[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3540969B2 - Magnetization method of superconductor - Google Patents

Magnetization method of superconductor Download PDF

Info

Publication number
JP3540969B2
JP3540969B2 JP29253999A JP29253999A JP3540969B2 JP 3540969 B2 JP3540969 B2 JP 3540969B2 JP 29253999 A JP29253999 A JP 29253999A JP 29253999 A JP29253999 A JP 29253999A JP 3540969 B2 JP3540969 B2 JP 3540969B2
Authority
JP
Japan
Prior art keywords
magnetic field
superconductor
pulse
pulse magnetic
magnetizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29253999A
Other languages
Japanese (ja)
Other versions
JP2001110637A (en
Inventor
陽介 柳
佳孝 伊藤
雅章 吉川
徹雄 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMRA Material R&D Co Ltd
Original Assignee
IMRA Material R&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMRA Material R&D Co Ltd filed Critical IMRA Material R&D Co Ltd
Priority to JP29253999A priority Critical patent/JP3540969B2/en
Publication of JP2001110637A publication Critical patent/JP2001110637A/en
Application granted granted Critical
Publication of JP3540969B2 publication Critical patent/JP3540969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【0001】
【技術分野】
本発明は,バルク形状の超電導体に強い磁場を捕捉させて磁石装置等を構成するための超電導体の着磁方法に関する。
【0002】
【従来技術】
近年,SmBa2Cu3Xなどの高温超電導体では,その組織制御により液体窒素温度程度でも永久磁石では不可能な1Tを超える大きな磁場が捕捉できるものが得られるようになった。
これらの高温超電導体は,材料開発により一層の特性向上が期待でき,また,低温に冷却するとさらに大きな磁場が捕捉可能になることが知られている。
そこで,これらのバルク状の高温超電導体を着磁して,これまで容易には得られなかった強力な磁場を発生する磁石装置として使うことが検討されるようになってきた。
【0003】
バルク状の超電導体が磁石として機能するのは,超電導遷移温度以下に冷却されて超電導状態になった超電導体内部に磁束線がピン止めされるためである。
したがって,冷却した超電導体の内部に磁束線がピン止めされた状態を実現するための方法,すなわち着磁方法が課題となる。
【0004】
実験的によく使われる方法は,大きな外部磁場中で超電導体内部に磁束線が十分はいった状態で冷却して超電導状態にした後に外部磁場を取り去り,その際にピン止めされた磁束線が超電導体内に残って着磁される,磁場中冷却(FC)と呼ばれる方法である。
しかし,この方法は高磁場を長時間超電導体に印加する必要があること,着磁後に超電導体の温度を保ったまま使用したい場所に移動させるのが困難なことなど,実用的には問題が多い。
【0005】
そのため,簡易な手段でバルク状の超電導体を着磁する方法として,パルス磁場を超電導体に印加して着磁する,パルス着磁という方法があり,特開平6−168823,特開平10−12429,特開平10−154620等が提案されており,特に特開平10−154620には,パルス着磁手順の工夫により捕捉磁場を増やす方法も開示されている。
これらの方法では,機器等の内部に組み込まれた超電導体を着磁することも可能であり,実用的には多くのメリットがある。
【0006】
【解決しようとする課題】
しかしながら,上記従来のパルス着磁においては,超電導体に捕捉される磁場に対してはるかに大きなパルス磁場を印加する必要があった。そのため,高い特性を持つ超電導体を着磁する場合には必要な磁場がさらに大きくなり,着磁が困難になるという問題があった。
これは高い磁場を得ることが実用上困難であるためである。
【0007】
本発明は,かかる従来の問題点に鑑みてなされたもので,より弱い磁場を用いて超電導体に着磁することができ,また着磁された超電導体がより強い磁場を捕捉して,より強い永久磁石として利用可能となる超電導体の着磁方法を提供しようとするものである。
【0008】
【課題の解決手段】
請求項1に記載の発明は,超電導遷移温度以下に冷却された超電導体を準備し,該超電導体の近傍に配設した着磁コイルにパルス電流を通電し,これにより発生するパルス磁場を上記超電導体に印加して該超電導体の着磁を行なう着磁方法において,
上記超電導体は相対的に臨界電流密度の高い部分と低い部分とを有してなり,
上記パルス磁場の上記超電導体の印加に当り,
まず初期パルス磁場を印加し,少なくとも臨界電流密度の相対的に低い部分と超電導体中心部に磁場を侵入させ,
次いで該初期パルス磁場よりも強度の強い中期パルス磁場を印加し,少なくとも臨界電流密度の相対的に高い部分に磁場を侵入させ,
その後上記中期パルスの強度以下の強さの後期パルス磁場を印加し,超電導体中心部から外縁に向けて着磁することを特徴とする超電導体の着磁方法にある。
【0009】
本発明において最も注目すべきことは,臨界電流密度の高い部分と低い部分とを有する超電導体に対し,まず初期パルス磁場を印加し,次いで初期パルス磁場よりも強い中期パルス磁場を印加し,その後中期パルス以下の強さの後期パルス磁場を印加して着磁を行なうことである。
【0010】
次に,本発明の作用につき説明する。
一般に超電導体の内部では,磁場は量子化されて磁束線となって存在する。
超電導体内にある磁束線には互いに反発力が働くので,磁束線は超電導体から抜けようとする。これに抗して磁束線を超電導体内部にピン止めする力が働くとき,超電導体は磁場を捕捉できる。
パルス着磁法は,パルス磁場の増磁過程で超電導体外縁部より磁束線を超電導体内部に侵入させ,印加した外部磁場が無くなった後もピン止め力によってそのまま超電導体内に磁束線を保持させることにより,超電導体を着磁する方法である。
【0011】
臨界電流密度が低い超電導体,すなわち特性の低い超電導体は,磁場が容易に超電導体内部に侵入することができる。よって,パルス磁場の増磁過程において超電導体外縁部にはあまり大きな磁場勾配ができない。
一方,臨界電流密度が高い超電導体,すなわち特性の高い超電導体は,超電導体外縁部で印加された外部磁場が強くシールドされるため,パルス磁場の増磁過程で超電導体にかかる磁場が一定以上に大きくなるまで超電導体内にはほとんど磁束線が侵入しない。
特性の極めて高い超電導体(SmBa2Cu3Xなどが一例として挙げられる。)を低温に冷却し,より特性の高い状態にすると,上述の傾向がより顕著になり,パルス磁場の立ち上がり時に超電導体の外縁部に非常に大きな磁場勾配ができる。
【0012】
超電導体内部で磁束線が動くと発熱が起こるので,大きな磁場勾配ができている場合,一旦磁束線の侵入がどこかで起こるとそこで局所的に温度が上昇し,その場所の特性が相対的にさらに低くなる。そのため,ますます多くの磁束線が集中して侵入するフラックス・ジャンプと呼ばれる現象が起こる。
このような現象が起きると,超電導体外縁部等の初めに磁束線の侵入が起こったところから超電導体中心部に向かって磁束線の通り道ができ,そこでの磁場は,印加された外部磁場の大きさにほぼ等しくなる。
したがって,このフラックス・ジャンプを利用すれば,超電導体に印加した磁場の大きさに近い磁場を超電導体中心部に侵入させることができる。
【0013】
従来の着磁方法では,超電導体中心部に着磁に十分な磁場を侵入させるには,超電導体全体に磁場を侵入させる必要があったため,超電導体中心部に捕捉できる磁場の少なくとも2倍以上の印加磁場が必要だった。
そのため,パルス磁場の増磁過程で磁束線の侵入に伴う発熱により大きく温度が上昇し,超電導体のピン止め力が小さくなって,超電導体中心部まで侵入させた磁束線がパルス磁場の減磁過程で抜けてしまい,超電導体の捕捉磁場が減っていた。
【0014】
これに対し,本発明の方法では,特性の高い部分と低い部分とが形成された超電導体を用いて,これに対し初期パルス磁場,中期パルス磁場,後期パルス磁場と三段階に分けてパルス磁場を印加する。
後述するごとく予め超電導体に対する単パルス磁場を利用した着磁実験(実施形態例1における図2等参照)を行なう等すれば,当該超電導体において,少なくとも臨界電流密度の相対的に低い部分と超電導体中心部に磁場が侵入可能となるパルス磁場の大きさを知ることができる。
【0015】
また,超電導体外縁部の局所的に特性の低いところから侵入した磁束線がちょうど超電導体の中心部に到達するときに外部磁場が減少に転じるような大きさのパルス磁場(以後,最適印加磁場と呼ぶ)を選ぶと,超電導体中心部に到達した磁束線はそのまま保持される。
このような大きさのパルス磁場を初期パルス磁場として着磁に使用することで,上記のように磁束線が局所的に集中して侵入するような過程を発生させることができる。
このため,初期パルス磁場の強度は小さくて済む。
なお,上記超電導体中心部とは超電導体の外縁より最も遠い部分で単パルス着磁等の印加で最も磁場が侵入し難い部分のことである。
【0016】
仮に初期パルス磁場の大きさが最適印加磁場未満の場合には,超電導体中心部には殆ど磁場が入らないため,超電導体中心部に磁場が捕捉されない。また,超電導体外縁部では磁場は主として特定の場所に捕捉されてしまい,磁束線の通り道にならなかった領域には磁場があまり残らず,かなり不均一な着磁状態となるおそれがある。
【0017】
仮に最適印加磁場より大きなパルス磁場を初期パルス磁場として利用した場合,磁束線の運動による発熱のため,特に磁束線の侵入経路となった超電導体外縁部の局所的に特性の低いところと超電導体中心とを結ぶ領域の捕捉磁場が少なくなるおそれがある。つまり,着磁の効率が悪くなるおそれがある。
また,パルス磁場の減磁過程で超電導体の中心部から特定の場所へ向かって,増磁過程とは逆方向にフラックス・ジャンプが起こり,超電導体内に侵入させた磁束線が抜けてしまうこともある。
【0018】
なお,パルス磁場の増磁過程,減磁過程とは,次の通りである。
パルス磁場を発生させるパルス電流は電流0から増大してピークを迎え,その後減少して再び0となる。パルス電流の0〜ピーク間はパルス磁場も増大し,ピーク〜0間はパルス磁場も減少する。それぞれの過程を増磁過程,減磁過程と呼ぶ。
【0019】
ただし,パルス磁場がある程度大きい場合,超電導体全体に完全に磁束線が侵入するようになり,初期パルス磁場の印加の際に超電導体外縁部の磁束線の通り道にならなかった領域,すなわち特性が高い,臨界電流密度が高い領域にも磁場が残るようになる。
【0020】
よって,中期パルス磁場として最適印加磁場より大きい,適当な大きさの印加磁場を選択することで,少なくとも臨界電流密度の相対的に高い部分に磁場を侵入させることが実現できる。
つまり,超電導体は初期パルス磁場による着磁によって,超電導体中心部に磁場を侵入させ,この部分を中心に特性の低い部分に磁束を保持させた状態となっている。ここに中期パルス磁場による着磁を行なうことで,超電導体外縁部全体に磁場を侵入させることができ,超電導体全体の捕捉磁束量を増やすことができる。
【0021】
この場合は,超電導体中心部にすでに磁場があるため磁束線の駆動力となる磁場勾配が大きくならず,ある程度大きな印加磁場をかけても,超電導体中心部には磁束線が侵入しない。そのため,超電導体外縁部全体に磁場を侵入させるべく,最適印加磁場を超える磁場を印加しても,超電導体中心部の磁場はほぼ一定に保つことができる。
これによって,超電導体の特性の低い部分も高い部分もだいたい同じように磁場が着磁される。
【0022】
なお,上記中期パルス磁場にふさわしい大きさのパルス磁場を選択するには,後述する実施形態例1の図2に示すごとく,単パルス磁場による着磁を当該超電導体に対して行なって,超電導体の磁場分布等を求めることで,特性の高い部分に磁場が侵入するが,超電導体中心部からは磁場が抜けない程度の大きさのパルス磁場を知ることができる。
【0023】
また,初期パルス磁場,続いて印加する中期パルス磁場を終えた後,後期パルス磁場として,中期パルスの強度以下の後期パルス磁場を印加する。
超電導体内部に侵入する磁束線の量は既に侵入している磁束線がある分,および印加磁場が中期パルス磁場以下となった分だけ少なくなる。
その結果中期パルス磁場での着磁に比べ,超電導体中での温度上昇が減り,侵入した磁束線が有効に捕捉されるようになり,超電導体中心部から外縁に向けて着磁が実現され,捕捉磁場を増やすことができる。
【0024】
このように後期パルス磁場の印加により,仮に超電導体が後述する実施形態例1に示すごとき円柱状である場合は,図8等より明らかであるが,略同心円状かつ略均一に中心部から外縁部へ向けて徐々に磁場が小さくなるような磁場分布を得ることができる。
なお,仮に超電導体の形状が四角柱等であれば磁場分布はピラミッド状等を呈する。
【0025】
まとめると,初期パルス磁場によって,超電導体における特性の低い部分から中心部へ向けて磁場を侵入させてやり,これによって超電導体の中心部近傍や特性の低い部分に磁束を捕捉させる。
次いで中期パルス磁場により,中心部近傍が捉えた磁束の大きさを低下させることなく,特性の高い部分に磁場を捕捉させ,最後の後期パルス磁場で超電導体の全体の捕捉磁場を太らせてやり,磁石としての性能を高めることができる。
従来と異なり,着磁の途中で中心から磁場が洩れる等,磁場の強度が着磁中に低下することがない。
また,特性の低い部分から順に着磁しているため,より低い強度のパルス磁場を利用して,より強い磁場を超電導体に捕捉させることができる。
【0026】
以上,本発明によれば,より弱い磁場を用いて超電導体に着磁することができ,また着磁された超電導体がより強い磁場を捕捉して,より強い永久磁石として利用可能となる超電導体の着磁方法を提供することができる。
【0027】
上記初期パルス磁場は超電導体の中心部に対し磁場が捕捉可能な強度の磁場で,前述した最適印加磁場である。この大きさは超電導体の種類等によって異なる。
この大きさを定める方法としては,例えば次のような方法がある。
未着磁の超電導体にパルス磁場を印加し,着磁を行なう。このパルス磁場の大きさを適当に変更して,印加磁場と捕捉磁束量,表面最大磁場との関係を導出し,後述する実施形態例1の図2にかかるような線図を得る。
このような線図において,捕捉磁束量,表面最大磁場が最大となった最適印加磁場の±10%の範囲にある磁場を初期パルス磁場として印加することが好ましい。
【0028】
初期パルス磁場がこの範囲を逸脱した場合は後述する図8のような中心部から外縁に向かって大きさがだいたい均一に低減するような磁場分布を得ることが困難となるおそれがある。また,着磁後の捕捉磁束量や表面最大磁場が小さくなるおそれがある。
【0029】
また,上記中期パルス磁場は,初期パルス磁場により着磁された超電導体の中心部における磁場が抜けない程度の大きさで印加する必要がある。
この大きさを定める方法としては,例えば次のような方法がある。
未着磁の超電導体にパルス磁場を印加し,着磁を行なう。このパルス磁場の大きさを適当に変更して,印加磁場と捕捉磁束量,表面最大磁場との関係を導出し,後述する実施形態例1の図2にかかるような線図を得る。
【0030】
このような線図における最大捕捉磁束量より捕捉磁束量が10〜30%低下した際の印加磁場であって,初期パルス磁場よりも大きな磁場を中期パルス磁場として印加することが好ましい。
中期パルス磁場がこの範囲を逸脱した場合は後述する図8のような中心部から外縁に向かって大きさがだいたい均一に低減するような磁場分布を得ることが困難となるおそれがある。また,着磁後の捕捉磁束量や表面最大磁場が小さくなるおそれがある。
【0031】
なお,超電導体の種類等により差はあるが,印加磁場が高くなることで捕捉磁束量は減少してゆく。この減少の傾きが大きく急激に低下するものも,殆ど平らな状態で低下する場合もある。殆ど平らである超電導体に対する中期パルス磁場としてかなり大きな磁場を与えても初期パルス磁場で印加した磁束が抜けない。
【0032】
ただし,10Tより大きなパルス磁場は生成することが困難であるため,中期パルス磁場の上限は,10Tとすることが好ましい。
また,後期パルス磁場の大きさは中期パルス磁場の大きさ以下であればよい。
【0033】
また,本発明にかかる着磁方法において利用するパルス磁場は,立ち上がり時間,つまり0からピークに達する時間が1〜30msであるパルス電流より得ることが好ましい。これにより,パルス磁場の増磁過程で超電導体の外縁部に充分大きな磁場勾配を生じさせ,フラックスジャンプによって磁束線を超電導体の中心部に侵入させることができる。
1ms未満では,磁束線が超電導体内に充分入らないうちにパルス磁場が減磁過程に入ってしまうおそれがあり,30msを越えるパルス磁場を発生させるためには必要なパルス電源が非常に大型となってしまい,実用的でなくなるおそれがある。
【0034】
次に,請求項2に記載の発明のように,上記初期パルス磁場は複数回印加することが好ましい。
これにより,初期パルス磁場による超電導体の中心部に捕捉される磁場をより大きくすることができる。
【0035】
次に,請求項3に記載の発明のように,上記後期パルス磁場は複数回印加し,各印加の際のパルス磁場は中期パルス磁場の強度から順次強度が低減するか,または各印加の際のパルス磁場は中期パルス磁場の強度と略等しいことが好ましい。
これにより,すでに捕捉された磁場がある分だけ超電導体内に新たに侵入する磁場が減るため,その結果超電導体の発熱が少なくなって捕捉される磁場を増やすことができる。
【0036】
次に,請求項4に記載の発明のように,上記超電導体は,半溶融状態から徐冷凝固して結晶成長させたRE-Ba2Cu3X(REはLa,Nd,Sm,Eu,Ga,Tb,Dy,Ho,Er,Tm,Yb,Yのいずれか1種以上の元素である。)を主相とすることが好ましい。
これにより磁束線のピン止め力の強い超電導体を用いることにより,該超電導体が大きな磁場を捕捉できる。
なお,RE-Ba2Cu3XにおけるXは任意の正数である。
【0037】
また,本発明によれば,強く着磁された超電導体が得られるため,疑似的に強い永久磁石として機能する超電導体を得ることができる。
このように着磁された超電導体は,永久磁石の着磁,磁場プレス,MMR(核磁気共鳴装置),MRI(磁気共鳴イメージング),磁気分離等に利用できる。
【0038】
【発明の実施の形態】
実施形態例1
本発明の実施形態例にかかる超電導体の着磁方法につき,図1〜図17を用いて説明する。
本例の着磁方法の概略について説明する。
超電導遷移温度以下に冷却された超電導体を準備し,該超電導体の近傍に配設した着磁コイルにパルス電流を通電し,これにより発生するパルス磁場を上記超電導体に印加して該超電導体の着磁を行なう。
上記超電導体は,相対的に臨界電流密度の高い部分と低い部分とを有し,これに対し,まず初期パルス磁場を印加し,次いで該初期パルス磁場よりも強度の強い中期パルス磁場を印加し,その後上記中期パルスの強度以下の強さの後期パルス磁場を印加して,着磁を行なう。
【0039】
図1に本例にかかる超電導体1及びその着磁に使用した着磁装置10を示す。図1(a)に示すごとく,上記着磁装置10は,冷凍機120によって冷却される断熱容器11内に配設されたコールドヘッド12と,断熱容器11内で該コールドヘッド12に接触させて配設され熱伝導により超電導遷移温度以下に冷却される超電導体1と,断熱容器11の外部に配設され超電導体1に磁場を印加するための着磁コイル14と,該着磁コイル14に種々の大きさのパルス電流を通電することにより超電導体1の印加磁場を任意に制御できるパルス電源15とからなる。
【0040】
本例の着磁には,立ち上がり時間13msのパルス電流を上記着磁コイル14に流して発生させたパルス磁場を利用した。
図1(b)に示すごとく,超電導体1は直径36mm,厚み16mmの円柱形バルク形状である。
この超電導体1はSmBa2Cu3XとSm2BaCuOXとをモル比で3:1に混合し,さらに10wt%のAg2Oと0.5wt%のPtを添加した粉末を出発試料として溶融法で作成した。
【0041】
図1(c)に示すごとく,この超電導体1は溶融法によって作製され,凝固開始時に中心に置いた種結晶から伸びるファセット・ライン101が十字状に現われているものである。この超電導体1において,ファセット・ライン101付近の超電導特性は他の部分に比べてわずかに高くなっている。従って,この超電導体1は,ファセット・ライン101付近は臨界電流密度の高い部分であり,このファセット・ライン101間の該ファセット・ライン101に対し45度に当たる部分(同図に示す符号105付近の範囲)は相対的に臨界電流密度の低い,超電導特性の低い部分となる。
【0042】
次に,初期パルス磁場や中期パルス磁場の大きさを定めるための単パルス着磁実験について説明する。
直径36mm,厚さ16mmの円柱形バルク形状の上記超電導体を準備し,これを35Kに冷却した。
この超電導体に対し単パルス磁場を用いて着磁して,次のような測定を行なった。
【0043】
この超電導体に対し,種々の大きさのパルス磁場を印加した時の超電導体の表面の捕捉磁場分布を,磁場センサをX方向,Y方向それぞれ2mm間隔で走査して測定した。その分布上の最大値が表面最大磁場Bmaxで,分布全体の積分値が捕捉磁束量φである。
この測定においては,図1(c)及び図3に示すごとく,測定のXY方向と超電導体1のファセット・ライン101の方向とを揃え,すべて同じ向きで測定した。
この測定結果を示す線図を図2に,また,図2の各▲1▼〜▲8▼における超電導体表面の磁場分布を図3に示した。
【0044】
なお,この実験は単パルス磁場による着磁である。よって,パルス磁場により着磁を行なって測定を終えた後,超電導体を超電導遷移温度よりも高い温度に加熱して,捕捉された磁束を取り除いた。
従って,各単パルス磁場が印加される際の超電導体はまったく着磁されていない状態にある。
【0045】
また,特に図2における,▲2▼,▲3▼,▲4▼については,磁場を示す各等高線に数値を付した別図面を図4〜図6として掲載した。
▲2▼の状態にある超電導体の磁場分布は,図4に示されるごとく,右斜め方向に磁場の高い部分が存在し,僅かに超電導体中心部分へ磁場が侵入した状態にあることが分かる。
【0046】
図5に示すごとく,▲3▼の状態はファセットラインに対し45度の位置にある部分で超電導特性が相対的に低い部分から超電導体の中心部へ向かって磁場が入り込んだ状態を示している。全体としてX状の磁場分布が認められる。
【0047】
図6に示すごとく,▲4▼の状態は,より中心部の磁場が高くなり,また,極端なX状の模様が磁場分布に認められなくなった状態である。しかし僅かにファセット・ラインに対し45度の位置にある部分の磁場が高い。
他の▲1▼,▲5▼〜▲8▼については特に等高線に数値を記載しないが,図4〜図6より明らかであるため,省略した。
【0048】
以上の測定結果である図2〜図6より,印加磁場が3.5T以下のときはほとんど超電導体中に磁場が入っていないのに対し,印加磁場が3.5Tを超えると,急に図中45度方向,すなわちファセット・ラインに対し45度の方向から磁場が侵入していることがわかった。
【0049】
上記実験から,上記超電導体に対する最適印加磁場は4.36Tで,このときの捕捉磁束量は最大2.95Tに達しており,磁場捕捉率(=捕捉磁束量/印加磁場)は67%であることが分かった。
【0050】
また,図3の▲5▼に示すごとく,最適印加磁場が印加された場合,超電導体外縁部のファセット・ライン上にあまり磁場が捕捉されていないこともわかる。
印加磁場がさらに大きいときは,図3より超電導体外縁部のファセット・ライン上に対する磁場の捕捉が始まることが分かるが,図2より表面最大磁場,捕捉磁束量の双方共に最適印加磁場をかけた場合よりも減少傾向にある。
【0051】
印加磁場がより高くなると,超電導体中心部に過剰に侵入した磁束線が,パルス磁場がファセット・ラインに対し45度の方向にフラックス・ジャンプを起こして抜けるため,図3の▲7▼や▲8▼等より,磁場が主としてファセット・ライン上に捕捉されていることが分かる。
【0052】
このような単パルス磁場の着磁実験より,本例の着磁方法において,初期及び中期パルス着磁の際の適切な磁場を求めることができた。
つまり,初期のパルス磁場はファセット・ラインに対し45℃の方向で磁場が侵入し,中心部に磁場が捕捉された際の磁場で最適印加磁場4.36の±10%の範囲にある4.4T程度がふさわしいことが分かった。
【0053】
また,最適な中期パルス磁場を求めるため,初期パルス磁場として4.4Tを超電導体に印加した後,種々の大きさの磁場を1回だけ重畳して,同様の捕捉磁場分布測定を行なった。その結果,ファセット・ライン上にも充分磁場を捕捉させることができ,かつ初期パルス磁場により超電導体の中心部に捕捉された磁場が保持可能な6.2T程度の磁場が中期のパルス磁場にふさわしいことが分かった。
【0054】
次に本例にかかる超電導体の着磁方法について詳細に説明する。
本例の上述した着磁方法に基づいて,順に初期パルス6回,中期パルス1回,後期パルス18回という手順で超電導体1に対する着磁を行なった。
この時の超電導体の温度は35Kに維持され,また立ち上がり時間13msのパルス電流をコイルに通電して発生させたパルス磁場を利用した。
【0055】
まず4.4Tのパルス磁場を3回印加した後,略同じ大きさのパルス磁場を更に3回印加した。これが図7にかかるP1に当たる過程で初期パルス磁場である。
続いて,図7におけるP2の過程で6.2Tの中期パルス磁場を1回,図7のP3にあたる過程で5.9Tから順次大きさを低減させて18回後期パルス磁場の印加を行った。後期パルス磁場の最後18回目は3.7Tで行なった。
【0056】
各パルス磁場が印加された直後の超電導体における捕捉磁束量及び表面の最大磁場とを図7に記載した。なお,測定方法の詳細は上述の記載と同様である。
また,図7における▲1▼〜▲8▼における超電導体の磁場分布を図8に記載した。特に▲2▼,▲8▼における超電導体の磁場分布については,図9,図10に示すごとく,拡大して等高線に磁場の大きさを数値で記載した。
他の▲1▼,▲3▼〜▲7▼については特に等高線に数値を記載しないが,図9,図10より明らかであるため,省略した。
【0057】
図7からこの一連の過程における表面最大磁場ならびに捕捉磁束量の変化の履歴が分かり,矢印で示した最後の点が最終的な着磁後の表面最大磁場および捕捉磁束量である。
図9より,初期パルス磁場を印加した段階でファセット・ラインに対する45度の方向から中心部へ向かって磁場が侵入し,ファセット・ライン上にはあまり磁場がはいってこないことが分かった。
また,図10より,最終的には同心円状の綺麗で形の崩れていない磁場分布が超電導体に形成されたことが分かった。
【0058】
ここに,比較例1(従来技術;特開平10−154620の方法)として,次のような着磁を上記と同様の超電導体に対し施して,上記と同様に超電導体における捕捉磁束量と表面の最大磁場とを測定した。
この時の超電導体の温度は35Kに維持され,また立ち上がり時間13msのパルス電流をコイルに通電して発生させたパルス磁場を利用した。
ただし,着磁の方法は最初に6.9Tのパルス磁場を印加し,その後順次パルス磁場の大きさを低減させて,最後は3.7Tの磁場を印加した。図12のPc1に示すごとき着磁の過程である。
【0059】
各パルス磁場が印加された直後の超電導体における捕捉磁束量及び表面の最大磁場とを図12に記載した。なお,測定方法の詳細は上述の記載と同様である。また,図12の▲1▼〜▲8▼における超電導体の磁場分布を図13に記載した。特に▲8▼における超電導体の磁場分布については,図14に示すごとく,等高線に磁場の大きさを数値で記載した。
他の▲1▼〜▲7▼については特に等高線に数値を記載しないが,図14より明らかであるため,省略した。
【0060】
図12からこの一連の過程における表面最大磁場ならびに捕捉磁束量の変化の履歴が分かり,矢印で示した最後の点が最終的な着磁後の表面最大磁場および捕捉磁束量である。
図13,図14より,比較例1のような着磁プロセスでは,より小さな磁場を印加するたびに表面最大磁場,捕捉磁束量共に増えているが,超電導体中心部での磁場が本例のごとく高くならないため,最終的な着磁後の表面最大磁場,捕捉磁束量がともに本例より少なかった。
【0061】
更に,本例の結果である図7と,比較例の結果である図12とを同じ線図に記載した。これが図11である。
本例の着磁方法では,局所的な磁場侵入を利用して最初に超電導体中心部に大きな磁場を捕捉させるため,着磁後の表面最大磁場は3.2Tに達し,従来技術の2.8Tを大きく上回っている。また,捕捉磁束量についても同様で本例だと2645μWb,比較例1では2432μWbである。
また,着磁に必要な最大の印加磁場は最高で6.2Tであり,比較例1の6.9Tより低くて済むこともわかった。
【0062】
また別の比較例2として,次のような着磁を行なった。
この時の超電導体の温度は35Kに維持され,また立ち上がり時間13msのパルス電流をコイルに通電して発生させたパルス磁場を利用した。
ただし,着磁の方法は最初に最適印加磁場と略等しい4.4Tのパルス磁場を印加し,その後何度か4.4T近傍の大きさのパルス磁場を印加した。その後は順次パルス磁場の大きさを低減させて最後に3.7Tの磁場を印加した。図15のPc2に示すごとき着磁の過程である。
【0063】
各パルス磁場が印加された直後の超電導体における捕捉磁束量及び表面の最大磁場とを図15に記載した。なお,測定方法の詳細は上述の記載と同様である。また,図15における▲1▼〜▲8▼における超電導体の磁場分布を図16に記載した。更に,特に▲8▼における超電導体の磁場分布については,図17に示すごとく,等高線に磁場の大きさを数値で記載した。
他の▲1▼〜▲7▼については特に等高線に数値を記載しないが,図17より明らかであるため,省略した。
【0064】
図15からこの一連の過程における表面最大磁場ならびに捕捉磁束量の変化の履歴が分かり,矢印で示した最後の点が最終的な着磁後の表面最大磁場および捕捉磁束量である。
図16,図17より,比較例2のような着磁プロセスでは,途中経過においても,最終的にも臨界電流密度が低い部分にしか着磁ができず,いびつでゆがんだ磁場分布でしか得られないことが分かった。
このように比較例2では,着磁後の表面最大磁場は3.2Tに達し,本例に近い値が得られたが,捕捉磁束量が少ない上に磁場分布がいびつなので,磁石としての性能が低く,実用的にはあまり好ましくない。
【0065】
本例の作用効果について説明する。
本例では初期パルス磁場によって,超電導体における特性の低い部分から中心部へ向けて磁場を侵入させてやり,これによって超電導体の中心部近傍や特性の低い部分に磁束を捕捉させる。この状態の磁場分布が図8の▲1▼や▲2▼である。
【0066】
次いで中期パルス磁場により,中心部近傍が捉えた磁場の大きさを低下させることなく,特性の高い部分に磁場を捕捉させる。この状態の磁場分布が図8の▲3▼である。
最後の後期パルス磁場で超電導体の全体の捕捉磁場を太らせてやり,磁石としての性能を高めることができる。この状態が図8の▲4▼〜▲8▼である。
同図より明らかであるが,着磁の途中で中心から磁場が洩れる等,磁場の強度が着磁中に低下することがない。
得られた磁場分布は中心部から外縁に向かって均一で綺麗な同心円状になっており,このことから,磁場発生源として使用する際に,空間に対称性のよい磁場を発生できることが分かる。
【0067】
更に,本例では特性の低い部分から順に着磁しているため,より低い強度のパルス磁場を利用して,より強い磁場を超電導体に捕捉させることができる。これは図11より明らかである。
【0068】
以上,本例によれば,より弱い磁場を用いて超電導体に着磁することができ,また着磁された超電導体がより強い磁場を捕捉して,より強い永久磁石として利用可能となる超電導体の着磁方法を提供することができる。
【0069】
実施形態例2
次に,実施形態例1とは異なる方法で中期パルス磁場の大きさを定め,実施形態例1と同様に初期パルス磁場,中期パルス磁場,後期パルス磁場にて超電導体を着磁する方法について説明する。
【0070】
中期パルス磁場の大きさを,実施形態例1では単パルス磁場による着磁実験を行なって,表面最大磁場や捕捉磁束量を測定して,その結果に基づいて定めた。本例では,超電導体に連続的にパルス磁場を印加して,(つまり着磁のごとに捕捉された磁場を抜かない。)表面最大磁場を測定し,その結果に基づいて定めるのである。
【0071】
図1と同様の超電導体に対し着磁するが,図18に示すごとく,まず3.1Tの磁場を印加する。この時の超電導体における磁場分布が図18(a)で,リング状の着磁分布が得られる。
続いてリング状の着磁分布を持った状態の超電導体に対し,2度目の着磁として3.7Tのパルス磁場を印加する。この時の磁場分布が図18(b)で,リング状の磁場分布が図18(a)のときよりも少し太くなった。
【0072】
続いて4.3Tのパルス磁場を着磁する。この4.3Tのパルス磁場は実施形態例1に記載した通り,最適捕捉磁場に略等しい。この着磁で一気に中心部まで磁場が侵入したことが図18(c)より明らかであり,また図18の線図より知れるごとく,表面最大磁場の大きさが急激に上昇した。
【0073】
その後,順次4.8T,5.4T,5.9T,6.5T,7.0Tのパルス磁場を印加する。図18(d)〜(g)より磁場分布はあまり変化がないが,線図より,最大表面磁場は5.4Tのパルス着磁を行なった直後が最大で,その後は徐々に減少していくことが分かった。
なお,特に図18(g)における超電導体の磁場分布については,図19に示すごとく,等高線に磁場の大きさを数値で記載した。
他の(a)〜(f),(h)については特に等高線に数値を記載しないが,図19より明らかであるため,省略した。
【0074】
従って,超電導体を準備し,超電導体着磁装置に組み込んだ後,図20に示すように,パルス磁場を徐々に高めながら重畳して印加してやり,最大捕捉磁場の大きさが減少傾向となった時点からパルス磁場を徐々に低めながら重畳して印加する。これにより,実施形態例1に記載したような単パルス実験を行なわずとも,自然と初期パルス磁場,中期パルス磁場,後期パルス磁場の印加を実現することができる。
以上により,本例によれば,超電導体を着磁装置を含む超電導磁石装置に組み込んだ状態で本発明にかかる着磁方法を実現することができ,実用性に優れる。
その他は実施形態例1と同様の作用効果を得ることができる。
【0075】
【発明の効果】
上述のごとく,本発明によれば,より弱い磁場を用いて超電導体に着磁することができ,また着磁された超電導体がより強い磁場を捕捉して,より強い永久磁石として利用可能となる超電導体の着磁方法を提供することができる。
【図面の簡単な説明】
【図1】実施形態例1における,(a)着磁装置の構成を示す説明図,(b)超電導体の寸法を示す説明図,(c)超電導体のファセット・ラインを示す説明図。
【図2】実施形態例1における,超電導体に単パルス磁場による着磁を行なった際の印加磁場の大きさ,表面最大磁場及び捕捉磁束量の関係を示す線図。
【図3】実施形態例1における,図2に対応する捕捉磁場分布を示す線図。
【図4】実施形態例1における,図2の▲2▼にかかる捕捉磁場分布を示す線図。
【図5】実施形態例1における,図2の▲3▼にかかる捕捉磁場分布を示す線図。
【図6】実施形態例1における,図2の▲4▼にかかる捕捉磁場分布を示す線図。
【図7】実施形態例1における,本例にかかる着磁方法による着磁を行なった際の印加磁場の大きさ,表面最大磁場及び捕捉磁束量の関係を示す線図。
【図8】実施形態例1における,図7に対応する捕捉磁場分布を示す線図。
【図9】実施形態例1における,図7の▲2▼にかかる捕捉磁場分布を示す線図。
【図10】実施形態例1における,図7の▲8▼にかかる捕捉磁場分布を示す線図。
【図11】実施形態例1における,本例と比較例とのそれぞれの印加磁場の大きさ,表面最大磁場及び捕捉磁束量の関係を示す対比線図。
【図12】実施形態例1における,比較例1にかかる着磁方法による着磁を行なった際の印加磁場の大きさ,表面最大磁場及び捕捉磁束量の関係を示す線図。
【図13】実施形態例1における,図12に対応する捕捉磁場分布を示す線図。
【図14】実施形態例1における,図12の▲8▼にかかる捕捉磁場分布を示す線図。
【図15】実施形態例1における,比較例2にかかる着磁方法による着磁を行なった際の印加磁場の大きさ,表面最大磁場及び捕捉磁束量の関係を示す線図。
【図16】実施形態例1における,図15に対応する捕捉磁場分布を示す線図。
【図17】実施形態例1における,図15の▲8▼にかかる捕捉磁場分布を示す線図。
【図18】実施形態例2における,着磁を行なった際の印加磁場の大きさと捕捉磁束量の関係を示す線図,及び(a)〜(g)対応する捕捉磁場分布を示す線図。
【図19】実施形態例2における,図18の(g)にかかる捕捉磁場分布を示す線図。
【図20】実施形態例2における,印加磁場と捕捉磁場との関係とを示す線図。
【符号の説明】
1...超電導体,
10...着磁装置,
[0001]
【Technical field】
The present invention relates to a method for magnetizing a superconductor for forming a magnet device or the like by causing a bulk superconductor to capture a strong magnetic field.
[0002]
[Prior art]
Recently, SmBa Two Cu Three O X Such high-temperature superconductors can obtain a large magnetic field exceeding 1 T, which is impossible with a permanent magnet, even at the temperature of liquid nitrogen due to the control of the structure.
It is known that the properties of these high-temperature superconductors can be further improved by material development, and that a higher magnetic field can be captured when cooled to a lower temperature.
Therefore, it has been studied to magnetize these bulk high-temperature superconductors and use them as a magnet device for generating a strong magnetic field which has not been easily obtained until now.
[0003]
The reason why the bulk superconductor functions as a magnet is that the magnetic flux lines are pinned inside the superconductor that has been cooled to a temperature lower than the superconducting transition temperature and is in a superconducting state.
Therefore, a method for realizing a state in which the magnetic flux lines are pinned inside the cooled superconductor, that is, a magnetizing method is an issue.
[0004]
A method that is often used experimentally is to cool the superconductor in a large external magnetic field with the magnetic flux lines sufficiently inserted into the superconducting state, remove the external magnetic field, and then pin the magnetic flux lines to superconductivity. This is a method called magnetic field cooling (FC), which remains in the body and is magnetized.
However, this method has practical problems, such as the need to apply a high magnetic field to the superconductor for a long time, and the difficulty in moving the superconductor to the desired location while maintaining the temperature of the superconductor after magnetization. Many.
[0005]
Therefore, as a method of magnetizing a bulk superconductor by simple means, there is a method called pulse magnetization, in which a pulse magnetic field is applied to the superconductor to magnetize the superconductor. Japanese Patent Laid-Open Nos. 6-168823 and 10-12429. And Japanese Patent Application Laid-Open No. H10-154620 have been proposed. In particular, Japanese Patent Application Laid-Open No. H10-154620 discloses a method of increasing a trapped magnetic field by devising a pulse magnetization procedure.
According to these methods, it is possible to magnetize a superconductor incorporated in a device or the like, and there are many merits in practical use.
[0006]
[Problem to be solved]
However, in the above-described conventional pulse magnetization, it was necessary to apply a much larger pulse magnetic field to the magnetic field captured by the superconductor. Therefore, when a superconductor having high characteristics is magnetized, the required magnetic field is further increased, which causes a problem that the magnetization becomes difficult.
This is because it is practically difficult to obtain a high magnetic field.
[0007]
The present invention has been made in view of such a conventional problem, and it is possible to magnetize a superconductor using a weaker magnetic field, and the magnetized superconductor captures a stronger magnetic field, and An object of the present invention is to provide a method for magnetizing a superconductor which can be used as a strong permanent magnet.
[0008]
[Means for solving the problem]
According to the first aspect of the present invention, a superconductor cooled below a superconducting transition temperature is prepared, a pulse current is applied to a magnetizing coil disposed near the superconductor, and a pulse magnetic field generated by the pulse current is reduced. In a magnetizing method in which a magnet is applied to a superconductor to magnetize the superconductor,
The superconductor has a portion having a relatively high critical current density and a portion having a relatively low critical current density.
When applying the pulse magnetic field to the superconductor,
First, an initial pulse magnetic field is applied, and the magnetic field penetrates into at least the relatively low critical current density part and the superconductor center part.
Next, a medium-term pulse magnetic field stronger than the initial pulse magnetic field is applied, and the magnetic field penetrates at least into a portion having a relatively high critical current density,
Then, a late-stage pulse magnetic field having an intensity equal to or lower than the intensity of the middle-stage pulse is applied, and the superconductor is magnetized from the center to the outer edge.
[0009]
The most remarkable point in the present invention is that an initial pulse magnetic field is first applied to a superconductor having a portion having a high critical current density and a portion having a low critical current density, and then a medium pulse magnetic field stronger than the initial pulse magnetic field is applied. Magnetization is performed by applying a late-stage pulse magnetic field having a strength equal to or lower than the middle-stage pulse.
[0010]
Next, the operation of the present invention will be described.
Generally, inside a superconductor, a magnetic field is quantized to exist as magnetic flux lines.
Since repulsive force acts on the magnetic flux lines in the superconductor, the magnetic flux lines try to escape from the superconductor. The superconductor can capture the magnetic field when a force acts to pin the magnetic flux lines inside the superconductor against this.
In the pulse magnetization method, a magnetic flux line penetrates into the inside of the superconductor from the outer edge of the superconductor during the process of increasing the magnetic field of the pulse magnetic field, and the pinned force keeps the magnetic flux line inside the superconductor even after the applied external magnetic field is lost. This is a method of magnetizing the superconductor.
[0011]
In a superconductor having a low critical current density, that is, a superconductor having low characteristics, a magnetic field can easily penetrate into the superconductor. Therefore, in the process of increasing the magnetic field of the pulse magnetic field, a very large magnetic field gradient cannot be formed at the outer edge of the superconductor.
On the other hand, a superconductor with a high critical current density, that is, a superconductor with high characteristics, is strongly shielded from the external magnetic field applied at the outer periphery of the superconductor. Flux lines hardly penetrate into the superconductor until it becomes large.
Superconductors with extremely high characteristics (SmBa Two Cu Three O X And the like. ) Is cooled to a low temperature and brought to a state with higher characteristics, the above-mentioned tendency becomes more remarkable, and a very large magnetic field gradient is formed at the outer edge of the superconductor when the pulse magnetic field rises.
[0012]
When the magnetic flux lines move inside the superconductor, heat is generated. Therefore, if a large magnetic field gradient is created, once the magnetic flux lines penetrate somewhere, the temperature locally rises and the characteristics of that location become relatively high. To be even lower. For this reason, a phenomenon called a flux jump occurs in which more and more magnetic flux lines concentrate and enter.
When such a phenomenon occurs, the path of the magnetic flux lines is formed from the point where the magnetic flux lines first enter, such as the outer edge of the superconductor, toward the center of the superconductor, and the magnetic field there is reduced by the applied external magnetic field. It is almost equal to the size.
Therefore, if this flux jump is used, a magnetic field close to the magnitude of the magnetic field applied to the superconductor can be made to penetrate into the center of the superconductor.
[0013]
In the conventional magnetizing method, it was necessary to make the magnetic field penetrate the entire superconductor in order to penetrate the superconductor with a sufficient magnetic field at the center of the superconductor. Required an applied magnetic field.
As a result, the temperature rises greatly due to the heat generated by the penetration of magnetic flux lines in the process of increasing the magnetic field of the pulse magnetic field, the pinning force of the superconductor decreases, and the magnetic flux lines penetrating to the center of the superconductor demagnetize the pulse magnetic field. It escaped during the process, and the trapped magnetic field of the superconductor was reduced.
[0014]
On the other hand, in the method of the present invention, a superconductor having high and low characteristic portions is used, and the pulse magnetic field is divided into three stages: an initial pulse magnetic field, a middle pulse magnetic field, and a late pulse magnetic field. Is applied.
As will be described later, if a magnetization experiment using a single-pulse magnetic field with respect to the superconductor is performed in advance (see FIG. 2 and the like in the first embodiment), at least a portion having a relatively low critical current density in the superconductor and the superconductor It is possible to know the magnitude of the pulse magnetic field at which the magnetic field can enter the central part of the body.
[0015]
In addition, a pulsed magnetic field of such a magnitude that the external magnetic field starts to decrease when the magnetic flux lines penetrating from a locally low characteristic portion of the outer edge of the superconductor just reaches the center of the superconductor (hereinafter referred to as the optimal applied magnetic field) ), The magnetic flux lines reaching the center of the superconductor are kept as they are.
By using a pulse magnetic field of such a magnitude as the initial pulse magnetic field for magnetization, it is possible to generate a process in which magnetic flux lines locally concentrate and penetrate as described above.
For this reason, the intensity of the initial pulse magnetic field may be small.
The central portion of the superconductor is a portion farthest from the outer edge of the superconductor and a portion where a magnetic field hardly penetrates by application of single pulse magnetization or the like.
[0016]
If the magnitude of the initial pulse magnetic field is smaller than the optimum applied magnetic field, the magnetic field hardly enters the superconductor central portion, so that the magnetic field is not captured by the superconductor central portion. Also, at the outer edge of the superconductor, the magnetic field is mainly captured at a specific location, and the magnetic field does not remain in a region where the magnetic flux lines did not pass.
[0017]
If a pulse magnetic field larger than the optimum applied magnetic field is used as the initial pulse magnetic field, heat is generated by the movement of the magnetic flux lines. There is a possibility that the trapped magnetic field in the region connecting to the center is reduced. That is, the magnetization efficiency may be reduced.
Also, during the demagnetization process of the pulse magnetic field, a flux jump may occur from the center of the superconductor to a specific location in a direction opposite to that of the demagnetization process, and the flux lines penetrated into the superconductor may be lost. is there.
[0018]
The steps of increasing and demagnetizing the pulse magnetic field are as follows.
The pulse current for generating the pulse magnetic field increases from the current 0, reaches a peak, and then decreases and becomes 0 again. The pulse magnetic field also increases between 0 and the peak of the pulse current, and decreases between the peak and 0. These processes are called a magnetizing process and a demagnetizing process.
[0019]
However, when the pulse magnetic field is large to some extent, the flux lines completely penetrate into the entire superconductor, and the area where the flux lines at the outer edge of the superconductor did not pass when the initial pulse magnetic field was applied, that is, the characteristics The magnetic field remains even in a region where the critical current density is high.
[0020]
Therefore, by selecting an applied magnetic field having an appropriate magnitude larger than the optimum applied magnetic field as the medium-term pulse magnetic field, it is possible to make the magnetic field penetrate at least into a portion having a relatively high critical current density.
In other words, the superconductor is magnetized by the initial pulse magnetic field so that a magnetic field penetrates into the central portion of the superconductor, and a magnetic flux is held in a portion having low characteristics around this portion. Here, by performing the magnetization with the medium-term pulse magnetic field, the magnetic field can be made to penetrate the entire outer edge of the superconductor, and the amount of magnetic flux trapped in the entire superconductor can be increased.
[0021]
In this case, since the magnetic field already exists in the center of the superconductor, the magnetic field gradient which is the driving force of the magnetic flux lines does not increase, and the magnetic flux lines do not penetrate into the superconductor center even if a large applied magnetic field is applied. Therefore, even if a magnetic field exceeding the optimum applied magnetic field is applied so that the magnetic field penetrates the entire outer edge of the superconductor, the magnetic field at the center of the superconductor can be kept substantially constant.
As a result, the magnetic field is magnetized in the same manner in both the low and high characteristic portions of the superconductor.
[0022]
In order to select a pulse magnetic field having a magnitude suitable for the above-mentioned medium-term pulse magnetic field, as shown in FIG. By obtaining the magnetic field distribution and the like, it is possible to know a pulse magnetic field having such a magnitude that the magnetic field penetrates into a portion having high characteristics but the magnetic field does not escape from the center of the superconductor.
[0023]
After finishing the initial pulse magnetic field and subsequently applying the middle pulse magnetic field, a late pulse magnetic field equal to or less than the intensity of the middle pulse is applied as the late pulse magnetic field.
The amount of magnetic flux lines that have penetrated into the superconductor is reduced by the amount of the magnetic flux lines that have already penetrated and by the amount that the applied magnetic field has become equal to or less than the middle pulse magnetic field.
As a result, the temperature rise in the superconductor is reduced compared to the magnetization in the medium-term pulsed magnetic field, and the penetrating magnetic flux lines are effectively captured, and the magnetization is realized from the center of the superconductor toward the outer edge. , Can increase the trapping magnetic field.
[0024]
As shown in FIG. 8 and the like, if the superconductor has a columnar shape as shown in Embodiment 1 to be described later due to the application of the late pulse magnetic field, as shown in FIG. It is possible to obtain a magnetic field distribution in which the magnetic field gradually decreases toward the portion.
If the shape of the superconductor is a quadrangular prism or the like, the magnetic field distribution has a pyramid shape or the like.
[0025]
In summary, the initial pulse magnetic field allows the magnetic field to penetrate from the low-performance portion of the superconductor toward the center, thereby capturing the magnetic flux near the center of the superconductor and the low-performance portion.
Next, the middle pulse magnetic field causes the magnetic field to be captured in the high-characteristic portion without reducing the magnitude of the magnetic flux captured near the center, and the overall magnetic field captured by the superconductor is increased by the final late pulse magnetic field. , Improve the performance as a magnet.
Unlike the conventional method, the strength of the magnetic field does not decrease during the magnetization, such as the leakage of the magnetic field from the center during the magnetization.
In addition, since the magnetic field is magnetized in order from the part having the lower characteristic, a stronger magnetic field can be captured by the superconductor using a pulse magnetic field of lower intensity.
[0026]
As described above, according to the present invention, a superconductor can be magnetized using a weaker magnetic field, and the magnetized superconductor captures a stronger magnetic field and can be used as a stronger permanent magnet. A method of magnetizing the body can be provided.
[0027]
The initial pulse magnetic field is a magnetic field having a strength that can capture the magnetic field with respect to the center of the superconductor, and is the above-described optimum applied magnetic field. This size depends on the type of superconductor and the like.
As a method of determining the size, for example, there is the following method.
A pulse magnetic field is applied to an unmagnetized superconductor to magnetize it. By appropriately changing the magnitude of the pulse magnetic field, the relationship between the applied magnetic field, the amount of trapped magnetic flux, and the maximum surface magnetic field is derived to obtain a diagram as shown in FIG.
In such a diagram, it is preferable to apply a magnetic field in the range of ± 10% of the optimum applied magnetic field in which the amount of trapped magnetic flux and the maximum surface magnetic field are maximized as the initial pulse magnetic field.
[0028]
If the initial pulse magnetic field deviates from this range, it may be difficult to obtain a magnetic field distribution such that the magnitude decreases substantially uniformly from the center to the outer edge as shown in FIG. In addition, the amount of trapped magnetic flux and the maximum surface magnetic field after magnetization may be reduced.
[0029]
In addition, it is necessary to apply the above-mentioned medium-term pulse magnetic field with such a magnitude that the magnetic field at the center of the superconductor magnetized by the initial pulse magnetic field does not escape.
As a method of determining the size, for example, there is the following method.
A pulse magnetic field is applied to an unmagnetized superconductor to magnetize it. By appropriately changing the magnitude of the pulse magnetic field, the relationship between the applied magnetic field, the amount of trapped magnetic flux, and the maximum surface magnetic field is derived to obtain a diagram as shown in FIG.
[0030]
It is preferable to apply a magnetic field larger than the initial pulse magnetic field, which is an applied magnetic field when the trapped magnetic flux amount is reduced by 10 to 30% from the maximum trapped magnetic flux amount in such a diagram, as the middle pulse magnetic field.
If the medium-term pulsed magnetic field deviates from this range, it may be difficult to obtain a magnetic field distribution in which the magnitude decreases substantially uniformly from the center to the outer edge as shown in FIG. In addition, the amount of trapped magnetic flux and the maximum surface magnetic field after magnetization may be reduced.
[0031]
Although there is a difference depending on the type of the superconductor, etc., the amount of trapped magnetic flux decreases as the applied magnetic field increases. In some cases, the slope of this decrease is large and sharply decreased, and in other cases it is almost flat. Even if a considerably large magnetic field is applied as a middle pulse magnetic field to a superconductor which is almost flat, the magnetic flux applied by the initial pulse magnetic field does not escape.
[0032]
However, since it is difficult to generate a pulse magnetic field larger than 10T, it is preferable that the upper limit of the medium-term pulse magnetic field be 10T.
Further, the magnitude of the late pulse magnetic field may be smaller than the magnitude of the middle pulse magnetic field.
[0033]
The pulse magnetic field used in the magnetization method according to the present invention is preferably obtained from a pulse current having a rise time, that is, a time from 0 to a peak of 1 to 30 ms. Thereby, a sufficiently large magnetic field gradient is generated at the outer edge of the superconductor in the process of increasing the magnetic field of the pulse magnetic field, and the magnetic flux lines can enter the center of the superconductor by the flux jump.
If the time is less than 1 ms, the pulse magnetic field may enter the demagnetization process before the magnetic flux lines enter the superconductor sufficiently, and the pulse power supply required to generate the pulse magnetic field exceeding 30 ms becomes very large. It may not be practical.
[0034]
Next, it is preferable to apply the initial pulse magnetic field a plurality of times, as in the second aspect of the present invention.
Thereby, the magnetic field captured by the center portion of the superconductor due to the initial pulse magnetic field can be further increased.
[0035]
Next, as in the third aspect of the present invention, the second-stage pulse magnetic field is applied a plurality of times, and the intensity of the pulse magnetic field at each application is sequentially reduced from the intensity of the middle-stage pulse magnetic field, or at each application. Is preferably substantially equal to the intensity of the middle pulse magnetic field.
As a result, the magnetic field newly entering the superconductor by the amount of the magnetic field that has already been captured is reduced, and as a result, the heat generated by the superconductor is reduced, and the magnetic field that is captured can be increased.
[0036]
Next, as in the invention according to claim 4, the superconductor is gradually cooled and solidified from a semi-molten state to form RE-Ba. Two Cu Three O X (RE is at least one element of La, Nd, Sm, Eu, Ga, Tb, Dy, Ho, Er, Tm, Yb, and Y).
Thus, by using a superconductor having a strong pinning force of the magnetic flux lines, the superconductor can capture a large magnetic field.
In addition, RE-Ba Two Cu Three O X In X Is any positive number.
[0037]
Further, according to the present invention, a strongly magnetized superconductor can be obtained, so that a superconductor functioning as a pseudo-strong permanent magnet can be obtained.
The superconductor magnetized in this way can be used for magnetizing a permanent magnet, magnetic field pressing, MMR (nuclear magnetic resonance apparatus), MRI (magnetic resonance imaging), magnetic separation, and the like.
[0038]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1
A method of magnetizing a superconductor according to an embodiment of the present invention will be described with reference to FIGS.
The outline of the magnetizing method of this example will be described.
A superconductor cooled below the superconducting transition temperature is prepared, a pulse current is applied to a magnetizing coil disposed near the superconductor, and a pulse magnetic field generated thereby is applied to the superconductor to produce a superconductor. Is magnetized.
The superconductor has a portion having a relatively high critical current density and a portion having a relatively low critical current density. To this, an initial pulse magnetic field is applied first, and then a middle pulse magnetic field stronger than the initial pulse magnetic field is applied. Then, a late pulse magnetic field having an intensity equal to or less than the intensity of the middle pulse is applied to perform magnetization.
[0039]
FIG. 1 shows a superconductor 1 according to the present embodiment and a magnetizing device 10 used for magnetizing the superconductor 1. As shown in FIG. 1 (a), the magnetizing device 10 includes a cold head 12 disposed in a heat insulating container 11 cooled by a refrigerator 120 and a cold head 12 in the heat insulating container 11. A superconductor 1 arranged and cooled to a superconducting transition temperature or lower by heat conduction; a magnetizing coil 14 arranged outside the heat insulating container 11 for applying a magnetic field to the superconductor 1; It comprises a pulse power supply 15 capable of arbitrarily controlling the applied magnetic field of the superconductor 1 by applying various magnitudes of pulse current.
[0040]
For the magnetization in this example, a pulse magnetic field generated by flowing a pulse current having a rise time of 13 ms through the magnetization coil 14 was used.
As shown in FIG. 1B, the superconductor 1 has a cylindrical bulk shape with a diameter of 36 mm and a thickness of 16 mm.
This superconductor 1 is made of SmBa Two Cu Three O X And Sm Two BaCuO X Are mixed at a molar ratio of 3: 1. Two A powder to which O and 0.5 wt% of Pt were added was prepared by a melting method as a starting sample.
[0041]
As shown in FIG. 1 (c), the superconductor 1 is produced by a melting method, and a facet line 101 extending from a seed crystal placed at the center at the start of solidification appears in a cross shape. In the superconductor 1, the superconducting characteristics near the facet line 101 are slightly higher than those of other parts. Therefore, the superconductor 1 has a portion where the critical current density is high near the facet line 101, and a portion between the facet lines 101 which is at 45 degrees to the facet line 101 (the portion near the reference numeral 105 shown in FIG. Range) is a portion where the critical current density is relatively low and the superconductivity is low.
[0042]
Next, a single-pulse magnetization experiment for determining the magnitude of the initial pulse magnetic field and the middle pulse magnetic field will be described.
The cylindrical superconductor having a diameter of 36 mm and a thickness of 16 mm in the form of a cylinder was prepared, and cooled to 35K.
This superconductor was magnetized using a single pulse magnetic field, and the following measurements were performed.
[0043]
When a pulse magnetic field of various magnitudes was applied to the superconductor, the distribution of the captured magnetic field on the surface of the superconductor was measured by scanning the magnetic field sensor at 2 mm intervals in the X and Y directions. The maximum value on the distribution is the surface maximum magnetic field B max Where the integrated value of the entire distribution is the trapped magnetic flux amount φ.
In this measurement, as shown in FIGS. 1 (c) and 3, the XY directions of the measurement and the direction of the facet line 101 of the superconductor 1 were aligned, and all measurements were performed in the same direction.
A diagram showing the measurement results is shown in FIG. 2, and a magnetic field distribution on the superconductor surface in each of (1) to (8) of FIG. 2 is shown in FIG.
[0044]
In this experiment, magnetization was performed by a single pulse magnetic field. Therefore, after the measurement was completed by magnetizing with a pulse magnetic field, the superconductor was heated to a temperature higher than the superconducting transition temperature to remove the trapped magnetic flux.
Therefore, the superconductor when each single-pulse magnetic field is applied is not magnetized at all.
[0045]
In particular, for (2), (3), and (4) in FIG. 2, separate drawings in which numerical values are given to the respective contour lines indicating the magnetic field are shown in FIGS. 4 to 6.
As shown in FIG. 4, the magnetic field distribution of the superconductor in the state of (2) has a high magnetic field in the diagonally right direction, and the magnetic field slightly penetrates into the center of the superconductor. .
[0046]
As shown in FIG. 5, the state (3) indicates a state where a magnetic field enters from a part at a position of 45 degrees to the facet line and having a relatively low superconducting characteristic toward the center of the superconductor. . An X-shaped magnetic field distribution is observed as a whole.
[0047]
As shown in FIG. 6, the state of (4) is a state in which the magnetic field at the center becomes higher and an extreme X-shaped pattern is not recognized in the magnetic field distribution. However, the magnetic field in the portion slightly 45 degrees from the facet line is high.
The values of other (1), (5) to (8) are not particularly described on the contour lines, but are omitted because they are clear from FIGS.
[0048]
From FIG. 2 to FIG. 6, which are the above measurement results, when the applied magnetic field is 3.5 T or less, almost no magnetic field is contained in the superconductor, but when the applied magnetic field exceeds 3.5 T, the figure suddenly rises. It was found that the magnetic field penetrated from the medium 45 degree direction, that is, the direction at 45 degrees to the facet line.
[0049]
From the above experiment, the optimum applied magnetic field for the superconductor is 4.36 T, and the amount of trapped magnetic flux at this time has reached a maximum of 2.95 T, and the magnetic field trapping ratio (= trapped magnetic flux amount / applied magnetic field) is 67%. I found out.
[0050]
Further, as shown by (5) in FIG. 3, when the optimum applied magnetic field is applied, it is also understood that the magnetic field is not captured much on the facet line at the outer edge of the superconductor.
When the applied magnetic field is further increased, it can be seen from FIG. 3 that the magnetic field starts to be captured on the facet line at the outer edge of the superconductor. From FIG. 2, the optimum applied magnetic field is applied to both the surface maximum magnetic field and the amount of the captured magnetic flux. There is a tendency to decrease more than the case.
[0051]
When the applied magnetic field becomes higher, the magnetic flux lines that have excessively penetrated into the center of the superconductor exit through the pulse magnetic field by causing a flux jump in a direction of 45 degrees with respect to the facet line. It can be seen from 8 ▼ and the like that the magnetic field is mainly captured on the facet line.
[0052]
From such a single-pulse magnetic field magnetization experiment, it was possible to obtain an appropriate magnetic field at the time of initial and intermediate pulse magnetization in the magnetization method of this example.
That is, the initial pulsed magnetic field enters the facet line in the direction of 45 ° C. and is in the range of ± 10% of the optimal applied magnetic field 4.36, which is the magnetic field when the magnetic field is captured at the center. It turned out that about 4T is appropriate.
[0053]
In addition, in order to find an optimal medium-term pulse magnetic field, 4.4T was applied to the superconductor as an initial pulse magnetic field, and then a magnetic field of various magnitudes was superimposed only once, and the same measurement of the captured magnetic field distribution was performed. As a result, a magnetic field of about 6.2T, which can sufficiently capture the magnetic field on the facet line and retain the magnetic field captured in the center of the superconductor by the initial pulse magnetic field, is suitable for the medium-term pulse magnetic field I found out.
[0054]
Next, a method of magnetizing the superconductor according to the present example will be described in detail.
Based on the above-described magnetization method of the present example, the superconductor 1 was magnetized in the order of 6 initial pulses, 1 intermediate pulse, and 18 late pulses.
At this time, the temperature of the superconductor was maintained at 35 K, and a pulse magnetic field generated by applying a pulse current having a rise time of 13 ms to the coil was used.
[0055]
First, a pulse magnetic field of 4.4 T was applied three times, and then a pulse magnetic field of substantially the same magnitude was further applied three times. This is the initial pulse magnetic field in the process corresponding to P1 in FIG.
Subsequently, the middle pulse magnetic field of 6.2T was applied once in the process of P2 in FIG. 7, and in the process of P3 in FIG. 7, the size of the pulse was sequentially reduced from 5.9T, and the last pulse magnetic field was applied 18 times. The last 18 times of the latter pulse magnetic field was performed at 3.7T.
[0056]
FIG. 7 shows the amount of trapped magnetic flux in the superconductor immediately after the application of each pulse magnetic field and the maximum magnetic field on the surface. The details of the measurement method are the same as those described above.
FIG. 8 shows the magnetic field distribution of the superconductor in (1) to (8) in FIG. In particular, regarding the magnetic field distribution of the superconductor in (2) and (8), as shown in FIGS. 9 and 10, the magnitude of the magnetic field was numerically described on the contour lines as enlarged.
The numerical values of the other (1), (3) to (7) are not particularly described on the contour lines, but are omitted because they are clear from FIGS. 9 and 10.
[0057]
FIG. 7 shows the history of changes in the surface maximum magnetic field and the amount of trapped magnetic flux in this series of processes. The last point indicated by the arrow is the surface maximum magnetic field and the amount of trapped magnetic flux after the final magnetization.
From FIG. 9, it was found that at the stage where the initial pulse magnetic field was applied, the magnetic field penetrated from the direction of 45 degrees with respect to the facet line toward the center, and the magnetic field did not enter much on the facet line.
Further, from FIG. 10, it was found that a concentric, clean and unbroken magnetic field distribution was finally formed in the superconductor.
[0058]
Here, as Comparative Example 1 (prior art; method of Japanese Patent Application Laid-Open No. H10-154620), the following magnetization was applied to a superconductor similar to the above, and the amount of trapped magnetic flux in the superconductor and the surface The maximum magnetic field was measured.
At this time, the temperature of the superconductor was maintained at 35 K, and a pulse magnetic field generated by applying a pulse current having a rise time of 13 ms to the coil was used.
However, in the magnetization method, a pulse magnetic field of 6.9 T was applied first, and then the magnitude of the pulse magnetic field was sequentially reduced, and finally a magnetic field of 3.7 T was applied. This is a magnetization process as shown by Pc1 in FIG.
[0059]
FIG. 12 shows the amount of magnetic flux trapped in the superconductor immediately after the application of each pulse magnetic field and the maximum magnetic field on the surface. The details of the measurement method are the same as those described above. FIG. 13 shows the magnetic field distribution of the superconductor in (1) to (8) of FIG. In particular, as for the magnetic field distribution of the superconductor in (8), as shown in FIG. 14, the magnitude of the magnetic field is described numerically on the contour line.
Regarding the other (1) to (7), numerical values are not particularly described on the contour lines, but are omitted because they are clear from FIG.
[0060]
FIG. 12 shows the history of changes in the maximum surface magnetic field and the amount of trapped magnetic flux in this series of processes. The last point indicated by an arrow is the maximum surface magnetic field and the amount of trapped magnetic flux after the final magnetization.
13 and 14, in the magnetization process as in Comparative Example 1, each time a smaller magnetic field is applied, both the maximum surface magnetic field and the amount of trapped magnetic flux increase. Since they did not increase as much, both the maximum surface magnetic field and the amount of trapped magnetic flux after the final magnetization were smaller than in this example.
[0061]
Further, FIG. 7 which is the result of the present example and FIG. 12 which is the result of the comparative example are shown in the same diagram. This is shown in FIG.
In the magnetizing method of this example, a large magnetic field is first captured at the center of the superconductor by utilizing local magnetic field penetration, so that the maximum surface magnetic field after magnetization reaches 3.2T, which is the value of 2. It greatly exceeds 8T. Similarly, the amount of trapped magnetic flux is 2,645 μWb in the present example and 2,432 μWb in Comparative Example 1.
Also, it was found that the maximum applied magnetic field required for magnetization was 6.2 T at the maximum, which was lower than 6.9 T in Comparative Example 1.
[0062]
As another comparative example 2, the following magnetization was performed.
At this time, the temperature of the superconductor was maintained at 35 K, and a pulse magnetic field generated by applying a pulse current having a rise time of 13 ms to the coil was used.
However, in the magnetization method, a 4.4 T pulse magnetic field substantially equal to the optimum applied magnetic field was first applied, and then a pulse magnetic field having a magnitude near 4.4 T was applied several times. Thereafter, the magnitude of the pulse magnetic field was sequentially reduced, and finally a 3.7 T magnetic field was applied. This is a magnetization process as shown by Pc2 in FIG.
[0063]
FIG. 15 shows the amount of magnetic flux trapped in the superconductor immediately after the application of each pulse magnetic field and the maximum magnetic field on the surface. The details of the measurement method are the same as those described above. FIG. 16 shows the magnetic field distribution of the superconductor in (1) to (8) in FIG. Further, as for the magnetic field distribution of the superconductor particularly in (8), as shown in FIG. 17, the magnitude of the magnetic field is described numerically on the contour line.
Regarding the other (1) to (7), numerical values are not particularly described in the contour lines, but are omitted because they are clear from FIG.
[0064]
FIG. 15 shows the history of changes in the maximum surface magnetic field and the amount of trapped magnetic flux in this series of processes. The last point indicated by the arrow is the maximum surface magnetic field and the amount of trapped magnetic flux after the final magnetization.
16 and 17, in the magnetizing process as in Comparative Example 2, even during the course of the process, the magnetizing can be performed only in the portion where the critical current density is low, and can be obtained only with the distorted and distorted magnetic field distribution. I found that I could not do it.
Thus, in Comparative Example 2, the surface maximum magnetic field after magnetization reached 3.2 T, and a value close to that of this example was obtained. However, since the amount of trapped magnetic flux was small and the magnetic field distribution was distorted, the performance as a magnet was Is low and not very practical.
[0065]
The operation and effect of this example will be described.
In this example, a magnetic field is caused to penetrate from the low-performance portion of the superconductor toward the center thereof by the initial pulse magnetic field, and thereby the magnetic flux is captured in the vicinity of the center of the superconductor or in the low-performance portion. The magnetic field distribution in this state is (1) and (2) in FIG.
[0066]
Next, the magnetic field is captured in a portion having high characteristics by the medium-term pulse magnetic field without reducing the magnitude of the magnetic field captured near the center. The magnetic field distribution in this state is (3) in FIG.
The overall magnetic field captured by the superconductor is increased by the last pulse magnetic field at the end, and the performance as a magnet can be improved. This state corresponds to (4) to (8) in FIG.
As is clear from the figure, the strength of the magnetic field does not decrease during the magnetization, such as the leakage of the magnetic field from the center during the magnetization.
The obtained magnetic field distribution is uniform and beautiful concentric from the center to the outer edge, which indicates that a magnetic field with good symmetry can be generated in space when used as a magnetic field source.
[0067]
Further, in the present example, since the magnetization is performed in order from the portion having the lower characteristic, a stronger magnetic field can be captured by the superconductor by using the pulse magnetic field of lower intensity. This is clear from FIG.
[0068]
As described above, according to this example, the superconductor can be magnetized using a weaker magnetic field, and the magnetized superconductor captures a stronger magnetic field and can be used as a stronger permanent magnet. A method of magnetizing the body can be provided.
[0069]
Embodiment 2
Next, a method of determining the magnitude of the middle pulse magnetic field by a method different from that of the first embodiment and magnetizing the superconductor with the initial pulse magnetic field, the middle pulse magnetic field, and the second pulse magnetic field as in the first embodiment will be described. I do.
[0070]
In the first embodiment, the magnitude of the medium-term pulse magnetic field was determined by performing a magnetization experiment using a single-pulse magnetic field, measuring the maximum surface magnetic field and the amount of trapped magnetic flux, and determining the magnitude based on the result. In this example, a pulse magnetic field is continuously applied to the superconductor, and the surface magnetic field is measured (that is, the captured magnetic field is not removed each time the magnet is magnetized) and determined based on the result.
[0071]
The same superconductor as in FIG. 1 is magnetized, but a 3.1 T magnetic field is first applied as shown in FIG. FIG. 18A shows the magnetic field distribution in the superconductor at this time, and a ring-shaped magnetization distribution is obtained.
Subsequently, a 3.7 T pulse magnetic field is applied to the superconductor having a ring-shaped magnetization distribution as a second magnetization. The magnetic field distribution at this time is shown in FIG. 18B, and the ring-shaped magnetic field distribution is slightly thicker than that in FIG. 18A.
[0072]
Subsequently, a pulse magnetic field of 4.3 T is magnetized. This 4.3 T pulse magnetic field is substantially equal to the optimum trapping magnetic field as described in the first embodiment. It is clear from FIG. 18C that a magnetic field penetrated all the way to the center by this magnetization at a stretch, and the magnitude of the surface maximum magnetic field sharply increased as can be seen from the diagram of FIG.
[0073]
Thereafter, pulse magnetic fields of 4.8T, 5.4T, 5.9T, 6.5T, and 7.0T are sequentially applied. Although the magnetic field distribution does not change much from FIGS. 18 (d) to 18 (g), the diagram shows that the maximum surface magnetic field is maximum immediately after performing the pulse magnetization of 5.4T, and thereafter gradually decreases. I understood that.
In particular, as for the magnetic field distribution of the superconductor in FIG. 18 (g), as shown in FIG. 19, the magnitude of the magnetic field is described numerically on the contour line.
Regarding the other (a) to (f) and (h), numerical values are not particularly described on the contour lines, but are omitted because they are clear from FIG.
[0074]
Therefore, after preparing the superconductor and assembling it into the superconductor magnetizing device, as shown in FIG. 20, the pulse magnetic field was gradually increased and applied in a superimposed manner, and the magnitude of the maximum trapped magnetic field tended to decrease. From the time point, the pulse magnetic field is superimposed and applied while gradually lowering. Thus, the application of the initial pulse magnetic field, the middle pulse magnetic field, and the latter pulse magnetic field can be naturally realized without performing the single pulse experiment as described in the first embodiment.
As described above, according to the present example, the magnetizing method according to the present invention can be realized in a state where the superconductor is incorporated in the superconducting magnet device including the magnetizing device, and the practicability is excellent.
Otherwise, the same operation and effect as those of the first embodiment can be obtained.
[0075]
【The invention's effect】
As described above, according to the present invention, the superconductor can be magnetized using a weaker magnetic field, and the magnetized superconductor captures a stronger magnetic field and can be used as a stronger permanent magnet. A method for magnetizing a superconductor can be provided.
[Brief description of the drawings]
FIG. 1A is an explanatory view showing a configuration of a magnetizing device, FIG. 1B is an explanatory view showing dimensions of a superconductor, and FIG. 1C is an explanatory view showing a facet line of a superconductor.
FIG. 2 is a diagram showing a relationship among a magnitude of an applied magnetic field, a maximum surface magnetic field, and a trapped magnetic flux when a superconductor is magnetized by a single pulse magnetic field in the first embodiment.
FIG. 3 is a diagram showing a trapped magnetic field distribution corresponding to FIG. 2 in the first embodiment.
FIG. 4 is a diagram showing a trapped magnetic field distribution according to (2) in FIG. 2 in the first embodiment.
FIG. 5 is a diagram showing a trapped magnetic field distribution according to (3) in FIG. 2 in the first embodiment.
FIG. 6 is a diagram showing a trapped magnetic field distribution according to (4) in FIG. 2 in the first embodiment.
FIG. 7 is a diagram showing the relationship among the magnitude of the applied magnetic field, the maximum surface magnetic field, and the amount of trapped magnetic flux when the magnetization is performed by the magnetization method according to the present embodiment in the first embodiment.
FIG. 8 is a diagram showing a trapped magnetic field distribution corresponding to FIG. 7 in the first embodiment.
FIG. 9 is a diagram showing a trapped magnetic field distribution according to (2) in FIG. 7 in the first embodiment.
FIG. 10 is a diagram showing a trapped magnetic field distribution according to (8) in FIG. 7 in the first embodiment.
FIG. 11 is a comparison diagram showing the relationship between the magnitude of the applied magnetic field, the maximum surface magnetic field, and the amount of trapped magnetic flux in the present example and the comparative example in the first embodiment.
FIG. 12 is a diagram showing the relationship among the magnitude of the applied magnetic field, the maximum surface magnetic field, and the amount of trapped magnetic flux when the magnetization is performed by the magnetization method according to Comparative Example 1 in the first embodiment.
FIG. 13 is a diagram showing a trapped magnetic field distribution corresponding to FIG. 12 in the first embodiment.
FIG. 14 is a diagram showing a trapped magnetic field distribution according to (8) in FIG. 12 in the first embodiment.
FIG. 15 is a diagram showing the relationship among the magnitude of the applied magnetic field, the maximum surface magnetic field, and the amount of trapped magnetic flux when the magnetization is performed by the magnetization method according to Comparative Example 2 in the first embodiment.
FIG. 16 is a diagram showing a captured magnetic field distribution corresponding to FIG. 15 in the first embodiment.
FIG. 17 is a diagram showing a trapped magnetic field distribution according to (8) in FIG. 15 in the first embodiment.
FIG. 18 is a diagram showing the relationship between the magnitude of the applied magnetic field and the amount of trapped magnetic flux when magnetizing is performed, and (a) to (g) are diagrams showing the corresponding trapped magnetic field distributions in the second embodiment.
FIG. 19 is a diagram showing a trapped magnetic field distribution according to (g) of FIG. 18 in the second embodiment.
FIG. 20 is a diagram showing a relationship between an applied magnetic field and a trapped magnetic field in the second embodiment.
[Explanation of symbols]
1. . . Superconductor,
10. . . Magnetizing device,

Claims (4)

超電導遷移温度以下に冷却された超電導体を準備し,該超電導体の近傍に配設した着磁コイルにパルス電流を通電し,これにより発生するパルス磁場を上記超電導体に印加して該超電導体の着磁を行なう着磁方法において,
上記超電導体は相対的に臨界電流密度の高い部分と低い部分とを有してなり,
上記パルス磁場の上記超電導体の印加に当り,
まず初期パルス磁場を印加し,少なくとも臨界電流密度の相対的に低い部分と超電導体中心部に磁場を侵入させ,
次いで該初期パルス磁場よりも強度の強い中期パルス磁場を印加し,少なくとも臨界電流密度の相対的に高い部分に磁場を侵入させ,
その後上記中期パルスの強度以下の強さの後期パルス磁場を印加し,超電導体中心部から外縁に向けて着磁することを特徴とする超電導体の着磁方法。
A superconductor cooled below the superconducting transition temperature is prepared, a pulse current is applied to a magnetizing coil disposed near the superconductor, and a pulse magnetic field generated thereby is applied to the superconductor to produce a superconductor. In the magnetizing method for magnetizing
The superconductor has a portion having a relatively high critical current density and a portion having a relatively low critical current density.
When applying the pulse magnetic field to the superconductor,
First, an initial pulse magnetic field is applied, and the magnetic field penetrates into at least the relatively low critical current density part and the superconductor center part.
Next, a medium-term pulse magnetic field stronger than the initial pulse magnetic field is applied, and the magnetic field penetrates at least into a portion having a relatively high critical current density,
A method for magnetizing a superconductor, comprising: applying a late-pulse magnetic field having an intensity equal to or less than the intensity of the middle-phase pulse, and magnetizing the superconductor from the center to the outer edge.
請求項1において,上記初期パルス磁場は複数回印加することを特徴とする超電導体の着磁方法。2. The method according to claim 1, wherein the initial pulse magnetic field is applied a plurality of times. 請求項1又は2において,上記後期パルス磁場は複数回印加し,各印加の際のパルス磁場は中期パルス磁場の強度から順次強度が低減するか,または各印加の際のパルス磁場は中期パルス磁場の強度と略等しいことを特徴とする超電導体の着磁方法。3. The pulse magnetic field according to claim 1 or 2, wherein the pulse magnetic field is applied a plurality of times, and the pulse magnetic field at each application decreases in intensity sequentially from the intensity of the medium pulse magnetic field, or the pulse magnetic field at each application is a medium pulse magnetic field. A method for magnetizing a superconductor, characterized in that the strength is substantially equal to the strength of the superconductor. 請求項1〜3のいずれか一項において,上記超電導体は,半溶融状態から徐冷凝固して結晶成長させたRE-Ba2Cu3X(REはLa,Nd,Sm,Eu,Ga,Tb,Dy,Ho,Er,Tm,Yb,Yのいずれか1種以上の元素である。)を主相とすることを特徴とする超電導体の着磁方法。In any one of claims 1 to 3, said superconductor, RE-Ba 2 Cu 3 O X (RE obtained by crystal growth from a semi-molten state by slow cooling solidification La, Nd, Sm, Eu, Ga , Tb, Dy, Ho, Er, Tm, Yb, or Y) as a main phase.
JP29253999A 1999-10-14 1999-10-14 Magnetization method of superconductor Expired - Fee Related JP3540969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29253999A JP3540969B2 (en) 1999-10-14 1999-10-14 Magnetization method of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29253999A JP3540969B2 (en) 1999-10-14 1999-10-14 Magnetization method of superconductor

Publications (2)

Publication Number Publication Date
JP2001110637A JP2001110637A (en) 2001-04-20
JP3540969B2 true JP3540969B2 (en) 2004-07-07

Family

ID=17783106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29253999A Expired - Fee Related JP3540969B2 (en) 1999-10-14 1999-10-14 Magnetization method of superconductor

Country Status (1)

Country Link
JP (1) JP3540969B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1583209B1 (en) 2003-01-09 2012-08-29 University of Fukui Superconducting synchronous machine
JP4793801B2 (en) * 2004-08-30 2011-10-12 国立大学法人東京海洋大学 Optimized magnetizing method for superconductors
JP2006332499A (en) * 2005-05-30 2006-12-07 Iwate Univ Method for pulse magnetizing bulk superconductor and super conducting magnet device
US9865383B2 (en) * 2014-01-22 2018-01-09 National Oilwell Varco, L.P. Systems and methods for activation of trapped field magnets

Also Published As

Publication number Publication date
JP2001110637A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
Matsushita et al. Enhancement of the superconducting critical current from saturation in Nb‐Ti wire. I.
Yanagi et al. Pulsed field magnetization of a 36 mm diameter single-domain Sm–Ba–Cu–O bulk superconductor at 30, 35 and 77 K
Yao et al. A Superconducting Joint Technique for ${\rm MgB} _ {2} $ Round Wires
Oesterreicher Structural, magnetic and neutron diffraction studies on TbFe2-TbAl2, TbCo2-TbAl2 and HoCo2-HoAl2
JP3540969B2 (en) Magnetization method of superconductor
Ishida et al. Sequential vortex states upon lattice melting in untwinned single-crystal YBa 2 Cu 3 O 7
Fujishiro et al. Pulsed field magnetization for GdBaCuO bulk with stronger pinning characteristics
Yokoyama et al. Improvement of trapped magnetic field of a REBCO bulk magnet activated by pulsed field magnetization in a high-cooling power two-stage GM-type refrigerator
JP2004193481A (en) Superconducting magnet, and manufacturing method and magnetizing method therefor
Iliescu et al. In-field Hall probe mapping system for characterization of YBCO welds
Uspenskaya et al. Magneto-optical studies of magnetization of melt-processed YBa 2 Cu 3 O 7− δ
WO2006095614A1 (en) Superconducting magnet excitation method and superconducting magnet device
Pérez-Rodríguez et al. Flux-line cutting in granular high-temperature superconductors
JP3635828B2 (en) Magnetization method of superconductor
Schartman et al. Magnetic susceptibility investigations of the La2NiO4+ δ system
US5306701A (en) Superconducting magnet and fabrication method
Oka et al. Performance of trapped magnetic field in superconducting bulk magnets activated by pulsed field magnetization
Nishijima et al. Magnetization method for long high-T/sub c/bulk superconductors used for magnetic separation
Brittles et al. Microstructural properties and magnetic testing of spot-welded joints between Nb–Ti filaments
Caunes et al. Waveform control pulse magnetization of GdBaCuO bulk near operating temperature of our superconducting rotating machine
Oka et al. Magnetizing of permanent magnets using HTS bulk magnets
JP4793801B2 (en) Optimized magnetizing method for superconductors
Mizutani et al. Synthesis of c-axis oriented RE-Ba-Cu-O (RE= Sm and Nd) superconductors and performance of superconducting permanent magnets activated by pulsed fields
Matsumoto et al. Magnetic flux concentration using YBCO hollow and solid cylinders
Chen et al. Optimization of Pulsed-Current Profile for Magnetizing High $ T_rm C $ Bulk YBCO Superconductors

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040326

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees