[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3540557B2 - Nickel electrode for alkaline storage battery and method for producing the same - Google Patents

Nickel electrode for alkaline storage battery and method for producing the same Download PDF

Info

Publication number
JP3540557B2
JP3540557B2 JP23442797A JP23442797A JP3540557B2 JP 3540557 B2 JP3540557 B2 JP 3540557B2 JP 23442797 A JP23442797 A JP 23442797A JP 23442797 A JP23442797 A JP 23442797A JP 3540557 B2 JP3540557 B2 JP 3540557B2
Authority
JP
Japan
Prior art keywords
cobalt
nickel
hydroxide
electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23442797A
Other languages
Japanese (ja)
Other versions
JPH1173953A (en
Inventor
陽一郎 柴田
和昭 尾崎
卓也 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23442797A priority Critical patent/JP3540557B2/en
Publication of JPH1173953A publication Critical patent/JPH1173953A/en
Application granted granted Critical
Publication of JP3540557B2 publication Critical patent/JP3540557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は正極活物質として水酸化ニッケルを用いたニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・亜鉛蓄電池などのアルカリ蓄電池のニッケル電極およびその製造方法に係り、特に、このニッケル電極の高容量化に関するものである。
【0002】
【従来の技術】
近年、携帯用電子・通信機器の急速な普及により従来に増して高性能な蓄電池が要請されている。このような背景にあって、水酸化ニッケルを正極活物質とするアルカリ蓄電池においても、蓄電池の一層の高性能化のため、水酸化ニッケル活物質の利用率を改良する方法が種々提案されている。
【0003】
この水酸化ニッケル活物質の利用率を向上させる方法としては、正極にコバルト化合物を添加する方法がある。コバルト化合物は、2価の状態では導電性が低いが、充電されると導電性が良好な高次のコバルト化合物に変化し、この高次のコバルト化合物は放電し難いため、放電を行っても正極内に残存して正極内の導電性を高く維持することが可能である。このため、活物質の利用率を向上させることが可能となる。
【0004】
このコバルト化合物の添加方法には、例えば、特開昭57−205968号公報、特開平7−272723号公報などに提案される方法がある。特開昭57−205968号公報で提案される方法においては、硝酸塩溶液から水酸化物としてニッケルとコバルトを同時に析出させるようにしている。一方、特開平7−272723号公報で提案される方法においては、ニッケル−コバルト共融混合物を活物質として用いるとともに、水酸化ニッケルのX線回析における(1,0,1)面に対応するピークの半値幅を0.6以上に規定することにより、水酸化ニッケルの活性度を高めて充電受け入れ性を向上させるようにしている。
【0005】
【発明が解決しようとする課題】
しかしながら、特開昭57−205968号公報で提案される方法においては、活物質利用率を向上させる効果を得るには多量のコバルトを必要とし、充放電反応に寄与する水酸化ニッケル活物質の充填量が減少するため、極板容量が低下し、作動電圧も低下するという問題を生じた。一方、特開平7−272723号公報で提案される方法においても、同様に活物質利用率を向上させる効果を得るには多量のコバルトを必要とし、充放電反応に寄与する水酸化ニッケル活物質の充填量が減少するため、極板容量が低下し、作動電圧も低下するという問題がある。
そこで、本発明は上記問題点に鑑みてなされたものであり、作動電圧を低下させることなく、かつ活物質利用率が向上したアルカリ蓄電池用ニッケル電極を得ることにある。
【0006】
【課題を解決するための手段およびその作用・効果】
上記課題を解決するために、本発明のアルカリ蓄電池用ニッケル電極は、活物質を保持させたニッケル電極の表面にX線回析における(1,0,1)面に対応するピークの半値幅(半価幅)が0.3以上の結晶性の低いβ−水酸化コバルトを主体とする層を備えるようにしたことを特徴としている。
【0007】
水酸化コバルトは活性度が低いため、単に水酸化コバルトの単独層を活物質表面に設けても、その後の充電による電気化学的酸化によってオキシ水酸化コバルトへの転化が効果的に行えず、水酸化ニッケル活物質上にオキシ水酸化コバルトを均一に覆うことができなく、活物質利用率は向上しない。しかしながら、本発明のように正極活物質を保持させたニッケル電極の表面に上記した結晶性が低いβ−水酸化コバルトを主体とする層を備えるようにすると、この結晶性の低いβ−水酸化コバルトは活性度が高いため、その後の電気化学的酸化も容易に起こりやすい。
【0008】
このため、水酸化ニッケル活物質表面は活性な水酸化コバルトで覆われて、その後の充電による電気化学的酸化反応によって、オキシ水酸化コバルトに不可逆転化し、効果的に導電マトリックスが形成できるようになる。この結果、深放電が可能となり、ニッケル電極の活物質利用率が向上する。
【0009】
そして、上記X線回析における(1,0,1)面に対応するピークの半値幅が0.3以上である結晶性の低いβ−水酸化コバルトを主体とする層は、β−水酸化コバルトを70重量%以上含有する層とすることが好ましい。このように、結晶性の低いβ−水酸化コバルトを規定するとともにその形成量を規定することにより、電極内に最適な導電ネットワークを形成することが可能となって、活物質利用率がさらに向上する。
【0010】
また、本発明のアルカリ蓄電池用ニッケル電極の製造方法は、活物質保持体となる電極に水酸化ニッケルを主成分とする正極活物質を保持させる活物質保持工程と、この活物質保持工程により正極活物質を保持させた電極をコバルト化合物を含有する水溶液に浸漬して同電極の表面にコバルト化合物を保持させる含浸工程と、この含浸工程により前記電極の表面に保持されたコバルト化合物をアルカリ処理してコバルト化合物をX線回析における(1,0,1)面に対応するピークの半値幅が0.3以上のβ−水酸化コバルトに置換するアルカリ処理工程とを備えるようにしたことを特徴とする。
【0011】
このように、電極の表面にコバルト化合物を保持させた後、アルカリ処理により水酸化コバルトに置換すると、電極の表面に結晶性の低いβ−水酸化コバルトが形成されるようになる。結晶性の低いβ−水酸化コバルトは活性度が高いため、その後の充電による電気化学的酸化も容易に起こりやすい。このため、水酸化ニッケル活物質表面は活性な水酸化コバルトで覆われて、その後の充電による電気化学的酸化反応によって、オキシ水酸化コバルトに不可逆転化し、効果的に導電マトリックスが形成できるようになる。この結果、深放電が可能となり、ニッケル電極の活物質利用率が向上する。
【0012】
そして、コバルト化合物はコバルトの強酸塩である硝酸コバルト、および、シュウ酸コバルト、リン酸コバルト、酢酸コバルト、蟻酸コバルトからなるコバルトの弱酸塩あるいは有機酸コバルトから選択することが好ましい。
【0013】
【発明の実施の形態】
1.焼結基板の作製
ニッケル粉末にカルボキシメチルセルロース等の増粘剤および水を混練してスラリーを調整し、このスラリーをニッケル多孔体からなる導電性芯体に塗着する。この後、スラリーを塗着した導電性芯体を還元性雰囲気下で焼結し、焼結基板を作製する。
【0014】
2.ニッケル電極の作製
(1)基準電極
上述のように作製した焼結基板を硝酸ニッケルを主体とする水溶液に浸漬して、焼結基板の細孔内に硝酸ニッケルを主体とする水溶液を含浸させた後、乾燥させて焼結基板の細孔内に硝酸ニッケルを析出させる。硝酸ニッケルを析出させた焼結基板を水酸化ナトリウム水溶液中に浸漬して、細孔内に析出させた硝酸ニッケルを水酸化ニッケルに置換する。その後、再び焼結基板を硝酸ニッケルを主体とする水溶液に浸漬する処理操作に戻り、上記と同様な処理操作を所定回数繰り返して焼結基板の細孔内に水酸化ニッケルを充填する。このようにして焼結基板の細孔内に水酸化ニッケルを充填した電極を基準電極とする。
【0015】
(2)実施例1
上述のように作製した基準電極を、25℃にて2mol/lの硝酸コバルト水溶液に浸漬して、水酸化ニッケルを充填した基準電極の表面に硝酸コバルトを保持させる。ついで、表面に硝酸コバルトを保持させた基準電極を80℃で乾燥させた後、25℃にて8N−水酸化ナトリウム水溶液に浸漬するアルカリ処理を施して、硝酸コバルトを水酸化コバルトに置換する。その後、水洗した後、100℃で乾燥させて、実施例1のニッケル電極を作製する。このとき、生成された水酸化コバルトの内、β−水酸化コバルトのX線回析ピーク(1,0,1)面に対応するピークの半値幅(半価幅)は0.30であった。また、このとき基準電極の表面に形成された水酸化コバルトの重量は水酸化ニッケルと水酸化コバルトからなる全活物質に対して2.1重量%であった。
【0016】
(3)実施例2
上述のように作製した基準電極を、25℃にて1.35mol/lの酢酸コバルト水溶液に浸漬して、水酸化ニッケルを充填した基準電極の表面に酢酸コバルトを析出させる。ついで、表面に酢酸コバルトを保持させた基準電極を80℃で乾燥させた後、80℃にて8N−水酸化ナトリウムに浸漬するアルカリ処理を施し、酢酸コバルトを水酸化コバルトに置換する。その後、水洗した後、100℃で乾燥させて、実施例2のニッケル電極を作製する。このとき、生成された水酸化コバルトの内、β−水酸化コバルトのX線回析ピーク(1,0,1)面に対応するピークの半値幅は0.31であった。
【0017】
(4)実施例3
上述のように作製した基準電極を、80℃にて1.8mol/lの酢酸コバルト水溶液に浸漬して、水酸化ニッケルを充填した基準電極の表面に酢酸コバルトを析出させる。ついで、表面に酢酸コバルトを保持させた基準電極を80℃で乾燥させた後、25℃にて8N−水酸化ナトリウムに浸漬するアルカリ処理を施し、酢酸コバルトを水酸化コバルトに置換する。その後、水洗した後、100℃で乾燥させて、実施例3のニッケル電極を作製する。このとき、生成された水酸化コバルトの内、β−水酸化コバルトのX線回析ピーク(1,0,1)面に対応するピークの半値幅は0.46であった。
【0018】
(5)比較例A
上述のように作製した基準電極を、25℃にて2mol/lの硝酸コバルト水溶液に浸漬して、水酸化ニッケルを充填した基準電極の表面に硝酸コバルトを保持させる。ついで、表面に硝酸コバルトを保持させた基準電極を80℃で乾燥させた後、80℃にて8N−水酸化ナトリウムに浸漬するアルカリ処理を施し、硝酸コバルトを水酸化コバルトに置換する。その後、水洗した後、100℃で乾燥して比較例Aのニッケル電極を作製する。このとき、生成された水酸化コバルトの内、β−水酸化コバルトのX線回析ピーク(1,0,1)面に対応するピークの半値幅は0.27であった。
【0019】
3.エネルギー密度の測定
上述のように作成した基準電極、実施例1〜3および比較例Aのニッケル電極を比重1.2の水酸化カリウム水溶液中でニッケル板を対極として0.1Cの充電電流で16時間充電した後、0.25Cの放電電流で電極電位がニッケル対極に対して−1.5Vになるまで放電させ、このときの放電時間から水酸化ニッケルと水酸化コバルトからなる全活物質1g当たりの放電容量(単位活物質容量)を求め、基準電極の表面に形成されたβ−水酸化コバルトのX線回析ピーク(1,0,1)面に対応するピークの半値幅(半価幅)と単位活物質容量(活物質エネルギー密度)との関係を求めると図1に示すような結果となった。
【0020】
図1より明らかなように、基準電極の表面に形成されたβ−水酸化コバルトのX線回析ピーク(1,0,1)面に対応するピークの半値幅が0.3以上であれば、活物質エネルギー密度が効果的に向上することが分かる。即ち、β−水酸化コバルトのX線回析ピーク(1,0,1)面に対応するピークの半値幅が0.3以上の水酸化コバルトを基準電極の表面に形成したニッケル電極は活物質利用率が向上することとなる。
【0021】
4.水酸化コバルト量の検討
ついで、基準電極の表面に形成される水酸化コバルト量について検討する。
(1)実施例4
上述のように作製した基準電極を、25℃にて30重量%の硝酸ニッケルを含む2mol/lの硝酸コバルト水溶液に浸漬して、水酸化ニッケルを充填した基準電極の表面に硝酸ニッケル−硝酸コバルト共融混合物を保持させる。表面に硝酸ニッケル−硝酸コバルト共融混合物を保持させた基準電極を80℃で乾燥させた後、25℃にて8N−水酸化ナトリウムに浸漬するアルカリ処理を施し、硝酸ニッケルを水酸化コバルトに置換するとともに、硝酸コバルトを水酸化コバルトに置換する。その後、水洗した後、100℃で乾燥させて、実施例4のニッケル電極を作製する。このとき、生成された水酸化コバルトの内、β−水酸化コバルトのX線回析ピーク(1,0,1)面に対応するピークの半値幅は0.36であった。
【0022】
(2)実施例5
上述のように作製した基準電極を、25℃にて20重量%の硝酸ニッケルを含む2mol/lの硝酸コバルト水溶液に浸漬して、水酸化ニッケルを充填した基準電極の表面に硝酸ニッケル−硝酸コバルト共融混合物を保持させる。表面に硝酸ニッケル−硝酸コバルト共融混合物を保持させた基準電極を80℃で乾燥させた後、25℃にて8N−水酸化ナトリウムに浸漬するアルカリ処理を施し、硝酸ニッケルを水酸化ニッケルに置換するとともに、硝酸コバルトを水酸化コバルトに置換する。その後、水洗した後、100℃で乾燥させて、実施例5のニッケル電極を作製する。このとき、生成された水酸化コバルトの内、β−水酸化コバルトのX線回析ピーク(1,0,1)面に対応するピークの半値幅は0.35であった。
【0023】
(3)比較例B
上述のように作製した基準電極を、25℃にて50重量%の硝酸ニッケルを含む2mol/lの硝酸コバルト水溶液に浸漬して、水酸化ニッケルを充填した基準電極の表面に硝酸ニッケル−硝酸コバルト共融混合物を保持させる。表面に硝酸ニッケル−硝酸コバルト共融混合物を保持させた基準電極を80℃で乾燥させた後、25℃にて8N−水酸化ナトリウムに浸漬するアルカリ処理を施し、硝酸ニッケルを水酸化ニッケルに置換するとともに、硝酸コバルトを水酸化コバルトに置換する。その後、水洗した後、100℃で乾燥させて、比較例Bのニッケル電極を作製する。このとき、生成された水酸化コバルトの内、β−水酸化コバルトのX線回析ピーク(1,0,1)面に対応するピークの半値幅は0.35であった。
【0024】
(4)比較例C
上述のように作製した基準電極を、25℃にて35重量%の硝酸ニッケルを含む2mol/lの硝酸コバルト水溶液に浸漬して、水酸化ニッケルを充填した基準電極の表面に硝酸ニッケル−硝酸コバルト共融混合物を保持させる。表面に硝酸ニッケル−硝酸コバルト共融混合物を保持させた基準電極を80℃で乾燥させた後、25℃にて8N−水酸化ナトリウムに浸漬するアルカリ処理を施し、硝酸ニッケルを水酸化ニッケルに置換するとともに、硝酸コバルトを水酸化コバルトに置換する。その後、水洗した後、100℃で乾燥させて、比較例Cのニッケル電極を作製する。このとき、生成された水酸化コバルトの内、β−水酸化コバルトのX線回析ピーク(1,0,1)面に対応するピークの半値幅は0.36であった。
【0025】
上述のように作成した実施例4,5および比較例B,Cのニッケル電極を比重1.2の水酸化カリウム水溶液中でニッケル板を対極として0.1Cの充電電流で16時間充電した後、0.25Cの放電電流で電極電位がニッケル対極に対して−1.5Vになるまで放電させ、このときの放電時間から水酸化ニッケルと水酸化コバルトからなる全活物質1g当たりの放電容量(単位活物質容量)を求め、硝酸コバルト水溶液中に含まれる硝酸ニッケルの重量%、即ち、基板表面に形成される水酸化ニッケルに対する水酸化コバルトの比率(重量%)と単位活物質容量(活物質エネルギー密度)との関係を求めると図2に示すような結果となった。
【0026】
図2より明らかなように、基準電極の表面に形成された水酸化コバルトが70重量%以上であれば、活物質エネルギー密度が効果的に向上することが分かる。即ち、70重量%以上を水酸化コバルトとしての基準電極の表面に形成させたニッケル電極は活物質利用率が向上することとなる。
【0027】
5.水酸化コバルトの添加位置の検討
ついで、ニッケル電極に添加する水酸化コバルトの添加位置について検討する。
(1)実施例6
上述のように作製した基準電極を、25℃にて1.0mol/lの硝酸コバルト水溶液に浸漬して、水酸化ニッケルを充填した基準電極の表面に硝酸コバルトを保持させる。表面に硝酸コバルトを保持させた基準電極を80℃で乾燥させた後、25℃にて8N−水酸化ナトリウムに浸漬するアルカリ処理を施し、硝酸コバルトを水酸化コバルトに置換する。その後、水洗した後、100℃で乾燥させて、実施例6のニッケル電極を作製する。このとき、生成された水酸化コバルトの内、β−水酸化コバルトのX線回析ピーク(1,0,1)面に対応するピークの半値幅は0.31であった。また、このとき基準電極の表面に形成された水酸化コバルトの重量は水酸化ニッケルと水酸化コバルトからなる全活物質に対して0.9重量%であった。
【0028】
(2)実施例7
上述のように作製した基準電極を、25℃にて2.8mol/lの硝酸コバルト水溶液に浸漬して、水酸化ニッケルを充填した基準電極の表面に硝酸コバルトを析出させる。表面に硝酸コバルトを析出させた基準電極を80℃で乾燥させた後、25℃にて8N−水酸化ナトリウムに浸漬するアルカリ処理を施し、硝酸コバルトを水酸化コバルトに置換する。その後、水洗した後、100℃で乾燥させて、実施例7のニッケル電極を作製する。このとき、生成された水酸化コバルトの内、β−水酸化コバルトのX線回析ピーク(1,0,1)面に対応するピークの半値幅は0.32であった。また、このとき基準電極の表面に形成された水酸化コバルトの重量は全水酸化ニッケル活物質に対して3.1重量%であった。
【0029】
(3)比較例D
上述のように作製した焼結基板を硝酸ニッケルにそれぞれ1重量%、3重量%、5重量%の硝酸コバルトを添加した水溶液に浸漬して、焼結基板の細孔内に硝酸コバルトを添加した硝酸ニッケル水溶液を含浸させた後、乾燥させて焼結基板の細孔内に硝酸ニッケル−硝酸コバルト共融混合物を析出させる。ついで、硝酸ニッケル−硝酸コバルト共融混合物を析出させた焼結基板を乾燥させた後、水酸化ナトリウム水溶液中に浸漬し、硝酸ニッケルを水酸化ニッケルに置換させるとともに、硝酸コバルトを水酸化コバルトに置換させる。
【0030】
その後、再び、焼結基板を硝酸ニッケルにそれぞれ1重量%、3重量%、5重量%の硝酸コバルトを添加した水溶液に浸漬する処理操作に戻り、上記と同様な処理操作を所定回数繰り返して焼結基板の細孔内に水酸化ニッケルおよび水酸化コバルトを充填する。このようにして、コバルトの添加量が異なる3種類のニッケル電極を作製し、比較例Dのニッケル電極とする。このようにして作製される比較例Dのニッケル電極は、水酸化ニッケル活物質中に固溶体状でコバルトが存在することとなる。
【0031】
上述のように作成した実施例6,7および比較例Dのニッケル電極を比重1.2の水酸化カリウム水溶液中でニッケル板を対極として0.1Cの充電電流で16時間充電した後、0.25Cの放電電流で電極電位がニッケル対極に対して−1.5Vになるまで放電させ、このときの放電時間から水酸化ニッケルと水酸化コバルトからなる全活物質1g当たりの放電容量(単位活物質容量)を求め、全活物質に対するコバルト添加量と、基準電極を用いた活物質エネルギー密度を100とした場合の活物質エネルギー密度比との関係を求めると図3に示すような結果となった。
【0032】
図3より明らかなように、X線回析ピークにおける(1,0,1)面に対応するピークの半値幅が0.3以上のβ−水酸化コバルトを水酸化ニッケル活物質の表面に有するニッケル電極は、水酸化ニッケル活物質中に固溶体状でコバルトが存在する比較例Dのニッケル電極より、エネルギー密度を向上させる効果が高いことが分かる。
なお、上述したX線回析は、CuKα線を使用して行い、その測定条件は管電圧が30kV、管電流が12.5mA、走査速度が2deg/minで行った。
【0033】
上述したように、本発明においては、水酸化ニッケル活物質を充填した基板の表面にX線回析ピーク(1,0,1)面の半値幅が0.3以上のβ−水酸化コバルトを形成するようにしているので、活性度の高い水酸化コバルトが均一に電極表面に付着するするようになって、充電時の水酸化コバルトからオキシ水酸化コバルトへの酸化反応において、効果的に導電マトリックスを形成することが可能となって活物質利用率が向上する。また、電極表面に形成する水酸化コバルトを主体とする層の水酸化コバルト量を70重量%以上にすれば、ニッケル電極の導電性を十分に高めることができるようになるので、活物質エネルギー密度が大きなニッケル電極が得られるようになる。
【0034】
なお、上述した各実施例でX線回析ピーク(1,0,1)面の半値幅が0.3以上のβ−水酸化コバルトを得るために、水酸化ニッケル活物質を充填した基板を硝酸コバルトに浸漬する場合は、水酸化ナトリウムよりなるアルカリ処理液の温度を25℃とすることにより実現したり、水酸化コバルトへの出発物質として酢酸コバルトを用いることにより実現するようにしたが、アルカリ処理液の濃度を調節することにより、X線回析ピーク(1,0,1)面の半値幅が0.3以上のβ−水酸化コバルトを得ることができる。また、水酸化コバルトへの出発物質として、硝酸コバルト、酢酸コバルト以外に、蟻酸コバルト、シュウ酸コバルト、リン酸コバルト等の有機酸コバルトやコバルト弱酸塩を用い、コバルト液浸漬温度を調節することにより、X線回析ピーク(1,0,1)面の半値幅が0.3以上のβ−水酸化コバルトを得ることができる。
【0035】
なお、上述した各実施例では焼結式ニッケル電極の例について説明したが、本発明のニッケル電極は、ペースト式等の非焼結式ニッケル電極にも適用可能である。
【図面の簡単な説明】
【図1】水酸化コバルトのX線回析ピーク(1,0,1)面の半値幅と正極活物質のエネルギー密度の関係を示す図である。
【図2】ニッケル電極の表面層の水酸化コバルトを主体とする層中の水酸化コバルトの比率と正極活物質のエネルギー密度の関係を示す図である。
【図3】コバルト添加量と正極活物質のエネルギー密度比の関係を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nickel electrode for an alkaline storage battery such as a nickel-hydrogen storage battery, a nickel-cadmium storage battery, and a nickel-zinc storage battery using nickel hydroxide as a positive electrode active material and a method for producing the same, and in particular, to increasing the capacity of the nickel electrode. It is about.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the rapid spread of portable electronic and communication devices, there has been a demand for higher performance storage batteries than ever. Against this background, various methods for improving the utilization rate of the nickel hydroxide active material have been proposed for alkaline storage batteries using nickel hydroxide as a positive electrode active material in order to further enhance the performance of the storage battery. .
[0003]
As a method of improving the utilization rate of the nickel hydroxide active material, there is a method of adding a cobalt compound to the positive electrode. Although the cobalt compound has a low conductivity in a divalent state, it changes into a higher-order cobalt compound having a good conductivity when charged, and since the higher-order cobalt compound is difficult to discharge, even if the discharge is performed, It is possible to remain in the positive electrode and maintain high conductivity in the positive electrode. For this reason, it is possible to improve the utilization rate of the active material.
[0004]
As a method of adding the cobalt compound, for example, there are methods proposed in JP-A-57-205968 and JP-A-7-272723. In the method proposed in JP-A-57-205968, nickel and cobalt are simultaneously precipitated as hydroxides from a nitrate solution. On the other hand, in the method proposed in Japanese Patent Application Laid-Open No. 7-272723, a nickel-cobalt eutectic mixture is used as an active material, and the nickel hydroxide corresponds to the (1,0,1) plane in X-ray diffraction of nickel hydroxide. By defining the half width of the peak to be 0.6 or more, the activity of nickel hydroxide is increased to improve charge acceptability.
[0005]
[Problems to be solved by the invention]
However, in the method proposed in JP-A-57-205968, a large amount of cobalt is required to obtain the effect of improving the utilization rate of the active material, and the charging of the nickel hydroxide active material contributing to the charge / discharge reaction is required. Since the amount is reduced, the capacity of the electrode plate is reduced, and the operating voltage is also reduced. On the other hand, in the method proposed in Japanese Patent Application Laid-Open No. 7-272723, a large amount of cobalt is similarly required to obtain the effect of improving the active material utilization, and the nickel hydroxide active material contributing to the charge / discharge reaction is also required. Since the filling amount is reduced, there is a problem that the electrode plate capacity is reduced and the operating voltage is also reduced.
Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a nickel electrode for an alkaline storage battery in which the operating voltage is reduced without lowering the operating voltage.
[0006]
[Means for Solving the Problems and Their Functions and Effects]
In order to solve the above-mentioned problem, the nickel electrode for an alkaline storage battery of the present invention has a half-value width of a peak corresponding to a (1,0,1) plane in X-ray diffraction on a surface of a nickel electrode holding an active material. (Half width) is characterized by comprising a layer mainly composed of β-cobalt hydroxide having low crystallinity of 0.3 or more.
[0007]
Since cobalt hydroxide has low activity, even if a single layer of cobalt hydroxide is simply provided on the surface of the active material, conversion to cobalt oxyhydroxide cannot be effectively performed by electrochemical oxidation by subsequent charging, and water Cobalt oxyhydroxide cannot be uniformly covered on the nickel oxide active material, and the active material utilization does not improve. However, if a layer mainly composed of β-cobalt hydroxide having a low crystallinity is provided on the surface of the nickel electrode holding the positive electrode active material as in the present invention, the β-hydroxyl having a low crystallinity may be provided. Since cobalt has high activity, subsequent electrochemical oxidation is easily caused.
[0008]
For this reason, the surface of the nickel hydroxide active material is covered with active cobalt hydroxide, and is irreversibly converted to cobalt oxyhydroxide by an electrochemical oxidation reaction by subsequent charging, so that a conductive matrix can be effectively formed. Become. As a result, deep discharge becomes possible, and the active material utilization rate of the nickel electrode is improved.
[0009]
The layer mainly composed of low-crystallinity β-cobalt hydroxide, in which the half-width of the peak corresponding to the (1,0,1) plane in the X-ray diffraction is 0.3 or more, is formed by β-hydroxylation. It is preferable that the layer contains 70% by weight or more of cobalt. In this way, by defining β-cobalt hydroxide having low crystallinity and defining the amount of formation, it is possible to form an optimal conductive network in the electrode, and the active material utilization rate is further improved. I do.
[0010]
The manufacturing method of an alkaline storage battery of nickel electrodes of the present invention positive electrode active material holding step for holding the positive electrode active material mainly composed of nickel hydroxide electrode comprising an active material retainer, this active material holding step The electrode holding the active material is immersed in an aqueous solution containing a cobalt compound to immerse the electrode in the aqueous solution containing the cobalt compound, and the cobalt compound held on the surface of the electrode is alkali-treated by the impregnation step. An alkaline treatment step of substituting a cobalt compound with β-cobalt hydroxide having a half width of a peak corresponding to a (1,0,1) plane in X-ray diffraction of 0.3 or more. And
[0011]
As described above, when the cobalt compound is held on the surface of the electrode and then replaced with cobalt hydroxide by an alkali treatment, β-cobalt hydroxide having low crystallinity is formed on the surface of the electrode. Since β-cobalt hydroxide having low crystallinity has high activity, electrochemical oxidation due to subsequent charging easily occurs easily. For this reason, the surface of the nickel hydroxide active material is covered with active cobalt hydroxide, and is irreversibly converted to cobalt oxyhydroxide by an electrochemical oxidation reaction by subsequent charging, so that a conductive matrix can be effectively formed. Become. As a result, deep discharge becomes possible, and the active material utilization rate of the nickel electrode is improved.
[0012]
Then, cobalt nitrate cobalt compound is a strong acid salts of cobalt, and cobalt oxalate, cobalt phosphate, cobalt acetate, it is not preferable to choose from a weak acid salt or an organic acid cobalt cobalt consisting of formic acid cobalt.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
1. Preparation of Sintered Substrate A thickener such as carboxymethylcellulose and water are kneaded with nickel powder to prepare a slurry, and the slurry is applied to a conductive core made of a porous nickel body. Thereafter, the conductive core coated with the slurry is sintered under a reducing atmosphere to produce a sintered substrate.
[0014]
2. Production of Nickel Electrode (1) Reference Electrode The sintered substrate produced as described above was immersed in an aqueous solution mainly composed of nickel nitrate, and the pores of the sintered substrate were impregnated with an aqueous solution mainly composed of nickel nitrate. Thereafter, the substrate is dried to deposit nickel nitrate in the pores of the sintered substrate. The sintered substrate on which nickel nitrate has been deposited is immersed in an aqueous sodium hydroxide solution to replace the nickel nitrate deposited in the pores with nickel hydroxide. Thereafter, the process returns to the operation of immersing the sintered substrate again in an aqueous solution mainly composed of nickel nitrate, and the same operation as described above is repeated a predetermined number of times to fill the pores of the sintered substrate with nickel hydroxide. The electrode thus filled with nickel hydroxide in the pores of the sintered substrate is used as a reference electrode.
[0015]
(2) Example 1
The reference electrode prepared as described above is immersed in a 2 mol / l aqueous solution of cobalt nitrate at 25 ° C. to hold cobalt nitrate on the surface of the reference electrode filled with nickel hydroxide. Next, the reference electrode having cobalt nitrate retained on the surface is dried at 80 ° C., and then subjected to an alkali treatment of immersion in an 8N aqueous solution of sodium hydroxide at 25 ° C. to replace cobalt nitrate with cobalt hydroxide. Then, after washing with water, it is dried at 100 ° C. to produce the nickel electrode of Example 1. At this time, the half width (half width) of the peak corresponding to the X-ray diffraction peak (1,0,1) plane of β-cobalt hydroxide among the generated cobalt hydroxide was 0.30. . At this time, the weight of the cobalt hydroxide formed on the surface of the reference electrode was 2.1% by weight based on the total active material composed of nickel hydroxide and cobalt hydroxide.
[0016]
(3) Example 2
The reference electrode prepared as described above is immersed in a 1.35 mol / l aqueous solution of cobalt acetate at 25 ° C. to deposit cobalt acetate on the surface of the reference electrode filled with nickel hydroxide. Next, the reference electrode having cobalt acetate on the surface is dried at 80 ° C., and then subjected to an alkali treatment of immersion in 8N-sodium hydroxide at 80 ° C. to replace cobalt acetate with cobalt hydroxide. Then, after washing with water, it is dried at 100 ° C. to produce a nickel electrode of Example 2. At this time, the half-value width of the peak corresponding to the X-ray diffraction peak (1, 0, 1) plane of β-cobalt hydroxide among the generated cobalt hydroxide was 0.31.
[0017]
(4) Example 3
The reference electrode produced as described above is immersed in a 1.8 mol / l aqueous solution of cobalt acetate at 80 ° C. to deposit cobalt acetate on the surface of the reference electrode filled with nickel hydroxide. Next, the reference electrode having cobalt acetate retained on the surface is dried at 80 ° C., and then subjected to an alkali treatment of immersion in 8N-sodium hydroxide at 25 ° C. to replace cobalt acetate with cobalt hydroxide. Then, after washing with water, it is dried at 100 ° C. to produce a nickel electrode of Example 3. At this time, the half-value width of the peak corresponding to the X-ray diffraction peak (1,0,1) plane of β-cobalt hydroxide among the generated cobalt hydroxide was 0.46.
[0018]
(5) Comparative example A
The reference electrode prepared as described above is immersed in a 2 mol / l aqueous solution of cobalt nitrate at 25 ° C. to hold cobalt nitrate on the surface of the reference electrode filled with nickel hydroxide. Next, the reference electrode having cobalt nitrate retained on the surface is dried at 80 ° C., and then subjected to an alkali treatment of immersion in 8N sodium hydroxide at 80 ° C. to replace cobalt nitrate with cobalt hydroxide. Then, after washing with water, drying is performed at 100 ° C. to produce a nickel electrode of Comparative Example A. At this time, the half-value width of the peak corresponding to the X-ray diffraction peak (1, 0, 1) plane of β-cobalt hydroxide among the generated cobalt hydroxide was 0.27.
[0019]
3. Measurement of Energy Density The reference electrodes prepared as described above, the nickel electrodes of Examples 1 to 3 and Comparative Example A were charged in a potassium hydroxide aqueous solution having a specific gravity of 1.2 at a charging current of 0.1 C using a nickel plate as a counter electrode. After charging for an hour, the electrode was discharged at a discharge current of 0.25 C until the electrode potential became -1.5 V with respect to the nickel counter electrode. From this discharge time, per 1 g of the total active material comprising nickel hydroxide and cobalt hydroxide was used. Of the peak corresponding to the X-ray diffraction peak (1,0,1) plane of β-cobalt hydroxide formed on the surface of the reference electrode. ) And the unit active material capacity (active material energy density) yielded the results shown in FIG.
[0020]
As is clear from FIG. 1, if the half width of the peak corresponding to the X-ray diffraction peak (1, 0, 1) plane of β-cobalt hydroxide formed on the surface of the reference electrode is 0.3 or more, It can be seen that the active material energy density is effectively improved. That is, the nickel electrode formed on the surface of the reference electrode with cobalt hydroxide having a half width of 0.3 or more of the peak corresponding to the X-ray diffraction peak (1, 0, 1) plane of β-cobalt hydroxide is an active material. The utilization rate will be improved.
[0021]
4. Examination of the amount of cobalt hydroxide Next, the amount of cobalt hydroxide formed on the surface of the reference electrode will be examined.
(1) Example 4
The reference electrode prepared as described above is immersed in a 2 mol / l aqueous solution of cobalt nitrate containing 30% by weight of nickel nitrate at 25 ° C., and the surface of the reference electrode filled with nickel hydroxide is coated with nickel nitrate-cobalt nitrate. Retain the eutectic. A reference electrode having a surface on which a nickel nitrate-cobalt nitrate eutectic mixture is held is dried at 80 ° C., and then subjected to an alkali treatment of immersion in 8N sodium hydroxide at 25 ° C. to replace nickel nitrate with cobalt hydroxide. And replace cobalt nitrate with cobalt hydroxide. Then, after washing with water, it is dried at 100 ° C. to produce a nickel electrode of Example 4. At this time, among the generated cobalt hydroxides, the half width of the peak corresponding to the X-ray diffraction peak (1, 0, 1) plane of β-cobalt hydroxide was 0.36.
[0022]
(2) Embodiment 5
The reference electrode prepared as described above is immersed in a 2 mol / l aqueous solution of cobalt nitrate containing 20% by weight of nickel nitrate at 25 ° C., and nickel nitrate-cobalt nitrate is placed on the surface of the reference electrode filled with nickel hydroxide. Retain the eutectic. A reference electrode having a surface on which a nickel nitrate-cobalt nitrate eutectic mixture is held is dried at 80 ° C., and then subjected to an alkali treatment of immersion in 8N sodium hydroxide at 25 ° C. to replace nickel nitrate with nickel hydroxide. And replace cobalt nitrate with cobalt hydroxide. Then, after washing with water, it is dried at 100 ° C. to produce a nickel electrode of Example 5. At this time, the half width of the peak corresponding to the X-ray diffraction peak (1, 0, 1) plane of β-cobalt hydroxide among the generated cobalt hydroxide was 0.35.
[0023]
(3) Comparative example B
The reference electrode prepared as described above is immersed in a 2 mol / l aqueous solution of cobalt nitrate containing 50% by weight of nickel nitrate at 25 ° C., and the surface of the reference electrode filled with nickel hydroxide is coated with nickel nitrate-cobalt nitrate. Retain the eutectic. A reference electrode having a surface on which a nickel nitrate-cobalt nitrate eutectic mixture is held is dried at 80 ° C., and then subjected to an alkali treatment of immersion in 8N sodium hydroxide at 25 ° C. to replace nickel nitrate with nickel hydroxide. And replace cobalt nitrate with cobalt hydroxide. Then, after washing with water, it is dried at 100 ° C. to produce a nickel electrode of Comparative Example B. At this time, the half width of the peak corresponding to the X-ray diffraction peak (1, 0, 1) plane of β-cobalt hydroxide among the generated cobalt hydroxide was 0.35.
[0024]
(4) Comparative example C
The reference electrode fabricated as described above is immersed in a 2 mol / l aqueous solution of cobalt nitrate containing 35% by weight of nickel nitrate at 25 ° C., and nickel nitrate-cobalt nitrate is placed on the surface of the reference electrode filled with nickel hydroxide. Retain the eutectic. A reference electrode having a surface on which a nickel nitrate-cobalt nitrate eutectic mixture is held is dried at 80 ° C., and then subjected to an alkali treatment of immersion in 8N sodium hydroxide at 25 ° C. to replace nickel nitrate with nickel hydroxide. And replace cobalt nitrate with cobalt hydroxide. Thereafter, after washing with water, drying is performed at 100 ° C. to produce a nickel electrode of Comparative Example C. At this time, among the generated cobalt hydroxides, the half width of the peak corresponding to the X-ray diffraction peak (1, 0, 1) plane of β-cobalt hydroxide was 0.36.
[0025]
After the nickel electrodes of Examples 4 and 5 and Comparative Examples B and C prepared as described above were charged in a potassium hydroxide aqueous solution having a specific gravity of 1.2 with a nickel plate as a counter electrode at a charging current of 0.1 C for 16 hours, The electrode was discharged at a discharge current of 0.25 C until the electrode potential became -1.5 V with respect to the nickel counter electrode. From this discharge time, the discharge capacity per unit of 1 g of the entire active material comprising nickel hydroxide and cobalt hydroxide (unit: Active material capacity), the weight% of nickel nitrate contained in the aqueous cobalt nitrate solution, that is, the ratio (weight%) of cobalt hydroxide to nickel hydroxide formed on the substrate surface and the unit active material capacity (active material energy) (Density), the result was as shown in FIG.
[0026]
As is clear from FIG. 2, it can be seen that the active material energy density is effectively improved when the cobalt hydroxide formed on the surface of the reference electrode is 70% by weight or more. That is, a nickel electrode having 70% by weight or more formed on the surface of the reference electrode as cobalt hydroxide has an improved utilization ratio of the active material.
[0027]
5. Examination of addition position of cobalt hydroxide Next, the addition position of cobalt hydroxide to be added to the nickel electrode will be examined.
(1) Embodiment 6
The reference electrode prepared as described above is immersed in a 1.0 mol / l aqueous solution of cobalt nitrate at 25 ° C. to hold cobalt nitrate on the surface of the reference electrode filled with nickel hydroxide. After the reference electrode having cobalt nitrate retained on the surface is dried at 80 ° C., it is subjected to an alkali treatment of immersion in 8N sodium hydroxide at 25 ° C. to replace cobalt nitrate with cobalt hydroxide. Then, after washing with water, it is dried at 100 ° C. to produce a nickel electrode of Example 6. At this time, the half-value width of the peak corresponding to the X-ray diffraction peak (1, 0, 1) plane of β-cobalt hydroxide among the generated cobalt hydroxide was 0.31. At this time, the weight of cobalt hydroxide formed on the surface of the reference electrode was 0.9% by weight based on the total active material composed of nickel hydroxide and cobalt hydroxide.
[0028]
(2) Example 7
The reference electrode prepared as described above is immersed in a 2.8 mol / l aqueous solution of cobalt nitrate at 25 ° C. to deposit cobalt nitrate on the surface of the reference electrode filled with nickel hydroxide. The reference electrode having cobalt nitrate deposited on its surface is dried at 80 ° C., and then subjected to an alkali treatment of immersion in 8N sodium hydroxide at 25 ° C. to replace cobalt nitrate with cobalt hydroxide. Then, after washing with water, it is dried at 100 ° C. to produce a nickel electrode of Example 7. At this time, the half-value width of the peak corresponding to the X-ray diffraction peak (1, 0, 1) plane of β-cobalt hydroxide among the generated cobalt hydroxide was 0.32. At this time, the weight of the cobalt hydroxide formed on the surface of the reference electrode was 3.1% by weight based on the entire nickel hydroxide active material.
[0029]
(3) Comparative example D
The sintered substrate prepared as described above was immersed in an aqueous solution obtained by adding 1% by weight, 3% by weight, and 5% by weight of cobalt nitrate to nickel nitrate, and cobalt nitrate was added into the pores of the sintered substrate. After being impregnated with an aqueous solution of nickel nitrate, it is dried to deposit a eutectic mixture of nickel nitrate and cobalt nitrate in the pores of the sintered substrate. Then, after drying the sintered substrate on which the nickel nitrate-cobalt nitrate eutectic mixture is deposited, the substrate is immersed in an aqueous solution of sodium hydroxide to replace nickel nitrate with nickel hydroxide and to convert cobalt nitrate into cobalt hydroxide. Let it be replaced.
[0030]
Thereafter, the process returns to the operation of immersing the sintered substrate again in an aqueous solution in which 1% by weight, 3% by weight, and 5% by weight of cobalt nitrate are added to nickel nitrate, and the same operation as described above is repeated a predetermined number of times. Nickel hydroxide and cobalt hydroxide are filled in the pores of the bonding substrate. In this way, three types of nickel electrodes having different addition amounts of cobalt are produced, and are used as a nickel electrode of Comparative Example D. In the nickel electrode of Comparative Example D thus produced, cobalt is present in the form of a solid solution in the nickel hydroxide active material.
[0031]
The nickel electrodes of Examples 6 and 7 and Comparative Example D prepared as described above were charged in a potassium hydroxide aqueous solution having a specific gravity of 1.2 with a nickel plate as a counter electrode at a charging current of 0.1 C for 16 hours. Discharge was performed at a discharge current of 25 C until the electrode potential became -1.5 V with respect to the nickel counter electrode. From this discharge time, the discharge capacity per 1 g of the total active material comprising nickel hydroxide and cobalt hydroxide (unit active material) Capacity), and the relationship between the amount of cobalt added to the total active material and the active material energy density ratio when the active material energy density using the reference electrode is 100 is obtained. The result shown in FIG. 3 is obtained. .
[0032]
As is clear from FIG. 3, the half-width of the peak corresponding to the (1,0,1) plane in the X-ray diffraction peak has β-cobalt hydroxide of 0.3 or more on the surface of the nickel hydroxide active material. It can be seen that the nickel electrode has a higher effect of improving the energy density than the nickel electrode of Comparative Example D in which cobalt is present as a solid solution in the nickel hydroxide active material.
The X-ray diffraction described above was performed using CuKα radiation, and the measurement conditions were a tube voltage of 30 kV, a tube current of 12.5 mA, and a scanning speed of 2 deg / min.
[0033]
As described above, in the present invention, β-cobalt hydroxide having an X-ray diffraction peak (1, 0, 1) plane having a half width of 0.3 or more is applied to the surface of a substrate filled with a nickel hydroxide active material. As it is formed, the highly active cobalt hydroxide adheres uniformly to the electrode surface, effectively conducting the oxidation reaction from cobalt hydroxide to cobalt oxyhydroxide during charging. A matrix can be formed, and the active material utilization rate is improved. Further, if the amount of cobalt hydroxide in the layer mainly composed of cobalt hydroxide formed on the electrode surface is 70% by weight or more, the conductivity of the nickel electrode can be sufficiently increased. , A nickel electrode having a large value can be obtained.
[0034]
In order to obtain β-cobalt hydroxide having a half-width of the X-ray diffraction peak (1, 0, 1) plane of 0.3 or more in each of the above-described examples, a substrate filled with a nickel hydroxide active material was used. In the case of immersion in cobalt nitrate, it was realized by setting the temperature of the alkali treatment solution composed of sodium hydroxide to 25 ° C., or by using cobalt acetate as a starting material for cobalt hydroxide, By adjusting the concentration of the alkali treatment solution, β-cobalt hydroxide having a half width of the X-ray diffraction peak (1, 0, 1) plane of 0.3 or more can be obtained. As a starting material for cobalt hydroxide, in addition to cobalt nitrate and cobalt acetate, an organic acid cobalt such as cobalt formate, cobalt oxalate, and cobalt phosphate or a cobalt weak acid salt is used, and the cobalt liquid immersion temperature is adjusted. , Β-cobalt hydroxide having a half width of the X-ray diffraction peak (1, 0, 1) plane of 0.3 or more can be obtained.
[0035]
In each of the embodiments described above, the example of the sintered nickel electrode is described. However, the nickel electrode of the present invention can be applied to a non-sintered nickel electrode such as a paste type.
[Brief description of the drawings]
FIG. 1 is a view showing the relationship between the half-value width of the X-ray diffraction peak (1, 0, 1) plane of cobalt hydroxide and the energy density of a positive electrode active material.
FIG. 2 is a diagram showing a relationship between a ratio of cobalt hydroxide in a layer mainly composed of cobalt hydroxide of a surface layer of a nickel electrode and an energy density of a positive electrode active material.
FIG. 3 is a diagram showing the relationship between the amount of cobalt added and the energy density ratio of a positive electrode active material.

Claims (4)

水酸化ニッケルを主成分とする正極活物質を備えたアルカリ蓄電池用ニッケル電極であって、
前記正極活物質を保持させたニッケル電極の表面にX線回析における(1,0,1)面に対応するピークの半値幅が0.3以上のβ−水酸化コバルトを主体とする層を備えたことを特徴とするアルカリ蓄電池用ニッケル電極。
A nickel electrode for an alkaline storage battery including a positive electrode active material containing nickel hydroxide as a main component,
A layer mainly composed of β-cobalt hydroxide having a half width of a peak corresponding to the (1,0,1) plane in X-ray diffraction of 0.3 or more is formed on the surface of the nickel electrode holding the positive electrode active material. A nickel electrode for an alkaline storage battery, comprising: a nickel electrode;
前記β−水酸化コバルトを主体とする層はβ−水酸化コバルトを70重量%以上含有する層であることを特徴とする請求項1に記載のアルカリ蓄電池用ニッケル電極。The nickel electrode for an alkaline storage battery according to claim 1, wherein the layer mainly composed of β-cobalt hydroxide is a layer containing 70% by weight or more of β-cobalt hydroxide. 水酸化ニッケルを主成分とする正極活物質を備えたアルカリ蓄電池用ニッケル電極の製造方法であって、
活物質保持体となる電極に水酸化ニッケルを主成分とする正極活物質を保持させる活物質保持工程と、
この活物質保持工程により前記正極活物質を保持させた電極をコバルト化合物を含有する水溶液に浸漬して同電極の表面にコバルト化合物を保持させる含浸工程と、
前記含浸工程により前記電極の表面に保持された前記コバルト化合物をアルカリ処理してX線回析における(1,0,1)面に対応するピークの半値幅が0.3以上のβ−水酸化コバルトに置換するアルカリ処理工程とを備えたことを特徴とするアルカリ蓄電池用ニッケル電極の製造方法。
A method for producing a nickel electrode for an alkaline storage battery including a positive electrode active material containing nickel hydroxide as a main component,
And active material holding step for holding the positive electrode active material mainly composed of nickel hydroxide electrode comprising an active material retainer,
And impregnating step of holding a cobalt compound on the surface of the active material holding step by the positive electrode active material of the electrode obtained by holding the by immersing in an aqueous solution containing a cobalt compound the electrodes,
The cobalt compound held on the surface of the electrode by the impregnation step is subjected to alkali treatment, and β-hydroxylation in which the half width of a peak corresponding to the (1,0,1) plane in X-ray diffraction is 0.3 or more. A method for producing a nickel electrode for an alkaline storage battery, comprising: an alkali treatment step of substituting with cobalt.
前記コバルト化合物は硝酸コバルトのような強酸塩、あるいはシュウ酸コバルト、リン酸コバルト、酢酸コバルト、蟻酸コバルトからなるコバルト弱酸塩あるいは有機酸コバルトのいずれかより選択したことを特徴とする請求項3に記載のアルカリ蓄電池用ニッケル電極の製造方法。4. The method according to claim 3, wherein the cobalt compound is selected from a strong acid salt such as cobalt nitrate, or any one of a cobalt weak acid salt composed of cobalt oxalate, cobalt phosphate, cobalt acetate and cobalt formate, and cobalt organic acid. A method for producing a nickel electrode for an alkaline storage battery according to the above.
JP23442797A 1997-08-29 1997-08-29 Nickel electrode for alkaline storage battery and method for producing the same Expired - Lifetime JP3540557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23442797A JP3540557B2 (en) 1997-08-29 1997-08-29 Nickel electrode for alkaline storage battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23442797A JP3540557B2 (en) 1997-08-29 1997-08-29 Nickel electrode for alkaline storage battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1173953A JPH1173953A (en) 1999-03-16
JP3540557B2 true JP3540557B2 (en) 2004-07-07

Family

ID=16970857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23442797A Expired - Lifetime JP3540557B2 (en) 1997-08-29 1997-08-29 Nickel electrode for alkaline storage battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3540557B2 (en)

Also Published As

Publication number Publication date
JPH1173953A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
US6120937A (en) Electrode for alkaline storage battery and method for manufacturing the same
JP3540557B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
US3779810A (en) Method of making a nickel positive electrode for an alkaline battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3561631B2 (en) Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using the same
JP2002203543A (en) Cadmium negative electrode for alkaline battery and its manufacturing method
JP3272151B2 (en) Non-sintered nickel electrode for alkaline storage battery and method for producing the same
JPH0410181B2 (en)
JP3691281B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3941341B2 (en) Alkaline battery and nickel plate
JP3097238B2 (en) Anode plate for alkaline storage battery
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JP3702107B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3495576B2 (en) Method for producing nickel electrode for alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP2938994B2 (en) Nickel electrode for alkaline secondary batteries
JP2932286B2 (en) Method for producing anode plate for alkaline storage battery
JP3540558B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and nickel hydroxide electrode obtained by this method
JP4140993B2 (en) Non-sintered cadmium negative electrode and method for producing the same
JP2639915B2 (en) Method for producing nickel positive electrode for alkaline storage battery
JP3073259B2 (en) Nickel electrode for alkaline storage battery
JP3287215B2 (en) Manufacturing method of nickel positive plate for alkaline storage battery
JP2002075346A (en) Sintered nickel electrode and its manufacturing method
JPH04332469A (en) Manufacture of sintered nickel electrode for alkaline secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

EXPY Cancellation because of completion of term