[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3547110B2 - Sludge dewatering agent and sludge dewatering method - Google Patents

Sludge dewatering agent and sludge dewatering method Download PDF

Info

Publication number
JP3547110B2
JP3547110B2 JP06391597A JP6391597A JP3547110B2 JP 3547110 B2 JP3547110 B2 JP 3547110B2 JP 06391597 A JP06391597 A JP 06391597A JP 6391597 A JP6391597 A JP 6391597A JP 3547110 B2 JP3547110 B2 JP 3547110B2
Authority
JP
Japan
Prior art keywords
water
mol
sludge dewatering
sludge
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06391597A
Other languages
Japanese (ja)
Other versions
JPH10244300A (en
Inventor
徹 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP06391597A priority Critical patent/JP3547110B2/en
Publication of JPH10244300A publication Critical patent/JPH10244300A/en
Application granted granted Critical
Publication of JP3547110B2 publication Critical patent/JP3547110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は架橋した両性高分子から成る汚泥脱水剤に関するものであり、本発明の汚泥脱水剤は、SS濃度の低い余剰汚泥等を無機凝集剤によって前処理した後該汚泥脱水剤を添加造粒し、濾過により濾液を分離した濃縮物を脱水する汚泥脱水方法に特に有効である。
【0002】
【従来の技術】
これまでに各種の汚泥脱水剤ならびに汚泥脱水法が知られている。 例えば、無機凝集剤添加後の汚泥PHが5〜8である有機汚泥に対して両性高分子凝集剤を添加する汚泥脱水法(特開昭63−158200号公報)が知られている。また、従来の高分子凝集剤の欠点を改良する為に、交叉結合されたカチオン性・アニオン性・ノニオン性の有機高分子凝集剤(ヨーロッパ特許第0,202,780号明細書、特開昭61−293510号公報、特開昭64−85199号公報、特開平2−219887号公報、特開平4−226102号公報など)が、種々の固液分離に有効であると提案されている。 しかしながら交叉結合された両性有機高分子凝集剤の効果については知られておらず、また逆相乳化重合時に連鎖移動剤を共存させて架橋性を調節し、かつ得られたエマルジョンに親水性界面活性剤(転相剤)を添加して実用的な溶解性を持たせた有機高分子凝集剤も未知であった。
【0003】
【発明が解決しようとする課題】
従来公知の両性高分子あるいはカチオン性高分子は性能上不満足である。 特にSS濃度の低い余剰汚泥等を無機凝集剤によって前処理した後に汚泥脱水剤を添加造粒し、濾過により濾液を分離した濃縮物を脱水する汚泥脱水方法に十分な効果を発揮する両性有機高分子凝集剤は知られていなかった。
【0004】
【課題を解決する為の手段】
本発明の汚泥脱水方法に用いられる両性有機高分子凝集剤は汚泥に添加する濃度まで水で希釈した状態で、粒系30μm以下の粒子が顕微鏡にて観察され、該希釈液をガラス板に塗布して105°Cにて加熱乾燥したときに連続状の乾燥膜を形成する性質を有することを特徴とする有機性汚泥の脱水剤である。すなわち請求項1の発明は、(A)全単量体中5〜97.9999モル%の下記式(1)で表される水溶性カチオン性ビニル単量体またはその混合物、(B)全単量体中0.0001〜0.01モル%の2ヒドロキシプロピリデン1,3ビス〔(Nアクリロイルアミノプロピル)N,Nジメチルアンモニウムクロリド〕(C)全単量体中2〜30モル%の水溶性アニオン性ビニル単量体またはその混合物、(D)ノニオン性水溶性単量体、(E)連鎖移動剤、(F)水、(G)少なくとも1種類の炭化水素から成る油状物および(H)逆相エマルジョンすなわち油中水型エマルジョンを生成するに有効な量とHLBである少なくとも1種類の界面活性剤を用意し、上記(A)〜(H)成分を適時混合強攪拌し、油相中に微細単量体相液滴を形成させた後に重合操作を行い、親水性界面活性剤を混合して得た両性高分子からなる汚泥脱水剤である。
【化2】

Figure 0003547110
(但し、式中、AはOまたはNH;BはC2 4 、C3 6 、C3 5 OH;R1 はHまたはCH3 ;R2 、R3 は炭素数1〜4のアルキル基;R4 は水素または炭素数1〜4のアルキル基あるいはベンジル基;X- はアニオン性対イオンを表す。)
【0005】
請求項2の発明は、前記ノニオン性水溶性単量体が(メタ)アクリルアミドであることを特徴とする請求項1に記載の汚泥脱水剤である。
【0006】
請求項3の発明は、前記水溶性アニオン性ビニル単量体が(メタ)アクリル酸であることを特徴とする請求項1あるいは請求項2に記載の汚泥脱水剤である。
【0007】
請求項4の発明は、前記親水性界面活性剤がHLB9〜15のノニオン性界面活性剤であることを特徴とする請求項1〜請求項3のいずれかに記載の汚泥脱水剤である。
【0008】
請求項5の発明は、有機性汚泥に無機凝集剤を添加して攪拌した後、前記請求項1〜4のいずれかに記載の両性高分子からなる汚泥脱水剤を添加し、該有機性汚泥を造粒し、濾過により濾液を分離して造粒物を濃縮した後、この造粒物を脱水機で脱水することを特徴とする汚泥脱水方法である。
【0009】
請求項6の発明は、前記無機凝集剤が硫酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウム、硫酸鉄、塩化鉄、ポリ鉄あるいはこれらの混合物から選ばれる一種である事を特徴とする請求項5に記載の汚泥脱水方法である。
【0010】
【発明の実施の形態】
本発明に用いられる前記式(1)で表される(A)成分の水溶性カチオン性ビニル単量体の具体例としては、ジアルキルアミノアルキル(メタ)アクリレートの三級塩および四級アンモニウム塩、ジアルキルアミノアルキル(メタ)アクリルアミドの三級塩および四級アンモニウム塩、ジアルキルアミノヒドロキシアルキル(メタ)アクリレートの三級塩および四級アンモニウム塩、ジアルキルアミノヒドロキシアルキル(メタ)アクリルアミドの三級塩および四級アンモニウム塩あるいはこれらの混合物から選ばれる一種を挙げる事ができる。 これらの中でもアクリロイロキシエチルトリメチルアンモニウムクロリド、メタクリロイロキシエチルトリメチルアンモニウムクロリド、ジメチルアミノプロピルアクリルアミド塩酸塩あるいはこれらの混合物から選ばれる一種が好ましく用いられる。
【0011】
本発明に用いられる(B)成分の2官能性単量体の具体例としてはN,N’−メチレンビスアクリルアミド、N,N’−メチレンビスメタクリルアミド、ジビニルベンゼンなどのジビニル化合物、メチロールアクリルアミド、メチロールメタクリルアミドなどのビニル系メチロール化合物、アクロレインなどのビニル系アルデヒド化合物あるいはこれらの混合物が挙げられるが、これらの中でも2ヒドロキシプロピリデン1,3ビス〔(Nアクリロイルアミノプロピル)N,Nジメチルアンモニウムクロリド〕が好ましく使用でき、N,N’−メチレンビスアクリルアミドはこれに次ぐ。
【0012】
本発明に用いられる(C)成分の水溶性アニオン性ビニル単量体の具体例としては、(メタ)アクリル酸、2−アクリルアミド−2−メチルプロパンスルホン酸、ビニルスルホン酸、スチレンスルホン酸、イタコン酸、マレイン酸、フマール酸、アリールスルホン酸およびその塩あるいはこれらの混合物が挙げられるが、これらの中でもアクリル酸が最も好ましく使用できる。
【0013】
本発明に用いられる(D)成分の水溶性ノニオン性ビニル単量体の具体例としては、(メタ)アクリルアミド、ビニルメチルエーテル、ビニルエチルエーテルあるいはこれらの混合物が挙げられるが、これらの中でもアクリルアミドが最も好ましく使用できる。
【0014】
本発明に用いられる(E)成分の連鎖移動剤の具体例としては、アルコール、メルカプタン、ホスファイト、サルファイトあるいはこれらの混合物が挙げられ。 これら連鎖移動剤の添加量は、両性有機高分子凝集剤を汚泥に添加する濃度まで水で希釈した状態で、粒系30μm以下の粒子が顕微鏡にて観察され、該希釈液をガラス板に塗布して105°Cにて加熱乾燥したときに連続状の乾燥膜を形成する性質を有する様に選ばれる。
【0015】
本発明に用いられる(G)成分である少なくとも1種類の炭化水素から成る油状物の具体例としては、灯油、軽油、中油などの鉱油、あるいはこれらと実質的に同じ範囲の沸点や粘度などの特性を有する炭化水素系合成油あるいはこれらの混合物が挙げられる。
【0016】
本発明に用いられる(H)成分である界面活性剤はHLB3〜6のノニオン性界面活性剤であり、その具体例としてはソルビタンモノオレート、ソルビタンモノステアレート、ソルビタンモノパルミテートなどを挙げる事ができる。
【0017】
本発明において油中水型エマルジョン重合により得られた重合物と混合される親水性界面活性剤(いわゆる転相剤)としてはカチオン性界面活性剤あるいはHLB9〜15のノニオン性界面活性剤が用いられ、好ましくはHLB10〜14のノニオン性界面活性剤が用いられる。 好ましいノニオン性界面活性剤の代表例としては例えばポリオキシエチレンノニルフェニルエーテルを挙げる事ができる。
【0018】
本発明に用いられる(B)成分の2官能性単量体の量、例えばN,N’−メチレンビスアクリルアミドの重合性単量体全量に対する割合は0.0001〜0.01モル%、好ましくは0.0002〜0.003モル%の範囲で共重合する事が望ましい。 0.0001モル%未満では十分な網目構造が得られず優れた脱水性能が得られない。 また0.01モル%を超えた量では水不溶性の重合体と成り、汚泥に添加混合しても脱水性良好なフロックが得られない。
【0019】
本発明に係る高分子は本質的に公知の重合法により共重合する事ができる。例えば重合性ビニル単量体と連鎖移動剤を含む水溶液と、HLBが3〜6であるノニオン性界面活性剤を含む有機分散媒とを混合し乳化させた後、ラジカル重合開始剤の存在下、温度30〜80°Cで重合させ油中水型カチオン性重合体エマルジョンを製造する方法が特開昭61−236250号公報に記載されているが、この方法を適用して単量体組成を代える事により本発明の油中水型エマルジョンを合成する事ができる。 この油中水型エマルジョンに親水性界面活性剤を添加して水に混合し、水中油型エマルジョンに転相し、脱水剤として使用する。溶解後の汚泥への添加条件は、通常の両性高分子凝集剤と異なる点は無い。
【0020】
【実施例】
次に実施例によって、本発明を具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に制約されるものではない。
【0021】
(本発明合成例−1)攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン120.0Kgおよびソルビタンモノオレート7.5Kgを仕込んだ。 脱塩水165Kgおよびアクリロイロキシエチルトリメチルアンモニウムクロリド(AMC)27.9997モル%(表1中に約28と表す)、2ヒドロキシプロピリデン1,3ビス〔(Nアクリロイルアミノプロピル)N,Nジメチルアンモニウムクロリド〕(HPAD)3×10-4モル%、アクリルアミド(AAM)70モル%の組成のモノマー200Kgの混合物を加え、ホモジナイザーにて攪拌乳化した。 得られたエマルジョンにイソプロピルアルコール200gを加え窒素置換の後、ジメチルアゾビスイソブチレート40gを加え、温度50°Cに制御しながら重合反応を完結させ、その後ポリオキシエチレンノニルフェニルエーテル7.5Kgを添加混合して試験に供する試料(試料−1)とした。
【0022】
(本発明合成例−2)アクリロイロキシエチルトリメチルアンモニウムクロリド(AMC)49.9997モル%(表1中に約50と表す)、アクリル酸(AAC)10モル%、2ヒドロキシプロピリデン1,3ビス〔(Nアクリロイルアミノプロピル)N,Nジメチルアンモニウムクロリド〕(HPAD)3×10-4モル%、アクリルアミド(AAM)40モル%の組成のモノマー200Kgの混合物を用いた以外は合成例−1と同様にして試験に供する試料(試料−2)とした。
【0023】
(本発明合成例−3)アクリロイロキシエチルトリメチルアンモニウムクロリド(AMC)49.998モル%(表1中に約50と表す)、アクリル酸(AAC)10モル%、2ヒドロキシプロピリデン1,3ビス〔(Nアクリロイルアミノプロピル)N,Nジメチルアンモニウムクロリド〕(HPAD)2×10-3モル%、アクリルアミド(AAM)40モル%の組成のモノマー200Kgの混合物を用いた以外は合成例−1と同様にして試験に供する試料(試料−3)とした。
【0024】
(比較品合成例−1)アクリロイロキシエチルトリメチルアンモニウムクロリド(AMC)29.9997モル%(表1中に約30と表す)、2ヒドロキシプロピリデン1,3ビス〔(Nアクリロイルアミノプロピル)N,Nジメチルアンモニウムクロリド〕(HPAD)3×10-4モル%、アクリルアミド(AAM)70モル%の組成のモノマー200Kgの混合物を用いた以外は合成例−1と同様にして試験に供する試料(試料−6)とした。
【0025】
(比較品合成例−2)架橋剤を用いることなく、アクリロイロキシエチルトリメチルアンモニウムクロリド(AMC)28モル%(表1中に28と表す)、アクリル酸(AAC)2モル%、アクリルアミド(AAM)70モル%の組成のモノマー200Kgの混合物を用いた以外は合成例−1と同様にして試験に供する試料(試料−7)とした。
【0026】
(比較品合成例−3)架橋剤を用いることなく、アクリロイロキシエチルトリメチルアンモニウムクロリド(AMC)50モル%(表1中に50と表す)、アクリル酸(AAC)10モル%、アクリルアミド(AAM)40モル%の組成のモノマー200Kgの混合物を用いた以外は合成例−1と同様にして試験に供する試料(試料−8)とした。
【0027】
(比較品合成例−4)連鎖移動剤であるイソプロピルアルコールを添加することなく、アクリロイロキシエチルトリメチルアンモニウムクロリド(AMC)49.998モル%(表1中に約50と表す)、アクリル酸(AAC)10モル%、2ヒドロキシプロピリデン1,3ビス〔(Nアクリロイルアミノプロピル)N,Nジメチルアンモニウムクロリド〕(HPAD)2×10-3モル%、アクリルアミド(AAM)40モル%の組成のモノマー200Kgの混合物を用いた以外は合成例−1と同様にして試験に供する試料(試料−9)とした。
【0028】
(比較品合成例−5)連鎖移動剤であるイソプロピルアルコールを添加することなく、アクリロイロキシエチルトリメチルアンモニウムクロリド(AMC)49.998モル%(表1中に約50と表す)、アクリル酸(AAC)10モル%、N,N’メチレンビスアクリルアミド(MBAA)2×10-3モル%、アクリルアミド(AAM)40モル%の組成のモノマー200Kgの混合物を用いた以外は合成例−1と同様にして試験に供する試料(試料−10)とした。
【0029】
(比較品合成例−6)転相剤であるポリオキシエチレンノニルフェニルエーテルを重合物に後添加することなく、アクリロイロキシエチルトリメチルアンモニウムクロリド(AMC)49.998モル%(表1中に約50と表す)、アクリル酸(AAC)10モル%、2ヒドロキシプロピリデン1,3ビス〔(Nアクリロイルアミノプロピル)N,Nジメチルアンモニウムクロリド〕(HPAD)2×10-3モル%、アクリルアミド(AAM)40モル%の組成のモノマー200Kgの混合物を用いた以外は合成例−1と同様にして試験に供する試料(試料−11)とした。
【0030】
(比較品合成例−7)転相剤であるポリオキシエチレンノニルフェニルエーテルを重合物に後添加することなく、アクリロイロキシエチルトリメチルアンモニウムクロリド(AMC)49.998モル%(表1中に約50と表す)、アクリル酸(AAC)10モル%、N,N’メチレンビスアクリルアミド(MBAA)2×10-3モル%、アクリルアミド(AAM)40モル%の組成のモノマー200Kgの混合物を用いた以外は合成例−1と同様にして試験に供する試料(試料−12)とした。以上まとめて表1に記載する。
【0031】
【表1】
【0032】
(観察結果−1)エマルジョン状態の試料−1〜試料−6を水道水にて実機攪拌装置(300rpm)により攪拌下ポリマー濃度0.2重量%になるように希釈し、1時間経過し増粘した液を採取し、顕微鏡にて観察したところ、全て一面に粒径30μm以下(約3μm)の粒子が観察され、該希釈液をガラス板に塗布して105°Cにて加熱乾燥したところ連続状の乾燥膜を形成した。 また、この希釈液をコロイド適定によりイオン当量値を測定したところ、全て理論値の85%以上のイオン当量値であった。
【0033】
(観察結果−2)観察結果−1と同様にエマルジョン状態の試料−7〜試料−8を水道水にて実機攪拌装置により攪拌下ポリマー濃度0.2重量%になるように希釈し1時間経過し増粘した液を採取し、顕微鏡にて観察したところ、全て均一溶液であり粒子は観察されなかった。 該希釈液をガラス板に塗布して105°Cにて加熱乾燥したところ連続状の乾燥膜を形成した。 また、この希釈液をコロイド適定によりイオン当量値を測定したところ、全て理論値の100%のイオン当量値であった。
【0034】
(観察結果−3)観察結果−1と同様にエマルジョン状態の試料−9〜試料−10を水道水にて実機攪拌装置により攪拌下ポリマー濃度0.2重量%になるように希釈し1時間経過し増粘した液を採取し、顕微鏡にて観察したところ、すべて一面に粒径30μm以下(約3μm)の粒子が観察され、該希釈液をガラス板に塗布して105°Cにて加熱乾燥したところ粒状の不連続乾燥膜を形成した。 また、この希釈液をコロイド適定によりイオン当量値を測定したところ、全て理論値の40%以下のイオン当量値であった。
【0035】
(観察結果−4)観察結果−1と同様にエマルジョン状態の試料−11〜試料−12を水道水にて実機攪拌装置により攪拌下ポリマー濃度0.2重量%になるように希釈した結果、エマルジョンは水中に分散せず、ゲル状の塊が浮遊し、均一なポリマー希釈液は得られなかった。 これに対しビーカースケールでマグネティックスターラーにより強攪拌をした場合はエマルジョンは水中に分散し、ゲル状の塊が浮遊することなく、均一なポリマー希釈液が得られた。
【0036】
【発明の効果】
観察結果−1〜4にて調整した希釈液を用いて、下水処理場の余剰汚泥(PH;7.0,SS;2300mg/l,強熱減量72.0%)に、対SS30%のポリ鉄を加え十分混合したのち、対SS1.2%のポリマーを添加し造粒濃縮槽にて攪拌し、汚泥をペレット状に成形するとともに余分の水分を濾液として除去し、濃縮された凝集汚泥をベルトプレスにて脱水した。結果を表2に示す。 本発明品の優位性は明らかである。
【0037】
【表−1】
ポリマー特性表
Figure 0003547110
AMC:アクリロイルオキシエチルトリメチルアンモニウムクロリド
AAC:アクリル酸
AAm:アクリルアミド
HPAD:2ヒドロキシプロピリデン1,3ビス〔(Nアクリロイルアミノプロピル)N,Nジメチルアンモニウムクロリド〕
MBAA:メチレンビスアクリルアミド
連鎖移動剤:イソプロピルアルコール
転相剤:ポリオキシエチレンノニルフェニルエーテル
【表−2】
脱水処理結果表
Figure 0003547110
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sludge dewatering agent comprising a crosslinked amphoteric polymer, and the sludge dewatering agent of the present invention is obtained by pretreating excess sludge having a low SS concentration with an inorganic flocculant and then adding the sludge dewatering agent to granulation. It is particularly effective for a sludge dewatering method for dewatering a concentrate obtained by separating a filtrate by filtration.
[0002]
[Prior art]
Various sludge dewatering agents and sludge dewatering methods have been known. For example, there is known a sludge dewatering method in which an amphoteric polymer flocculant is added to organic sludge having a sludge PH of 5 to 8 after addition of an inorganic flocculant (JP-A-63-158200). Further, in order to improve the drawbacks of the conventional polymer flocculant, a crosslinked cationic / anionic / nonionic organic polymer flocculant (European Patent No. 0,202,780; 61-293510, JP-A-64-85199, JP-A-2-21987, JP-A-4-226102, etc.) have been proposed to be effective for various solid-liquid separations. However, the effect of the cross-linked amphoteric organic polymer flocculant is not known, and a cross-linking property is controlled by the coexistence of a chain transfer agent during reverse-phase emulsion polymerization, and the resulting emulsion has a hydrophilic surfactant. An organic polymer flocculant having a practical solubility by adding an agent (phase inversion agent) was also unknown.
[0003]
[Problems to be solved by the invention]
Conventionally known amphoteric polymers or cationic polymers are unsatisfactory in performance. In particular, a pretreatment of excess sludge having a low SS concentration with an inorganic flocculant, granulation with a sludge dewatering agent, and an amphoteric organic solution exhibiting a sufficient effect in a sludge dewatering method of dewatering a concentrate obtained by separating a filtrate by filtration. No molecular coagulant was known.
[0004]
[Means for solving the problem]
The amphoteric organic polymer flocculant used in the sludge dewatering method of the present invention is diluted with water to a concentration to be added to the sludge, and particles having a particle size of 30 μm or less are observed under a microscope, and the diluted solution is applied to a glass plate. And an organic sludge dehydrating agent having a property of forming a continuous dried film when heated and dried at 105 ° C. That is, the invention of claim 1 comprises (A) a water-soluble cationic vinyl monomer represented by the following formula (1) or a mixture thereof in an amount of 5 to 97.9999 mol% of all monomers; 0.0001 to 0.01 mol% of 2-hydroxypropylidene 1,3 bis [(N acryloylaminopropyl) N, N dimethyl ammonium chloride] in the monomer (C) 2 to 30 mol% of water solution in all monomers Anionic vinyl monomers or mixtures thereof, (D) a nonionic water-soluble monomer, (E) a chain transfer agent, (F) water, (G) an oil comprising at least one hydrocarbon, and (H) A) An inverse phase emulsion, that is, an amount effective for producing a water-in-oil emulsion and at least one surfactant which is HLB are prepared, and the above components (A) to (H) are mixed and stirred vigorously as appropriate. Form a fine monomer phase droplet inside This is a sludge dehydrating agent consisting of an amphoteric polymer obtained by performing a polymerization operation after mixing and mixing a hydrophilic surfactant .
Embedded image
Figure 0003547110
(Wherein, A is O or NH; B is C 2 H 4 , C 3 H 6 , C 3 H 5 OH; R 1 is H or CH 3 ; R 2 and R 3 have 1 to 4 carbon atoms) An alkyl group; R 4 is hydrogen or an alkyl group having 1 to 4 carbon atoms or a benzyl group; X represents an anionic counter ion.)
[0005]
The invention of claim 2 is the sludge dewatering agent according to claim 1, wherein the nonionic water-soluble monomer is (meth) acrylamide.
[0006]
The invention according to claim 3 is the sludge dewatering agent according to claim 1 or 2, wherein the water-soluble anionic vinyl monomer is (meth) acrylic acid.
[0007]
The invention of claim 4 is the sludge dewatering agent according to any one of claims 1 to 3, wherein the hydrophilic surfactant is a nonionic surfactant of HLB 9 to 15.
[0008]
According to a fifth aspect of the present invention, the organic sludge is added with an inorganic flocculant and stirred, and then the sludge dehydrating agent comprising the amphoteric polymer according to any one of the first to fourth aspects is added to the organic sludge. Is granulated, the filtrate is separated by filtration, the granulated substance is concentrated, and then the granulated substance is dewatered with a dehydrator.
[0009]
The invention according to claim 6 is characterized in that the inorganic coagulant is one selected from aluminum sulfate, aluminum chloride, polyaluminum chloride, iron sulfate, iron chloride, polyiron or a mixture thereof. Sludge dewatering method.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Specific examples of the water-soluble cationic vinyl monomer of the component (A) represented by the formula (1) used in the present invention include tertiary and quaternary ammonium salts of dialkylaminoalkyl (meth) acrylate, Tertiary and quaternary ammonium salts of dialkylaminoalkyl (meth) acrylamide, tertiary and quaternary ammonium salts of dialkylaminohydroxyalkyl (meth) acrylate, tertiary and quaternary salts of dialkylaminohydroxyalkyl (meth) acrylamide Examples thereof include one selected from ammonium salts and mixtures thereof. Among them, one selected from acryloyloxyethyltrimethylammonium chloride, methacryloyloxyethyltrimethylammonium chloride, dimethylaminopropylacrylamide hydrochloride or a mixture thereof is preferably used.
[0011]
Specific examples of the bifunctional monomer (B) used in the present invention include divinyl compounds such as N, N'-methylenebisacrylamide, N, N'-methylenebismethacrylamide, divinylbenzene, methylolacrylamide, Examples include vinyl-based methylol compounds such as methylol methacrylamide, vinyl-based aldehyde compounds such as acrolein, and mixtures thereof. Of these, 2-hydroxypropylidene 1,3 bis [(N-acryloylaminopropyl) N, N-dimethylammonium chloride ] Can be preferably used, and N, N'-methylenebisacrylamide is second to this.
[0012]
Specific examples of the water-soluble anionic vinyl monomer (C) used in the present invention include (meth) acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, vinylsulfonic acid, styrenesulfonic acid, and itacone. Examples thereof include acids, maleic acid, fumaric acid, arylsulfonic acids and salts thereof, and mixtures thereof. Of these, acrylic acid is most preferably used.
[0013]
Specific examples of the water-soluble nonionic vinyl monomer (D) used in the present invention include (meth) acrylamide, vinyl methyl ether, vinyl ethyl ether and a mixture thereof. Among these, acrylamide is preferred. Most preferably used.
[0014]
Specific examples of the chain transfer agent of the component (E) used in the present invention include alcohol, mercaptan, phosphite, sulfite, and mixtures thereof. The addition amount of these chain transfer agents is such that particles having a particle size of 30 μm or less are observed under a microscope in a state where the amphoteric organic polymer flocculant is diluted with water to a concentration to be added to sludge, and the diluted solution is applied to a glass plate. It is selected so as to have a property of forming a continuous dry film when heated and dried at 105 ° C.
[0015]
Specific examples of the oil comprising at least one kind of hydrocarbon which is the component (G) used in the present invention include mineral oils such as kerosene, light oil and medium oil, and those having a boiling point and viscosity in substantially the same range as these. A hydrocarbon-based synthetic oil having characteristics or a mixture thereof is exemplified.
[0016]
The surfactant (H) used in the present invention is a nonionic surfactant having an HLB of 3 to 6, and specific examples thereof include sorbitan monooleate, sorbitan monostearate, and sorbitan monopalmitate. it can.
[0017]
In the present invention, a cationic surfactant or a nonionic surfactant having an HLB of 9 to 15 is used as a hydrophilic surfactant (so-called phase change agent) mixed with the polymer obtained by the water-in-oil emulsion polymerization. Preferably, a nonionic surfactant having an HLB of 10 to 14 is used. Representative examples of preferred nonionic surfactants include, for example, polyoxyethylene nonylphenyl ether.
[0018]
The amount of the bifunctional monomer of the component (B) used in the present invention, for example, the ratio of N, N'-methylenebisacrylamide to the total amount of the polymerizable monomer is 0.0001 to 0.01 mol%, preferably It is desirable to copolymerize in the range of 0.0002 to 0.003 mol%. If it is less than 0.0001 mol%, a sufficient network structure cannot be obtained, and excellent dehydration performance cannot be obtained. On the other hand, if the amount exceeds 0.01 mol%, a water-insoluble polymer is formed, and even if added to and mixed with sludge, a floc having good dewaterability cannot be obtained.
[0019]
The polymer according to the present invention can be copolymerized by an essentially known polymerization method. For example, after mixing and emulsifying an aqueous solution containing a polymerizable vinyl monomer and a chain transfer agent and an organic dispersion medium containing a nonionic surfactant having an HLB of 3 to 6, in the presence of a radical polymerization initiator, A method of producing a water-in-oil cationic polymer emulsion by polymerizing at a temperature of 30 to 80 ° C. is described in JP-A-61-236250, but this method is applied to change the monomer composition. Thus, the water-in-oil emulsion of the present invention can be synthesized. A hydrophilic surfactant is added to this water-in-oil emulsion, mixed with water, phase-inverted to an oil-in-water emulsion, and used as a dehydrating agent. The conditions for addition to the sludge after dissolution are not different from those of a general amphoteric polymer flocculant.
[0020]
【Example】
Next, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[0021]
(Synthesis Example 1 of the Present Invention) In a reaction vessel equipped with a stirrer and a temperature controller, 120.0 kg of isoparaffin having a boiling point of 190 ° C to 230 ° C and 7.5 kg of sorbitan monooleate were charged. 165 kg of demineralized water and 27.9997 mol% of acryloyloxyethyltrimethylammonium chloride (AMC) (represented as about 28 in Table 1), 2-hydroxypropylidene 1,3 bis [(Nacryloylaminopropyl) N, N dimethylammonium Chloride] (HPAD) and a mixture of 200 kg of a monomer having a composition of 3 × 10 -4 mol% and acrylamide (AAM) 70 mol% were added, and the mixture was emulsified by stirring with a homogenizer. 200 g of isopropyl alcohol was added to the obtained emulsion, and after nitrogen replacement, 40 g of dimethylazobisisobutyrate was added to complete the polymerization reaction while controlling the temperature at 50 ° C., and then 7.5 kg of polyoxyethylene nonylphenyl ether was added. A sample to be subjected to the test after the addition and mixing (sample-1) was obtained.
[0022]
(Synthesis Example 2 of the Present Invention) Acryloyloxyethyltrimethylammonium chloride (AMC) 49.9997 mol% (represented as about 50 in Table 1), acrylic acid (AAC) 10 mol%, 2-hydroxypropylidene 1,3 Synthesis Example-1 except that a mixture of 200 kg of a monomer having a composition of bis [(N acryloylaminopropyl) N, N dimethylammonium chloride] (HPAD) 3 × 10 -4 mol% and acrylamide (AAM) 40 mol% was used. Similarly, a sample to be subjected to the test (sample-2) was obtained.
[0023]
(Synthesis Example 3 of the Invention) Acryloyloxyethyltrimethylammonium chloride (AMC) 49.998 mol% (represented as about 50 in Table 1), acrylic acid (AAC) 10 mol%, 2-hydroxypropylidene 1,3 Synthesis Example 1 except that a mixture of 200 kg of a monomer having a composition of bis [(N acryloylaminopropyl) N, N dimethylammonium chloride] (HPAD) 2 × 10 −3 mol% and acrylamide (AAM) 40 mol% was used. Similarly, a sample to be subjected to the test (sample-3) was obtained.
[0024]
(Comparative product synthesis example-1) Acryloyloxyethyltrimethylammonium chloride (AMC) 29.9997 mol% (represented as about 30 in Table 1), 2-hydroxypropylidene 1,3 bis [(Nacryloylaminopropyl) N , N-dimethylammonium chloride] (HPAD) 3 × 10 −4 mol% and acrylamide (AAM) A sample to be subjected to a test in the same manner as in Synthesis Example 1 except that a mixture of 200 kg of a monomer having a composition of 70 mol% (sample -6).
[0025]
(Comparative product synthesis example-2) Acryloyloxyethyltrimethylammonium chloride (AMC) 28 mol% (represented as 28 in Table 1), acrylic acid (AAC) 2 mol%, acrylamide (AAM) without using a crosslinking agent ) A sample to be subjected to the test (Sample-7) was prepared in the same manner as in Synthesis Example 1 except that a mixture of 200 kg of the monomer having a composition of 70 mol% was used.
[0026]
(Comparative product synthesis example-3) Acryloyloxyethyltrimethylammonium chloride (AMC) 50 mol% (expressed as 50 in Table 1), acrylic acid (AAC) 10 mol%, acrylamide (AAM) without using a crosslinking agent ) A sample to be subjected to the test (sample-8) was prepared in the same manner as in Synthesis Example 1 except that a mixture of 200 kg of the monomer having a composition of 40 mol% was used.
[0027]
(Comparative product synthesis example-4) Acryloyloxyethyltrimethylammonium chloride (AMC) 49.998 mol% (expressed as about 50 in Table 1), acrylic acid (without adding isopropyl alcohol as a chain transfer agent) AAC) A monomer having a composition of 10 mol%, 2, hydroxypropylidene 1,3 bis [(N acryloylaminopropyl) N, N dimethyl ammonium chloride] (HPAD) 2 × 10 -3 mol%, and acrylamide (AAM) 40 mol% A sample to be subjected to the test (sample-9) was prepared in the same manner as in Synthesis Example 1 except that 200 kg of the mixture was used.
[0028]
(Comparative product synthesis example-5) Acryloyloxyethyltrimethylammonium chloride (AMC) 49.998 mol% (represented as about 50 in Table 1) without adding isopropyl alcohol as a chain transfer agent, acrylic acid ( (AAC) 10 mol%, N, N 'methylenebisacrylamide (MBAA) 2 × 10 -3 mol%, acrylamide (AAM) 40 mol% A monomer was prepared in the same manner as in Synthesis Example 1 except that a mixture of 200 kg was used. (Sample-10) to be subjected to the test.
[0029]
(Comparative product synthesis example-6) 49.998 mol% of acryloyloxyethyltrimethylammonium chloride (AMC) without adding polyoxyethylene nonylphenyl ether as a phase inversion agent to the polymer later (about 1 in Table 1). 50), acrylic acid (AAC) 10 mol%, 2-hydroxypropylidene 1,3 bis [(N acryloylaminopropyl) N, N dimethyl ammonium chloride] (HPAD) 2 × 10 -3 mol%, acrylamide (AAM) ) A sample to be subjected to the test (Sample-11) was prepared in the same manner as in Synthesis Example 1 except that a mixture of 200 kg of the monomer having a composition of 40 mol% was used.
[0030]
(Comparative product synthesis example -7) Acryloyloxyethyltrimethylammonium chloride (AMC) 49.998 mol% (about 1% in Table 1) without adding polyoxyethylene nonylphenyl ether as a phase inversion agent to the polymer. 50), acrylic acid (AAC) 10 mol%, N, N ′ methylenebisacrylamide (MBAA) 2 × 10 −3 mol%, and acrylamide (AAM) 40 mol%, except that a mixture of 200 kg of monomer was used. Was used as a sample (Sample-12) to be subjected to the test in the same manner as in Synthesis Example-1. The above is summarized in Table 1.
[0031]
[Table 1]
[0032]
(Observation result-1) Emulsion state sample-1 to sample-6 was diluted with tap water by a real stirrer (300 rpm) under stirring to a polymer concentration of 0.2% by weight, and after 1 hour, the viscosity was increased. When the diluted solution was collected and observed with a microscope, particles having a particle size of 30 μm or less (about 3 μm) were observed on one side, and the diluted solution was applied to a glass plate and dried by heating at 105 ° C. A dry film in the shape of a circle was formed. Further, when the ion equivalent value of this diluted solution was measured by colloid titration, the ion equivalent value was 85% or more of the theoretical value.
[0033]
(Observation Result-2) Emulsified Sample-7 to Sample-8 were diluted with tap water to a polymer concentration of 0.2% by weight with tap water using an actual stirrer in the same manner as in Observation Result-1 and passed for 1 hour. When the thickened liquid was collected and observed with a microscope, all of the liquids were homogeneous solutions and no particles were observed. The diluted solution was applied to a glass plate and dried by heating at 105 ° C. to form a continuous dried film. When the ion equivalent value of this diluted solution was measured by colloid titration, the ion equivalent value was 100% of the theoretical value.
[0034]
(Observation result-3) Emulsion sample-9 to sample-10 was diluted with tap water to a polymer concentration of 0.2% by weight under stirring with an actual machine in the same manner as observation result-1, and 1 hour passed. When the thickened liquid was collected and observed with a microscope, particles having a particle size of 30 μm or less (approximately 3 μm) were observed on one surface, and the diluted liquid was applied to a glass plate and dried by heating at 105 ° C. As a result, a granular discontinuous dry film was formed. Further, when the ion equivalent value of this diluted solution was measured by colloid titration, the ion equivalent value was 40% or less of the theoretical value.
[0035]
(Observation Result-4) As in Observation Result-1, Samples 11 to 12 in the emulsion state were diluted with tap water using a real stirring device to a polymer concentration of 0.2% by weight. Did not disperse in water, the gel-like mass floated, and a uniform polymer diluent was not obtained. On the other hand, when vigorous stirring was performed with a magnetic stirrer on a beaker scale, the emulsion was dispersed in water, and a uniform polymer diluent was obtained without a gel-like mass floating.
[0036]
【The invention's effect】
Observation Results Using the diluent adjusted in 1-4, the excess sludge (PH; 7.0, SS; 2300 mg / l, loss on ignition 72.0%) of the sewage treatment plant was used to reduce After adding iron and mixing well, a polymer of 1.2% of SS is added, and the mixture is stirred in a granulating and concentrating tank to form sludge into pellets and remove excess water as a filtrate. Dewatered with a belt press. Table 2 shows the results. The superiority of the product of the present invention is clear.
[0037]
[Table-1]
Polymer properties table
Figure 0003547110
AMC: acryloyloxyethyltrimethylammonium chloride AAC: acrylic acid AAm: acrylamide HPAD: 2-hydroxypropylidene 1,3 bis [(N-acryloylaminopropyl) N, N-dimethylammonium chloride]
MBAA: methylenebisacrylamide chain transfer agent: isopropyl alcohol phase transfer agent: polyoxyethylene nonyl phenyl ether
Dehydration treatment result table
Figure 0003547110

Claims (6)

下記(A)〜(H)成分を適時混合強攪拌し、油相中に微細単量体相液滴を形成させた後に重合操作を行い、親水性界面活性剤を混合して得た両性高分子からなる汚泥脱水剤。
(A)全単量体中5〜97.9999モル%の下記式(1)で表される水溶性カチオン性ビニル単量体またはその混合物。
Figure 0003547110
(但し、式中、AはOまたはNH;BはC2 H4 、C3H6 、C3 H5 OH;R1 はHまたはCH3 ;R2 、R3 は炭素数1〜4のアルキル基;R4 は水素または炭素数1〜4のアルキル基あるいはベンジル基;X- はアニオン性対イオンを表す。)
(B)全単量体中0.0001〜0.01モル%の2ヒドロキシプロピリデン1,3ビス〔(Nアクリロイルアミノプロピル)N,Nジメチルアンモニウムクロリド〕、
(C)全単量体中2〜30モル%の水溶性アニオン性ビニル単量体またはその混合物。
(D)残余のノニオン性水溶性単量体。
(E)連鎖移動剤。
(F)水。
(G)少なくとも1種類の炭化水素から成る油状物。
(H)逆相エマルジョンすなわち油中水型エマルジョンを生成するに有効な量とHLBである少なくとも1種類の界面活性剤。
The following components (A) to (H) are mixed and stirred vigorously as appropriate to form fine monomer phase droplets in the oil phase, and then polymerized, and then mixed with a hydrophilic surfactant to obtain an amphoteric compound. A sludge dewatering agent consisting of molecules.
(A) A water-soluble cationic vinyl monomer represented by the following formula (1) or a mixture thereof in an amount of 5 to 97.9999 mol% of all monomers.
Figure 0003547110
(Where A is O or NH; B is C2 H4, C3 H6, C3 H5 OH; R1 is H or CH3; R2, R3 is an alkyl group having 1 to 4 carbon atoms; R4 is hydrogen or 1 to 4 carbon atoms) An alkyl group or a benzyl group of X. X- represents an anionic counter ion.)
(B) 0.0001 to 0.01 mol% of 2-hydroxypropylidene 1,3 bis [(N acryloylaminopropyl) N, N dimethyl ammonium chloride] in all monomers;
(C) 2-30 mol% of a water-soluble anionic vinyl monomer or a mixture thereof in all monomers.
(D) Residual nonionic water-soluble monomer.
(E) a chain transfer agent.
(F) water.
(G) an oil comprising at least one hydrocarbon.
(H) at least one surfactant which is an HLB with an effective amount to produce a reversed phase emulsion, ie, a water-in-oil emulsion.
前記ノニオン性水溶性単量体が(メタ)アクリルアミドであることを特徴とする請求項1に記載の汚泥脱水剤。The sludge dewatering agent according to claim 1, wherein the nonionic water-soluble monomer is (meth) acrylamide. 前記水溶性アニオン性ビニル単量体が(メタ)アクリル酸であることを特徴とする請求項1あるいは請求項2に記載の汚泥脱水剤。3. The sludge dewatering agent according to claim 1, wherein the water-soluble anionic vinyl monomer is (meth) acrylic acid. 4. 前記親水性界面活性剤がHLB9〜15のノニオン性界面活性剤であることを特徴とする請求項1〜請求項3のいずれかに記載の汚泥脱水剤。The sludge dewatering agent according to any one of claims 1 to 3 , wherein the hydrophilic surfactant is a nonionic surfactant having an HLB of 9 to 15. 有機性汚泥に無機凝集剤を添加して攪拌した後、前記請求項1〜4のいずれかに記載の両性高分子からなる汚泥脱水剤を添加し、該有機性汚泥を造粒し、濾過により濾液を分離して造粒物を濃縮した後、この造粒物を脱水機で脱水することを特徴とする汚泥脱水方法。After adding an inorganic flocculant to the organic sludge and stirring, a sludge dehydrating agent comprising the amphoteric polymer according to any one of claims 1 to 4 is added, and the organic sludge is granulated and filtered. A sludge dewatering method, comprising separating a filtrate, concentrating a granulated substance, and dehydrating the granulated substance with a dehydrator. 前記無機凝集剤が硫酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウム、硫酸鉄、塩化鉄、ポリ鉄あるいはこれらの混合物から選ばれる一種である事を特徴とする請求項5に記載の汚泥脱水方法。The sludge dewatering method according to claim 5, wherein the inorganic coagulant is one selected from aluminum sulfate, aluminum chloride, polyaluminum chloride, iron sulfate, iron chloride, polyiron and a mixture thereof.
JP06391597A 1997-03-04 1997-03-04 Sludge dewatering agent and sludge dewatering method Expired - Fee Related JP3547110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06391597A JP3547110B2 (en) 1997-03-04 1997-03-04 Sludge dewatering agent and sludge dewatering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06391597A JP3547110B2 (en) 1997-03-04 1997-03-04 Sludge dewatering agent and sludge dewatering method

Publications (2)

Publication Number Publication Date
JPH10244300A JPH10244300A (en) 1998-09-14
JP3547110B2 true JP3547110B2 (en) 2004-07-28

Family

ID=13243125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06391597A Expired - Fee Related JP3547110B2 (en) 1997-03-04 1997-03-04 Sludge dewatering agent and sludge dewatering method

Country Status (1)

Country Link
JP (1) JP3547110B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279109C (en) 2001-06-11 2006-10-11 海茂株式会社 Amphoteric water-soluble polymer dispersion and use thereof
JP5142210B2 (en) * 2008-01-21 2013-02-13 ハイモ株式会社 Sludge dewatering method
JP5601704B2 (en) * 2010-07-08 2014-10-08 ハイモ株式会社 Sludge dewatering agent and sludge dewatering method
JP5641642B2 (en) * 2010-09-29 2014-12-17 ハイモ株式会社 Concentration method of sludge
JP5729717B2 (en) * 2010-11-30 2015-06-03 ハイモ株式会社 Concentration method of sludge
JP5865629B2 (en) * 2011-08-18 2016-02-17 ハイモ株式会社 Method for suppressing foaming of detachment liquid

Also Published As

Publication number Publication date
JPH10244300A (en) 1998-09-14

Similar Documents

Publication Publication Date Title
JP2975618B2 (en) High performance polymer coagulant
US5346986A (en) Agglomerated polymer particles of finely divided, water-soluble or water-swellable polymers, the preparation thereof and the use thereof
JP4141141B2 (en) Anionic and nonionic dispersion polymers for purification and dehydration
WO2004000944A1 (en) Water-soluble polymer dispersion, process for producing the same and method of use therefor
JP2002523533A (en) Inorganic flocculant-containing hydrophilic polymer dispersion composition used for wastewater treatment and method for producing the same
JP2004025094A (en) Flocculating and treating agent consisting of cross-linking, ionizable and water-soluble polymer and its use
JP3963361B2 (en) Aggregation treatment agent and method of using the same
KR19990067585A (en) High performance polymer flocculant
JP3936894B2 (en) Aggregation treatment agent and method of using the same
JP6257079B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP3547110B2 (en) Sludge dewatering agent and sludge dewatering method
JP4425528B2 (en) Paper making method
JP3218578B2 (en) Organic sludge dehydrating agent, method for treating organic sludge, and method for producing organic sludge dehydrating agent
JP3327813B2 (en) Sludge dewatering method
JP3681143B2 (en) High salt concentration sludge dewatering agent and sludge dewatering method
JP3813366B2 (en) Emulsion and its use
JP3729979B2 (en) Method for producing human waste sludge dewatering agent and human waste sludge dewatering agent
JP3614609B2 (en) Papermaking chemicals, papermaking methods and methods for producing papermaking chemicals
JP3729970B2 (en) Anaerobic digested sludge dewatering agent and method for producing anaerobic digested sludge dewatering agent
JP3707669B2 (en) Method for producing water-in-oil polymer emulsion
JP3729973B2 (en) Method for producing dewatering agent for sewage mixed raw sludge and dewatering agent for sewage mixed raw sludge
JP2013180260A (en) Waste water treatment method
JP3729976B2 (en) Membrane separation sludge dewatering agent and method for producing membrane separation sludge dewatering agent
JP2004059748A (en) Water-soluble polymer emulsion and method for using the same
JP3608094B2 (en) Organic sludge dehydrating agent and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees