerobic conditions is adjusted to at least 0.3 mM. And how to.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
As the microalgae used in the present invention, any microalgae having photosynthetic ability can be used without particular limitation. In particular, green algae, cyanobacteria and the like are preferably used. The green algae, Chlamydomonas reinhardtii (Chlamydomonas) Chlamydomonas line Hull di belonging to the genus (Chlamydomonas reinhardtii), Chlamydomonas Moebushii (Chlamydomonas moewusii), MGA161 shares of Chlamydomonas genus Chlamydomonas Yugametasu (Chlamydomonas eugametos), Chlamydomonas Segunisu (Chlamydomonas segnis), chlorella ( Chlorella vulgaris belonging to the genus Chlorella, Senedesmus obliguus belonging to the genus Sendesmus and Dunaliella belonging to the genus Dunaliella And Dunaliella tertrolecta. Examples of cyanobacteria include Anabaena variabilis ATCC 29413 belonging to the genus Anabaena, and Cyanothece sp. Belonging to the genus Cyanothece. ATCC 51142, Synechococcus sp. Belonging to the genus Synechococcus. PCC 7942 and Anacystis nidulans belonging to the genus Anacystis.
[0016]
Among them, the green alga Chlamydomonas MGA161 strain is a strain isolated from seawater by a conventional method, and has high photosynthetic ability under light-aerobic conditions, fast fermentation under dark anaerobic conditions, and light-aerobic conditions. When returned to the lower side, it has an excellent ability to quickly adapt to the photosynthesis system, and is therefore preferable. The Chlamydomonas MGA161 strain or a strain corresponding thereto is a strain that can be easily isolated by a person skilled in the art from a seawater sample with photosynthetic ability and resolution.
[0017]
Culture of microalgae under bright and aerobic conditions is carried out in a medium containing inorganic components under irradiation of sunlight and / or artificial light using a transparent tower-type airlift culture tank. The culturing temperature is about 15 to 40 ° C, preferably 25 to 35 ° C.
[0018]
The medium for culturing microalgae, particularly green algae, is not limited as long as it is a medium containing an appropriate nitrogen supply source and an inorganic component. Seawater is preferably used as a medium containing an inorganic component, but a modified Okamoto medium (hereinafter referred to as a MOM medium) having the following composition:
NaCl 30 g
CaCl 2 ・ 2H 2 O 200 mg
MgSO 4 ・ 7H 2 O 250 mg
FeSO 4 ・ 7H 2 O 20 mg
KH 2 PO 4 40.8mg
K 2 HPO 4 495 mg
Vitamin B 1 100 μg
Vitamin B 12 1 μg
1M NH 4 Cl 5 ml
Trace metal mixture A5 1.0 ml
Distilled water 1000 ml pH 8.0
Is also used.
Here, the composition of the trace metal mixture A5 is as follows.
H 3 BO 4 2.85 g
MnCl 2 ・ 4H 2 O 1.81 g
ZnSO 4 ・ 7H 2 O 0.22 g
CuSO 4 ・ 5H 2 O 0.08 g
Na 2 MoO 4 0.021g
CaCl 2 ・ 6H 2 O 0.01 g
EDTA · 2Na 50 g
Distilled water 1000 ml
[0019]
By the way, hydrogen production by photosynthetic bacteria under light-anaerobic conditions generally depends on nitrogenase. This nitrogenase activity is subject to inhibition depending on the concentration of the nitrogen source (eg, ammonium chloride, glutamic acid). In the present invention, a photosynthetic product may be fermented and decomposed under dark anaerobic conditions by using a bright aerobic culture solution as it is or by concentrating microalgae, and this may be used for hydrogen production under light anaerobic conditions. Therefore, the nitrogen source concentration of the medium under bright and aerobic conditions is preferably as low as possible. In the case of ammonium chloride, the concentration is adjusted to 5 mM or less, preferably 2.5 mM or less, more preferably 0.5 mM or less. In the case of other nitrogen sources, the concentration is preferably as low as possible so as not to inhibit nitrogenase.
[0020]
Therefore, even in the cultivation of microalgae, especially green algae, the MOM medium (NH 4 (Cl concentration: 5 mM), and is preferably adjusted to the lowest possible ammonium chloride concentration, preferably 0.5 mM or less. By adjusting the ammonium chloride concentration to 0.5 mM or less, the starch accumulation concentration can be made higher than in the case of 5 mM.
[0021]
In the present invention, since carbon dioxide is required as a carbon source for culturing microalgae, air or a mixed gas of air and carbon dioxide is aerated. When mixing carbon dioxide, about 2 to 10%, preferably about 2 to 5% carbon dioxide is mixed.
[0022]
In the present invention, since sunlight is used using a transparent tower-type air-lift culture tank, light irradiation is not particularly necessary.However, in consideration of insufficient sunshine hours such as cloudy weather and rainy weather, light irradiation is performed. Equipment may be provided. In addition, when culturing continuously at night, it is necessary to provide light irradiation equipment.
[0023]
The material of the transparent tower type air lift culture tank may be any material as long as it is transparent and can transmit sunlight and / or artificial light. For example, (reinforced) acrylic resin, transparent plastics such as polycarbonate, polypropylene, and polyterephthalate, and glass are exemplified.
[0024]
In addition, a heating and / or cooling device can be provided at the upper and / or lower part of the culture tank to adjust the temperature of the culture solution.
[0025]
The form of the air lift culture tank is not limited as long as it has a ventilation device such as a nozzle, a ring-shaped sparger, or a perforated plate, and can circulate the liquid by this. The light (sunlight or artificial light) applied to the airlift culture tank hits the cells (microalgae) in the vicinity of the tank wall of the culture tank best. However, as the amount of cells increases, it hardly reaches the inside, so photosynthesis occurs. (Proliferation) becomes insufficient. Also, too much light will adversely affect cell growth. Therefore, appropriate fluidity of cells and appropriate mixing of cells inside the tank and cells outside (surface side) of the tank are required.
[0026]
In the present invention, it is preferable that the inside of the transparent tower type air lift culture tank has a double cylindrical structure. Hereinafter, description will be given based on FIG. The culture tank 1 used in the present invention is preferably cylindrical, and an inner cylinder 2 (hereinafter, may be simply referred to as a “cylinder”) may be provided at the lower part of the culture tank 1 with a space enough to allow a liquid to flow. It is set up so that the culture solution 3 inside the
[0027]
The cylinder used in the present invention is also preferably transparent. The material may be the same as that of the transparent culture tank, or may be a different material.
[0028]
In the present invention, it is preferable that the tower type air lift culture tank has a structure that generates a helical flow. The helical flow is described in Merchuk et al. (3RD LINENAL CONFERENCE ON Bioreactor and Bioprocess Fluid Dynamics, pp. 61-68). Generally, in a conventional circulation type air lift culture tank, the flow in the tank is only upstream and downstream, cells near the outer surface receive strong light, growth inhibition occurs, and cells inside receive light required for photosynthesis. I can't. Therefore, a radial flow is applied so that the light energy required for photosynthesis is evenly applied to all cells. For this purpose, for example, a device (helical flow promoter) 8 for generating a helical flow can be used. As shown in FIG. 1, this
[0029]
The size of the airlift culture tank and the size of the inner cylinder of the present invention may be appropriately determined in consideration of the material and the culture scale.
[0030]
In the present invention, the aeration rate may be determined in consideration of the culture rate. In general, when a helical flow device is used, cells can be fluidized even if the aeration amount is smaller than when no helical flow device is used. If the air flow rate is too large, air pockets are generated in the helical flow device, which is not preferable.
[0031]
In this microalga culture step, it is desirable to collect microalgae in the logarithmic growth phase as much as possible. This is because fermentation (decomposition of photosynthetic products) under the following dark anaerobic conditions is performed smoothly. Further, it is preferable to culture the microalga by continuous culture because the microalga has a high growth rate and can maintain a logarithmic growth phase.
[0032]
The obtained microalgae is transferred to a fermenter, and a step of fermenting the photosynthetic product under dark anaerobic conditions is performed. In this step, a photosynthetic product such as starch is decomposed and fermented, and organic acids such as formic acid, acetic acid and lactic acid, and alcohols such as ethanol and glycerol are released outside the microalgae. These organic substances are used as electron donors for hydrogen production by photosynthetic bacteria. Accordingly, the dark anaerobic condition is preferably a condition under which so-called fermentative production of organic matter is smoothly performed, and particularly preferably a condition under which a large amount of lactic acid is fermented.
[0033]
The fermenter used for fermentation under dark anaerobic conditions is not particularly limited. It is preferable to make the upper gas phase space of the fermenter as small as possible. In order to maintain anaerobic conditions, carbon dioxide or a mixture of carbon dioxide and inert gas is introduced into the upper space to create an atmosphere with little or no oxygen to promote the decomposition of photosynthesis products, It is preferable to suppress the occurrence of as much as possible. Bubbling of an inert gas is not preferred. The stirring may be very gentle.
[0034]
Fermentation of microalgae under dark anaerobic conditions is performed by increasing the concentration of microalgae from the viewpoint of increasing the concentration of organic acids or alcohols in the decomposition solution that is used as a substrate for photosynthetic bacteria under the following bright anaerobic conditions. Is preferred. Therefore, it is preferable to concentrate the microalga culture solution under bright and aerobic conditions using a concentration / separation means such as membrane separation and centrifugation. In the case of continuously culturing under bright and aerobic conditions, microalgae are transferred to a fermenter under dark and anaerobic conditions while being continuously concentrated.
[0035]
The fermentation temperature of the microalga under dark anaerobic conditions is about 10 ° C to 40 ° C, preferably about 25 ° C to 35 ° C.
[0036]
In the fermentation of microalgae under dark anaerobic conditions, it is preferable that lactic acid is secreted into the decomposition solution. In the present invention, it was shown that lactic acid induces the production of nitrogenase. That is, hydrogen is generated only when lactic acid is present. The lactic acid concentration is preferably at least 0.3 mM or more.
[0037]
In addition, in the step of obtaining a fermentation solution under dark anaerobic conditions, a relatively low dilution ratio, that is, by performing continuous fermentation with a long residence time, to continuously obtain a fermentation solution having a high degree of decomposition of photosynthetic products. This is preferable because it can be continuously supplied to the next hydrogen generation step under light-anaerobic conditions.
[0038]
The decomposed liquid (fermented liquid) obtained by fermenting microalgae under dark anaerobic conditions is separated from the microalgae and used as a substrate for hydrogen production by photosynthetic bacteria under the following light anaerobic conditions. All or part of the microalgae is again used for photosynthesis under bright aerobic conditions.
[0039]
The same culture tank as that used for culturing the microalgae under the bright and aerobic conditions is used as the transparent tower-type air lift culture tank used in the step of allowing photosynthetic bacteria to act under light and anaerobic conditions.
[0040]
The anaerobic condition is created by passing an inert gas such as argon, hydrogen, or a mixed gas of carbon dioxide and hydrogen. From the viewpoint of recovering the generated gas, hydrogen or a 1: 2 mixed gas of carbon dioxide and hydrogen is preferable. It is preferable to circulate hydrogen while extracting part of it. The culture temperature of the photosynthetic bacterium is about 10C to 40C, preferably about 25C to 35C.
[0041]
As the photosynthetic bacterium, photosynthetic vegetative bacterium and photosynthetic organotrophic bacterium (such as red sulfur-free bacterium and green gliding bacterium) are used. In the present invention, since an organic substance generated by decomposing a photosynthetic product is used as a substrate (electron donor), a photosynthetic organotrophic bacterium is preferably used. Examples of the photosynthetic organotrophic bacterium include a red sulfur-free bacterium belonging to the family Rhodospirillaceae, a green gliding bacterium belonging to the family Chloflexaceae, and the like.
[0042]
Such a photosynthetic organotrophic bacterium can be selected, for example, by selecting a microorganism that generates hydrogen from a seawater sample using lactic acid (eg, 0.3 mM) as a substrate. The photosynthetic bacterium, for example, Rhodopseudomonas (Rhodopseudomonas) belonging to the genus Rhodopseudomonas Parasutorisu (Rhodopseudomonas palustris) and Rhodopseudomonas Ashidofira (Rhodopseudomonas acidophila), Rodosupiriramu rubrum (Rhodospirillum rubrum) ATCC 11170 belonging to Rodosupiriramu (Rhodospirillum) genus, the IFO 3986 Etc., belonging to the genus Rhodobacter, Rhodobacter spheroides, Rhodobacter capsulatus ATCC 23782, ATCC 1 7013, etc., belonging to the genus Rhodovulum, Rhodovulum strictum, Rhodovulum adriaticum, Rhodovulum sulfilum, and the like.
In the present invention, a strain named Rhodobram sulphidophilum W-1S (hereinafter sometimes simply referred to as W-1S) isolated from a seawater sample and a photosynthetic bacterium having an activity equivalent thereto are preferably used. Can be
[0043]
The photosynthetic bacteria under light-anaerobic conditions are preferably immobilized on a carrier. This is because it is recyclable, does not particularly require growth, and is preferable for continuously treating the fermented liquid.
[0044]
For immobilization of photosynthetic bacteria, for example, known methods such as a carrier binding method, a cross-linking method and an entrapping method can be applied, but the carrier binding method is most suitable. The carrier binding method includes a chemical adsorption method or a physical adsorption method in which an ion-exchange resin is adsorbed. As the material of the carrier used in the present invention, for example, foams or resins such as porous glass beads, polyvinyl alcohol, polyurethane foam, polystyrene foam, polyacrylamide, polyvinyl formal resin porous body, silicon foam, cellulose porous body, etc. Is preferred. The size of the opening of the porous body is preferably about 10 μm to 500 μm.
[0045]
The shape of the carrier is not limited, but in consideration of the strength of the carrier, culture efficiency, etc., the shape is spherical or cubic, and the size is 2 mm to 50 mm in the case of a sphere, and 2 mm to 50 mm in the case of a cubic. Is preferred.
[0046]
Further, as described above, nitrogenase involved in hydrogen production of photosynthetic bacteria is inhibited by nitrogen, so that the nitrogen source concentration in the reaction solution under light-anaerobic conditions is preferably as low as possible.
[0047]
In addition, the fermented broth under dark anaerobic conditions contains organic acids (formic acid,
Acetic acid, lactic acid, etc.) and alcohols (ethyl alcohol, glycerol, etc.), which serve as electron donors to generate hydrogen. Among them, as shown in Example 1, it was found by the present inventors that lactate was an inducer of a nitrogenase involved in the generation of hydrogen, and it was proportional to the lactate concentration (about 0.3 mM). As a result, it was confirmed that nitrogenase was induced. Therefore, it is preferable to keep the lactic acid concentration at least at least 0.3 mM in order to promote the generation of hydrogen. Therefore, a mode in which hydrogen is generated under bright and anaerobic conditions while adding lactic acid is also included in the scope of the present invention.
[0048]
Further, since organic acids other than lactic acid, for example, malic acid and succinic acid can also induce nitrogenase, malic acid and succinic acid can be used instead of lactic acid, or may be used in combination with lactic acid.
[0049]
Further, the microalgae are continuously cultured under bright and aerobic conditions (that is, light is irradiated at night), and the obtained microalgal alga bodies are sequentially supplied to fermentation under dark anaerobic conditions. By continuously supplying the fermentation broth under the dark anaerobic condition to the photosynthetic bacterium under the light anaerobic condition, continuous culture and hydrogen production become possible.
[0050]
【Example】
Hereinafter, the present invention will be described with reference to examples using green algae as microalgae, but the present invention is not limited to these examples.
(Example 1)
(Culture of green algae using transparent tower type airlift culture tank)
FIG. 1 shows a culture tank 1 used under the bright aerobic and bright anaerobic conditions used in the present invention. An
[0051]
The bright and aerobic conditions are sunlight and light source (18W / m 2 ). As the medium, a modified Okamoto medium was further modified, and ammonium chloride was used by dissolving it to a concentration of 0.5 mM. The green alga Chlamydomonas MGA161 strain was inoculated in a 200 L medium at a rate of 3.5 μg dry cell weight / ml, and air containing 5% carbon dioxide was ventilated at 0.3 vvm to start the culture, and the logarithmic growth phase was started. The continuous culture was started when The dilution rate was 0.083 / hr.
[0052]
The growth rate of the green alga MGA161 strain in this culture was 0.267 g / L / hr. This value indicates that the same volume of culture solution was used at 18 W / m 2 This was about twice the value obtained when the cells were cultured in a 35 cm deep raceway-type culture tank (actual volume: 200 L) while aerating with 0.3 vvm of air containing 5% carbon dioxide. Further, the floor area of the transparent air lift type culture tank used in this experiment was about 1/10 of the raceway type culture tank. Therefore, the production volume of algal cells per unit floor area of the transparent air lift type culture tank was about 20 times that of the raceway type culture tank, indicating the effectiveness of the transparent air lift type culture tank.
[0053]
(Decomposition of photosynthesis products and hydrogen production under light and anaerobic conditions)
The culture solution extracted in the continuous culture was placed in a small continuous membrane separator, and transferred to a fermenter under dark anaerobic conditions while concentrating the concentration of green algae about twice. This fermenter had a capacity of 100 L made of stainless steel and had one stirring blade. The fermentation under dark anaerobic conditions was performed at about 30 ° C., and was performed with very gentle stirring while circulating carbon dioxide in the gas phase.
[0054]
Fermentation under dark anaerobic conditions was carried out for 12 hours, and after completion of the fermentation, the green algae and the fermentation broth were separated. On the other hand, the lactic acid concentration of the fermentation broth was 0.32 mM. The lactic acid concentration was determined by separation by HPLC (high performance liquid chromatogram) and quantitative analysis by absorbance at 210 nm.
[0055]
The photosynthetic bacterium used in the light and anaerobic condition is W-1S, and sodium succinate 1.0 g / l, sodium acetate 1.0 g / l, sodium malate 1.0 g / l, and sodium pyruvate 1.0 g in advance. / L, aerobically cultured in a modified Okamoto medium containing 1 mM ammonium chloride at 30 ° C for 24 hours. This photosynthetic bacterium (W-1S) was added so as to have a dry cell amount of 2 g per liter of the fermentation broth. Culture under light anaerobic conditions was carried out at 30 ° C. while aerating and circulating a mixed gas of carbon dioxide and hydrogen at a ratio of 1: 2 at 1 vvm. The generated hydrogen was separated and recovered from carbon dioxide by a method of passing through an alkaline solution.
[0056]
The culture tank used was of the same type as that used for culturing the green algae of Example 1, and the amount of fermentation solution to be added and the position of the helical flow promoter were also the same.
[0057]
As a result of the reaction for 12 hours, hydrogen was generated in an amount of 585 ml / g dry cells. This amount of generated hydrogen was equivalent to about 2.6 times the amount of hydrogen generated under the same conditions using a parallel plate photobioreactor having a height of 50 cm and the same volume. The floor area of the transparent air-lift type culture tank was about 1 / 7.5 of that of the parallel plate type photobioreactor. Therefore, the amount of hydrogen generated per unit floor area of the transparent air lift type culture tank was about 19 times that of the parallel plate type photobioreactor, indicating the effectiveness of the transparent air lift type culture tank.
[0058]
(Example 2)
The effects of organic acids on hydrogen production by photosynthetic bacteria under light and anaerobic conditions were investigated. In a modified Okamoto medium containing 0.6 mM acetic acid, 1.5 mM ethanol and 0.5 mM glycerol, lactic acid was added to each of 0, 0.1, 0.2, 0.3, 0.4, 0.5 and After adding 1 mM, the amount of generated hydrogen of W-1S was measured. FIG. 2 shows the results. In FIG. 2, no hydrogen was generated in the medium without lactic acid, whereas hydrogen was generated in the medium with lactic acid. From these results, it was found that lactic acid induced production of nitrogenase. Hydrogen evolution increased in a concentration-dependent manner up to 0.3 mM, but not further. Therefore, it was found that if at least 0.3 mM or more of lactic acid was contained, the amount of generated hydrogen was almost constant.
[0059]
Although not described as data, it was revealed that malic acid and succinic acid also induce production of nitrogenase.
[0060]
【The invention's effect】
In the production of hydrogen using microorganisms, the efficient cultivation of microalgae under bright aerobic conditions and / or the production of hydrogen by photosynthetic bacteria under bright and anaerobic conditions by using a transparent tower type air-lift culture tank. Can be.
[Brief description of the drawings]
FIG. 1 is a schematic view of a culture tank used in the present invention.
FIG. 2 is a diagram showing that lactic acid is essential for hydrogen production and that the optimal lactic acid concentration is 0.3 mM or more.
[Explanation of symbols]
1 Culture tank
2 Internal cylinder
3. Culture solution inside the inner cylinder
4. Culture solution outside the inner cylinder
5 Ventilation device
6 Tank wall of culture tank
7 Outer wall of inner cylinder
8 Helical flow promoter
9 Baffles
Claims (4)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19116699A JP3549444B2 (en) | 1998-07-28 | 1999-07-06 | Method for producing hydrogen by microorganisms |
US09/786,771 US6395521B1 (en) | 1999-07-06 | 2000-02-14 | Microbial process for producing hydrogen |
AU24623/00A AU2462300A (en) | 1999-07-06 | 2000-02-14 | Microbial process for producing hydrogen |
EP00902959A EP1099762A4 (en) | 1999-07-06 | 2000-02-14 | Microbial process for producing hydrogen |
CA002378210A CA2378210A1 (en) | 1999-07-06 | 2000-02-14 | Microbial process for producing hydrogen |
PCT/JP2000/000807 WO2001002595A1 (en) | 1999-07-06 | 2000-02-14 | Microbial process for producing hydrogen |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-213260 | 1998-07-28 | ||
JP21326098 | 1998-07-28 | ||
JP19116699A JP3549444B2 (en) | 1998-07-28 | 1999-07-06 | Method for producing hydrogen by microorganisms |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000102397A JP2000102397A (en) | 2000-04-11 |
JP3549444B2 true JP3549444B2 (en) | 2004-08-04 |
Family
ID=26506538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19116699A Expired - Fee Related JP3549444B2 (en) | 1998-07-28 | 1999-07-06 | Method for producing hydrogen by microorganisms |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3549444B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6395521B1 (en) | 1999-07-06 | 2002-05-28 | Yoshiharu Miura | Microbial process for producing hydrogen |
CA2488443A1 (en) * | 2002-05-13 | 2003-11-20 | Greenfuel Technologies Corporation | Photobioreactor and process for biomass production and mitigation of pollutants in flue gases |
KR100822824B1 (en) | 2007-07-11 | 2008-04-18 | 한국에너지기술연구원 | Flat vertical parallelepiped-type photobioreactor made with transparent acrylic plastic for biological hydrogen production |
WO2009094680A1 (en) * | 2008-01-31 | 2009-08-06 | Martin Mohr | Method and device for photochemical process |
US8143041B2 (en) * | 2009-05-07 | 2012-03-27 | Aquatech Bioenergy LLC | Method of stimulating ethanol production and growth of aquatic plants |
JP2011246605A (en) * | 2010-05-26 | 2011-12-08 | Hitachi Plant Technologies Ltd | Method for producing biofuel |
JP5754248B2 (en) * | 2011-06-06 | 2015-07-29 | 株式会社デンソー | Airlift and culture system |
CN112831397B (en) * | 2021-02-22 | 2022-10-25 | 西安交通大学 | Column type photobioreactor with built-in turbulence component and microalgae culture method |
CN116917455A (en) * | 2021-03-01 | 2023-10-20 | 本田技研工业株式会社 | Culture apparatus and culture method |
CN114480080B (en) * | 2022-01-26 | 2023-08-22 | 河南农业大学 | Synchronous saccharification dark-light combined biological fermentation hydrogen production method and system |
-
1999
- 1999-07-06 JP JP19116699A patent/JP3549444B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000102397A (en) | 2000-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6395521B1 (en) | Microbial process for producing hydrogen | |
Tiang et al. | Recent advanced biotechnological strategies to enhance photo-fermentative biohydrogen production by purple non-sulphur bacteria: an overview | |
Razzak et al. | Biological CO2 fixation with production of microalgae in wastewater–a review | |
Suh et al. | Photobioreactor engineering: design and performance | |
Chen et al. | Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers | |
JP2020103277A (en) | Use of oxyhydrogen microorganisms for non-photosynthetic carbon capture and conversion of inorganic and/or c1 carbon sources into useful organic compounds | |
Dong et al. | In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma | |
US9593300B2 (en) | Device for fuel and chemical production from biomass-sequestered carbon dioxide and method therefor | |
JP3549444B2 (en) | Method for producing hydrogen by microorganisms | |
Zarei et al. | A review of bioreactor configurations for hydrogen production by cyanobacteria and microalgae | |
WO2015068054A1 (en) | Process for sequential bio-hydrogen production through integration of dark fermentation process with photo fermentation process | |
KR102229628B1 (en) | System for Biofuel production and Manufacturing method thereof | |
Sevda et al. | Challenges in the design and operation of an efficient photobioreactor for microalgae cultivation and hydrogen production | |
Wannapokin et al. | Potential of bio-hydrogen production by C. pasteurianum co-immobilized with selected nano-metal particles | |
Wang et al. | Ultrahigh recovery rate of nitrate from synthetic wastewater by Chlorella-based photo-fermentation with optimal light-emitting diode illumination: From laboratory to pilot plant | |
Markov et al. | Spiral tubular bioreactors for hydrogen production by photosynthetic microorganisms: design and operation | |
Ust’ak et al. | Experimental verification of various methods for biological hydrogen production | |
Zarei et al. | Effect of hydrodynamic parameters on hydrogen production by Anabaena sp. in an internal-loop airlift photobioreactor | |
Banerjee et al. | Microalgal pandora for potent bioenergy production: A way forward? | |
Javed et al. | A novel two-stage immobilized bioreactor for biohydrogen production using a partial microalgal-bacterial (Chlorella vulgaris and wastewater activated sludge) co-culture | |
JP2004097116A (en) | Method and apparatus for producing hydrogen by microorganism | |
JP2004057045A (en) | Method for producing hydrogen with microorganism | |
CN108611276A (en) | Method for recycling vinasse wastewater by using microalgae | |
Xu | Biological production of hydrogen from renewable resources | |
Wei et al. | Biomass production of Chlorella pyrenoidosa by filled sphere carrier reactor: Performance and mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031218 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040420 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090430 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |