[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3430639B2 - Heat pump system - Google Patents

Heat pump system

Info

Publication number
JP3430639B2
JP3430639B2 JP14791394A JP14791394A JP3430639B2 JP 3430639 B2 JP3430639 B2 JP 3430639B2 JP 14791394 A JP14791394 A JP 14791394A JP 14791394 A JP14791394 A JP 14791394A JP 3430639 B2 JP3430639 B2 JP 3430639B2
Authority
JP
Japan
Prior art keywords
heat exchanger
hot water
refrigerant
pressure
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14791394A
Other languages
Japanese (ja)
Other versions
JPH0771839A (en
Inventor
哲二 七種
威 倉持
哲治 岡田
佳昭 谷村
等 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14791394A priority Critical patent/JP3430639B2/en
Publication of JPH0771839A publication Critical patent/JPH0771839A/en
Application granted granted Critical
Publication of JP3430639B2 publication Critical patent/JP3430639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はヒートポンプシステム
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump system.

【0002】[0002]

【従来の技術】従来、この種のヒートポンプシステムと
して、例えば特開平1−234763公報に記載された
ものがある。図32は上記公報に記載された従来のヒー
トポンプシステムの構成図である。同図のように、圧縮
機1と、四方弁33と、室外熱交換器16と、室内熱交
換器6と、浴槽湯を加熱するための追焚き熱交換器13
及びポンプ14を有する追焚きユニット12とを互いに
並列に接続するとともに、貯湯タンク10内の湯水を加
熱するための給湯熱交換器8を有する給湯ユニット7を
設けている。次に上記構成のヒートポンプシステムの作
動状態について説明する。ここでは、追焚き運転に限っ
て説明を行う。圧縮機1より吐出した高温高圧の冷媒ガ
スは四方弁33、ガス管3、を介して追焚き熱交換器1
3を通る。ここで、浴槽15よりポンプ14によって循
環された水と冷媒との間で熱交換が行われ、加熱された
水は再び浴槽15内に戻る。熱交換をした後の冷媒は高
圧の液となり、膨張弁32cを通ることによって低圧二
相冷媒となった後、室外熱交換器16を通過しながら外
気と熱交換を行い、低圧ガス冷媒となって再び四方弁3
3、アキュームレータ2を介して圧縮機1の吸入側に戻
る。
2. Description of the Related Art Conventionally, as this type of heat pump system, for example, there is one described in Japanese Patent Application Laid-Open No. 1-234763. FIG. 32 is a configuration diagram of a conventional heat pump system described in the above publication. As shown in the figure, the compressor 1, the four-way valve 33, the outdoor heat exchanger 16, the indoor heat exchanger 6, and the reheating heat exchanger 13 for heating the bath water.
A reheating unit 12 having a pump 14 and a reheating unit 12 having a pump 14 are connected in parallel to each other, and a hot water supply unit 7 having a hot water supply heat exchanger 8 for heating hot water in the hot water storage tank 10 is provided. Next, the operating state of the heat pump system having the above configuration will be described. Here, the description will be given only to the additional heating operation. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 is reheated through the four-way valve 33 and the gas pipe 3
Pass 3 Here, heat is exchanged between the water circulated by the pump 14 from the bathtub 15 and the refrigerant, and the heated water returns to the bathtub 15 again. The refrigerant after the heat exchange becomes a high-pressure liquid and becomes a low-pressure two-phase refrigerant by passing through the expansion valve 32c, and then exchanges heat with the outside air while passing through the outdoor heat exchanger 16 to become a low-pressure gas refrigerant. And four-way valve 3 again
3. Return to the suction side of the compressor 1 via the accumulator 2.

【0003】[0003]

【発明が解決しようとする課題】従来のヒートポンプシ
ステムは、以上のように、追焚き運転を行うとき、室外
熱交換器を蒸発器として外気より採熱する以外に方法が
ないため、ヒートポンプの特性上、外気が低くなると、
効率が低下し、また沸き上げ速度も遅くなるという問題
があった。
As described above, in the conventional heat pump system, when performing the reheating operation, there is no method other than collecting heat from the outside air by using the outdoor heat exchanger as the evaporator. Above, when the outside air becomes low,
There was a problem that the efficiency was lowered and the boiling speed was slowed down.

【0004】この発明は、以上のような問題点を解決す
るためになされたものであり、追焚き運転において、外
気から採熱するだけでなく、貯湯槽内の高温水からも、
異常な圧力上昇なしに、採熱することが可能で、高効率
で高速沸き上げを可能とするヒートポンプシステムを提
供することを目的とする。また、夏場など高温の外気か
ら採熱して追焚き運転や給湯運転や浴室乾燥運転を行う
場合でも、異常な圧力上昇を防止することを可能とする
ヒートポンプシステムを提供することを目的とする。ま
た、状況に応じて冷房の排熱を利用して追焚き運転を行
えるようにし、冷房使用者に不快感を与えることなく快
適な空調を可能とするヒートポンプシステムを提供する
ことを目的とする。また、暖房運転、冷房運転、給湯運
転、追焚き運転、冷房排熱利用運転、給湯熱利用追焚き
運転、浴槽排熱利用運転等の各種運転を開閉弁の開閉で
手軽に切り換えられ、高効率で、高速沸き上げ可能で、
エネルギーの有効利用を可能とするヒートポンプシステ
ムを提供することを目的とする。また、外気温の影響を
受けない、または、外気温の悪影響を防止するヒートポ
ンプシステムを提供する等を目的とする。
The present invention has been made in order to solve the above problems, and in the reheating operation, not only the heat is taken from the outside air but also the high temperature water in the hot water storage tank is used.
It is an object of the present invention to provide a heat pump system capable of collecting heat without abnormal pressure rise and enabling high-speed boiling at high efficiency. Another object of the present invention is to provide a heat pump system capable of preventing an abnormal pressure rise even when performing heat-up operation, hot water supply operation, or bathroom drying operation by collecting heat from high-temperature outside air such as in summer. Further, another object of the present invention is to provide a heat pump system that enables the additional heating operation by utilizing the exhaust heat of the cooling according to the situation and enables comfortable air conditioning without giving the cooling user an unpleasant feeling. In addition, various operations such as heating operation, cooling operation, hot water supply operation, additional heating operation, cooling exhaust heat utilization operation, hot water heat utilization additional heating operation, bathtub exhaust heat utilization operation, etc. can be easily switched by opening and closing the on-off valve to achieve high efficiency. It is possible to boil at high speed,
It is an object of the present invention to provide a heat pump system that enables effective use of energy. Another object of the present invention is to provide a heat pump system that is not affected by the outside temperature or prevents the outside temperature from being adversely affected.

【0005】[0005]

【課題を解決するための手段】この発明に係るヒートポ
ンプシステムは、圧縮機と室内熱交換器をガス配管で接
続し、前記室内熱交換器と室外熱交換器を流量制御弁を
介して液管で接続し、前記室外熱交換器と前記圧縮機を
低圧ガス管で接続して冷媒を循環させる冷凍サイクルを
成し、少なくとも冷暖房のいずれかが運転可能なヒート
ポンプシステムにおいて、前記圧縮機より吐出された冷
媒と熱交換して浴槽への循環水を加熱する、追焚きユニ
ットに設けられ一端が前記ガス管に接続され他端が前記
液管に接続された追焚き熱交換器と、前記追焚き熱交換
器に前記液管を介して接続されると共に他端が前記低圧
ガス管に接続され、前記冷媒と給湯ユニット内に設けら
れ貯湯槽に貯えられ給湯ポンプで循環する高温水とを熱
交換させる給湯熱交換器と、を備え、前記圧縮機から吐
出した冷媒が前記追焚き熱交換器で凝縮して液冷媒とな
り、その後前記給湯熱交換器で蒸発してガス冷媒となっ
て前記圧縮機へ循環することにより、前記貯湯槽に貯え
られた高温水の熱を利用して、追焚き運転を行う。
In a heat pump system according to the present invention, a compressor and an indoor heat exchanger are connected by a gas pipe, and the indoor heat exchanger and the outdoor heat exchanger are connected via a flow control valve to a liquid pipe. In the heat pump system in which at least one of cooling and heating can be operated, the compressor is discharged from the compressor by connecting the outdoor heat exchanger and the compressor with a low pressure gas pipe to form a refrigeration cycle. A heat-up heat exchanger having one end connected to the gas pipe and the other end connected to the liquid pipe, which heats the circulating water to the bath by exchanging heat with the refrigerant, and the additional heat It is connected to a heat exchanger via the liquid pipe and the other end is connected to the low-pressure gas pipe, and exchanges heat between the refrigerant and high temperature water stored in a hot water storage tank and circulated by a hot water supply pump. Hot water heat And a refrigerant discharged from the compressor is condensed in the reheating heat exchanger to become a liquid refrigerant, and then evaporated in the hot water heat exchanger to become a gas refrigerant and circulates to the compressor. As a result, the reheating operation is performed using the heat of the high-temperature water stored in the hot water storage tank.

【0006】また、この発明に係るヒートポンプシステ
ムは、冷媒を循環させる冷媒システム内の冷媒の圧力を
検出する圧力検出手段と、給湯熱交換器の熱交換量を調
整して追焚き運転時の冷媒圧力を下げる熱交換量調整手
段と、を備えたものである。
In the heat pump system according to the present invention, the pressure detecting means for detecting the pressure of the refrigerant in the refrigerant system for circulating the refrigerant and the heat exchange amount of the hot water supply heat exchanger are adjusted to adjust the refrigerant during the reheating operation. And a heat exchange amount adjusting means for reducing the pressure.

【0007】また、この発明に係るヒートポンプシステ
ムは、給湯ユニット内の給湯ポンプに冷媒の圧力を検知
して回転数を制御する回転数制御手段を配設し、水の循
環量を可変することで給湯熱交換器での熱交換量を制御
する。
Further, in the heat pump system according to the present invention, the hot water supply pump in the hot water supply unit is provided with the rotation speed control means for detecting the pressure of the refrigerant and controlling the rotation speed, thereby changing the circulating amount of water. Controls the amount of heat exchange in the hot water supply heat exchanger.

【0008】また、この発明に係るヒートポンプシステ
ムは、給湯ユニット内において、給湯熱交換器の入口側
水配管と出口側水配管の間に、開閉弁を介したバイパス
路を設け、冷媒の圧力を検知して給湯熱交換器での熱交
換量が多すぎる場合は、水をバイパスして熱交換量を制
御する。
Further, in the heat pump system according to the present invention, a bypass passage via an on-off valve is provided between the inlet side water pipe and the outlet side water pipe of the hot water supply heat exchanger in the hot water supply unit so that the pressure of the refrigerant is When the amount of heat exchange in the hot water supply heat exchanger is detected and detected, the amount of heat exchange is controlled by bypassing water.

【0009】また、この発明に係るヒートポンプシステ
ムは、給湯ユニット内において、給湯熱交換器の入口側
水配管と出口側水配管の間に、水流量制御弁を介したバ
イパス路を設け、冷媒の圧力を検知して給湯熱交換器で
の熱交換量が多すぎる場合は、適量の水をバイパスして
熱交換量を制御する。
Further, in the heat pump system according to the present invention, a bypass passage via a water flow control valve is provided between the inlet side water pipe and the outlet side water pipe of the hot water supply heat exchanger in the hot water supply unit, and When the pressure is detected and the heat exchange amount in the hot water supply heat exchanger is too large, an appropriate amount of water is bypassed to control the heat exchange amount.

【0010】また、この発明に係るヒートポンプシステ
ムは、外気温度検出手段と起動時圧力調整手段とを備
え、給湯運転、追焚き運転の少なくとも一つを行い、そ
の際、前記室外熱交換器を蒸発器とし、かつ、前記外気
温度検出手段による検出温度によって、前記起動時圧力
調整手段により、起動時の圧力を調整する。
Further, the heat pump system according to the present invention is provided with the outside air temperature detecting means and the starting pressure adjusting means, and performs at least one of hot water supply operation and reheating operation, in which case the outdoor heat exchanger is evaporated. In addition, the starting pressure adjusting means adjusts the starting pressure according to the temperature detected by the outside air temperature detecting means.

【0011】また、この発明に係るヒートポンプシステ
ムは、外気温度により、運転開始時の圧縮機の周波数を
変えて、起動時の圧力調整を行う。
Further, in the heat pump system according to the present invention, the frequency of the compressor at the start of operation is changed according to the outside air temperature to adjust the pressure at the start.

【0012】また、この発明に係るヒートポンプシステ
ムは、外気温度により、運転開始時の室外熱交換器の室
外ファン回転数を変え、起動時の圧力調整を行う。
Further, the heat pump system according to the present invention adjusts the pressure at startup by changing the number of rotations of the outdoor fan of the outdoor heat exchanger at the start of operation according to the outside air temperature.

【0013】また、この発明に係るヒートポンプシステ
ムは、圧縮機と室内熱交換器をガス配管で接続し、前記
室内熱交換器と室外熱交換器を流量制御弁を介して液管
で接続し、前記室外熱交換器と前記圧縮機を低圧ガス管
で接続して冷媒を循環させる冷凍サイクルを成し、少な
くとも冷暖房のいずれかが運転可能なヒートポンプシス
テムにおいて、前記圧縮機より吐出された冷媒と熱交換
して浴槽への循環水を加熱する、追焚きユニットに設け
られ一端が前記ガス管に接続され他端が前記液管に接続
された追焚き熱交換器と、前記追焚き熱交換器に前記液
管を介して接続されると共に他端が前記低圧ガス管に接
続され、前記冷媒と給湯ユニット内に設けられ貯湯槽に
貯えられ給湯ポンプで循環する高温水とを熱交換させる
給湯熱交換器と、前記冷媒を循環させる冷媒システム内
の冷媒の圧力を検出する圧力検出手段と、を備え、前記
給湯熱交換器を分割し、短い方の給湯熱交換器の長さ
を、長い方の給湯熱交換器の1/5以下にし、短い方の
給湯熱交換器を液管側に配置し、長い方の給湯熱交換器
をガス管側に接続し、また短い方の給湯熱交換器の出口
側冷媒配管を二方弁を介して長い方の給湯熱交換器の入
口側冷媒配管および出口側冷媒配管にそれぞれ接続し、
前記圧力検出手段により冷媒の圧力を検知して給湯熱交
換器での熱交換量を制御する。
Further, in the heat pump system according to the present invention, the compressor and the indoor heat exchanger are connected by a gas pipe, and the indoor heat exchanger and the outdoor heat exchanger are connected by a liquid pipe through a flow control valve, The outdoor heat exchanger and the compressor are connected by a low-pressure gas pipe to form a refrigeration cycle in which a refrigerant is circulated, and in at least a heat pump system capable of operating either heating or cooling, the refrigerant and heat discharged from the compressor To replace and heat the circulating water to the bath, a reheating heat exchanger having one end connected to the gas pipe and the other end connected to the liquid pipe provided in the reheating unit, and the reheating heat exchanger. Heat exchange for hot water supply, which is connected through the liquid pipe and has the other end connected to the low-pressure gas pipe, and exchanges heat between the refrigerant and high temperature water stored in a hot water storage tank and circulated by a hot water supply pump. A vessel, Pressure detecting means for detecting the pressure of the refrigerant in the refrigerant system for circulating the refrigerant, and dividing the hot water supply heat exchanger, the length of the shorter hot water supply heat exchanger, the longer hot water supply heat exchange 1/5 or less of the water heater, the shorter hot water supply heat exchanger is placed on the liquid pipe side, the longer hot water supply heat exchanger is connected to the gas pipe side, and the outlet side refrigerant of the shorter hot water supply heat exchanger Connect the piping to the inlet side refrigerant piping and the outlet side refrigerant piping of the longer hot water supply heat exchanger via the two-way valve,
The pressure detecting means detects the pressure of the refrigerant to control the amount of heat exchange in the hot water supply heat exchanger.

【0014】また、この発明に係るヒートポンプシステ
ムは、圧縮機と室内熱交換器をガス配管で接続し、前記
室内熱交換器と室外熱交換器を流量制御弁を介して液管
で接続し、前記室外熱交換器と前記圧縮機を低圧ガス管
で接続して冷媒を循環させる冷凍サイクルを成し、少な
くとも冷暖房のいずれかが運転可能なヒートポンプシス
テムにおいて、前記圧縮機より吐出された冷媒と熱交換
して浴槽への循環水を加熱する、追焚きユニットに設け
られ一端が前記ガス管に接続され他端が前記液管に接続
された追焚き熱交換器と、前記追焚きユニットに前記ガ
ス管を介して接続された浴室乾燥ユニットの浴室乾燥熱
交換器とを備え、前記室内熱交換器又は室外熱交換器に
圧縮機からの高圧冷媒ガスの一部をバイパスさせ、浴室
乾燥運転を行う。
In the heat pump system according to the present invention, the compressor and the indoor heat exchanger are connected by a gas pipe, and the indoor heat exchanger and the outdoor heat exchanger are connected by a liquid pipe via a flow control valve. The outdoor heat exchanger and the compressor are connected by a low-pressure gas pipe to form a refrigeration cycle in which a refrigerant is circulated, and in at least a heat pump system capable of operating either heating or cooling, the refrigerant and heat discharged from the compressor Exchanging and heating the circulating water to the bath, a reheating heat exchanger having one end connected to the gas pipe and the other end connected to the liquid pipe provided in the reheating unit, and the gas in the reheating unit. A bathroom drying heat exchanger of a bathroom drying unit connected via a pipe is provided, and a part of high pressure refrigerant gas from the compressor is bypassed to the indoor heat exchanger or the outdoor heat exchanger to perform bathroom drying operation. .

【0015】また、この発明に係るヒートポンプシステ
ムは、外気温度検出手段を備え、前記外気温度検出手段
の検出外気温度によって、室内熱交換器側の冷媒流量制
御弁の開度を変え、室内熱交換器に圧縮機からの高圧冷
媒ガスをバイパスして浴室乾燥運転を行う。
Further, the heat pump system according to the present invention comprises the outside air temperature detecting means, and the opening degree of the refrigerant flow rate control valve on the indoor heat exchanger side is changed according to the outside air temperature detected by the outside air temperature detecting means to change the indoor heat exchange. High-pressure refrigerant gas from the compressor is bypassed to the heater to perform the bathroom drying operation.

【0016】[0016]

【0017】[0017]

【0018】[0018]

【0019】また、この発明に係るヒートポンプシステ
ムは、圧縮機と室内熱交換器をガス配管で接続し、前記
室内熱交換器と室外熱交換器を流量制御弁を介して液管
で接続し、前記室外熱交換器と前記圧縮機を低圧ガス管
で接続して冷媒を循環させる冷凍サイクルを成し、少な
くとも冷暖房のいずれかが運転可能なヒートポンプシス
テムにおいて、前記圧縮機より吐出された冷媒と熱交換
して浴槽への循環水を加熱する、追焚きユニットに設け
られ一端が前記ガス管に接続され他端が前記液管に接続
された追焚き熱交換器を備え、冷房運転を行っていると
きに追焚き運転指令が来た場合、圧縮機が追焚き能力を
十分確保できる周波数以上で運転されている場合は、冷
房排熱追焚き運転を行い、圧縮機が追焚き能力を十分確
保できる周波数以下で運転されている場合は追焚き運転
を優先し、冷房運転を停止して追焚き単独運転を行う。
In the heat pump system according to the present invention, the compressor and the indoor heat exchanger are connected by a gas pipe, and the indoor heat exchanger and the outdoor heat exchanger are connected by a liquid pipe via a flow control valve, The outdoor heat exchanger and the compressor are connected by a low-pressure gas pipe to form a refrigeration cycle in which a refrigerant is circulated, and in at least a heat pump system capable of operating either heating or cooling, the refrigerant and heat discharged from the compressor It is equipped with a reheating heat exchanger having one end connected to the gas pipe and the other end connected to the liquid pipe, which is exchanged and heats the circulating water to the bathtub, and performs cooling operation. When a reheating operation command is received, if the compressor is operating at a frequency above the sufficient reheating capacity, cooling exhaust heat reheating operation is performed, and the compressor can ensure sufficient reheating capacity. Below frequency In case of being operated is preferentially the reheating operation, performing reheating isolated operation stop cooling operation.

【0020】[0020]

【作用】この発明に係わるヒートポンプシステムは、追
焚き運転の時、貯湯槽内の高温水から、採熱することが
可能で、高効率で高速沸き上げを実現する。
The heat pump system according to the present invention is capable of collecting heat from the high temperature water in the hot water storage tank during the reheating operation, and realizes high efficiency and high speed boiling.

【0021】また、この発明に係わるヒートポンプシス
テムは、貯湯槽から採熱して追焚き運転を行う時、冷媒
の圧力を検出し給湯熱交換器での熱交換量を調整して、
異常な圧力上昇を防止する。
Further, the heat pump system according to the present invention detects the pressure of the refrigerant and adjusts the amount of heat exchange in the hot water supply heat exchanger when collecting heat from the hot water storage tank and performing the reheating operation,
Prevents abnormal pressure rise.

【0022】また、この発明に係わるヒートポンプシス
テムは、貯湯槽から採熱して追焚き運転を行う時、冷媒
の圧力を検出し、回転制御手段により給油ポンプの回転
数を制御して、水の循環量を可変とすることにより給湯
熱交換器での熱交換量を調整して、異常な圧力上昇を防
止する。
Further, the heat pump system according to the present invention detects the pressure of the refrigerant when the heat is collected from the hot water storage tank to perform the reheating operation, and the rotation control means controls the rotation speed of the oil supply pump to circulate the water. By varying the amount, the amount of heat exchange in the hot water supply heat exchanger is adjusted to prevent abnormal pressure rise.

【0023】また、この発明に係わるヒートポンプシス
テムは、冷媒の圧力を検出し、給湯循環水のバイパス路
内の開閉弁を開くことにより、循環水量を減らして給湯
熱交換器での熱交換量を調整して、異常な圧力上昇を防
止する。
Further, the heat pump system according to the present invention detects the pressure of the refrigerant and opens the on-off valve in the bypass passage of the hot water circulating water to reduce the amount of circulating water and reduce the amount of heat exchange in the hot water heat exchanger. Adjust to prevent abnormal pressure rise.

【0024】また、この発明に係わるヒートポンプシス
テムは、冷媒の圧力を検出し、給湯循環水のバイパス路
内の水流量制御弁の開度を制御して循環水量を加減し、
給湯熱交換器での熱交換量を調整して、異常な圧力上昇
を防止する。
Further, the heat pump system according to the present invention detects the pressure of the refrigerant and controls the opening degree of the water flow control valve in the bypass passage of the hot water supply circulating water to adjust the circulating water amount,
Adjust the amount of heat exchange in the hot water heat exchanger to prevent abnormal pressure rise.

【0025】また、この発明に係わるヒートポンプシス
テムは、給湯運転、追焚き運転、乾燥運転など室外ユニ
ットを蒸発器とする運転モードにおいて、外気温によっ
て、起動時圧力調整手段により起動時の圧力を調整し
て、立ち上げ時の高圧上昇による異常停止を防止するこ
とができる。
Further, in the heat pump system according to the present invention, the starting pressure is adjusted by the starting pressure adjusting means in accordance with the outside temperature in the operation mode in which the outdoor unit is the evaporator such as the hot water supply operation, the additional heating operation, and the drying operation. As a result, it is possible to prevent an abnormal stop due to a high voltage rise at startup.

【0026】また、この発明に係わるヒートポンプシス
テムは、給湯運転、追焚き運転、乾燥運転など室外ユニ
ットを蒸発器とする運転モードにおいて、外気温によっ
て運転開始時の初期圧縮機周波数を変え、立ち上げ時の
高圧上昇による異常停止を防止することができる。
In the heat pump system according to the present invention, in the operation mode in which the outdoor unit is the evaporator, such as hot water supply operation, reheating operation, and drying operation, the initial compressor frequency at the start of operation is changed depending on the outside temperature, and the startup is performed. It is possible to prevent an abnormal stop due to an increase in high pressure.

【0027】また、この発明に係わるヒートポンプシス
テムは、給湯運転、追焚き運転、乾燥運転など室外ユニ
ットを蒸発器とする運転モードにおいて、外気温によっ
て運転開始時の初期室外ファン回転数を変え、立ち上げ
時の高圧上昇による異常停止を防止することができる。
In the heat pump system according to the present invention, in the operation mode in which the outdoor unit is the evaporator such as hot water supply operation, reheating operation, and drying operation, the initial outdoor fan rotation speed at the start of operation is changed depending on the outside air temperature to stand up. It is possible to prevent an abnormal stop due to a high pressure rise at the time of raising.

【0028】また、この発明に係わるヒートポンプシス
テムは、冷媒の圧力を検出し、給湯熱交換器のバイパス
用開閉弁を開閉することにより給湯熱交換器の長さを短
くして、給湯熱交換器での熱交換量を調整して、異常な
圧力上昇を防止する。
In the heat pump system according to the present invention, the length of the hot water heat exchanger is shortened by detecting the pressure of the refrigerant and opening / closing the bypass opening / closing valve of the hot water heat exchanger. Adjust the amount of heat exchange at to prevent abnormal pressure rise.

【0029】また、この発明に係わるヒートポンプシス
テムは、浴室乾燥運転に際し、圧縮機からの高圧冷媒ガ
スの一部を室内熱交換器又は室外熱交換器にバイパスさ
せ凝縮熱の一部を逃がし、高圧の異常な上昇を防止す
る。
Further, in the heat pump system according to the present invention, during the bathroom drying operation, a part of the high pressure refrigerant gas from the compressor is bypassed to the indoor heat exchanger or the outdoor heat exchanger to release a part of the condensation heat, Prevent an abnormal rise in.

【0030】また、この発明に係わるヒートポンプシス
テムは、浴室乾燥運転に際し、外気温によって室内熱交
換器側の冷媒流量制御弁開度を変え、室内熱交換器に適
正量の高圧冷媒をバイパスさせ、凝縮熱の一部を室内熱
交換器に逃がし、高圧の異常な上昇を防止する。
Further, in the heat pump system according to the present invention, in the bathroom drying operation, the opening degree of the refrigerant flow control valve on the indoor heat exchanger side is changed according to the outside air temperature so that the indoor heat exchanger bypasses an appropriate amount of high pressure refrigerant. Part of the condensation heat is released to the indoor heat exchanger to prevent abnormal high pressure rise.

【0031】[0031]

【0032】[0032]

【0033】[0033]

【0034】また、この発明に係わるヒートポンプシス
テムは、冷房運転を行っているときに追焚き運転指令が
来た場合、圧縮機が追焚き能力を十分確保できる周波数
以上で運転されている時は、冷房排熱追焚き運転を行
い、圧縮機が追焚き能力を十分確保できる周波数より低
い周波数で運転されている場合は追焚き運転を優先し、
冷房運転を停止して追焚き単独運転を行うことにより、
十分な追焚き能力を確保することができる。
In addition, in the heat pump system according to the present invention, when the reheating operation command is received during the cooling operation, when the compressor is operated at a frequency higher than the sufficient reheating capacity, When performing the cooling exhaust heat reheating operation, if the compressor is operating at a frequency lower than the frequency that can sufficiently secure the reheating capacity, priority is given to the reheating operation,
By stopping the cooling operation and performing additional heating alone,
It is possible to secure sufficient reheating ability.

【0035】[0035]

【実施例】【Example】

実施例1.図1は実施例1の構成を示す。図において、
1は圧縮機、2はアキュームレータ、3は高圧ガス管、
4は低圧ガス管、5は液管、6は室内熱交換器、7は給
湯ユニット、8は給湯熱交換器、9は給湯ポンプ、10
は貯湯槽、11は加熱用ヒータ、12は追焚きユニッ
ト、13は追焚き熱交換器、14は追焚きポンプ、15
は浴槽、16は室外熱交換器、17は給湯熱交換器の出
口側水配管、18は給湯用熱交換器の入口側水配管、1
9は出湯配管、20は給水配管、21は室外ファン、3
1a,31b,31c,31d,31e,31f,31
g,31hは二方弁、32a,32b,32cは冷媒流
量制御弁である。次にこの発明のヒートポンプシステム
について動作を説明する。
Example 1. FIG. 1 shows the configuration of the first embodiment. In the figure,
1 is a compressor, 2 is an accumulator, 3 is a high pressure gas pipe,
4 is a low pressure gas pipe, 5 is a liquid pipe, 6 is an indoor heat exchanger, 7 is a hot water supply unit, 8 is a hot water heat exchanger, 9 is a hot water pump, 10
Is a hot water tank, 11 is a heater for heating, 12 is a reheating unit, 13 is a reheating heat exchanger, 14 is a reheating pump, 15
Is a bathtub, 16 is an outdoor heat exchanger, 17 is an outlet side water pipe of the hot water heat exchanger, 18 is an inlet side water pipe of the hot water heat exchanger, 1
9 is a hot water supply pipe, 20 is a water supply pipe, 21 is an outdoor fan, 3
1a, 31b, 31c, 31d, 31e, 31f, 31
g and 31h are two-way valves, and 32a, 32b and 32c are refrigerant flow control valves. Next, the operation of the heat pump system of the present invention will be described.

【0036】(1)暖房運転 図2によって説明を行う。圧縮機1より吐出した高温高
圧の冷媒ガスはガス管3より、二方弁31aを介して室
内熱交換器6を通る。室内熱交換器6において、冷媒
は、空気と熱交換を行うことにより空気を加熱しなが
ら、高圧の液冷媒となり、室内熱交換器6より流出す
る。流出した液冷媒は冷媒流量制御弁32aを通って低
圧の二相冷媒となり、液管5を通った後、室外熱交換器
16に流入する。ここで、低圧の二相冷媒は外気と熱交
換を行うことにより蒸発し、低圧の冷媒ガスとなって室
外熱交換器16より流出する。流出した低圧の冷媒ガス
は二方弁31h、低圧ガス管4、アキュームレータ2を
介して、圧縮機1の吸入側に戻る。
(1) Heating operation A description will be given with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the gas pipe 3 and the indoor heat exchanger 6 via the two-way valve 31a. In the indoor heat exchanger 6, the refrigerant becomes a high-pressure liquid refrigerant while heating the air by exchanging heat with the air, and flows out from the indoor heat exchanger 6. The liquid refrigerant that has flowed out becomes a low-pressure two-phase refrigerant through the refrigerant flow control valve 32a, and after flowing through the liquid pipe 5, flows into the outdoor heat exchanger 16. Here, the low-pressure two-phase refrigerant evaporates by exchanging heat with the outside air, becomes a low-pressure refrigerant gas, and flows out from the outdoor heat exchanger 16. The low-pressure refrigerant gas that has flowed out returns to the suction side of the compressor 1 via the two-way valve 31h, the low-pressure gas pipe 4, and the accumulator 2.

【0037】(2)冷房運転 図3によって説明を行う。圧縮機1より吐出した高温高
圧の冷媒ガスはガス管3より、二方弁31gを介して室
外熱交換器16を通る。室外熱交換器6において、冷媒
は、外気と熱交換を行うことにより、高圧の液冷媒とな
り、室外熱交換器16より流出する。流出した液冷媒は
液管5を通り、冷媒流量制御弁32aを通って低圧の二
相冷媒となり、室内熱交換器6に流入する。ここで、低
圧の二相冷媒は空気と熱交換を行うことにより、空気を
冷却し、冷媒の方は蒸発して低圧の冷媒ガスとなり、室
内熱交換器6より流出する。流出した低圧の冷媒ガスは
二方弁31b、低圧ガス管4、アキュームレータ2を介
して、圧縮機1の吸入側に戻る。
(2) Cooling operation The operation will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the gas pipe 3 and the outdoor heat exchanger 16 via the two-way valve 31g. In the outdoor heat exchanger 6, the refrigerant becomes a high-pressure liquid refrigerant by exchanging heat with the outside air, and flows out from the outdoor heat exchanger 16. The liquid refrigerant that has flowed out passes through the liquid pipe 5, passes through the refrigerant flow control valve 32a, becomes a low-pressure two-phase refrigerant, and flows into the indoor heat exchanger 6. Here, the low-pressure two-phase refrigerant exchanges heat with air to cool the air, and the refrigerant evaporates into a low-pressure refrigerant gas, which flows out from the indoor heat exchanger 6. The low-pressure refrigerant gas that has flowed out returns to the suction side of the compressor 1 via the two-way valve 31b, the low-pressure gas pipe 4, and the accumulator 2.

【0038】(3)給湯運転 図4によって説明を行う。圧縮機1より吐出した高温高
圧の冷媒ガスはガス管3より、二方弁31cを介して給
湯熱交換器8を通る。一方貯湯タンク10内の水は給湯
ポンプ9によって貯湯タンク10の下部より吸引され給
湯熱交換器の入口側水配管18から、二重管構造となっ
た給湯熱交換器8に流入する。ここで、冷媒は循環水と
熱交換を行うことにより循環水を加熱しながら、高圧の
液冷媒となり、給湯熱交換器8より流出する。一方、加
熱された循環水は給湯熱交換器8の出口側水配管17よ
り貯湯タンク10の上部に戻る、給湯熱交換器8を流出
した高圧の液冷媒は、冷媒流量制御弁32bを通ること
により、低圧の二相冷媒となり、液管5を通って室外熱
交換器16に流入する。ここで、低圧の二相冷媒は外気
と熱交換を行うことにより、低圧のガス冷媒となり、二
方弁31h、低圧ガス管4、アキュームレータ2を介し
て圧縮機1の吸入側に戻る。また、必要に応じて加熱ヒ
ータ11により、さらに高温沸き上げを行う。
(3) Hot water supply operation The operation will be described with reference to FIG. The high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the gas pipe 3 and the hot water heat exchanger 8 via the two-way valve 31c. On the other hand, the water in the hot water storage tank 10 is sucked from the lower part of the hot water storage tank 10 by the hot water supply pump 9, and flows from the inlet side water pipe 18 of the hot water supply heat exchanger into the hot water supply heat exchanger 8 having a double pipe structure. Here, the refrigerant becomes a high-pressure liquid refrigerant while heating the circulating water by exchanging heat with the circulating water, and flows out from the hot water supply heat exchanger 8. On the other hand, the heated circulating water returns from the outlet side water pipe 17 of the hot water supply heat exchanger 8 to the upper part of the hot water storage tank 10. The high-pressure liquid refrigerant flowing out of the hot water supply heat exchanger 8 passes through the refrigerant flow control valve 32b. As a result, it becomes a low-pressure two-phase refrigerant and flows into the outdoor heat exchanger 16 through the liquid pipe 5. Here, the low-pressure two-phase refrigerant becomes a low-pressure gas refrigerant by exchanging heat with the outside air, and returns to the suction side of the compressor 1 via the two-way valve 31h, the low-pressure gas pipe 4, and the accumulator 2. Further, if necessary, the heater 11 is used to further raise the temperature.

【0039】(4)追焚き運転 図5によって説明を行う。圧縮機1より吐出した高温高
圧の冷媒ガスはガス管3より、二方弁31eを介して追
焚き熱交換器13を通る。一方浴槽15内の水は追焚き
ポンプ14によって浴槽15の下部より吸引され、二重
管構造となった追焚き熱交換器13に流入する。ここ
で、冷媒は循環水と熱交換を行うことにより循環水を加
熱しながら、高圧の液冷媒となり、追焚き熱交換器13
より流出する。一方、加熱された循環水は浴槽15に戻
る。追焚き熱交換器13を流出した高圧の液冷媒は、冷
媒流量制御弁32cを通ることにより、低圧の二相冷媒
となり、液管5を通って室外熱交換器16に流入する。
ここで、低圧の二相冷媒は外気と熱交換を行うことによ
り、低圧のガス冷媒となり、二方弁31h、低圧ガス管
4、アキュームレータ2を介して、圧縮機1の吸入側に
戻る。
(4) Reheating operation will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes from the gas pipe 3 through the reheating heat exchanger 13 via the two-way valve 31e. On the other hand, the water in the bathtub 15 is sucked from the lower part of the bathtub 15 by the reheating pump 14 and flows into the reheating heat exchanger 13 having a double pipe structure. Here, the refrigerant becomes a high-pressure liquid refrigerant while heating the circulating water by exchanging heat with the circulating water, and the reheating heat exchanger 13
More outflow. On the other hand, the heated circulating water returns to the bathtub 15. The high-pressure liquid refrigerant that has flowed out of the reheating heat exchanger 13 becomes a low-pressure two-phase refrigerant by passing through the refrigerant flow control valve 32c, and flows into the outdoor heat exchanger 16 through the liquid pipe 5.
Here, the low-pressure two-phase refrigerant becomes a low-pressure gas refrigerant by exchanging heat with the outside air, and returns to the suction side of the compressor 1 via the two-way valve 31h, the low-pressure gas pipe 4, and the accumulator 2.

【0040】(5)冷房排熱利用給湯運転 図6によって説明を行う。圧縮機1より吐出した高温高
圧の冷媒ガスはガス管3より、二方弁31cを介して給
湯熱交換器8を通る。一方貯湯タンク10内の水は給湯
ポンプ9によって貯湯タンク10の下部より吸引され給
湯熱交換器の入口側水配管18から、二重管構造となっ
た給湯熱交換器8に流入する。ここで、冷媒は循環水と
熱交換を行うことにより循環水を加熱しながら、高圧の
液冷媒となり、給湯熱交換器8より流出する。一方、加
熱された循環水は給湯熱交換器8の出口側水配管17よ
り貯湯タンク10の上部に戻る。給湯熱交換器8を流出
した高圧の液冷媒は、冷媒流量制御弁32bを通ること
により、低圧の二相冷媒となり、液管5、冷媒流量制御
弁32aを通って室内熱交換器6に流入する。ここで、
低圧の二相冷媒は空気と熱交換を行うことにより、空気
を冷却する。冷媒のほうは低圧のガス冷媒となり、二方
弁31b、低圧ガス管4、アキュームレータ2を介して
圧縮機1の吸入側に戻る。
(5) Hot-water supply operation using cooling waste heat will be described with reference to FIG. The high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the gas pipe 3 and the hot water heat exchanger 8 via the two-way valve 31c. On the other hand, the water in the hot water storage tank 10 is sucked from the lower part of the hot water storage tank 10 by the hot water supply pump 9, and flows from the inlet side water pipe 18 of the hot water supply heat exchanger into the hot water supply heat exchanger 8 having a double pipe structure. Here, the refrigerant becomes a high-pressure liquid refrigerant while heating the circulating water by exchanging heat with the circulating water, and flows out from the hot water supply heat exchanger 8. On the other hand, the heated circulating water returns to the upper part of the hot water storage tank 10 through the outlet side water pipe 17 of the hot water supply heat exchanger 8. The high-pressure liquid refrigerant flowing out of the hot water supply heat exchanger 8 becomes a low-pressure two-phase refrigerant by passing through the refrigerant flow control valve 32b, and then flows into the indoor heat exchanger 6 through the liquid pipe 5 and the refrigerant flow control valve 32a. To do. here,
The low-pressure two-phase refrigerant cools the air by exchanging heat with the air. The refrigerant becomes a low-pressure gas refrigerant and returns to the suction side of the compressor 1 via the two-way valve 31b, the low-pressure gas pipe 4, and the accumulator 2.

【0041】(6)給湯熱利用追焚き運転 図7によって説明を行う。圧縮機1より吐出した高温高
圧の冷媒ガスはガス管3より、二方弁31eを介して追
焚き熱交換器13を通る。一方浴槽15内の水は追焚き
ポンプ14によって浴槽15の下部より吸引され、二重
管構造となった追焚き熱交換器13に流入する。ここ
で、冷媒は循環水と熱交換を行うことにより循環水を加
熱しながら、高圧の液冷媒となり、追焚き熱交換器13
より流出する。一方、加熱された循環水は浴槽15に戻
る。追焚き熱交換器13を流出した高圧の液冷媒は、冷
媒流量制御弁32cを通ることにより、低圧の二相冷媒
となり、液管5、冷媒流量制御弁32bを介して二重管
構造となった給湯熱交換器8に流入する。一方、貯湯槽
10内の高温水は、貯湯槽10の下部より給湯ポンプ9
によって吸引され、給湯熱交換器の入口側水配管18よ
り、給湯熱交換器8内に流入する。ここで、低圧の二相
冷媒は循環高温水と熱交換を行うことにより、低圧のガ
ス冷媒となり、二方弁31d、低圧ガス管4、アキュー
ムレータ2を介して圧縮機1の吸入側に戻る。循環高温
水のほうは、給湯熱交換器の出口側水配管17より、貯
湯槽10の上部に戻る。
(6) Reheating operation using hot water supply heat will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes from the gas pipe 3 through the reheating heat exchanger 13 via the two-way valve 31e. On the other hand, the water in the bathtub 15 is sucked from the lower part of the bathtub 15 by the reheating pump 14 and flows into the reheating heat exchanger 13 having a double pipe structure. Here, the refrigerant becomes a high-pressure liquid refrigerant while heating the circulating water by exchanging heat with the circulating water, and the reheating heat exchanger 13
More outflow. On the other hand, the heated circulating water returns to the bathtub 15. The high-pressure liquid refrigerant flowing out of the reheating heat exchanger 13 becomes a low-pressure two-phase refrigerant by passing through the refrigerant flow control valve 32c, and has a double pipe structure via the liquid pipe 5 and the refrigerant flow control valve 32b. It flows into the hot water supply heat exchanger 8. On the other hand, the high temperature water in the hot water storage tank 10 is supplied from the lower portion of the hot water storage tank 10 to the hot water supply pump 9
Is sucked by and flows into the hot water supply heat exchanger 8 through the inlet water pipe 18 of the hot water supply heat exchanger. Here, the low-pressure two-phase refrigerant becomes a low-pressure gas refrigerant by exchanging heat with the circulating high-temperature water, and returns to the suction side of the compressor 1 via the two-way valve 31d, the low-pressure gas pipe 4, and the accumulator 2. The circulating high-temperature water returns to the upper part of the hot water storage tank 10 through the outlet side water pipe 17 of the hot water supply heat exchanger.

【0042】(7)浴槽排熱利用給湯運転 図8によって説明を行う。圧縮機1より吐出した高温高
圧の冷媒ガスはガス管3より、二方弁31cを介して給
湯熱交換器8を通る。一方貯湯タンク10内の水は給湯
ポンプ9によって貯湯タンク10の下部より吸引され給
湯熱交換器の入口側水配管18から、二重管構造となっ
た給湯熱交換器8に流入する。ここで、冷媒は循環水と
熱交換を行うことにより循環水を加熱しながら、高圧の
液冷媒となり、給湯熱交換器8より流出する。一方、加
熱された循環水は給湯熱交換器8の出口側水配管17よ
り貯湯タンク10の上部に戻る。給湯熱交換器8を流出
した高圧の液冷媒は、冷媒流量制御弁32bを通ること
により、低圧の二相冷媒となり、液管5、冷媒流量制御
弁32cを通って、二重管構造となった追焚き熱交換器
13に流入する。一方浴槽15内の温水は追焚きポンプ
14によって浴槽15の下部より吸引され、二重管構造
となった追焚き熱交換器13に流入する。ここで、冷媒
は循環温水と熱交換を行うことにより、低圧のガス冷媒
となり、追焚き熱交換器13より流出する。一方、温水
は浴槽15に戻る。追焚き熱交換器13を流出した低圧
のガス冷媒は、二方弁31f、低圧ガス管4、アキュー
ムレータ2を介して圧縮機1の吸入側に戻る。
(7) Hot water supply operation using waste heat from bathtub The operation will be described with reference to FIG. The high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the gas pipe 3 and the hot water heat exchanger 8 via the two-way valve 31c. On the other hand, the water in the hot water storage tank 10 is sucked from the lower part of the hot water storage tank 10 by the hot water supply pump 9, and flows from the inlet side water pipe 18 of the hot water supply heat exchanger into the hot water supply heat exchanger 8 having a double pipe structure. Here, the refrigerant becomes a high-pressure liquid refrigerant while heating the circulating water by exchanging heat with the circulating water, and flows out from the hot water supply heat exchanger 8. On the other hand, the heated circulating water returns to the upper part of the hot water storage tank 10 through the outlet side water pipe 17 of the hot water supply heat exchanger 8. The high-pressure liquid refrigerant flowing out of the hot water supply heat exchanger 8 becomes a low-pressure two-phase refrigerant by passing through the refrigerant flow control valve 32b, passes through the liquid pipe 5 and the refrigerant flow control valve 32c, and becomes a double pipe structure. It flows into the additional heating heat exchanger 13. On the other hand, the hot water in the bathtub 15 is sucked from the lower part of the bathtub 15 by the reheating pump 14 and flows into the reheating heat exchanger 13 having a double pipe structure. Here, the refrigerant becomes a low-pressure gas refrigerant by exchanging heat with the circulating hot water, and flows out from the reheating heat exchanger 13. On the other hand, the warm water returns to the bathtub 15. The low-pressure gas refrigerant flowing out of the reheating heat exchanger 13 returns to the suction side of the compressor 1 via the two-way valve 31f, the low-pressure gas pipe 4, and the accumulator 2.

【0043】以上のように、本実施例では、給湯熱を利
用して、追焚き運転ができるため、外気温に影響されず
に、高効率で高速沸き上げを実現することができる。ま
た、浴槽内の排熱を回収して、給湯運転ができるため、
エネルギーの有効利用ができる。また、冷房時の排熱を
利用して、給湯運転ができるため、エネルギーの有効利
用ができる。
As described above, in the present embodiment, since the hot-water supply heat can be used for the additional heating operation, high-speed and high-speed boiling can be realized without being affected by the outside temperature. Also, because the exhaust heat in the bathtub can be recovered and the hot water supply operation can be performed,
Effective use of energy is possible. Moreover, since the hot water supply operation can be performed by utilizing the exhaust heat at the time of cooling, the energy can be effectively used.

【0044】なお、給湯熱を利用して追焚き運転をする
場合、室外の空気から採熱する場合より、高効率で高速
沸き上げが可能なことを図9に示す。図9は追焚き性能
を水温別による加熱能力比較で示すもので、設定条件と
して給湯熱源として85℃、空気熱源として7℃を想定
し、又、図10に温度を10℃から40℃まであげる沸
き上げ時間の一例を示す。水温が低い領域ほど給湯熱源
の場合の加熱能力が大きい。
It is to be noted that FIG. 9 shows that high-speed boiling can be performed with higher efficiency when the additional heating operation is performed by using the hot water supply heat than when the heat is taken from the outdoor air. FIG. 9 shows the reheating performance by comparing the heating capacity by water temperature. As setting conditions, it is assumed that the hot water supply heat source is 85 ° C., the air heat source is 7 ° C., and the temperature is raised from 10 ° C. to 40 ° C. in FIG. An example of the boiling time is shown. The lower the water temperature, the greater the heating capacity in the case of the hot water supply heat source.

【0045】実施例2.実施例2を示す図11〜図18
は、それぞれ実施例1の図1〜図8に相当して、図11
が本ヒートポンプシステムの構成図、図12が暖房運転
を示す図、図13が冷房運転を示す図、図14が給湯運
転を示す図、図15が追焚き運転を示す図、図16が冷
房排熱利用給湯運転を示す図、図17が給湯熱利用追焚
き運転を示す図及び図18が浴槽排熱利用給湯運転を示
す図である。各図において、実施例1と同一部分及び相
当部分には同一の番号を付けて示し、構成、動作等は同
一であるので、その詳細な説明は省略する。各図におい
て、室内熱交換器6、給湯熱交換器8、追焚き熱交換器
13及び室外熱交換器16はそれぞれ、高圧ガス管3と
低圧ガス管4への接続切り換えを実施例1では2個の二
方弁、31a,31b,31c,31d,31e,31
fそして31g,31hで行っていたのを1個の三方
弁、310a,310b,310c,310dにて行う
ようにしている。また、室外熱交換器16の低圧ガス管
4側に逆止弁330を設けている。
Example 2. 11 to 18 showing the second embodiment
11 corresponds to FIGS. 1 to 8 of the first embodiment, respectively.
Is a configuration diagram of the present heat pump system, FIG. 12 is a diagram showing a heating operation, FIG. 13 is a diagram showing a cooling operation, FIG. 14 is a diagram showing a hot water supply operation, FIG. 15 is a diagram showing a reheating operation, and FIG. FIG. 17 is a diagram showing a heat-utilizing hot water supply operation, FIG. 17 is a diagram showing a hot-water supply heat-utilizing additional heating operation, and FIG. In each drawing, the same parts and corresponding parts as those of the first embodiment are designated by the same reference numerals, and the configurations, operations and the like are the same, and thus detailed description thereof will be omitted. In each figure, the indoor heat exchanger 6, the hot water supply heat exchanger 8, the reheating heat exchanger 13, and the outdoor heat exchanger 16 are switched to the high pressure gas pipe 3 and the low pressure gas pipe 4 respectively in the first embodiment. Two-way valves, 31a, 31b, 31c, 31d, 31e, 31
The operation performed at f and 31g, 31h is performed by one three-way valve, 310a, 310b, 310c, 310d. Further, a check valve 330 is provided on the low-pressure gas pipe 4 side of the outdoor heat exchanger 16.

【0046】ヒートポンプシステムとしての動作等は、
基本的には実施例1と同じであるが、実施例2の場合
は、各熱交換器に流す冷媒の高圧ガス管と低圧ガス管へ
の切り換えをそれぞれ1個の三方弁で行っているため、
制御するアクチュエータ(二方弁)の数が少なくなり、
回路を簡単にすることができる。また、図17の給湯熱
利用追焚き運転及び図18の浴槽排熱利用給湯運転にお
いては、室外熱交換器16の低圧ガス管4側に設けた逆
止弁330のため、冬期などの外気が低い時に、低圧ガ
ス管4を流れる冷媒が室外熱交換器16に流入して凝縮
して、低圧が下がり給湯熱利用の効果や浴槽排熱利用の
効果が小さくなるのが防止される。
The operation as a heat pump system is as follows.
Basically, it is the same as the first embodiment, but in the case of the second embodiment, switching of the refrigerant flowing through each heat exchanger to the high pressure gas pipe and the low pressure gas pipe is performed by one three-way valve, respectively. ,
The number of actuators (two-way valve) to control decreases,
The circuit can be simplified. In addition, in the hot water supply heating additional heating operation of FIG. 17 and the bathtub waste heat utilization hot water supply operation of FIG. 18, the check valve 330 provided on the low pressure gas pipe 4 side of the outdoor heat exchanger 16 prevents outside air such as in the winter. When the temperature is low, the refrigerant flowing through the low-pressure gas pipe 4 flows into the outdoor heat exchanger 16 and is condensed, so that the low pressure is reduced and the effect of utilizing the heat from the hot water supply and the effect of utilizing the waste heat from the bathtub are prevented from being reduced.

【0047】実施例3.図19は実施例3の構成を示
す。図において、1は圧縮機、2はアキュームレータ、
3は高圧ガス管、4は低圧ガス管、5は液管、6は室内
熱交換器、7は給湯ユニット、8は給湯熱交換器、9は
給湯ポンプ、10は貯湯槽、11は加熱用ヒータ、12
は追焚きユニット、13は追焚き熱交換器、14は追焚
きポンプ、15は浴槽、16は室外熱交換器、17は給
湯熱交換器の出口側水配管、18は給湯用熱交換器の入
口側水配管、19は出湯配管、20は給水配管、31
a,31b,31c,31d,31e,31f,31
g,31hは二方弁、32a,32b,32cは冷媒流
量制御弁、40は熱交換量調整手段を構成する給湯ポン
プの回転数を制御する回転数制御手段である給湯ポンプ
用インバータである。
Example 3. FIG. 19 shows the configuration of the third embodiment. In the figure, 1 is a compressor, 2 is an accumulator,
3 is a high pressure gas pipe, 4 is a low pressure gas pipe, 5 is a liquid pipe, 6 is an indoor heat exchanger, 7 is a hot water supply unit, 8 is a hot water supply heat exchanger, 9 is a hot water supply pump, 10 is a hot water storage tank, 11 is for heating Heater, 12
Is a reheating unit, 13 is a reheating heat exchanger, 14 is a reheating pump, 15 is a bathtub, 16 is an outdoor heat exchanger, 17 is an outlet side water pipe of the hot water heat exchanger, and 18 is a hot water heat exchanger. Inlet side water pipe, 19 is tap water pipe, 20 is water supply pipe, 31
a, 31b, 31c, 31d, 31e, 31f, 31
g and 31h are two-way valves, 32a, 32b and 32c are refrigerant flow rate control valves, and 40 is a hot water supply pump inverter which is a rotation speed control means for controlling the rotation speed of the hot water supply pump which constitutes the heat exchange amount adjusting means.

【0048】次に動作について説明する。この発明のヒ
ートポンプシステムについて動作を説明する。なお、こ
こでは特に効果が大きい給湯熱利用追焚き運転について
のみ説明する。
Next, the operation will be described. The operation of the heat pump system of the present invention will be described. In addition, here, only the hot-water supply heat-utilizing additional heating operation, which is particularly effective, will be described.

【0049】(1)給湯熱利用追焚き運転 図19によって説明を行う。圧縮機1より吐出した高温
高圧の冷媒ガスはガス管3より、二方弁31eを介して
追焚き熱交換器13を通る。一方浴槽15内の水は追焚
きポンプ14によって浴槽15の下部より吸引され、二
重管構造となった追焚き熱交換器13に流入する。ここ
で、冷媒は循環水と熱交換を行うことにより循環水を加
熱しながら、高圧の液冷媒となり、追焚き熱交換器13
より流出する。一方、加熱された循環水は浴槽15に戻
る。追焚き熱交換器13を流出した高圧の液冷媒は、冷
媒流量制御弁32cを通ることにより、低圧の二相冷媒
となり、液管5、冷媒流量制御弁32bを介して二重管
構造となった給湯熱交換器8に流入する。一方、貯湯槽
10内の高温水は、貯湯槽10の下部より給湯ポンプ9
によって吸引され、給湯熱交換器の入口側水配管18よ
り、給湯熱交換器8内に流入する。ここで、低圧の二相
冷媒は循環高温水と熱交換を行うことにより、低圧のガ
ス冷媒となり、二方弁31d、低圧ガス管4、アキュー
ムレータ2を介して圧縮機1の吸入側に戻る。循環高温
水のほうは、給湯熱交換器の出口側水配管17より、貯
湯槽10の上部に戻る。なお、システム内の冷媒圧力を
圧力センサー(図示せず)によって検知し、システム内
の冷媒圧力が異常に上昇しないように、給湯ポンプ用イ
ンバータ40により給湯ポンプ9の回転数を可変するこ
とで、循環水量を変え、給湯熱交換器8における熱交換
量を制御することができる。
(1) Reheating operation using hot water supply heat will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes from the gas pipe 3 through the reheating heat exchanger 13 via the two-way valve 31e. On the other hand, the water in the bathtub 15 is sucked from the lower part of the bathtub 15 by the reheating pump 14 and flows into the reheating heat exchanger 13 having a double pipe structure. Here, the refrigerant becomes a high-pressure liquid refrigerant while heating the circulating water by exchanging heat with the circulating water, and the reheating heat exchanger 13
More outflow. On the other hand, the heated circulating water returns to the bathtub 15. The high-pressure liquid refrigerant flowing out of the reheating heat exchanger 13 becomes a low-pressure two-phase refrigerant by passing through the refrigerant flow control valve 32c, and has a double pipe structure via the liquid pipe 5 and the refrigerant flow control valve 32b. It flows into the hot water supply heat exchanger 8. On the other hand, the high temperature water in the hot water storage tank 10 is supplied from the lower portion of the hot water storage tank 10 to the hot water supply pump 9
Is sucked by and flows into the hot water supply heat exchanger 8 through the inlet water pipe 18 of the hot water supply heat exchanger. Here, the low-pressure two-phase refrigerant becomes a low-pressure gas refrigerant by exchanging heat with the circulating high-temperature water, and returns to the suction side of the compressor 1 via the two-way valve 31d, the low-pressure gas pipe 4, and the accumulator 2. The circulating high-temperature water returns to the upper part of the hot water storage tank 10 through the outlet side water pipe 17 of the hot water supply heat exchanger. The pressure of the refrigerant in the system is detected by a pressure sensor (not shown), and the rotation speed of the hot water supply pump 9 is changed by the hot water supply pump inverter 40 so that the refrigerant pressure in the system does not rise abnormally. The amount of circulating water can be changed to control the amount of heat exchange in the hot water supply heat exchanger 8.

【0050】以上のように、本実施例では、給湯ポンプ
用インバータにより給湯ポンプの回転数を可変し、循環
水量を変え、給湯熱交換器における熱交換量を制御する
ことができるため、給湯熱利用追焚き運転の際、高温の
給湯水より採熱しても、システム内の冷媒圧力が異常に
上昇することを防止できるという効果がある。
As described above, in the present embodiment, the hot water supply pump inverter can be used to change the rotation speed of the hot water supply pump to change the circulating water amount and control the heat exchange amount in the hot water supply heat exchanger. In the usage reheating operation, there is an effect that the refrigerant pressure in the system can be prevented from rising abnormally even if heat is taken from the hot water.

【0051】給湯熱利用追焚き運転の問題は高温の給湯
熱より採熱するため、低圧が上昇し、圧縮機運転限界圧
力を越えるということであり、したがって低圧を検知す
ることが望ましいと言えるが、いずれにしろ限界圧力を
こえないよう冷媒の圧力を監視すればよい。すなわち異
常圧を防止し適正な圧力範囲で運転することである。
The problem of the hot-water heating reheating operation is that the low-temperature rises and the compressor operation limit pressure is exceeded because heat is collected from the high-temperature hot-water supply heat. Therefore, it can be said that it is desirable to detect the low pressure. In any case, the pressure of the refrigerant may be monitored so as not to exceed the limit pressure. That is, it is necessary to prevent abnormal pressure and operate in an appropriate pressure range.

【0052】実施例4.図20は実施例4の構成を示
す。図において、1は圧縮機、2はアキュームレータ、
3は高圧ガス管、4は低圧ガス管、5は液管、6は室内
熱交換器、7は給湯ユニット、8は給湯熱交換器、9は
給湯ポンプ、10は貯湯槽、11は加熱用ヒータ、12
は追焚きユニット、13は追焚き熱交換器、14は追焚
きポンプ、15は浴槽、16は室外熱交換器、17は給
湯熱交換器の出口側水配管、18は給湯用熱交換器の入
口側水配管、19は出湯配管、20は給水配管、31
a,31b,31c,31d,31e,31f,31
g,31hは二方弁、32a,32b,32cは冷媒流
量制御弁、41は循環水バイパス路の絞り装置、42は
循環水バイパス路内の二方弁である。なお、41絞り装
置、42二方弁とバイパス路とで熱交換量調整手段を構
成する。
Example 4. FIG. 20 shows the configuration of the fourth embodiment. In the figure, 1 is a compressor, 2 is an accumulator,
3 is a high pressure gas pipe, 4 is a low pressure gas pipe, 5 is a liquid pipe, 6 is an indoor heat exchanger, 7 is a hot water supply unit, 8 is a hot water supply heat exchanger, 9 is a hot water supply pump, 10 is a hot water storage tank, 11 is for heating Heater, 12
Is a reheating unit, 13 is a reheating heat exchanger, 14 is a reheating pump, 15 is a bathtub, 16 is an outdoor heat exchanger, 17 is an outlet side water pipe of the hot water heat exchanger, and 18 is a hot water heat exchanger. Inlet side water pipe, 19 is tap water pipe, 20 is water supply pipe, 31
a, 31b, 31c, 31d, 31e, 31f, 31
g and 31h are two-way valves, 32a, 32b and 32c are refrigerant flow control valves, 41 is a throttle device for the circulating water bypass passage, and 42 is a two-way valve in the circulating water bypass passage. The 41 throttle device, 42 two-way valve and the bypass passage constitute heat exchange amount adjusting means.

【0053】次に動作について説明する。この発明のヒ
ートポンプシステムについて動作を説明する。なお、こ
こでは特に効果が大きい給湯熱利用追焚き運転について
のみ説明する。
Next, the operation will be described. The operation of the heat pump system of the present invention will be described. In addition, here, only the hot-water supply heat-utilizing additional heating operation, which is particularly effective, will be described.

【0054】(1)給湯熱利用追焚き運転 図20によって説明を行う。圧縮機1より吐出した高温
高圧の冷媒ガスはガス管3より、二方弁31eを介して
追焚き熱交換器13を通る。一方浴槽15内の水は追焚
きポンプ14によって浴槽15の下部より吸引され、二
重管構造となった追焚き熱交換器13に流入する。ここ
で、冷媒は循環水と熱交換を行うことにより循環水を加
熱しながら、高圧の液冷媒となり、追焚き熱交換器13
より流出する。一方、加熱された循環水は浴槽15に戻
る。追焚き熱交換器13を流出した高圧の液冷媒は、冷
媒流量制御弁32cを通ることにより、低圧の二相冷媒
となり、液管5、冷媒流量制御弁32bを介して二重管
構造となった給湯熱交換器8に流入する。一方、貯湯槽
10内の高温水は、貯湯槽10の下部より給湯ポンプ9
によって吸引され、給湯熱交換器の入口側水配管18よ
り、給湯熱交換器8内に流入する。ここで、低圧の二相
冷媒は循環高温水と熱交換を行うことにより、低圧のガ
ス冷媒となり、二方弁31d、低圧ガス管4、アキュー
ムレータ2を介して圧縮機1の吸入側に戻る。循環高温
水のほうは、給湯熱交換器の出口側水配管17より、貯
湯槽10の上部に戻る。なお、システム内の冷媒圧力を
圧力センサー(図示せず)によって検知し、システム内
の冷媒圧力が異常に上昇しないように、給湯循環水のバ
イパス路内の二方弁41を開き、一部の循環水をバイパ
スさせることで、給湯熱交換器8に流入する循環水を減
らし、給湯熱交換器8における熱交換量を制御すること
ができる。
(1) Reheating operation using hot water supply heat will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes from the gas pipe 3 through the reheating heat exchanger 13 via the two-way valve 31e. On the other hand, the water in the bathtub 15 is sucked from the lower part of the bathtub 15 by the reheating pump 14 and flows into the reheating heat exchanger 13 having a double pipe structure. Here, the refrigerant becomes a high-pressure liquid refrigerant while heating the circulating water by exchanging heat with the circulating water, and the reheating heat exchanger 13
More outflow. On the other hand, the heated circulating water returns to the bathtub 15. The high-pressure liquid refrigerant flowing out of the reheating heat exchanger 13 becomes a low-pressure two-phase refrigerant by passing through the refrigerant flow control valve 32c, and has a double pipe structure via the liquid pipe 5 and the refrigerant flow control valve 32b. It flows into the hot water supply heat exchanger 8. On the other hand, the high temperature water in the hot water storage tank 10 is supplied from the lower portion of the hot water storage tank 10 to the hot water supply pump 9
Is sucked by and flows into the hot water supply heat exchanger 8 through the inlet water pipe 18 of the hot water supply heat exchanger. Here, the low-pressure two-phase refrigerant becomes a low-pressure gas refrigerant by exchanging heat with the circulating high-temperature water, and returns to the suction side of the compressor 1 via the two-way valve 31d, the low-pressure gas pipe 4, and the accumulator 2. The circulating high-temperature water returns to the upper part of the hot water storage tank 10 through the outlet side water pipe 17 of the hot water supply heat exchanger. Note that the pressure of the refrigerant in the system is detected by a pressure sensor (not shown), and the two-way valve 41 in the bypass passage of the hot water supply circulating water is opened so that the refrigerant pressure in the system does not rise abnormally. By bypassing the circulating water, the circulating water flowing into the hot water supply heat exchanger 8 can be reduced and the amount of heat exchange in the hot water supply heat exchanger 8 can be controlled.

【0055】以上のように、本実施例では、給湯循環水
のバイパス路内の二方弁を開くことで、循環水量を減ら
し、給湯熱交換路における熱交換量を制御することがで
きるため、給湯熱利用追焚き運転の際、高温の給湯水よ
り採熱しても、システム内の冷媒圧力が異常に上昇する
ことを防止できるという効果がある。
As described above, in this embodiment, the amount of circulating water can be reduced and the amount of heat exchange in the hot water supply heat exchange passage can be controlled by opening the two-way valve in the bypass passage of the hot water supply circulating water. Even if heat is taken from the hot water for hot water supply during the hot water supply hot water reheating operation, it is possible to prevent the refrigerant pressure in the system from rising abnormally.

【0056】ここでは熱交換量調整手段として、給湯循
環水量を制御することを説明したが、この制御に関する
フローチャートを図21に示す。なお、以下この熱交換
量調整手段の他の方法を説明する。
Here, as the heat exchange amount adjusting means, the control of the hot water supply circulating water amount has been described. A flow chart relating to this control is shown in FIG. In addition, another method of this heat exchange amount adjusting means will be described below.

【0057】実施例5.図22は実施例5の構成を示
す。図において、1は圧縮機、2はアキュームレータ、
3は高圧ガス管、4は低圧ガス管、5は液管、6は室内
熱交換器、7は給湯ユニット、8は給湯熱交換器、9は
給湯ポンプ、10は貯湯槽、11は加熱用ヒータ、12
は追焚きユニット、13は追焚き熱交換器、14は追焚
きポンプ、15は浴槽、16は室外熱交換器、17は給
湯熱交換器の出口側水配管、18は給湯用熱交換器の入
口側水配管、19は出湯配管、20は給水配管、31
a,31b,31c,31d,31e,31f,31
g,31hは二方弁、32a,32b,32cは冷媒流
量制御弁、43は循環水バイパス路の流量制御弁であ
る。なお、43流量制御弁とバイパス路とで熱交換量調
整手段を構成する。
Example 5. FIG. 22 shows the configuration of the fifth embodiment. In the figure, 1 is a compressor, 2 is an accumulator,
3 is a high pressure gas pipe, 4 is a low pressure gas pipe, 5 is a liquid pipe, 6 is an indoor heat exchanger, 7 is a hot water supply unit, 8 is a hot water supply heat exchanger, 9 is a hot water supply pump, 10 is a hot water storage tank, 11 is for heating Heater, 12
Is a reheating unit, 13 is a reheating heat exchanger, 14 is a reheating pump, 15 is a bathtub, 16 is an outdoor heat exchanger, 17 is an outlet side water pipe of the hot water heat exchanger, and 18 is a hot water heat exchanger. Inlet side water pipe, 19 is tap water pipe, 20 is water supply pipe, 31
a, 31b, 31c, 31d, 31e, 31f, 31
g and 31h are two-way valves, 32a, 32b and 32c are refrigerant flow control valves, and 43 is a flow control valve of the circulating water bypass passage. The 43 flow rate control valve and the bypass passage constitute heat exchange amount adjusting means.

【0058】次に動作について説明する。この発明のヒ
ートポンプ式冷暖房給湯追焚きシステムについて動作を
説明する。なお、ここでは特に効果が大きい給湯熱利用
追焚き運転についてのみ説明する。
Next, the operation will be described. The operation of the heat pump type heating and cooling / hot water supply additional heating system of the present invention will be described. In addition, here, only the hot-water supply heat-utilizing additional heating operation, which is particularly effective, will be described.

【0059】(1)給湯熱利用追焚き運転 図22によって説明を行う。圧縮機1より吐出した高温
高圧の冷媒ガスはガス管3より、二方弁31eを介して
追焚き熱交換器13を通る。一方浴槽15内の水は追焚
きポンプ14によって浴槽15の下部より吸引され、二
重管構造となった追焚き熱交換器13に流入する。ここ
で、冷媒は循環水と熱交換を行うことにより循環水を加
熱しながら、高圧の液冷媒となり、追焚き熱交換器13
より流出する。一方、加熱された循環水は浴槽15に戻
る。追焚き熱交換器13を流出した高圧の液冷媒は、冷
媒流量制御弁32cを通ることにより、低圧の二相冷媒
となり、液管5、冷媒流量制御弁32bを介して二重管
構造となった給湯熱交換器8に流入する。一方、貯湯槽
10内の高温水は、貯湯槽10の下部より給湯ポンプ9
によって吸引され、給湯熱交換器の入口側水配管18よ
り、給湯熱交換器8内に流入する。ここで、低圧の二相
冷媒は循環高温水と熱交換を行うことにより、低圧のガ
ス冷媒となり、二方弁31d、低圧ガス管4、アキュー
ムレータ2を介して圧縮機1の吸入側に戻る。循環高温
水のほうは、給湯熱交換器の出口側水配管17より、貯
湯槽10の上部に戻る。なお、システム内の冷媒圧力を
圧力センサー(図示せず)によって検知し、システム内
の冷媒圧力が異常に上昇しないように、給湯循環水のバ
イパス路内の流量制御弁43の開度を制御し、適量の循
環水をバイパスさせることで、給湯熱交換器8に流入す
る循環水を加減し、給湯熱交換器8における熱交換量を
制御することができる。
(1) Reheating operation using hot water supply heat The operation will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes from the gas pipe 3 through the reheating heat exchanger 13 via the two-way valve 31e. On the other hand, the water in the bathtub 15 is sucked from the lower part of the bathtub 15 by the reheating pump 14 and flows into the reheating heat exchanger 13 having a double pipe structure. Here, the refrigerant becomes a high-pressure liquid refrigerant while heating the circulating water by exchanging heat with the circulating water, and the reheating heat exchanger 13
More outflow. On the other hand, the heated circulating water returns to the bathtub 15. The high-pressure liquid refrigerant flowing out of the reheating heat exchanger 13 becomes a low-pressure two-phase refrigerant by passing through the refrigerant flow control valve 32c, and has a double pipe structure via the liquid pipe 5 and the refrigerant flow control valve 32b. It flows into the hot water supply heat exchanger 8. On the other hand, the high temperature water in the hot water storage tank 10 is supplied from the lower portion of the hot water storage tank 10 to the hot water supply pump 9
Is sucked by and flows into the hot water supply heat exchanger 8 through the inlet water pipe 18 of the hot water supply heat exchanger. Here, the low-pressure two-phase refrigerant becomes a low-pressure gas refrigerant by exchanging heat with the circulating high-temperature water, and returns to the suction side of the compressor 1 via the two-way valve 31d, the low-pressure gas pipe 4, and the accumulator 2. The circulating high-temperature water returns to the upper part of the hot water storage tank 10 through the outlet side water pipe 17 of the hot water supply heat exchanger. The pressure of the refrigerant in the system is detected by a pressure sensor (not shown), and the opening of the flow control valve 43 in the bypass path of the hot water supply circulating water is controlled so that the refrigerant pressure in the system does not rise abnormally. By bypassing an appropriate amount of circulating water, the circulating water flowing into the hot water supply heat exchanger 8 can be adjusted and the amount of heat exchange in the hot water supply heat exchanger 8 can be controlled.

【0060】以上のように、本実施例では、給湯循環水
のバイパス路内の流量制御弁の開度を制御することで、
循環水量を加減し、給湯熱交換器における熱交換量を制
御することができるため、給湯熱利用追焚き運転の際、
高温の給湯水より採熱しても、システム内の冷媒圧力が
異常に上昇することを防止できるという効果がある。な
お、適量の循環水をバイパスさせることにより冷媒の圧
力、特に低圧が圧縮機運転限界圧力を越えない範囲で最
大の量を確保できる。
As described above, in this embodiment, by controlling the opening degree of the flow rate control valve in the bypass passage of the hot water circulating water,
Since the amount of circulating water can be adjusted and the amount of heat exchange in the hot water supply heat exchanger can be controlled, during hot water heating and reheating operation,
Even if heat is taken from hot water, it is possible to prevent the refrigerant pressure in the system from rising abnormally. By bypassing an appropriate amount of circulating water, the maximum amount can be secured within the range where the pressure of the refrigerant, particularly the low pressure, does not exceed the compressor operation limit pressure.

【0061】実施例6.図23は実施例6の構成を示
す。図において、1は圧縮機、2はアキュームレータ、
3は高圧ガス管、4は低圧ガス管、5は液管、6は室内
熱交換器、7は給湯ユニット、8a,8bは給湯熱交換
器、給湯9は給湯ポンプ、10は貯湯槽、11は加熱用
ヒータ、12は追焚きユニット、13は追焚き熱交換
器、14は追焚きポンプ、15は浴槽、16は室外熱交
換器、17は給湯熱交換器の出口側水配管、18は給湯
用熱交換器の入口側水配管、19は出湯配管、20は給
水配管、31a,31b,31c,31d,31e,3
1f,31g,31hは二方弁、32a,32b,32
cは冷媒流量制御弁、44a,44bは給湯用熱交換器
のバイパス用の二方弁である。なお、給湯熱交換器8b
は給湯熱交換器8aの1/5以下の長さである。なお、
給湯熱交換器8a,8bと二方弁44a,44b等で熱
交換量調整手段を構成する。
Example 6. FIG. 23 shows the configuration of the sixth embodiment. In the figure, 1 is a compressor, 2 is an accumulator,
3 is a high pressure gas pipe, 4 is a low pressure gas pipe, 5 is a liquid pipe, 6 is an indoor heat exchanger, 7 is a hot water supply unit, 8a and 8b are hot water heat exchangers, 9 is a hot water pump, 10 is a hot water tank, 11 Is a heater for heating, 12 is a reheating unit, 13 is a reheating heat exchanger, 14 is a reheating pump, 15 is a bathtub, 16 is an outdoor heat exchanger, 17 is outlet water pipe of the hot water heat exchanger, and 18 is Inlet-side water pipe of the heat exchanger for hot water supply, 19 is a hot water supply pipe, 20 is a water supply pipe, 31a, 31b, 31c, 31d, 31e, 3
1f, 31g, 31h are two-way valves, 32a, 32b, 32
Reference numeral c is a refrigerant flow control valve, and 44a and 44b are two-way valves for bypassing the hot water supply heat exchanger. The hot water supply heat exchanger 8b
Is 1/5 or less of the length of the hot water heat exchanger 8a. In addition,
The hot water supply heat exchangers 8a and 8b and the two-way valves 44a and 44b constitute a heat exchange amount adjusting means.

【0062】次に動作について説明する。この発明のヒ
ートポンプ式冷暖房給湯追焚きシステムについて動作を
説明する。なお、ここでは特に効果が大きい給湯熱利用
追焚き運転についてのみ説明する。
Next, the operation will be described. The operation of the heat pump type heating and cooling / hot water supply additional heating system of the present invention will be described. In addition, here, only the hot-water supply heat-utilizing additional heating operation, which is particularly effective, will be described.

【0063】(1)給湯熱利用追焚き運転 図23によって説明を行う。圧縮機1より吐出した高温
高圧の冷媒ガスはガス管3より、二方弁31eを介して
追焚き熱交換器13を通る。一方浴槽15内の水は追焚
きポンプ14によって浴槽15の下部より吸引され、二
重管構造となった追焚き熱交換器13に流入する。ここ
で、冷媒は循環水と熱交換を行うことにより循環水を加
熱しながら、高圧の液冷媒となり、追焚き熱交換器13
より流出する。一方、加熱された循環水は浴槽15に戻
る。追焚き熱交換器13を流出した高圧の液冷媒は、冷
媒流量制御弁32cを通ることにより、低圧の二相冷媒
となり、液管5、冷媒流量制御弁32bを介して二重管
構造となった給湯熱交換器8に流入する。一方、貯湯槽
10内の高温水は、貯湯槽10の下部より給湯ポンプ9
によって吸引され、給湯熱交換器の入口側水配管18よ
り、給湯熱交換器8内に流入する。ここで、低圧の二相
冷媒は循環高温水と熱交換を行うことにより、低圧のガ
ス冷媒となり、二方弁31d、低圧ガス管4、アキュー
ムレータ2を介して圧縮機1の吸入側に戻る。循環高温
水のほうは、給湯熱交換器の出口側水配管17より、貯
湯槽10の上部に戻る。なお、システム内の冷媒圧力を
圧力センサー(図示せず)によって検知し、システム内
の冷媒圧力が異常に上昇しないように、給湯熱交換器の
バイパス用二方弁44aを開き、44bを閉じることに
より給湯用熱交換器8bのみで熱交換させ、熱交換量を
減らすことができる。
(1) Reheating operation using hot water supply heat will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes from the gas pipe 3 through the reheating heat exchanger 13 via the two-way valve 31e. On the other hand, the water in the bathtub 15 is sucked from the lower part of the bathtub 15 by the reheating pump 14 and flows into the reheating heat exchanger 13 having a double pipe structure. Here, the refrigerant becomes a high-pressure liquid refrigerant while heating the circulating water by exchanging heat with the circulating water, and the reheating heat exchanger 13
More outflow. On the other hand, the heated circulating water returns to the bathtub 15. The high-pressure liquid refrigerant flowing out of the reheating heat exchanger 13 becomes a low-pressure two-phase refrigerant by passing through the refrigerant flow control valve 32c, and has a double pipe structure via the liquid pipe 5 and the refrigerant flow control valve 32b. It flows into the hot water supply heat exchanger 8. On the other hand, the high temperature water in the hot water storage tank 10 is supplied from the lower portion of the hot water storage tank 10 to the hot water supply pump 9
Is sucked by and flows into the hot water supply heat exchanger 8 through the inlet water pipe 18 of the hot water supply heat exchanger. Here, the low-pressure two-phase refrigerant becomes a low-pressure gas refrigerant by exchanging heat with the circulating high-temperature water, and returns to the suction side of the compressor 1 via the two-way valve 31d, the low-pressure gas pipe 4, and the accumulator 2. The circulating high-temperature water returns to the upper part of the hot water storage tank 10 through the outlet side water pipe 17 of the hot water supply heat exchanger. In addition, the refrigerant pressure in the system is detected by a pressure sensor (not shown), and the bypass two-way valve 44a of the hot water supply heat exchanger is opened and 44b is closed so that the refrigerant pressure in the system does not rise abnormally. Thus, heat can be exchanged only by the hot water supply heat exchanger 8b, and the amount of heat exchange can be reduced.

【0064】以上のように、本実施例では、給湯熱交換
器のバイパス用二方弁を開閉することで、給湯用熱交換
器の長さを短くし、給湯用熱交換器における熱交換量を
制御することができるため、給湯熱利用追焚き運転の
際、高温の給湯水より採熱しても、システム内の冷媒圧
力が異常に上昇することを防止できるという効果があ
る。
As described above, in this embodiment, the length of the hot water supply heat exchanger is shortened by opening and closing the bypass two-way valve of the hot water supply heat exchanger, and the heat exchange amount in the hot water supply heat exchanger is reduced. Therefore, there is an effect that the refrigerant pressure in the system can be prevented from rising abnormally even if heat is taken from the hot water for hot water supply during the hot water supply hot water reheating operation.

【0065】給湯熱交換器を分割し、短い方を長い方の
1/5以下にしているが、これは図24に示す如く、冷
媒の圧力限界である高圧側の限界24kg/cm2ab
sおよび低圧の限界8.08kg/cm2absを満た
すために、同時に追焚き能力4500kcal/hを確
保するための必要な給湯熱交換器の長さ3.5mに対
し、0.6m(図24△印)であることがわかる。すな
わち短い方を長い方の1/5以下として圧縮機周波数を
所定の周波数にすることが必要である。
The hot water supply heat exchanger is divided so that the shorter one is ⅕ or less of the longer one, which is, as shown in FIG. 24, the high pressure side limit of 24 kg / cm2ab which is the pressure limit of the refrigerant.
s and the low pressure limit of 8.08 kg / cm2abs, the required length of the hot water heat exchanger is 3.5m for securing a reheating capacity of 4500kcal / h at the same time. )It can be seen that it is. That is, it is necessary to set the compressor frequency to a predetermined frequency by making the shorter one ⅕ or less of the longer one.

【0066】実施例7.図25は実施例7の構成を示
す。図において、1は圧縮機、2はアキュームレータ、
3は高圧ガス管、4は低圧ガス管、5は液管、6は室内
熱交換器、7は給湯ユニット、8a,8bは給湯熱交換
器、給湯9は給湯ポンプ、10は貯湯槽、11は加熱用
ヒータ、12は追焚きユニット、13は追焚き熱交換
器、14は追焚きポンプ、15は浴槽、16a,16b
は室外熱交換器、17は給湯熱交換器の出口側水配管、
18は給湯用熱交換器の入口側水配管、19は出湯配
管、20は給水配管、31a,31b,31c,31
d,31e,31f,31g,31hは二方弁、32
a,32b,32cは冷媒流量制御弁、45は室外熱交
換器のバイパス用の二方弁である。
Example 7. FIG. 25 shows the configuration of the seventh embodiment. In the figure, 1 is a compressor, 2 is an accumulator,
3 is a high pressure gas pipe, 4 is a low pressure gas pipe, 5 is a liquid pipe, 6 is an indoor heat exchanger, 7 is a hot water supply unit, 8a and 8b are hot water heat exchangers, 9 is a hot water pump, 10 is a hot water tank, 11 Is a heater for heating, 12 is a reheating unit, 13 is a reheating heat exchanger, 14 is a reheating pump, 15 is a bath, 16a, 16b
Is an outdoor heat exchanger, 17 is an outlet side water pipe of the hot water supply heat exchanger,
18 is an inlet side water pipe of the hot water supply heat exchanger, 19 is a hot water supply pipe, 20 is a water supply pipe, 31a, 31b, 31c, 31
d, 31e, 31f, 31g, 31h are two-way valves, 32
Reference numerals a, 32b and 32c are refrigerant flow rate control valves, and 45 is a two-way valve for bypassing the outdoor heat exchanger.

【0067】次に動作について説明する。この発明のヒ
ートポンプシステムについて動作を説明する。なお、こ
こでは特に効果が大きい給湯運転および追焚き運転につ
いてのみ説明する。
Next, the operation will be described. The operation of the heat pump system of the present invention will be described. In addition, here, only the hot water supply operation and the additional heating operation, which are particularly effective, will be described.

【0068】(1)給湯運転 図25によって説明を行う。圧縮機1より吐出した高温
高圧の冷媒ガスはガス管3より、二方弁31cを介して
給湯熱交換器8を通る。一方貯湯タンク10内の水は給
湯ポンプ9によって貯湯タンク10の下部より吸引され
給湯熱交換器の入口側水配管18から、二重管構造とな
った給湯熱交換器8に流入する。ここで、冷媒は循環水
と熱交換を行うことにより循環水を加熱しながら、高圧
の液冷媒となり、給湯熱交換器8より流出する。一方、
加熱された循環水は給湯熱交換器8の出口側水配管17
より貯湯タンク10の上部に戻る、給湯熱交換器8を流
出した高圧の液冷媒は、冷媒流量制御弁32bを通るこ
とにより、低圧の二相冷媒となり、液管5を通って室外
熱交換器16a,16bに流入する。ここで、低圧の二
相冷媒は外気と熱交換を行うことにより、低圧のガス冷
媒となり、二方弁31h、低圧ガス管4、アキュームレ
ータ2を介して圧縮機1の吸入側に戻る。また、必要に
応じて加熱ヒータ11により、さらに高温沸き上げを行
う。なお、夏場など外気温が高い場合、二方弁45を閉
じることによって、室外熱交換器16aにのみ冷媒が流
れるようにすることで、室外熱交換器での熱交換量を減
らし、冷媒圧力の異常な上昇を防ぐことができる。
(1) Hot water supply operation The operation will be described with reference to FIG. The high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the gas pipe 3 and the hot water heat exchanger 8 via the two-way valve 31c. On the other hand, the water in the hot water storage tank 10 is sucked from the lower part of the hot water storage tank 10 by the hot water supply pump 9, and flows from the inlet side water pipe 18 of the hot water supply heat exchanger into the hot water supply heat exchanger 8 having a double pipe structure. Here, the refrigerant becomes a high-pressure liquid refrigerant while heating the circulating water by exchanging heat with the circulating water, and flows out from the hot water supply heat exchanger 8. on the other hand,
The heated circulating water is supplied to the outlet side water pipe 17 of the hot water supply heat exchanger 8.
The high-pressure liquid refrigerant flowing out of the hot water supply heat exchanger 8 returning to the upper part of the hot water storage tank 10 becomes a low-pressure two-phase refrigerant by passing through the refrigerant flow control valve 32b, and passes through the liquid pipe 5 to the outdoor heat exchanger. It flows into 16a and 16b. Here, the low-pressure two-phase refrigerant becomes a low-pressure gas refrigerant by exchanging heat with the outside air, and returns to the suction side of the compressor 1 via the two-way valve 31h, the low-pressure gas pipe 4, and the accumulator 2. Further, if necessary, the heater 11 is used to further raise the temperature. When the outside air temperature is high, such as in the summer, the two-way valve 45 is closed to allow the refrigerant to flow only to the outdoor heat exchanger 16a, thereby reducing the heat exchange amount in the outdoor heat exchanger and reducing the refrigerant pressure. An abnormal rise can be prevented.

【0069】(2)追焚き運転 図26によって説明を行う。圧縮機1より吐出した高温
高圧の冷媒ガスはガス管3より、二方弁31eを介して
追焚き熱交換器13を通る。一方浴槽15内の水は追焚
きポンプ14によって浴槽15の下部より吸引され、二
重管構造となった追焚き熱交換器13に流入する。ここ
で、冷媒は循環水と熱交換を行うことにより循環水を加
熱しながら、高圧の液冷媒となり、追焚き熱交換13よ
り流出する。一方、加熱された循環水は浴槽15に戻
る。追焚き熱交換器13を流出した高圧の液冷媒は、冷
媒流量制御弁32cを通ることにより、低圧の二相冷媒
となり、液管5を通って室外熱交換器16a,16bに
流入する。ここで、低圧の二相冷媒は外気と熱交換を行
うことにより、低圧のガス冷媒となり、二方弁31h、
低圧ガス管4、アキュームレータ2を介して圧縮機1の
吸入側に戻る。なお、夏場など外気温が高い場合、二方
弁45を閉じることによって、室外熱交換器16aにの
み冷媒が流れるようにすることで、室外熱交換器での熱
交換量を減らし、冷媒圧力の異常な上昇を防ぐことがで
きる。
(2) Reheating operation will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes from the gas pipe 3 through the reheating heat exchanger 13 via the two-way valve 31e. On the other hand, the water in the bathtub 15 is sucked from the lower part of the bathtub 15 by the reheating pump 14 and flows into the reheating heat exchanger 13 having a double pipe structure. Here, the refrigerant becomes a high-pressure liquid refrigerant while heating the circulating water by exchanging heat with the circulating water, and flows out from the reheating heat exchange 13. On the other hand, the heated circulating water returns to the bathtub 15. The high-pressure liquid refrigerant flowing out of the reheating heat exchanger 13 becomes a low-pressure two-phase refrigerant by passing through the refrigerant flow control valve 32c, and flows into the outdoor heat exchangers 16a, 16b through the liquid pipe 5. Here, the low-pressure two-phase refrigerant becomes a low-pressure gas refrigerant by exchanging heat with the outside air, and the two-way valve 31h,
It returns to the suction side of the compressor 1 via the low-pressure gas pipe 4 and the accumulator 2. When the outside air temperature is high, such as in the summer, the two-way valve 45 is closed to allow the refrigerant to flow only to the outdoor heat exchanger 16a, thereby reducing the heat exchange amount in the outdoor heat exchanger and reducing the refrigerant pressure. An abnormal rise can be prevented.

【0070】以上のように、本実施例では、室外熱交換
器のバイパス用二方弁を開閉して、室外熱交換器の容量
を変えることで、室外熱交換器における熱交換量を制御
することができるため、夏場など外気が高い場合に給湯
運転や追焚き運転を行う際、室外熱交換器における熱交
換量を減らし、システム内の冷媒圧力が異常に上昇する
ことを防止できるという効果がある。
As described above, in this embodiment, the heat exchange amount in the outdoor heat exchanger is controlled by opening / closing the bypass two-way valve of the outdoor heat exchanger to change the capacity of the outdoor heat exchanger. Therefore, when performing hot water supply operation or reheating operation when the outside air is high such as in summer, the effect of reducing the heat exchange amount in the outdoor heat exchanger and preventing the refrigerant pressure in the system from rising abnormally can be obtained. is there.

【0071】実施例8.図27は実施例8の構成を示
す。図において、1は圧縮機、2はアキュームレータ、
3は高圧ガス管、4は低圧ガス管、5は液管、6は室内
熱交換器、7は給湯ユニット、8は給湯熱交換器、9は
給湯ポンプ、10は貯湯槽、11は加熱用ヒータ、12
は追焚きユニット、13は追焚き熱交換器、14は追焚
きポンプ、15は浴槽、16は室外熱交換器、17は給
湯熱交換器の出口側水配管、18は給湯用熱交換器の入
口側水配管、19は出湯配管、20は給水配管、21は
室外ファン、22は浴室乾燥用熱交換器、23は浴室乾
燥ユニット、310a,310b,310c,310d
は三方弁、310eは二方弁、32a,32b,32c
は冷媒流量制御弁、330は逆止弁、45は圧力検出手
段である。
Example 8. FIG. 27 shows the structure of the eighth embodiment. In the figure, 1 is a compressor, 2 is an accumulator,
3 is a high pressure gas pipe, 4 is a low pressure gas pipe, 5 is a liquid pipe, 6 is an indoor heat exchanger, 7 is a hot water supply unit, 8 is a hot water supply heat exchanger, 9 is a hot water supply pump, 10 is a hot water storage tank, 11 is for heating Heater, 12
Is a reheating unit, 13 is a reheating heat exchanger, 14 is a reheating pump, 15 is a bathtub, 16 is an outdoor heat exchanger, 17 is an outlet side water pipe of the hot water heat exchanger, and 18 is a hot water heat exchanger. Inlet water pipe, 19 hot water pipe, 20 water supply pipe, 21 outdoor fan, 22 bathroom drying heat exchanger, 23 bathroom drying unit, 310a, 310b, 310c, 310d
Is a three-way valve, 310e is a two-way valve, 32a, 32b, 32c
Is a refrigerant flow control valve, 330 is a check valve, and 45 is a pressure detecting means.

【0072】次に動作について説明する。この発明のヒ
ートポンプシステムについて動作を説明する。なお、こ
こでは特に効果が大きい浴室乾燥単独運転についてのみ
説明する。 (1)浴室乾燥単独運転 図27によって説明を行う。圧縮機1より吐出した高温
高圧の冷媒ガスはガス管3より、三方弁310cを介し
て浴室乾燥熱交換器22を通る。浴室乾燥熱交換器22
において、冷媒ガスは、浴室内の空気と熱交換を行うこ
とにより空気を加熱しながら、高圧の液冷媒となり、浴
室乾燥熱交換器22より流出する。流出した液冷媒は冷
媒流量制御弁32cを通ることにより、低圧二相冷媒と
なり、液管5に入る。一方、圧縮機1より吐出した高温
高圧の冷媒ガスの一部はガス管3より、三方弁310a
を介して室内熱交換器6に入り、放熱した後、冷媒流量
制御弁32aを介して液管5に入る。液管5内の低圧二
相冷媒は、二方弁310eを通って室外熱交換器16に
流入する。ここで、低圧の二相冷媒は外気と熱交換を行
うことにより、低圧のガス冷媒となり、三方弁310
d、低圧ガス管4、アキュームレータ2を介して圧縮機
1の吸入側に戻る。
Next, the operation will be described. The operation of the heat pump system of the present invention will be described. It should be noted that only the bathroom drying alone operation, which is particularly effective, will be described here. (1) Bathroom dry operation alone The operation will be described with reference to FIG. The high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the gas pipe 3 and the bathroom drying heat exchanger 22 via the three-way valve 310c. Bathroom dry heat exchanger 22
In the above, the refrigerant gas becomes a high-pressure liquid refrigerant while heating the air by exchanging heat with the air in the bathroom, and flows out from the bathroom drying heat exchanger 22. The liquid refrigerant that has flowed out becomes a low-pressure two-phase refrigerant by passing through the refrigerant flow control valve 32c, and enters the liquid pipe 5. On the other hand, a part of the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 is supplied from the gas pipe 3 to the three-way valve 310a.
After entering the indoor heat exchanger 6 via the, and radiating heat, it enters the liquid pipe 5 via the refrigerant flow control valve 32a. The low-pressure two-phase refrigerant in the liquid pipe 5 flows into the outdoor heat exchanger 16 through the two-way valve 310e. Here, the low-pressure two-phase refrigerant becomes a low-pressure gas refrigerant by exchanging heat with the outside air, and the three-way valve 310
It returns to the suction side of the compressor 1 via d, the low pressure gas pipe 4, and the accumulator 2.

【0073】以上のように、本実施例では、追焚きユニ
ットと直列に浴室乾燥ユニットを接続し、浴室乾燥単独
運転を行う際、凝縮器となる浴室乾燥ユニットの熱交換
器容量が圧縮機の容量に比較してかなり小さい場合、圧
縮機の周波数を最低まで落としても、高圧側の冷媒圧力
が異常に上昇し、運転が不可能となる。そこで、室内熱
交換器側の三方弁を高圧ガス管側に切り換え、また外気
温によって室内熱交換器側の冷媒流量制御弁開度を変
え、即ち、外気温度が高い場合は冷媒流量制御弁開度を
大きくし、外気温度が低い場合は開度を小さくし、外気
温度により冷媒流量を調節して、冷媒温度と外気温度と
の差に基づく凝縮熱の逃がし量の相違が生じるのをなく
して、運転していない室内熱交換器に適正量の高圧冷媒
をバイパスすることによって凝縮熱の一部を室内熱交換
器に逃がし、高圧の異常な上昇を防止することができ
る。
As described above, in this embodiment, when the bathroom drying unit is connected in series with the reheating unit and the bathroom drying operation is performed independently, the heat exchanger capacity of the bathroom drying unit which becomes the condenser is equal to that of the compressor. When the capacity is considerably smaller than the capacity, even if the frequency of the compressor is lowered to the minimum, the refrigerant pressure on the high-pressure side rises abnormally and operation becomes impossible. Therefore, the three-way valve on the indoor heat exchanger side is switched to the high-pressure gas pipe side, and the refrigerant flow rate control valve opening on the indoor heat exchanger side is changed according to the outside air temperature, that is, when the outside air temperature is high, the refrigerant flow rate control valve is opened. Temperature, the opening is reduced when the outside air temperature is low, and the refrigerant flow rate is adjusted according to the outside air temperature to eliminate the difference in the amount of condensation heat escaped based on the difference between the refrigerant temperature and the outside air temperature. By bypassing an appropriate amount of high-pressure refrigerant to the indoor heat exchanger that is not operating, part of the heat of condensation is released to the indoor heat exchanger, and an abnormal increase in high pressure can be prevented.

【0074】なお、図27では、追焚きユニットと浴室
乾燥ユニットを直列に接続したが、並列に接続してもよ
い。また、本実施例では外気温度に基づいて冷媒流量制
御弁開度を変えているが、これは、室内熱交換器で冷媒
と熱交換する室内空気の温度が外気温度と対応するとみ
なせることによるものであり、室内熱交換器と熱交換す
る室内空気の温度を室内温度検出手段により測定して室
内温度により冷媒流量制御弁開度を変化させれば、より
正確な凝縮熱の逃がし量の制御が可能である。さらに図
27では、室内熱交換器6に高圧冷媒ガスをバイパスし
て凝縮熱の一部を逃がす例であるが、図27で6を室外
熱交換器、16を室内熱交換器として室外熱交換器6に
高圧冷媒ガスの凝縮熱の一部を逃がすいわゆる冷房排熱
利用乾燥運転としても同様の効果が得られる。
Although the reheating unit and the bathroom drying unit are connected in series in FIG. 27, they may be connected in parallel. Further, in this embodiment, the refrigerant flow rate control valve opening is changed based on the outside air temperature, but this is because it can be considered that the temperature of the indoor air that exchanges heat with the refrigerant in the indoor heat exchanger corresponds to the outside air temperature. Therefore, if the temperature of the indoor air that exchanges heat with the indoor heat exchanger is measured by the indoor temperature detecting means and the refrigerant flow control valve opening is changed according to the indoor temperature, a more accurate control of the escape amount of the condensation heat can be achieved. It is possible. Further, in FIG. 27, an example in which the high pressure refrigerant gas is bypassed to the indoor heat exchanger 6 to release a part of the condensation heat is shown. However, in FIG. 27, 6 is an outdoor heat exchanger and 16 is an indoor heat exchanger. The same effect can be obtained in a so-called cooling exhaust heat utilization drying operation in which part of the heat of condensation of the high-pressure refrigerant gas is released to the container 6.

【0075】上記外気温度に基づく制御に関するフロー
チャートを図28に示す。図28(a)において、S2
で外気温度検出手段で外気温度Toutを検出し、S3
でTout>設定外気温度Taの場合には、S4で室内
側冷媒流量制御弁開度を所定開度Vaとし、S3でTo
ut<設定外気温度Taの場合には、S5で室内側冷媒
流量制御弁開度を所定開度Vaより小さな所定開度Vb
と設定して、外気温度により冷媒流量を調整して凝縮熱
の逃がし量をほぼ一定としている。図28(b)では、
S2で外気温度Toutを検出して、S3で弁設定開度
をα×Tout(但しαは定数)としている。本制御方
法の方が図28(a)より外気温度を忠実に反映してよ
り正確な制御が可能となる。
FIG. 28 is a flowchart showing the control based on the outside air temperature. In FIG. 28A, S2
At S3, the outside temperature Tout is detected by the outside temperature detecting means.
If Tout> set outside air temperature Ta, the indoor refrigerant flow rate control valve opening is set to a predetermined opening Va in S4, and To in S3.
When ut <the set outside air temperature Ta, the indoor-side refrigerant flow control valve opening is set to a predetermined opening Vb smaller than the predetermined opening Va in S5.
Is set, and the flow rate of the refrigerant is adjusted according to the outside air temperature to keep the escape amount of the condensation heat substantially constant. In FIG. 28 (b),
The outside air temperature Tout is detected in S2, and the valve setting opening is set to α × Tout (where α is a constant) in S3. This control method enables more accurate control by faithfully reflecting the outside air temperature as compared with FIG.

【0076】実施例9.構成および冷媒の流れについて
は、実施例1、2等と同様なので省略する。本システム
において、給湯運転、追焚き運転、浴室乾燥運転を行う
場合、実施例1、2で示したように室外熱交換器を蒸発
器として運転するため、夏場など外気温が高い条件で、
通常の起動周波数で圧縮機を運転すると、冷媒の圧力が
圧力限界以上に上昇し、運転継続ができなくなる。そこ
で、給湯運転、追焚き運転、浴室乾燥運転のように、室
外熱交換器が蒸発器として運転するモードの場合、外気
温がある設定値よりも高い場合は、圧縮機の初期周波数
を下げて、起動することにより、冷媒の異常な圧力上昇
を防止することができる。なお、圧縮機及び圧縮機の回
転数を変える圧縮機用インバータ等で起動時間圧力調整
手段を構成する。また、以上の制御に関するフローチャ
ートを図29に示す。
Example 9. The configuration and the flow of the refrigerant are the same as those in the first and second embodiments, and the description thereof will be omitted. In this system, when hot water supply operation, reheating operation, and bathroom drying operation are performed, the outdoor heat exchanger is operated as an evaporator as shown in Examples 1 and 2, so that the outside temperature is high such as in summer.
When the compressor is operated at the normal starting frequency, the pressure of the refrigerant rises above the pressure limit and it becomes impossible to continue the operation. Therefore, in modes such as hot water supply operation, reheating operation, and bathroom drying operation in which the outdoor heat exchanger operates as an evaporator, if the outside air temperature is higher than a certain set value, lower the initial frequency of the compressor. By starting, it is possible to prevent an abnormal pressure rise of the refrigerant. The startup time pressure adjusting means is composed of a compressor and a compressor inverter that changes the rotation speed of the compressor. Further, FIG. 29 shows a flowchart regarding the above control.

【0077】実施例10.構成および冷媒の流れについ
ては、実施例1、2等と同様なので省略する。本システ
ムにおいて、給湯運転、追焚き運転、浴室乾燥運転を行
う場合、実施例1、2で示したように室外熱交換器を蒸
発器として運転するため、夏場など外気温が高い条件
で、通常のように全速で室外ファンを回転させると、冷
媒の蒸発圧力が圧縮機の許容低圧限界を越えてしまう。
そこで、給湯運転、追焚き運転、浴室乾燥運転のように
室外熱交換器が蒸発器として運転するモードの場合、外
気温がある設定値よりも高い場合は、運転開始時の初期
室外ファン回転数を下げることにより、立ち上げ時の蒸
発圧力の限界以上の上昇を防止することができる。な
お、室外熱交換器16、室外ファン21及び室外ファン
の回転数を変える室外ファン用インバータ等で起動時圧
力調整手段を構成する。また、以上の制御に関するフロ
ーチャートを図30に示す。図30では、S2で外気温
度検出手段により外気温度Toutを検出し、S3で、
Tout>設定外気温度Taの場合、初期の室外ファン
回転数を最小とし、S4で、Tout<設定外気温度T
aの場合、初期の室外ファン回転数を最大とする。
Example 10. The configuration and the flow of the refrigerant are the same as those in the first and second embodiments, and the description thereof will be omitted. In this system, when hot water supply operation, reheating operation, and bathroom drying operation are performed, since the outdoor heat exchanger is operated as an evaporator as shown in Examples 1 and 2, it is normally used under high ambient temperature conditions such as in summer. When the outdoor fan is rotated at full speed as described above, the evaporation pressure of the refrigerant exceeds the allowable low pressure limit of the compressor.
Therefore, in modes such as hot water supply operation, reheating operation, and bathroom drying operation in which the outdoor heat exchanger operates as an evaporator, if the outside air temperature is higher than a certain set value, the initial outdoor fan rotation speed at the start of operation. By lowering, it is possible to prevent the evaporation pressure at the time of startup from rising above the limit. The outdoor heat exchanger 16, the outdoor fan 21, and the outdoor fan inverter that changes the number of rotations of the outdoor fan constitute the startup pressure adjusting means. Further, a flow chart regarding the above control is shown in FIG. In FIG. 30, the outside air temperature Tout is detected by the outside air temperature detecting means in S2, and in S3,
When Tout> set outside air temperature Ta, the initial outdoor fan rotation speed is minimized, and in S4, Tout <set outside air temperature T
In the case of a, the initial outdoor fan rotation speed is maximized.

【0078】実施例11.構成および冷媒の流れについ
ては、実施例1、2と同様なので省略する。本システム
において、冷房運転を行っているときに追焚き運転指令
が来た場合、圧縮機が追焚き能力を十分確保できる周波
数以上で運転されている場合は、冷房排熱追焚き運転を
行い、室内の冷房と追焚き両運転が可能であり、また、
圧縮機が追焚き能力を十分確保できる周波数より低い周
波数で運転されている場合は追焚き運転を優先し、冷房
運転を停止して追焚き単独運転を行うことにより、追焚
き能力を確保するために周波数を上げることによる不具
合、即ち、追焚き能力を確保するために周波数を上げる
と、必要な冷房能力が小さい場合(たとえば、あまり暑
くない日の冷房など)必要以上の冷房能力がでたり、室
内熱交換器の温度が下がり過ぎて霜が付いたりという不
具合が発生するが、これらの不具合の発生を防止して十
分な追焚き能力を確保することができる。なお、以上の
制御に関するフローチャートを図31に示す。
Example 11. The configuration and the flow of the refrigerant are the same as those in the first and second embodiments, and will be omitted. In this system, if the reheating operation command comes during the cooling operation, if the compressor is operated at a frequency higher than the sufficient reheating capacity, the cooling heat exhaust heating operation is performed. Both indoor cooling and reheating can be performed, and also
In order to secure the reheating capacity by giving priority to the reheating operation when the compressor is operated at a frequency lower than the frequency that can sufficiently secure the reheating capacity, and by stopping the cooling operation and performing the additional heating operation. If the required cooling capacity is small (for example, cooling on a day that is not too hot), the cooling capacity may be unnecessarily high, if the frequency is increased to secure the reheating capacity. Although the temperature of the indoor heat exchanger drops too much and frost is generated, these problems can be prevented and a sufficient reheating capability can be secured. A flowchart relating to the above control is shown in FIG.

【0079】[0079]

【発明の効果】この発明に係るヒートポンプシステムは
給湯熱を利用し、追焚き運転ができるため、外気温に影
響されず、高効率で高速沸き上げすることができる。
Since the heat pump system according to the present invention can use the hot water supply heat to perform the additional heating operation, it is possible to perform high-speed and high-speed boiling without being affected by the outside air temperature.

【0080】さらにこの発明では冷媒システムの冷媒圧
力を検出して給湯熱交換器の熱交換量を調整するのでシ
ステム内の冷媒圧力の異常を防止することができる。
Further, according to the present invention, the refrigerant pressure of the refrigerant system is detected to adjust the heat exchange amount of the hot water supply heat exchanger, so that the abnormality of the refrigerant pressure in the system can be prevented.

【0081】さらに、この発明では、冷媒圧力を検出し
て、冷媒圧力に応じて、回転制御手段により給油ポンプ
の回転数を制御して、循環水量を変え、給湯熱交換器に
おける熱交換量を制御できるため、給湯熱利用追焚き運
転の際、高温の給湯水より採熱しても、システム内の冷
媒圧力が異常に上昇することを防止できる。
Further, according to the present invention, the refrigerant pressure is detected, and the rotation control means controls the number of revolutions of the oil supply pump according to the refrigerant pressure to change the circulating water amount to change the heat exchange amount in the hot water supply heat exchanger. Since it can be controlled, it is possible to prevent the refrigerant pressure in the system from rising abnormally even if heat is taken from the hot water for hot water supply during the hot water heating and reheating operation.

【0082】さらに、この発明では、冷媒の低圧を検出
して給湯循環水のバイパス路内の開閉弁を開くことで、
循環水を減らし、給湯熱交換器における熱交換量を制御
することができるため、給湯熱利用追焚き運転の際、高
温の給湯水より採熱しても、システム内の冷媒圧力が異
常に上昇することを防止できる。
Further, according to the present invention, by detecting the low pressure of the refrigerant and opening the on-off valve in the bypass passage for the hot water circulating water,
Since the amount of circulating water can be reduced and the amount of heat exchange in the hot water supply heat exchanger can be controlled, the refrigerant pressure in the system will rise abnormally even when heat is taken from the hot water for hot water supply during hot water reheating operation. Can be prevented.

【0083】また、この発明に係わるヒートポンプシス
テムは、給湯循環水のバイパス路内の流量制御弁の開度
を制御することで、循環水量を加減し、給湯熱交換器に
おける熱交換量を制御することができるため、給湯熱利
用追焚き運転の際、高温の給湯水より採熱しても、シス
テム内の冷媒圧力が異常に上昇することを防止できると
いう効果がある。
Further, in the heat pump system according to the present invention, by controlling the opening degree of the flow rate control valve in the bypass path of the hot water circulating water, the circulating water amount is adjusted and the heat exchange amount in the hot water heat exchanger is controlled. Therefore, there is an effect that the refrigerant pressure in the system can be prevented from rising abnormally even if heat is taken from the hot water for hot water supply during the hot water supply hot water reheating operation.

【0084】また、この発明に係わるヒートポンプシス
テムは、給湯運転、追焚き運転、乾燥運転など室外ユニ
ットを蒸発器とする運転モードにおいて、外気温度によ
って、起動時圧力調整手段により起動時の圧力を調整し
ているため、立ち上げ時の高圧上昇による異常停止を防
止することができる。
Further, in the heat pump system according to the present invention, in the operation mode in which the outdoor unit is the evaporator such as the hot water supply operation, the additional heating operation, and the drying operation, the startup pressure is adjusted by the startup pressure adjusting means according to the outside air temperature. Therefore, it is possible to prevent an abnormal stop due to a high voltage rise at startup.

【0085】また、この発明に係わるヒートポンプシス
テムは、給湯運転、追焚き運転、乾燥運転など室外ユニ
ットを蒸発器とする運転モードにおいて、外気温によっ
て運転開始時の初期圧縮機周波数を変えているため、立
ち上げ時の高圧上昇による異常停止を防止することがで
きる。
Further, in the heat pump system according to the present invention, the initial compressor frequency at the start of operation is changed according to the outside temperature in the operation mode in which the outdoor unit is the evaporator such as the hot water supply operation, the additional heating operation, and the drying operation. It is possible to prevent an abnormal stop due to a high voltage rise at startup.

【0086】また、この発明に係わるヒートポンプシス
テムは、給湯運転、追焚き運転、乾燥運転など室外ユニ
ットを蒸発器とする運転モードにおいて、外気温によっ
て運転開始時の初期室外ファン回転数を変えているた
め、立ち上げ時の高圧上昇による異常停止を防止するこ
とができる。
Further, in the heat pump system according to the present invention, in the operation mode in which the outdoor unit is the evaporator such as the hot water supply operation, the additional heating operation, and the drying operation, the initial outdoor fan rotation speed at the start of operation is changed according to the outside temperature. Therefore, it is possible to prevent an abnormal stop due to a high pressure rise at the time of startup.

【0087】また、この発明に係わるヒートポンプシス
テムは、給湯熱交換器のバイパス用開閉弁を開閉するこ
とで、給湯用熱交換器の長さを短くし、給湯用熱交換器
における熱交換量を制御することができるため、給湯熱
利用追焚き運転の際、高温の給湯水より採熱しても、シ
ステム内の冷媒圧力が異常に上昇することを防止できる
という効果がある。
Further, in the heat pump system according to the present invention, the length of the hot water supply heat exchanger is shortened by opening and closing the bypass opening / closing valve of the hot water supply heat exchanger, and the heat exchange amount in the hot water supply heat exchanger is reduced. Since it can be controlled, there is an effect that the refrigerant pressure in the system can be prevented from rising abnormally even if heat is taken from the hot water for hot water supply during the hot water supply hot water reheating operation.

【0088】また、この発明に係わるヒートポンプシス
テムは、追焚きユニットと追焚きユニットに接続された
浴室乾燥ユニットの浴室乾燥熱交換器を備え、浴室乾燥
運転に際し、圧縮機からの高圧冷媒ガスの一部を室内熱
交換器又は室外熱交換器にバイパスさせ凝縮熱の一部を
逃がしているので、圧縮機の容量が浴室乾燥熱交換器容
量より大きくても、高圧の異常な上昇が防止できる。
Further, the heat pump system according to the present invention comprises the reheating unit and the bathroom drying heat exchanger of the bathroom drying unit connected to the reheating unit, and when the bathroom drying operation is performed, one of high pressure refrigerant gas from the compressor is removed. Since the part is bypassed to the indoor heat exchanger or the outdoor heat exchanger to release part of the condensation heat, even if the capacity of the compressor is larger than the bathroom dry heat exchanger capacity, an abnormal rise in high pressure can be prevented.

【0089】また、この発明に係わるヒートポンプシス
テムは、追焚きユニットに浴室乾燥ユニットを接続し、
浴室乾燥単独運転を行う際、室内熱交換器側の開閉弁を
高圧ガス管側に切り換え、また外気温によって室内熱交
換器側の冷媒流量制御弁開度を変え、運転していない室
内熱交換器に適正量の高圧冷媒をバイパスすることによ
って凝縮熱の一部を室内熱交換器に逃がすため、圧縮機
の容量が浴室乾燥熱交換器容量より大きくても、高圧の
異常な上昇を防止することができる。
In the heat pump system according to the present invention, the bathroom drying unit is connected to the reheating unit,
When the bathroom drying is operated independently, the open / close valve on the indoor heat exchanger side is switched to the high pressure gas pipe side, and the refrigerant flow rate control valve opening on the indoor heat exchanger side is changed according to the outside air temperature, and the indoor heat exchange is not in operation. By bypassing an appropriate amount of high-pressure refrigerant to the compressor, part of the condensation heat is released to the indoor heat exchanger, preventing an abnormal rise in high pressure even if the compressor capacity is larger than the bathroom dry heat exchanger capacity. be able to.

【0090】[0090]

【0091】[0091]

【0092】[0092]

【0093】また、この発明に係わるヒートポンプシス
テムは、冷房運転を行っているときに追焚き運転指令が
来た場合、圧縮機が追焚き能力を十分確保できる周波数
以上で運転されている場合は、冷房排熱追焚き運転を行
い、圧縮機が追焚き能力を十分確保できる周波数より低
い周波数で運転されている場合は追焚き運転を優先し、
冷房運転を停止して追焚き単独運転を行うため、室内の
冷え過ぎや室内熱交換器の冷え過ぎによる着霜等の不具
合なしに、十分な追焚き能力を確保することができる。
Further, in the heat pump system according to the present invention, when the reheating operation command is received during the cooling operation, when the compressor is operated at a frequency higher than the sufficient reheating capacity, When performing the cooling exhaust heat reheating operation, if the compressor is operating at a frequency lower than the frequency that can sufficiently secure the reheating capacity, priority is given to the reheating operation,
Since the cooling operation is stopped and the additional heating operation is performed, it is possible to secure a sufficient additional heating capacity without causing a problem such as frost formation due to excessive cooling of the room or excessive cooling of the indoor heat exchanger.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例を示すヒートポンプシス
テムの構成図である。
FIG. 1 is a configuration diagram of a heat pump system showing an embodiment of the present invention.

【図2】 この発明の一実施例のヒートポンプシステム
において、暖房運転を示す系統図である。
FIG. 2 is a system diagram showing heating operation in the heat pump system according to the embodiment of the present invention.

【図3】 この発明の一実施例のヒートポンプシステム
において、冷房運転を示す系統図である。
FIG. 3 is a system diagram showing a cooling operation in the heat pump system according to the embodiment of the present invention.

【図4】 この発明の一実施例のヒートポンプシステム
において、給湯運転を示す系統図である。
FIG. 4 is a system diagram showing a hot water supply operation in the heat pump system according to the embodiment of the present invention.

【図5】 この発明の一実施例のヒートポンプシステム
において、追焚き運転を示す系統図である。
FIG. 5 is a system diagram showing a reheating operation in the heat pump system according to the embodiment of the present invention.

【図6】 この発明の一実施例のヒートポンプシステム
において、冷房排熱利用給湯運転を示す系統図である。
FIG. 6 is a system diagram showing a hot water supply operation using cooling waste heat in the heat pump system according to the embodiment of the present invention.

【図7】 この発明の一実施例のヒートポンプシステム
において、給湯熱利用追焚き運転を示す系統図である。
FIG. 7 is a system diagram showing a hot water supply-based additional heating operation in the heat pump system according to the embodiment of the present invention.

【図8】 この発明の一実施例のヒートポンプシステム
において、浴槽排熱利用給湯運転を示す系統図である。
FIG. 8 is a system diagram showing a hot water supply operation using bathtub waste heat in the heat pump system according to the embodiment of the present invention.

【図9】 この発明の一実施例の水温別による加熱能力
比較を示す図である。
FIG. 9 is a diagram showing a comparison of heating capacities according to water temperatures according to an embodiment of the present invention.

【図10】 この発明の一実施例の沸き上げ時間比較を
示す図である。
FIG. 10 is a diagram showing a comparison of boiling times according to an embodiment of the present invention.

【図11】 この発明の他の実施例を示すヒートポンプ
システムの構成図である。
FIG. 11 is a configuration diagram of a heat pump system showing another embodiment of the present invention.

【図12】 この発明の他の実施例のヒートポンプシス
テムにおいて、暖房運転を示す系統図である。
FIG. 12 is a system diagram showing a heating operation in the heat pump system according to another embodiment of the present invention.

【図13】 この発明の他の実施例のヒートポンプシス
テムにおいて、冷房運転を示す系統図である。
FIG. 13 is a system diagram showing a cooling operation in the heat pump system according to another embodiment of the present invention.

【図14】 この発明の他の実施例のヒートポンプシス
テムにおいて、給湯運転を示す系統図である。
FIG. 14 is a system diagram showing a hot water supply operation in the heat pump system according to another embodiment of the present invention.

【図15】 この発明の他の実施例のヒートポンプシス
テムにおいて、追焚き運転を示す系統図である。
FIG. 15 is a system diagram showing a reheating operation in a heat pump system according to another embodiment of the present invention.

【図16】 この発明の他の実施例のヒートポンプシス
テムにおいて、冷房排熱利用給湯運転を示す系統図であ
る。
FIG. 16 is a system diagram showing a hot water supply operation using cooling waste heat in the heat pump system according to another embodiment of the present invention.

【図17】 この発明の他の実施例のヒートポンプシス
テムにおいて、給湯熱利用追焚き運転を示す系統図であ
る。
FIG. 17 is a system diagram showing an additional heating operation using hot water supply heat in a heat pump system according to another embodiment of the present invention.

【図18】 この発明の他の実施例のヒートポンプシス
テムにおいて、浴槽排熱利用給湯運転を示す系統図であ
る。
FIG. 18 is a system diagram showing hot water supply operation using bathtub waste heat in a heat pump system according to another embodiment of the present invention.

【図19】 この発明の他の実施例を示すヒートポンプ
システムにおいて、給湯熱利用追焚き運転を示す系統図
である。
FIG. 19 is a system diagram showing a hot water supply-based additional heating operation in a heat pump system according to another embodiment of the present invention.

【図20】 この発明の他の実施例を示すヒートポンプ
システムにおいて、給湯熱利用追焚き運転を示す系統図
である。
FIG. 20 is a system diagram showing a hot water supply-based additional heating operation in a heat pump system according to another embodiment of the present invention.

【図21】 この発明の他の実施例の制御フローチャー
トである。
FIG. 21 is a control flowchart of another embodiment of the present invention.

【図22】 この発明の他の実施例を示すヒートポンプ
システムにおいて、給湯熱利用追焚き運転を示す系統図
である。
FIG. 22 is a system diagram showing an additional heating operation using hot water supply heat in a heat pump system according to another embodiment of the present invention.

【図23】 この発明の他の実施例を示すヒートポンプ
システムにおいて、給湯熱利用追焚き運転を示す系統図
である。
FIG. 23 is a system diagram showing a hot water supply-based additional heating operation in a heat pump system according to another embodiment of the present invention.

【図24】 この発明の他の実施例の給湯熱利用追焚き
運転における給湯熱交換器長さと圧力の関係を示す図で
ある。
FIG. 24 is a diagram showing a relationship between hot water supply heat exchanger length and pressure in a hot water supply heat-addition operation of another embodiment of the present invention.

【図25】 この発明の他の実施例を示すヒートポンプ
システムにおいて、給湯運転を示す系統図である。
FIG. 25 is a system diagram showing a hot water supply operation in a heat pump system according to another embodiment of the present invention.

【図26】 この発明の他の実施例を示すヒートポンプ
システムにおいて、追焚き運転を示す系統図である。
FIG. 26 is a system diagram showing a reheating operation in a heat pump system according to another embodiment of the present invention.

【図27】 この発明の他の実施例を示すヒートポンプ
システムにおいて、浴室乾燥運転を示す系統図である。
FIG. 27 is a system diagram showing a bathroom drying operation in a heat pump system according to another embodiment of the present invention.

【図28】 この発明の他の実施例を示すヒートポンプ
システムにおいて、浴室乾燥運転時の制御フローチャー
トである。
FIG. 28 is a control flowchart in a bathroom drying operation in the heat pump system according to another embodiment of the present invention.

【図29】 この発明の他の実施例を示すヒートポンプ
システムにおいて、給湯運転または追焚き運転または浴
室乾燥運転時の圧縮機起動制御のフローチャートであ
る。
FIG. 29 is a flow chart of compressor startup control during hot water supply operation, additional heating operation, or bathroom drying operation in the heat pump system according to another embodiment of the present invention.

【図30】 この発明の他の実施例を示すヒートポンプ
システムにおいて、給湯運転または追焚き運転または浴
室乾燥運転時の室外ファン制御のフローチャートであ
る。
FIG. 30 is a flowchart of outdoor fan control during hot water supply operation, additional heating operation, or bathroom drying operation in the heat pump system according to another embodiment of the present invention.

【図31】 この発明の他の実施例を示すヒートポンプ
システムにおいて、冷房追焚き同時運転時の制御フロー
チャートである。
FIG. 31 is a control flow chart at the time of simultaneous cooling and heating operation in the heat pump system according to another embodiment of the present invention.

【図32】 従来のヒートポンプシステムにおいて追焚
き運転を示す系統図である。
FIG. 32 is a system diagram showing an additional heating operation in a conventional heat pump system.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 アキュームレータ、3 高圧ガス管、
4 低圧ガス管、5液管、6 室内熱交換器、7 給湯
ユニット、8 給湯熱交換器、9 給湯ポンプ、10
貯湯槽、11 加熱用ヒータ、12 追焚きユニット、
13 追焚き熱交換器、14 追焚きポンプ、15 浴
槽、16 室外熱交換器、17 給湯熱交換器の出口側
水配管、18 給湯熱交換器の入口側水配管、19 出
湯配管、20 給水配管、21 室外ファン、22 浴
室乾燥熱交換器、23 浴室乾燥ユニット、31a 二
方弁、31b 二方弁、31c 二方弁、31d 二方
弁、31e 二方弁、31f 二方弁、31g 二方
弁、31h 二方弁、32a 冷媒流量制御弁、32b
冷媒流量制御弁、32c 冷媒流量制御弁、40給湯
ポンプ用インバータ、41 循環水バイパス路の絞り装
置、42 循環水バイパス路内の二方弁、43 循環水
バイパス路の流量制御弁、44a,44b給湯用熱交換
器のバイパス用の二方弁、45 圧力検出手段、50
低圧検知手段、310a 三方弁、310b 三方弁、
310c 三方弁、310d 三方弁、310e 三方
弁、330 逆止弁。
1 compressor, 2 accumulator, 3 high pressure gas pipe,
4 low-pressure gas pipe, 5 liquid pipe, 6 indoor heat exchanger, 7 hot water supply unit, 8 hot water heat exchanger, 9 hot water pump, 10
Hot water storage tank, 11 heating heater, 12 reheating unit,
13 reheating heat exchanger, 14 reheating pump, 15 bathtub, 16 outdoor heat exchanger, 17 hot water heat exchanger outlet side water piping, 18 hot water heat exchanger inlet side water piping, 19 hot water piping, 20 water supply piping , 21 outdoor fan, 22 bathroom dry heat exchanger, 23 bathroom drying unit, 31a two-way valve, 31b two-way valve, 31c two-way valve, 31d two-way valve, 31e two-way valve, 31f two-way valve, 31g two-way Valve, 31h two-way valve, 32a refrigerant flow control valve, 32b
Refrigerant flow control valve, 32c Refrigerant flow control valve, 40 Hot water supply pump inverter, 41 Circulating water bypass passage throttle device, 42 Two-way valve in circulating water bypass passage, 43 Circulating water bypass passage flow control valve, 44a, 44b Two-way valve for bypassing heat exchanger for hot water supply, 45 pressure detection means, 50
Low pressure detection means, 310a three-way valve, 310b three-way valve,
310c three-way valve, 310d three-way valve, 310e three-way valve, 330 check valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 哲治 静岡市小鹿三丁目18番1号 三菱電機株 式会社 住環境エンジニアリング統括セ ンター内 (72)発明者 谷村 佳昭 静岡市小鹿三丁目18番1号 三菱電機株 式会社 住環境エンジニアリング統括セ ンター内 (72)発明者 飯島 等 静岡市小鹿三丁目18番1号 三菱電機株 式会社 住環境エンジニアリング統括セ ンター内 (56)参考文献 特開 昭61−149771(JP,A) 特開 昭50−15149(JP,A) 特開 平2−85656(JP,A) 特開 平1−212872(JP,A) 特開 平4−332352(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 29/00 361 F25B 29/00 371 F25B 13/00 104 F25B 27/00 F24D 17/02 F24H 1/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuji Okada 3-18-1, Ogashi, Shizuoka City Mitsubishi Electric Co., Ltd. Living Environment Engineering Coordination Center (72) Inventor Yoshiaki Tanimura 3-18-1 Oga, Shizuoka No. Mitsubishi Electric Co., Ltd. Living Environment Engineering Control Center (72) Inventor Iijima, et al. 3-18-1, Oga, Shizuoka City Mitsubishi Electric Co., Ltd. Living Environment Engineering Control Center (56) Reference JP-A-61 -149771 (JP, A) JP 50-15149 (JP, A) JP 2-85656 (JP, A) JP 1-212872 (JP, A) JP 4-332352 (JP, A) ) (58) Fields surveyed (Int.Cl. 7 , DB name) F25B 29/00 361 F25B 29/00 371 F25B 13/00 104 F25B 27/00 F24D 17/02 F24H 1/00

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機と室内熱交換器をガス管で接続
し、前記室内熱交換器と室外熱交換器を流量制御弁を介
して液管で接続し、前記室外熱交換器と前記圧縮機を低
圧ガス管で接続して冷媒を循環させる冷凍サイクルを成
し、少なくとも冷暖房のいずれかが運転可能なヒートポ
ンプシステムにおいて、前記圧縮機より吐出された冷媒
と熱交換して浴槽への循環水を加熱する、追焚きユニッ
トに設けられ一端が前記ガス管に接続され他端が前記液
管に接続された追焚き熱交換器と、前記追焚き熱交換器
前記液管を介して接続されると共に他端が前記低圧ガ
ス管に接続され、前記冷媒と給湯ユニット内に設けられ
貯湯槽に貯えられ給湯ポンプで循環する高温水とを熱交
換させる給湯熱交換器と、を備え、前記圧縮機から吐出
した冷媒が前記追焚き熱交換器で凝縮して液冷媒とな
り、その後前記給湯熱交換器で蒸発してガス冷媒となっ
て前記圧縮機へ循環することにより、前記貯湯槽に貯え
られた高温水の熱を利用して、追焚き運転を行うことを
特徴とするヒートポンプシステム。
1. A compressor and an indoor heat exchanger are connected by a gas pipe.
The indoor heat exchanger and the outdoor heat exchanger through a flow control valve.
And connect it with a liquid pipe to lower the outdoor heat exchanger and the compressor.
A refrigeration cycle in which a refrigerant is circulated by connecting with a pressure gas pipe
And, in any possible operating a heat pump system of at least heating and cooling, to heat the circulating water to the tub with refrigerant exchanges heat discharged from the compressor, connected to the gas pipe one end provided additional heating unit The other end is the liquid
A reheating heat exchanger connected to the pipe, the reheating heat exchanger being connected to the reheating heat exchanger via the liquid pipe, and the other end being the low pressure gas
A hot water supply heat exchanger that is connected to the cooling water pipe and that exchanges heat between the refrigerant and high temperature water stored in a hot water storage tank and circulated by a hot water supply pump, and is discharged from the compressor.
The condensed refrigerant is condensed in the reheating heat exchanger to become a liquid refrigerant.
After that, it evaporates into a gas refrigerant in the hot water heat exchanger.
The heat pump system is characterized in that the reheating operation is performed by utilizing the heat of the high temperature water stored in the hot water storage tank by circulating the hot water to the compressor .
【請求項2】 冷媒を循環させる冷媒システム内の冷媒
の圧力を検出する圧力検出手段と、給湯熱交換器の熱交
換量を調整して追焚き運転時の冷媒圧力を下げる熱交換
量調整手段と、を備えたことを特徴とする請求項1記載
のヒートポンプシステム。
2. A pressure detecting means for detecting the pressure of the refrigerant in the refrigerant system for circulating the refrigerant, and a heat exchange amount adjusting means for adjusting the heat exchange amount of the hot water supply heat exchanger to reduce the refrigerant pressure during the reheating operation. The heat pump system according to claim 1, further comprising:
【請求項3】 給湯ユニット内の給湯ポンプに冷媒の圧
力を検知して回転数を制御する回転数制御手段を配設
し、水の循環量を可変することで給湯熱交換器での熱交
換量を制御することを特徴とする請求項2記載のヒート
ポンプシステム。
3. A hot water supply pump in the hot water supply unit is provided with a rotation speed control means for detecting the pressure of the refrigerant to control the rotation speed, and by varying the circulating amount of water, heat exchange in the hot water supply heat exchanger. The heat pump system according to claim 2, wherein the amount is controlled.
【請求項4】 給湯ユニット内において、給湯熱交換器
の入口側水配管と出口側水配管の間に、開閉弁を介した
バイパス路を設け、冷媒の圧力を検知して給湯熱交換器
での熱交換量が多すぎる場合は、水をバイパスして熱交
換量を制御することを特徴とする請求項2記載のヒート
ポンプシステム。
4. In the hot water supply unit, a bypass passage through an on-off valve is provided between an inlet side water pipe and an outlet side water pipe of the hot water heat exchanger so that the pressure of the refrigerant is detected and the hot water heat exchanger is used. The heat pump system according to claim 2, wherein, when the amount of heat exchange is excessive, the amount of heat exchange is controlled by bypassing water.
【請求項5】 給湯ユニット内において、給湯熱交換器
の入口側水配管と出口側水配管の間に、水流量制御弁を
介したバイパス路を設け、冷媒の圧力を検知して給湯熱
交換器での熱交換量が多すぎる場合は、適量の水をバイ
パスして熱交換量を制御することを特徴とする請求項2
記載のヒートポンプシステム。
5. In the hot water supply unit, a bypass passage via a water flow rate control valve is provided between an inlet side water pipe and an outlet side water pipe of the hot water heat exchanger to detect the pressure of the refrigerant and perform hot water heat exchange. 3. When the amount of heat exchange in the vessel is too large, a proper amount of water is bypassed to control the amount of heat exchange.
The heat pump system described.
【請求項6】 外気温度検出手段と起動時圧力調整手段
とを備え、給湯運転、追焚き運転の少なくとも一つを行
い、その際、前記室外熱交換器を蒸発器とし、かつ、前
記外気温度検出手段による検出温度によって、前記起動
時圧力調整手段により、起動時の圧力を調整することを
特徴とする請求項1記載のヒートポンプシステム。
6. An outside air temperature detecting means and a starting pressure adjusting means.
And has at least one of hot water supply operation and reheating operation.
There, according to claim 1 that time, the evaporator the outdoor heat exchanger, and that the temperature detected by said outside air temperature detecting means, by the startup pressure adjusting means, and adjusting the pressure during startup The heat pump system described .
【請求項7】 外気温度により、運転開始時の圧縮機の
周波数を変えて、起動時の圧力調整を行うことを特徴と
する請求項記載のヒートポンプシステム。
7. The heat pump system according to claim 6 , wherein the frequency of the compressor at the start of operation is changed according to the outside air temperature to adjust the pressure at the start.
【請求項8】 外気温度により、運転開始時の室外熱交
換器の室外ファン回転数を変え、起動時の圧力調整を行
うことを特徴とする請求項記載のヒートポンプシステ
ム。
8. The heat pump system according to claim 6 , wherein the number of rotations of the outdoor fan of the outdoor heat exchanger at the start of operation is changed according to the outside air temperature to adjust the pressure at the start.
【請求項9】 圧縮機と室内熱交換器をガス管で接続
し、前記室内熱交換器と室外熱交換器を流量制御弁を介
して液管で接続し、前記室外熱交換器と前記圧縮機を低
圧ガス管で接続して冷媒を循環させる冷凍サイクルを成
し、少なくとも冷暖房のいずれかが運転可能なヒートポ
ンプシステムにおいて、前記圧縮機より吐出された冷媒
と熱交換して浴槽への循環水を加熱する、追焚きユニッ
トに設けられ一端が前記ガス管に接続され他端が前記液
管に接続された追焚き熱交換器と、前記追焚き熱交換器
に前記液管を介して接続されると共に他端が前記低圧ガ
ス管に接続され、前記冷媒と給湯ユニット内に設けられ
貯湯槽に貯えられ給湯ポンプで循環する高温水とを熱交
換させる給湯熱交換器と、前記冷媒を循環させる冷媒シ
ステム内の冷媒の圧力を検出する圧力検出手段と、を備
え、前記給湯熱交換器を分割し、短い方の給湯熱交換器
の長さを、長い方の給湯熱交換器の1/5以下にし、短
い方の給湯熱交換器を液管側に配置し、長い方の給湯熱
交換器をガス管側に配置し、また短い方の給湯熱交換器
の出口側冷媒配管を二方弁を介して長い方の給湯熱交換
器の入口側冷媒配管および出口側冷媒配管にそれぞれ接
続し、前記圧力検出手段により冷媒の圧力を検知して給
湯熱交換器での熱交換量が多すぎる場合は、開閉弁の開
閉により給湯熱交換器の全長を短くして熱交換量を制御
することを特徴とするヒートポンプシステム。
9. A compressor and an indoor heat exchanger are connected by a gas pipe.
The indoor heat exchanger and the outdoor heat exchanger through a flow control valve.
And connect it with a liquid pipe to lower the outdoor heat exchanger and the compressor.
A refrigeration cycle in which a refrigerant is circulated by connecting with a pressure gas pipe
However, at least one of the heating and cooling
Pump system, the refrigerant discharged from the compressor
To heat the circulating water to the bath by exchanging heat with
On one side and one end connected to the gas pipe and the other end connected to the liquid
A reheating heat exchanger connected to a pipe, and the reheating heat exchanger
To the low-pressure gas
Installed in the hot water supply unit with the refrigerant
Heat exchange with high-temperature water stored in a hot water storage tank and circulated by a hot water supply pump
A hot water heat exchanger to be exchanged and a refrigerant system to circulate the refrigerant.
Pressure detection means for detecting the pressure of the refrigerant in the stem.
The hot water supply heat exchanger is divided so that the length of the shorter hot water supply heat exchanger is 1/5 or less of that of the longer hot water supply heat exchanger, and the shorter hot water supply heat exchanger is arranged on the liquid pipe side. However, the longer hot water supply heat exchanger is arranged on the gas pipe side, and the outlet side refrigerant pipe of the shorter hot water supply heat exchanger is connected to the inlet side refrigerant pipe of the longer hot water supply heat exchanger through the two-way valve. If the amount of heat exchange in the hot water heat exchanger is too large by detecting the pressure of the refrigerant by connecting to the outlet side refrigerant pipes and detecting the pressure of the refrigerant, shorten the total length of the hot water heat exchanger by opening and closing the on-off valve. A heat pump system characterized by controlling the amount of heat exchange.
【請求項10】 圧縮機と室内熱交換器をガス管で接続
し、前記室内熱交換 器と室外熱交換器を流量制御弁を介
して液管で接続し、前記室外熱交換器と前記圧縮機を低
圧ガス管で接続して冷媒を循環させる冷凍サイクルを成
し、少なくとも冷暖房のいずれかが運転可能なヒートポ
ンプシステムにおいて、前記圧縮機より吐出された冷媒
と熱交換して浴槽への循環水を加熱する追焚きユニット
に設けられ一端が前記ガス管に接続され他端が前記液管
に接続された追焚き熱交換器と、前記追焚きユニットに
前記ガス管を介して接続された浴室乾燥ユニットの浴室
乾燥熱交換器とを備え、前記室内熱交換器又は室外熱交
換器に圧縮機からの高圧冷媒ガスの一部をバイパスさ
せ、浴室乾燥運転を行うことを特徴とするヒートポンプ
システム。
10. A compressor and an indoor heat exchanger are connected by a gas pipe.
The indoor heat exchanger and the outdoor heat exchanger through a flow control valve.
And connect it with a liquid pipe to lower the outdoor heat exchanger and the compressor.
A refrigeration cycle in which a refrigerant is circulated by connecting with a pressure gas pipe
And, in any possible operating a heat pump system of at least heating and cooling, one end provided reheating unit and refrigerant exchanges heat discharged from the compressor to heat the circulating water to the tub is connected to the gas pipe The other end is the liquid pipe
To the additional heating unit and the additional heating heat exchanger connected to the
A bathroom drying heat exchanger of a bathroom drying unit connected via the gas pipe , wherein the indoor heat exchanger or the outdoor heat exchanger is allowed to bypass a part of the high-pressure refrigerant gas from the compressor to perform a bathroom drying operation. A heat pump system characterized by performing.
【請求項11】 外気温度検出手段を備え、前記外気温
度検出手段の検出外気温度によって、室内熱交換器側の
前記流量制御弁の開度を変え、室内熱交換器に圧縮機か
らの高圧冷媒ガスをバイパスすることを特徴とする請求
項10記載のヒートポンプシステム。
11. An indoor heat exchanger is provided with an outside air temperature detecting means, and the outside air temperature is detected by the outside air temperature detecting means.
The heat pump system according to claim 10, wherein the opening degree of the flow control valve is changed to bypass the high pressure refrigerant gas from the compressor to the indoor heat exchanger.
【請求項12】 圧縮機と室内熱交換器をガス管で接続
し、前記室内熱交換器と室外熱交換器を流量制御弁を介
して液管で接続し、前記室外熱交換器と前記圧縮機を低
圧ガス管で接続して冷媒を循環させる冷凍サイクルを成
し、少なくとも冷暖房のいずれかが運転可能なヒートポ
ンプシステムにおいて、前記圧縮機より吐出された冷媒
と熱交換して浴槽への循環水を加熱する、追焚きユニッ
トに設けられ一端が前記ガス管に接続され他端が前記液
管に接続された追焚き熱交換器を備え、冷房運転を行っ
ているときに追焚き運転指令が来た場合、圧縮機が追焚
き能力を十分確保できる周波数以上で運転されている場
合は、冷房排熱追焚き運転を行い、圧縮機が追焚き能力
を十分確保できる周波数以下で運転されている場合は追
焚き運転を優先し、冷房運転を停止して追焚き単独運転
を行うことを特徴とするヒートポンプシステム。
12. The compressor and the indoor heat exchanger are connected by a gas pipe.
The indoor heat exchanger and the outdoor heat exchanger through a flow control valve.
And connect it with a liquid pipe to lower the outdoor heat exchanger and the compressor.
A refrigeration cycle in which a refrigerant is circulated by connecting with a pressure gas pipe
And, in any possible operating a heat pump system of at least heating and cooling, to heat the circulating water to the tub with refrigerant exchanges heat discharged from the compressor, connected to the gas pipe one end provided additional heating unit The other end is the liquid
With a reheating heat exchanger connected to the pipe, if a reheating operation command is received while performing cooling operation, if the compressor is operating at a frequency that is sufficient or higher to ensure the reheating capacity, The cooling exhaust heat reheating operation is performed, and if the compressor is operating at a frequency below the sufficient reheating capacity, priority is given to the reheating operation, and the cooling operation is stopped and the additional heating operation is performed. And heat pump system.
JP14791394A 1993-06-30 1994-06-29 Heat pump system Expired - Lifetime JP3430639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14791394A JP3430639B2 (en) 1993-06-30 1994-06-29 Heat pump system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16280193 1993-06-30
JP5-162801 1993-06-30
JP14791394A JP3430639B2 (en) 1993-06-30 1994-06-29 Heat pump system

Publications (2)

Publication Number Publication Date
JPH0771839A JPH0771839A (en) 1995-03-17
JP3430639B2 true JP3430639B2 (en) 2003-07-28

Family

ID=26478307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14791394A Expired - Lifetime JP3430639B2 (en) 1993-06-30 1994-06-29 Heat pump system

Country Status (1)

Country Link
JP (1) JP3430639B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508375B2 (en) * 2000-08-08 2010-07-21 三洋電機株式会社 Operation method of heat pump type hot water supply apparatus and heat pump type hot water supply apparatus
JP2007051835A (en) * 2005-08-19 2007-03-01 Sanki Eng Co Ltd Waste heat using system
JP2010007880A (en) * 2008-06-24 2010-01-14 Csc:Kk Air conditioning device, and warm water and cold water supply system utilizing the same
KR101147268B1 (en) * 2010-08-09 2012-05-18 주식회사 삼영 Heat pump system for heating/cooling and providing hot water and Control method thereof
CN104729148B (en) * 2015-03-30 2016-11-23 湖南森铭新能源科技有限公司 Double stage heat pump heating method and the installation method of dual stage heat driven heat pump air conditioning system
WO2017203655A1 (en) 2016-05-26 2017-11-30 三菱電機株式会社 Heat pump type air conditioning and hot water supplying device
CN114183880B (en) * 2021-12-22 2023-04-28 宁波奥克斯电气股份有限公司 Mildew-proof control method and air conditioner
JPWO2023139700A1 (en) * 2022-01-19 2023-07-27

Also Published As

Publication number Publication date
JPH0771839A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
CA2745109A1 (en) Heat pump/air conditioning apparatus with sequential operation
JP3430639B2 (en) Heat pump system
JPS6155018B2 (en)
JPH0432669A (en) Heat pump system controlling method therefor
JP2004044948A (en) Air conditioner
JPH01118080A (en) Heat pump type air conditioner
JP3284905B2 (en) Heat pump system
JP3888790B2 (en) Water heater
JP4303864B2 (en) Engine-driven heat pump air conditioner with water heater
JP4097405B2 (en) Engine cooling method and apparatus and refrigeration apparatus
JP3746471B2 (en) Engine-driven heat pump type air conditioner equipped with hot water supply / heating unit and operation control method thereof
JPH0539963A (en) Cooling and heating device
JP2001296055A (en) Hot water storage type hot water heater source device
WO2023190233A1 (en) Heat pump device
JP2822769B2 (en) Heat pump system
JP3448682B2 (en) Absorption type cold heat generator
JP7435671B1 (en) Refrigeration equipment
JP2737543B2 (en) Heat pump water heater
JP7221541B2 (en) outside air conditioner
KR102291575B1 (en) Air-Conditioning System and Control Method thereof
JP2691423B2 (en) Engine driven heat pump air conditioner
JPS5922437Y2 (en) Air conditioning/heating water heater
JPH0510191Y2 (en)
JP2005016882A (en) Air conditioning system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 11

EXPY Cancellation because of completion of term