[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3426425B2 - Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same - Google Patents

Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same

Info

Publication number
JP3426425B2
JP3426425B2 JP25879995A JP25879995A JP3426425B2 JP 3426425 B2 JP3426425 B2 JP 3426425B2 JP 25879995 A JP25879995 A JP 25879995A JP 25879995 A JP25879995 A JP 25879995A JP 3426425 B2 JP3426425 B2 JP 3426425B2
Authority
JP
Japan
Prior art keywords
less
rolling
slab
steel
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25879995A
Other languages
Japanese (ja)
Other versions
JPH09104944A (en
Inventor
広一 山本
卓 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25879995A priority Critical patent/JP3426425B2/en
Publication of JPH09104944A publication Critical patent/JPH09104944A/en
Application granted granted Critical
Publication of JP3426425B2 publication Critical patent/JP3426425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、建造物の構造部材
として用いられる耐火性と靭性に優れた圧延形鋼用鋳片
とそれを素材とした制御圧延による圧延形鋼の製造方法
に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cast slab for rolled shape steel having excellent fire resistance and toughness which is used as a structural member of a building, and a method for producing rolled shape steel by controlled rolling using the slab. Is.

【0002】[0002]

【従来の技術】建築物の超高層化、建築設計技術の高度
化などから耐火設計の見直しが建設省総合プロジェクト
により行われ、昭和62年3月に「新耐火設計法」が制
定された。この規定により、旧法令による火災時に鋼材
の温度を350℃以下にするように耐火被覆するとした
制限が解除され、鋼材の高温強度と建築物の実荷重との
かねあいにより、それに適合する耐火被覆方法を決定で
きるようになった。即ち600℃での設計高温強度を確
保できる場合はそれに見合い耐火被覆を削減できるよう
になった。
2. Description of the Related Art The fire resistant design was reviewed by a Ministry of Construction comprehensive project due to the super-rise of buildings and the sophistication of building design technology, and the "New Fire Resistant Design Law" was enacted in March 1987. Under this regulation, the restriction of fireproof coating to keep the temperature of steel materials to 350 ° C or less at the time of fire under the old law was lifted, and due to the balance between high-temperature strength of steel materials and actual load of buildings, a fireproof coating method suitable for it You can now decide. That is, when the designed high temperature strength at 600 ° C. can be secured, the fireproof coating can be reduced accordingly.

【0003】このような動向に対応し、先に特開平2−
77523号公報の耐火性の優れた建築用低降伏比鋼お
よび鋼材並びにその製造方法が提案されている。この先
願発明の要旨は600℃での降伏点が常温時の2/3以
上となるようにMo、Nbを添加し高温強度を向上させ
たものである。鋼材の設計高温強度を600℃に設定し
たのは、合金元素による鋼材費の増加分と従来鋼材を耐
火被覆する施工費との兼ね合いから最も経済的であると
いう知見に基づいたものである。
In response to such a trend, Japanese Patent Laid-Open No. 2-
Japanese Patent No. 77523 discloses a low yield ratio steel for construction having excellent fire resistance, a steel material, and a manufacturing method thereof. The gist of the invention of this prior application is to improve the high temperature strength by adding Mo and Nb so that the yield point at 600 ° C. becomes 2/3 or more of that at room temperature. The reason why the design high temperature strength of the steel material is set to 600 ° C. is based on the finding that it is the most economical in view of the balance between the increase of the steel material cost due to the alloying element and the construction cost of the conventional steel material for fireproof coating.

【0004】また、従来は鋼のAl脱酸は溶製過程の初
期段階でAl添加され、溶鋼の脱酸と生成したAl2
3 を浮上分離し高清浄化することを目的にしていた。即
ち、如何に溶鋼の酸素濃度を下げ、鋼中の粗大な一次脱
酸酸化物個数を減らすかに主題がおかれていた。
Further, in the past, Al deoxidation of steel was performed by adding Al in the initial stage of the melting process to deoxidize molten steel and form Al 2 O.
The purpose was to float and separate 3 to make it highly clean. That is, the theme was how to reduce the oxygen concentration of the molten steel and reduce the number of coarse primary deoxidized oxides in the steel.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は前述の先
願技術によって製造された鋼材を各種の形鋼、特に複雑
な形状から厳しい圧延造形上の制約を有するH形鋼の素
材に適用することを試みた結果、ウエブ、フランジ、フ
ィレットの各部位での圧延仕上げ温度、圧下率、冷却速
度に差が生じることから、部位により組織、特にベイナ
イト組織割合が著しく異なり、常温・高温強度、延性、
靭性がばらつき、溶接構造用圧延鋼材(JISG3106) 等の
規準に満たない部位が生じた。また、粒内フェライトの
生成による組織微細化では、フェライトの組織割合が比
較的高い成分では効果的であるが、ベイナイトの割合が
高くなると組織の微細化が困難となる欠点があった。
The inventors of the present invention applied the steel materials manufactured by the above-mentioned prior art to various shaped steels, particularly H-shaped steels having complicated restrictions due to severe rolling shaping. As a result of attempting to do so, there is a difference in the rolling finish temperature, the rolling reduction, and the cooling rate in each part of the web, the flange, and the fillet, so that the structure, particularly the bainite structure ratio remarkably differs depending on the part, and the room temperature / high temperature strength, Ductility,
Due to variations in toughness, some parts such as rolled steel for welded structures (JIS G3106) did not meet the criteria. Further, in the refinement of the structure due to the formation of intragranular ferrite, it is effective in the component having a relatively high proportion of the structure of ferrite, but there is a defect that the refinement of the structure becomes difficult when the proportion of bainite is high.

【0006】上記の課題を解決するためには、圧延時の
加熱温度1200〜1300℃でもγ粒径をASTM
No.で6番以上に細粒化できれば、ベイナイト組織割合
が高くても組織微細化が可能となる。したがって、この
高温加熱時のγ細粒化法の開発が課題となる。この目的
を達成するには高温で分解せず安定に存在する、微細な
析出物を分散させ、これにより成長するγ粒界をピンニ
ングし、γ粒成長を抑制し細粒化する方法が考えられ
る。本発明はこの析出物としてMg系酸化物が効果的で
あることを見出しこれらを微細晶出・析出させた鋼を開
発することを指向した。
In order to solve the above-mentioned problems, the γ grain size is set to ASTM even at a heating temperature of 1200 to 1300 ° C. during rolling.
If the grain size can be made finer than No. 6, it is possible to refine the structure even if the bainite structure ratio is high. Therefore, the development of the γ-fine graining method at the time of heating at high temperature is an issue. In order to achieve this purpose, it is possible to disperse fine precipitates that do not decompose at high temperatures and disperse, pin the growing γ grain boundaries, and suppress γ grain growth to reduce the grain size. . The present invention has found that Mg-based oxides are effective as the precipitates, and aimed to develop a steel in which these are finely crystallized and precipitated.

【0007】加えて、従来の耐火鋼では600℃におけ
る高温強度を保証していたが、本発明では、建築物の耐
火被覆の非被覆化の適用範囲を広げることを目的とし
て、より高温(700℃)での高温強度を保証できる耐
火鋼を開発することが課題である。本発明は従来の発想
とは異なり、製鋼過程における脱酸材の選択、その添加
順序及び凝固過程の冷却制御により酸化物の組成とサイ
ズ、分散密度を制御し、生成させた酸化物を異相析出の
優先析出サイトとし活用する点にある。本願出願人は先
に特願平6−11705号で、前記酸化物を粒内フェラ
イト変態核として機能させ、粒内フェライトの生成によ
り組織を微細し、H形鋼の部位間の材質特性の均質化と
高靭性化を達成する発明を提案した。本発明はこれとは
異なり、高温安定性の高い微細なMg系酸化物(主とし
てMgO)を高密度分散させ、これらの析出物を圧延加
熱時の1200〜1300℃でのγ粒の粒成長を抑制す
るためのピンニングサイトととして機能させ、γ粒の細
粒化により組織を微細化することによりH形鋼の部位間
の材質特性の均質化と高靭性化を達成することと、低窒
素化と微量Nb、B添加による焼入性向上に加え、Cu
添加によるCuの析出強化とにより700℃での降伏強
度がJIS規格のSM490鋼での常温における降伏点
の下限値325MPaの2/3の220MPa以上とな
る高温高強度化を達成することを特徴としている。
In addition, conventional high temperature steels guarantee high temperature strength at 600 ° C. However, in the present invention, higher temperature (700 ° C.) is applied for the purpose of expanding the range of application of non-refractory coatings for buildings. The challenge is to develop a refractory steel that can guarantee high-temperature strength at (° C). Unlike the conventional idea, the present invention controls the composition and size of oxides and the dispersion density by selecting the deoxidizing material in the steel making process, the addition order of the deoxidizing material, and the cooling control of the solidification process, and the produced oxide is heterophase precipitated. It is to be used as the preferential precipitation site of. The applicant of the present application has previously mentioned in Japanese Patent Application No. 6-11705 that the oxide is made to function as an intragranular ferrite transformation nucleus, the microstructure is made fine by the generation of intragranular ferrite, and the homogeneity of the material properties between the parts of the H-section steel. The invention has been proposed that achieves high strength and high toughness. Unlike the above, the present invention disperses a fine Mg-based oxide (mainly MgO) having high high-temperature stability at a high density, and these precipitates cause the grain growth of γ grains at 1200 to 1300 ° C. during rolling heating. By functioning as a pinning site for suppression, by refining the structure by making the γ grains finer, homogenization of material properties between parts of H-section steel and achievement of high toughness, and reduction of nitrogen In addition to improving the hardenability by adding a small amount of Nb and B, Cu
It is characterized by achieving high temperature high strength that the yield strength at 700 ° C. is 220 MPa or more, which is 2/3 of the lower limit value of the yield point of 325 MPa at room temperature of JIS standard SM490, by the precipitation strengthening of Cu by addition. There is.

【0008】また、製造法におけるTMCPの特徴は厚
鋼板で多く行われている低温・大圧下圧延とは異なり、
形鋼における軽圧下の熱間圧延においても効率的に組織
の細粒化が可能となるように圧延パス間で水冷し、水
冷、圧延、水冷とを繰り返す工程をとる方法にある。
The characteristic of TMCP in the manufacturing method is different from the low temperature / large reduction rolling which is often performed on thick steel plates.
There is a method in which a step of performing water cooling between rolling passes and repeating water cooling, rolling, and water cooling is performed so that fine graining of the structure can be efficiently performed even in hot rolling under light pressure in shaped steel.

【0009】[0009]

【課題を解決するための手段】本発明は、組織を微細化
することを目的とし、製鋼過程において適正な脱酸処理
を行い、溶鋼の高清浄化、溶存酸素濃度の規制、Ti添
加、最後にSi-Mg 合金及びNi-Mg 合金を添加する添加順
序とMg添加量の限定を行い、鋳片に微細なMg系酸化物
を微細分散させた鋳片を圧延しH形鋼としたものと、該
鋳片を素材として、熱間圧延パス間で水冷することによ
り、H形鋼のフランジの表面と内部に温度差を与え、軽
圧下条件下においても、より高温の板厚中央部への圧下
浸透を高め、α生成核となる加工転位を導入し、板厚中
央部での組織の微細化が達成できる圧延中水冷方法を開
発した。加えて、圧延後のγ/α変態温度域を冷却制御
することにより、核生成させたフェライトの粒成長を抑
制する方法によればミクロ組織の微細化ができ、高能率
で製造コストの安価な耐火用圧延形鋼の生産が可能であ
ると言う知見に基づき前記課題を解決したもので、その
要旨とするところは、以下のとおりである。 (1)量% で、C:0.02〜0.10% 、Si:0.05 〜0.50% 、
Mn:0.4〜1.6%、Mo:0.4〜0.8%、Cu:0.7〜1.5%、Nb:0.005
〜0.05% 、N:0.004%以下、Al:0.005% 以下、を含み、残
部がFeおよび不可避不純物からなる溶鋼を、予備脱酸処
理によって、溶存酸素を量%で0.003 〜0.015%に調整
後、Ti:0.005〜0.025%、B:0.0005〜0.0030% 、次いでM
g:0.001〜0.005%を順次添加して成分調整し鋳込んだ
鋳片であってC:0.02〜0.10%、Si:0.05〜0.50%、Mn:0.
4〜1.6%、Mo:0.4〜0.8%、Cu:0.7〜1.5%、Nb:0.005〜0.0
5%、N:0.004%以下、Al:0.005%以下、Ti:0.005〜0.025
%、B:0.0005〜0.0030%、Mg:0.001〜0.005%、O:0.003〜
0.015%を含み、残部がFeおよび不可避不純物からなり、
鋳片内に大きさ3μm 以下のMg系酸化物を50個/mm2以上
含有することを特徴とする耐火圧延形鋼用鋳片。 (2)量% で、C:0.02〜0.10% 、Si:0.05 〜0.50% 、
Mn:0.4〜1.6%、Mo:0.4〜0.8%、Cu:0.7〜1.5%、Nb:0.005
〜0.05% 、N:0.004%以下、Al:0.005% 以下、を含み、加
えてCr:1.0% 以下、Ni:2.0% 以下、V:0.1%以下のいずれ
かの1種または2種以上を含有し残部がFeおよび不可
避不純物からなる溶鋼を、予備脱酸処理によって、溶存
酸素を量%で0.003 〜0.015%に調整後、Ti:0.005〜0.
025%、B:0.0005〜0.0030% 、次いでMg:0.001〜0.005%を
順次添加して成分調整し鋳込んだ鋳片であってC:0.
02〜0.10%、Si:0.05〜0.50%、Mn:0.4〜1.6%、Mo:0.4〜
0.8%、Cu:0.7〜1.5%、Nb:0.005〜0.05%、N:0.004%以
下、Al:0.005%以下、Ti:0.005〜0.025%、B:0.0005〜0.0
030%、Mg:0.001〜0.005%、O:0.003〜0.015%を含み、加
えてCr:1.0%以下、Ni:2.0%以下、V:0.1%以下のいずれか
の1種または2種以上を含有し、残部がFeおよび不可避
不純物からなり、鋳片内に大きさ3μm 以下のMg系酸化
物を50個/mm2以上含有することを特徴とする耐火圧延形
鋼用鋳片。 (3)量% で、C:0.02〜0.10% 、Si:0.05 〜0.50% 、
Mn:0.4〜1.6%、Mo:0.4〜0.8%、Cu:0.7〜1.5%、Nb:0.005
〜0.05% 、N:0.004%以下、Al:0.005% 以下、を含み、残
部がFeおよび不可避不純物からなる溶鋼を、予備脱酸処
理によって、溶存酸素を量%で0.003 〜0.015%に調整
後、Ti:0.005〜0.025%、B:0.0005〜0.0030% 、次いでM
g:0.001〜0.005%を順次添加して成分調整し鋳込んだ
鋳片であってC:0.02〜0.10%、Si:0.05〜0.50%、Mn:0.
4〜1.6%、Mo:0.4〜0.8%、Cu:0.7〜1.5%、Nb:0.005〜0.0
5%、N:0.004%以下、Al:0.005%以下、Ti:0.005〜0.025
%、B:0.0005〜0.0030%、Mg:0.001〜0.005%、O:0.003〜
0.015%を含み、残部がFeおよび不可避不純物からなり、
鋳片内に大きさ3μm 以下のMg系酸化物を50個/mm2以上
含有させた鋳片を1200〜1300℃の温度域に再加熱した後
に圧延を開始し、圧延工程で形鋼のフランジ表面温度を
700 ℃以下に水冷し、以降の圧延パス間の復熱過程で圧
延する水冷・圧延工程を一回以上繰り返し圧延し、圧延
終了後に0.5 〜10℃/sの冷却速度で700 〜400 ℃まで冷
却し放冷することを特徴とする耐火圧延形鋼の製造方
法。 (4)量% で、C:0.02〜0.10% 、Si:0.05 〜0.50% 、
Mn:0.4〜1.6%、Mo:0.4〜0.8%、Cu:0.7〜1.5%、Nb:0.005
〜0.05% 、N:0.004%以下、Al:0.005% 以下、を含み、加
えてCr:1.0% 以下、Ni:2.0% 以下、V:0.1%以下のいずれ
かの1種または2種以上を含有し残部がFeおよび不可避
不純物からなる溶鋼を、予備脱酸処理によって、溶存酸
素を量%で0.003 〜0.015%に調整後、Ti:0.005〜0.02
5%、B:0.0005〜0.0030% 、次いでMg:0.001〜0.005%を順
次添加して成分調整し鋳込んだ鋳片であってC:0.02
〜0.10%、Si:0.05〜0.50%、Mn:0.4〜1.6%、Mo:0.4〜0.8
%、Cu:0.7〜1.5%、Nb:0.005〜0.05%、N:0.004%以下、A
l:0.005%以下、Ti:0.005〜 0.025%、B:0.0005〜0.0030
%、Mg:0.001〜0.005%、O:0.003〜0.015%を含み、加えて
Cr:1.0%以下、Ni:2.0%以下、V:0.1%以下のいずれかの1
種または2種以上を含有し、残部がFeおよび不可避不純
物からなり、鋳片内に大きさ3μm 以下のMg系酸化物を
50個/mm2以上含有させた鋳片を1200〜1300℃の温度域に
再加熱した後に圧延を開始し、圧延工程で形鋼のフラン
ジ表面温度を700 ℃以下に水冷し、以降の圧延パス間の
復熱過程で圧延する水冷・圧延工程を一回以上繰り返し
圧延し、圧延終了後に0.5 〜10℃/sの冷却速度で700 〜
400 ℃まで冷却し放冷することを特徴とする耐火圧延形
鋼の製造方法。
Means for Solving the Problems The present invention aims at refining the microstructure, performs appropriate deoxidation treatment in the steelmaking process, and highly purifies the molten steel, regulates the dissolved oxygen concentration, adds Ti, and finally The order of addition of Si-Mg alloy and Ni-Mg alloy and the amount of Mg added were limited, and a slab in which fine Mg-based oxides were finely dispersed was rolled into an H-section steel, By water-cooling between the hot rolling passes using the cast slab as a material, a temperature difference is given to the surface and the inside of the flange of the H-section steel, and even under a light reduction condition, the reduction to a higher temperature central portion of the plate thickness is achieved. We have developed a water-cooling method during rolling that enhances the penetration and introduces work dislocations that become α-forming nuclei and can achieve the refinement of the microstructure in the central part of the plate thickness. In addition, by controlling the cooling of the γ / α transformation temperature range after rolling, the method of suppressing the grain growth of nucleated ferrite can make the microstructure fine, which is highly efficient and inexpensive to manufacture. The above problems have been solved based on the finding that it is possible to produce fire-resistant rolled steel, and the gist thereof is as follows. (1) in mass%, C: 0.02~0.10%, Si : 0.05 ~0.50%,
Mn: 0.4-1.6%, Mo: 0.4-0.8%, Cu: 0.7-1.5%, Nb: 0.005
To 0.05%, N: 0.004% or less, Al: 0.005% or less, wherein the adjusted molten steel balance being Fe and inevitable impurities, by preliminary deoxidation process, 0.003 to 0.015% of dissolved oxygen in the mass% , Ti: 0.005-0.025%, B: 0.0005-0.0030%, then M
g: the 0.001 to 0.005% sequentially added'm casting and component adjusted
It is a slab , C: 0.02 to 0.10%, Si: 0.05 to 0.50%, Mn: 0.
4-1.6%, Mo: 0.4-0.8%, Cu: 0.7-1.5%, Nb: 0.005-0.0
5%, N: 0.004% or less, Al: 0.005% or less, Ti: 0.005 to 0.025
%, B: 0.0005 to 0.0030%, Mg: 0.001 to 0.005%, O: 0.003 to
Containing 0.015%, the balance consisting of Fe and unavoidable impurities,
Slab refractory rolling shape steel, characterized in that the size in the cast slab of 3μm following Mg-based oxides containing 50 / mm 2 or more. (2) in mass%, C: 0.02~0.10%, Si : 0.05 ~0.50%,
Mn: 0.4-1.6%, Mo: 0.4-0.8%, Cu: 0.7-1.5%, Nb: 0.005
~ 0.05%, N: 0.004% or less, Al: 0.005% or less, in addition, any one or more of Cr: 1.0% or less, Ni: 2.0% or less, V: 0.1% or less. and, after adjusting the molten steel and the balance being Fe and inevitable impurities, by preliminary deoxidation process, from 0.003 to 0.015% of dissolved oxygen in the mass%, Ti: 0.005~0.
025%, B: 0.0005~0.0030%, then Mg: the 0.001 to 0.005% A sequential component adjustment to slab I casting was added, C: 0.
02〜0.10%, Si: 0.05〜0.50%, Mn: 0.4〜1.6%, Mo: 0.4〜
0.8%, Cu: 0.7 to 1.5%, Nb: 0.005 to 0.05%, N: 0.004% or less
Lower, Al: 0.005% or less, Ti: 0.005 to 0.025%, B: 0.0005 to 0.0
030%, Mg: 0.001 to 0.005%, O: 0.003 to 0.015%
Either Cr: 1.0% or less, Ni: 2.0% or less, V: 0.1% or less
1 or 2 or more of the above, with the balance being Fe and unavoidable
It consists impurities, casting 50 the size 3μm following Mg-based oxides in pieces / mm 2 or more slab refractories rolling shape steel, characterized in that it contains. (3) in mass%, C: 0.02~0.10%, Si : 0.05 ~0.50%,
Mn: 0.4-1.6%, Mo: 0.4-0.8%, Cu: 0.7-1.5%, Nb: 0.005
To 0.05%, N: 0.004% or less, Al: 0.005% or less, wherein the adjusted molten steel balance being Fe and inevitable impurities, by preliminary deoxidation process, 0.003 to 0.015% of dissolved oxygen in the mass% , Ti: 0.005-0.025%, B: 0.0005-0.0030%, then M
g: the 0.001 to 0.005% sequentially added'm casting and component adjusted
It is a slab , C: 0.02 to 0.10%, Si: 0.05 to 0.50%, Mn: 0.
4-1.6%, Mo: 0.4-0.8%, Cu: 0.7-1.5%, Nb: 0.005-0.0
5%, N: 0.004% or less, Al: 0.005% or less, Ti: 0.005 to 0.025
%, B: 0.0005 to 0.0030%, Mg: 0.001 to 0.005%, O: 0.003 to
Containing 0.015%, the balance consisting of Fe and unavoidable impurities,
A slab containing 50 μm / mm 2 or more of Mg-based oxide having a size of 3 μm or less in the slab is reheated to a temperature range of 1200 to 1300 ° C., and then rolling is started. Surface temperature
Water-cooling to 700 ℃ or less, rolling in the recuperation process between subsequent rolling passes is repeated at least once, and after completion of rolling, it is cooled to 700-400 ℃ at a cooling rate of 0.5-10 ℃ / s. A method for producing a fire-resistant rolled steel shape, which comprises allowing the material to cool. (4) in mass%, C: 0.02~0.10%, Si : 0.05 ~0.50%,
Mn: 0.4-1.6%, Mo: 0.4-0.8%, Cu: 0.7-1.5%, Nb: 0.005
~ 0.05%, N: 0.004% or less, Al: 0.005% or less, in addition, any one or more of Cr: 1.0% or less, Ni: 2.0% or less, V: 0.1% or less. after adjusting the molten steel and the balance being Fe and inevitable impurities, by preliminary deoxidation process, 0.003 to 0.015% of dissolved oxygen in the mass%, Ti: 0.005 to 0.02
5%, B: 0.0005~0.0030%, then Mg: 0.001 to 0.005% of a sequential component adjustment and I cast in slab added, C: 0.02
~ 0.10%, Si: 0.05-0.50%, Mn: 0.4-1.6%, Mo: 0.4-0.8
%, Cu: 0.7 to 1.5%, Nb: 0.005 to 0.05%, N: 0.004% or less, A
l: 0.005% or less, Ti: 0.005 to 0.025%, B: 0.0005 to 0.0030
%, Mg: 0.001 to 0.005%, O: 0.003 to 0.015%, in addition to
Cr: 1.0% or less, Ni: 2.0% or less, V: 0.1% or less 1
Contains 1 or 2 or more species, balance Fe and unavoidable impurities
Of Mg-based oxide with a size of 3 μm or less
After reheating the slab containing 50 pieces / mm 2 or more to a temperature range of 1200 to 1300 ° C, rolling is started, and the flange surface temperature of the shaped steel is water-cooled to 700 ° C or less in the rolling process, and the subsequent rolling pass. The water-cooling / rolling process, which involves rolling in the recuperation process, is repeated at least once, and after completion of rolling, the cooling rate is 0.5-10 ° C / s and the cooling rate is 700-
A method for producing a fire-resistant rolled steel shape, which comprises cooling to 400 ° C and cooling.

【0010】[0010]

【発明の実施の形態】鋼材の高温強度は鉄の融点のほぼ
1/2 の温度の700 ℃以下では常温での強化機構とほぼ同
様であり、フェライト結晶粒径の微細化、合金元素
による固溶体強化、硬化相による分散強化、微細析
出物による析出強化等によって支配される。一般に高温
強度の上昇にはMo、Crの添加による析出強化と転位
の消失抑制による高温軟化抵抗を増加させることにより
達成されている。しかしMo、Crの添加は著しく焼入
性を上昇させ、添加なしでのフェライト+ パーライト組
織から硬化相のベイナイト組織に変化させる。ベイナイ
ト組織を優先生成する成分系鋼を圧延H形鋼に適用した
場合は、その特異な形状からウェブ、フランジ、フィレ
ットの各部位で、圧延仕上げ温度、圧下率、冷却速度に
差を生じるため、各部位間で生成するベイナイト組織の
割合が大きく変化する。この結果、部位により常温・高
温強度、延性、靭性が異なった値となり部位間でのばら
つきとなる。また、部位によっては規準に満たない特性
を示す部位が生じる。加えて、これらの元素の添加によ
り溶接部を著しく硬化させ、溶接熱影響部の靭性を低下
させる。
BEST MODE FOR CARRYING OUT THE INVENTION The high temperature strength of steel is almost equal to the melting point of iron.
At a temperature of 1/2 of 700 ℃ or less, it is almost the same as the strengthening mechanism at room temperature, and it is controlled by the refinement of ferrite crystal grain size, solid solution strengthening by alloying elements, dispersion strengthening by hardening phase, precipitation strengthening by fine precipitates, etc. To be done. Generally, the increase in high temperature strength is achieved by increasing precipitation resistance by adding Mo and Cr and increasing high temperature softening resistance by suppressing dislocation disappearance. However, the addition of Mo and Cr markedly increases the hardenability and changes the ferrite + pearlite structure without addition to a bainite structure in the hardened phase. When a component steel that preferentially generates a bainite structure is applied to a rolled H-section steel, the rolling finish temperature, the rolling reduction, and the cooling rate are different due to the unique shape of the web, the flange, and the fillet. The ratio of the bainite structure generated between each part changes greatly. As a result, room temperature / high temperature strength, ductility, and toughness have different values depending on the site, resulting in variations between sites. In addition, depending on the part, some parts exhibit characteristics that do not meet the criteria. In addition, the addition of these elements significantly hardens the weld and reduces the toughness of the weld heat affected zone.

【0011】本発明の特徴は、製鋼工程において、脱酸
の制御、鋳込み後の冷却速度を規制し、鋳片内に多数の
微細なMg系酸化物を晶出・分散させた鋳片により、圧
延加熱時のγ粒径を細粒化した状態から圧延し、耐火性
・靭性に優れたH形鋼を得ることである。加えて本発明
では、熱間圧延工程において、熱間圧延パス間でフラン
ジ表面を水冷し、その復熱時に圧延することを繰り返す
ことによりフランジの板厚中心部に圧下浸透効果を付与
し、この部位においてもTMCPによる組織微細化効果
を高め、この組織微細化によりH形鋼の各部位における
母材の機械特性を向上させるとともにバラツキを低減し
均質化を達成するものである。
A feature of the present invention is that, in the steelmaking process, deoxidation is controlled, the cooling rate after casting is regulated, and a slab in which a large number of fine Mg-based oxides are crystallized and dispersed in the slab, It is to obtain an H-section steel excellent in fire resistance and toughness by rolling from a state in which the γ grain size during rolling heating is made fine. In addition, in the present invention, in the hot rolling step, the flange surface is water-cooled between the hot rolling passes, and a rolling infiltration effect is imparted to the central portion of the flange thickness by repeating rolling at the time of recuperation, Even in the parts, the effect of TMCP microstructure refinement is enhanced, and by this microstructure refinement, the mechanical properties of the base material in each part of the H-section steel are improved and variations are reduced to achieve homogenization.

【0012】以下に本発明形鋼の成分範囲と制御条件の
限定理由について述べる。まず、Cは鋼を強化するため
に添加するもので、0.02% 未満では構造用鋼として必要
な強度が得られず。また、0.10% を超える過剰の添加
は、母材靭性、耐溶接割れ性、溶接熱影響部(以下HA
Zと略記)靭性などを著しく低下させるので、下限を0.
02% 、上限を0.10% とした。
The reasons for limiting the composition range and control conditions of the shaped steel of the present invention will be described below. First, C is added to strengthen the steel. If it is less than 0.02%, the strength required for structural steel cannot be obtained. In addition, if added in excess of 0.10%, the base metal toughness, weld crack resistance, and weld heat affected zone (hereinafter HA
(It is abbreviated as Z) It significantly reduces the toughness, etc., so the lower limit is 0.
02% and the upper limit was 0.10%.

【0013】次に、Siは母材の強度確保、溶鋼の予備
脱酸などに必要であるが、0.50% を超えるとHAZ内に
硬化組織の高炭素島状マルテンサイトを生成し、溶接継
手部靭性を著しく低下させる。また、0.05% 未満では溶
鋼の予備脱酸が十分にできないためSi含有量を0.05〜
0.50% の範囲に限定した。Mnは母材の強度、靭性の確
保には0.4%以上の添加が必要であるが、溶接部の靭性、
割れ性などに対する許容濃度の上限から1.6%とした。
Next, Si is necessary for securing the strength of the base metal and pre-deoxidizing molten steel, but if it exceeds 0.50%, high carbon island martensite with a hardened structure is formed in the HAZ, and the welded joint part is formed. Remarkably reduces toughness. On the other hand, if it is less than 0.05%, the pre-deoxidation of molten steel cannot be sufficiently performed, so that the Si content is 0.05 to
It was limited to the range of 0.50%. Mn must be added in an amount of 0.4% or more to secure the strength and toughness of the base metal, but
It was set to 1.6% from the upper limit of the allowable concentration for cracking.

【0014】Moは母材強度および高温強度の確保に有
効な元素である。0.4%未満ではMo炭化物(Mo2 C)
の析出が不十分で強化作用を発揮できないため十分な高
温強度が確保できず、0.8%超では、焼入性の上昇により
母材及びHAZが過剰に硬化し、靭性が劣化するため0.
4 〜0.8%に限定した。Cuはα温度域での保持及び緩冷
却によりα相中の転位上にCu相を析出し、その析出硬
化により母材の常温強度を増加させる。さらに耐火鋼と
しての保証温度700℃加熱時における強度低下を抑制
する。ただし、このα中でのCu相の析出は0.7%未満で
はα中でのCuの固溶限内であり、析出が生じないため
Cu析出による強化は得られない。また1.5%を超えると
その析出強化は飽和するのでCu:0.7〜1.5%に限定した。
Mo is an element effective in securing the strength of the base material and the high temperature strength. If less than 0.4%, Mo carbide (Mo2 C)
Since sufficient precipitation cannot be exerted due to insufficient precipitation, high temperature strength cannot be secured, and if it exceeds 0.8%, the base metal and HAZ are excessively hardened due to the increase in hardenability, and the toughness deteriorates.
Limited to 4-0.8%. Cu retains in the α temperature range and is slowly cooled to precipitate a Cu phase on the dislocations in the α phase, and the precipitation hardening increases the room temperature strength of the base material. Further, it suppresses the decrease in strength during heating at a guaranteed temperature of 700 ° C as refractory steel. However, if the precipitation of the Cu phase in α is less than 0.7%, it is within the solid solubility limit of Cu in α, and since precipitation does not occur, strengthening by Cu precipitation cannot be obtained. Further, when the content exceeds 1.5%, the precipitation strengthening is saturated, so the Cu content is limited to 0.7 to 1.5%.

【0015】NbはNb炭窒化物の析出による強化と固
溶NbとBの共存により著しく焼入性を上昇させ常温・
高温強度を増加させる目的で添加している。したがっ
て、Nb:0.005% 未満ではNb炭窒化物の析出不足となる
が、Nb:0.05%を超える添加では粗大なNb炭窒化物を生
成し、母材及び溶接部靭性を低下させるために 0.005〜
0.05% に限定した。
Nb is strengthened by the precipitation of Nb carbonitride and the coexistence of solid solution Nb and B significantly increases the hardenability at room temperature.
It is added for the purpose of increasing high temperature strength. Therefore, if the Nb content is less than 0.005%, the precipitation of Nb carbonitride will be insufficient, but if the Nb content exceeds 0.05%, coarse Nb carbonitride will be produced, and the toughness of the base metal and weld zone will be reduced by 0.005 to
Limited to 0.05%.

【0016】Nは窒化物を生成し、析出強化および粒成
長を抑制するが、固溶Nはフェライトを強化し、またベ
イナイト相のラス境界に高炭素島状マルテンサイトの生
成を促進し靭性を劣化させるためN含有量を0.004%以下
に制限した。Alを0.005%以下としたのは、Alは強力
な脱酸元素であり、0.005%超の含有ではAl含有量の多
い粒子径の大きなAlー Mg系複合酸化物を生成し、微
細な3μm以下のMg系酸化物が形成されず、高温再加
熱時においてのγ細粒化ができないためAlを0.005%以
下とした。
N forms nitrides and suppresses precipitation strengthening and grain growth, while solute N strengthens ferrite and promotes formation of high carbon island martensite at lath boundaries of bainite phase to improve toughness. The N content was limited to 0.004% or less for deterioration. Al is set to 0.005% or less because Al is a strong deoxidizing element, and if the content exceeds 0.005%, an Al-Mg-based composite oxide with a large Al content and a large particle size is generated, and a fine 3 μm or less. Since no Mg-based oxide was formed and γ-fine graining was not possible at the time of high temperature reheating, Al was made 0.005% or less.

【0017】成分を調整した溶鋼を予備脱酸処理を行い
溶存酸素を量%で0.003 〜0.015%に調整するのは、溶
鋼の高清浄化と同時に鋳片内に微細なMg系酸化物を晶
出させるために行うものである。予備脱酸後の[O] 濃度
が0.003%未満では微細な酸化物が減少し、細粒化できず
靱性を向上できない。一方、0.015%を超える場合は、他
の条件を満たしていても、酸化物が3μm以上の大きさ
に粗大化し脆性破壊の起点となり、靱性の劣化をまねく
ため予備脱酸後の[O] 濃度を量%で0.003 〜0.015%に
限定した。
[0017] to adjust the molten steel component was adjusted to 0.003 to 0.015% of dissolved oxygen and preliminarily deoxidized with mass percent, crystallized fine Mg-based oxides in the simultaneously cast slab and high cleanliness of the molten steel This is done to get it out. If the [O] concentration after pre-deoxidation is less than 0.003%, fine oxides are reduced, grain refinement cannot be performed, and toughness cannot be improved. On the other hand, if it exceeds 0.015%, even if the other conditions are satisfied, the oxide coarsens to a size of 3 μm or more and becomes a starting point of brittle fracture, leading to deterioration of toughness, and therefore [O] concentration after pre-deoxidation. It was limited in mass% to 0.003 to 0.015%.

【0018】予備脱酸処理は真空脱ガス、Al、Si、
Mg脱酸により行った。その理由は真空脱ガス処理で
は、溶鋼中の酸素をガスおよびCOガスとして除去する
ので粗大な介在物が生成されないことおよび、Al、S
i、Mgなどでの脱酸では、生成する粗大な酸化物系介
在物は浮上、除去が容易であるので,溶鋼の精錬効果が
大きいためである。
The preliminary deoxidizing treatment is performed by vacuum degassing, Al, Si,
It was performed by Mg deoxidation. The reason is that in the vacuum degassing process, oxygen in the molten steel is removed as a gas and a CO gas, so that coarse inclusions are not generated, and Al and S
This is because the coarse oxide-based inclusions that are generated by deoxidation with i, Mg, etc. can be easily floated and removed, so that the refining effect of molten steel is large.

【0019】次に上述の溶鋼にTi、B、Mgと順次添
加するのは、Bは微量であり溶存酸素により容易に酸化
されスラグに吸収され歩留まりが低下する。そこで、B
の歩留まりを向上させるため,予めTi脱酸により溶存
酸素量を低減した後に添加する必要がある。また、Mg
を最後に添加するのは、Mgは強力脱酸元素であり、先
に生成したTi酸化物とMgを反応させ酸素を奪い微細
なMgOを形成させるためである。
Next, Ti, B, and Mg are sequentially added to the above-mentioned molten steel. B is in a very small amount, and is easily oxidized by dissolved oxygen and absorbed by slag to lower the yield. So B
In order to improve the yield of, it is necessary to add Ti after deoxidizing Ti to reduce the amount of dissolved oxygen. Also, Mg
Is added last because Mg is a strong deoxidizing element and reacts with the Ti oxide generated previously and Mg to deprive oxygen to form fine MgO.

【0020】さらに、Mg合金の添加により量%でMg:
0.001〜0.005%に調整した溶鋼を後述する一定の鋳造冷
却速度で鋳込む。TiはTiNを析出し、固溶Nを低減
する。このことにより、BNの析出を抑制し、固溶B量
を増加させBによる焼入性上昇効果を高めるために添加
するものである。また、微細析出したTiNはγ相の細
粒化にも寄与する。これらのTiの作用により常温・高
温強度を上昇させる。従って、0.005%未満ではTiNの
析出量が不足し、これらの効果を発揮しないためTi量
の下限値をO.005%とした。しかし、0.025%を超えると過
剰なTiはTiCを析出し、その析出硬化により母材お
よび溶接熱影響部の靱性を劣化させるため0.025%以下に
制限した。
[0020] In addition, by the addition of Mg alloy in mass% Mg:
Molten steel adjusted to 0.001 to 0.005% is cast at a constant casting cooling rate described later. Ti precipitates TiN and reduces solid solution N. As a result, it is added to suppress the precipitation of BN, increase the amount of solid solution B, and enhance the hardenability increasing effect of B. The finely precipitated TiN also contributes to the grain refinement of the γ phase. The action of these Ti increases the room temperature / high temperature strength. Therefore, if it is less than 0.005%, the amount of precipitation of TiN will be insufficient and these effects will not be exhibited, so the lower limit of the amount of Ti was made 0.005%. However, if it exceeds 0.025%, excessive Ti precipitates TiC, and the precipitation hardening deteriorates the toughness of the base material and the weld heat affected zone, so the content was limited to 0.025% or less.

【0021】Bは微量添加で焼入性を上昇させ強度増加
に寄与する。ただし0.0005% 未満ではその効果は十分に
発揮されなくなり、また0.0030% を超えると鉄ボロン化
合物を生成し焼入性を低減させる。したがって、B含有
量を0.0005〜0.0030% に限定した。Mg添加に使用した
Mg合金はSi-Mg-Al及びNi-Mg である。Mg合金を用いた
理由は合金化によりMg含有濃度を低減し、溶鋼への添
加時の脱酸反応を抑制し、添加時の安全性の確保とMg
の歩留を向上させるためである。Mgを0.001 〜0.005%
に限定するのは、Mgも強力な脱酸元素であり、晶出し
たMg酸化物は溶鋼中で容易に浮上分離されるため0.00
5%を超えて添加しても、これ以上は歩留まらないため上
限を0.005%とした。また、0.001%未満では目的のMg系
酸化物の分散密度が不足するため下限を0.001%とした。
なお、ここでのMg系酸化物は、主にMgOと表記して
いるが、電子顕微鏡解析などによると、この酸化物はT
i、微量のAlおよび不純物として含まれているCaな
どとの複合酸化物を形成している。
When B is added in a small amount, it increases the hardenability and contributes to the increase in strength. However, if it is less than 0.0005%, its effect is not sufficiently exhibited, and if it exceeds 0.0030%, an iron boron compound is formed and hardenability is reduced. Therefore, the B content is limited to 0.0005 to 0.0030%. Used to add Mg
Mg alloys are Si-Mg-Al and Ni-Mg. The reason for using the Mg alloy is to reduce the Mg content concentration by alloying, suppress the deoxidation reaction at the time of addition to molten steel, and secure the safety at the time of addition and Mg.
This is to improve the yield of 0.001 to 0.005% Mg
Mg is also a strong deoxidizing element, and the crystallized Mg oxide is easily floated and separated in molten steel.
Even if added in excess of 5%, the yield does not rise any further, so the upper limit was made 0.005%. If it is less than 0.001%, the dispersion density of the target Mg-based oxide is insufficient, so the lower limit was made 0.001%.
Note that the Mg-based oxide here is mainly described as MgO, but according to electron microscope analysis and the like, this oxide is
i, a small amount of Al and a complex oxide with Ca contained as impurities are formed.

【0022】不可避不純物として含有するP、Sについ
ては、それらの量を特に限定しないが凝固偏析による溶
接割れ、靭性の低下を生じるので、極力低減すべきであ
り、望ましくはP、S量はそれぞれ0.02% 未満に制限す
ることが望ましい。以上の元素に加えて、母材強度の上
昇、および母材の靭性向上の目的で、Cr、Ni、Vの
1種または2種以上を含有することができる。
The amounts of P and S contained as unavoidable impurities are not particularly limited, but since weld cracking due to solidification segregation and deterioration of toughness occur, they should be reduced as much as possible, preferably the amounts of P and S respectively. It is desirable to limit it to less than 0.02%. In addition to the above elements, one or more of Cr, Ni and V may be contained for the purpose of increasing the strength of the base material and improving the toughness of the base material.

【0023】Crは焼入性の向上により、母材の強化に
有効である。しかし1.0%を超える過剰の添加は、靭性お
よび硬化性の観点から有害となるため、上限を1.0%とし
た。Niは母材の強靭性を高める極めて有効な元素であ
るが2.0%を超える添加は合金コストを増加させ経済的で
ないので上限を2.0%とした。Vは微量添加により圧延組
織を微細化でき、バナジン炭窒化物の析出により強化す
ることから低合金化でき溶接特性を向上できる。しかし
ながら、Vの過剰な添加は溶接部の硬化や、母材の高降
伏点化をもたらすので、含有量の上限をV:0.1%とした。
Cr is effective in strengthening the base material by improving the hardenability. However, excessive addition exceeding 1.0% is harmful from the viewpoint of toughness and curability, so the upper limit was made 1.0%. Ni is an extremely effective element that enhances the toughness of the base metal, but the addition of more than 2.0% increases the alloy cost and is not economical, so the upper limit was made 2.0%. The addition of a small amount of V makes it possible to make the rolling structure finer and strengthens it by the precipitation of vanadine carbonitride, so that it can be made into a low alloy and the welding characteristics can be improved. However, excessive addition of V causes hardening of the weld and higher yield point of the base metal, so the upper limit of the content was made V: 0.1%.

【0024】成分調整を完了した溶鋼を鋳込む際の冷却
速度は、Mg系酸化物粒子の個数の増加とその粒成長を
抑制するため、鋳込み開始から900 ℃までの冷却速度を
0.5〜20℃/sで冷却するのが望ましい。すなわち、過冷
却により晶出する複合酸化物の核生成数を増加させると
同時に冷却中の粒成長を抑制し、大きさ3μm以下にし
た酸化物を鋳片に50個/mm2 以上含有させるために
行うものである。この温度間の冷却速度が0.5℃/s
未満の緩冷却では複合酸化物は凝集粗大化し、50個/
mm2 未満となり靭性、延性を低下させからである。一
方、冷却速度の上限は現状の鋳造技術での冷却速度の限
界である20℃/s以下とする。
The cooling rate at the time of casting the molten steel whose composition has been adjusted is set to 900 ° C. from the start of casting in order to suppress the increase in the number of Mg-based oxide particles and their grain growth.
It is desirable to cool at 0.5 to 20 ° C / s. That is, to suppress the grain growth during the same time increasing the number of nuclei generating the composite oxide crystallized cooled by supercooling, for inclusion 50 / mm 2 or more oxides below size 3μm cast slab Is what you do. Cooling rate between these temperatures is 0.5 ° C / s
When the cooling rate is less than less than 50,
This is because it becomes less than mm 2 and the toughness and ductility are reduced. On the other hand, the upper limit of the cooling rate is 20 ° C./s or less, which is the limit of the cooling rate in the current casting technology.

【0025】次に、鋳片に複合酸化物が50個/mm2
以上含む必要がある理由について述べる。製品の材質特
性は製鋼、鋳造工程に支配される先天的因子の鋳片の凝
固組織、成分偏析、本発明の微細複合酸化物、析出物等
と圧延、TMCP、熱処理工程等により支配される後天
的因子のミクロ組織により決定される。当然、この先天
的因子である鋳片の性質は後の工程に継承される。本発
明の特徴は、この鋳片の先天的因子の1つを制御するこ
とにあり、鋳片中に高温でのγ粒成長の抑制機能を発揮
する微細なMg系酸化物を分散晶出させることにある。
この粒子の分散個数が50個/mm2 未満では、120
0〜1300℃加熱におけるγ粒径がASTM No.6
番以上の細粒を得ることはできないため下限を50個/
mm2 とする。
Next, 50 pieces / mm 2 of complex oxides are added to the slab.
The reason why the above needs to be included is described. The material properties of the product are controlled by steelmaking, solidification structure of cast slab which is an innate factor governed by the casting process, component segregation, fine composite oxide of the present invention, precipitation and rolling, TMCP, heat treatment process, etc. It is determined by the microstructure of specific factors. Naturally, the property of the slab, which is an innate factor, is inherited in the subsequent process. The feature of the present invention is to control one of the innate factors of the cast slab, and disperse and crystallize a fine Mg-based oxide exhibiting a function of suppressing γ grain growth at high temperature in the cast slab. Especially.
When the number of dispersed particles is less than 50 particles / mm 2, it is 120
Γ particle size at 0 to 1300 ℃ heating is ASTM No.6
Since it is not possible to obtain finer particles than the number
and mm 2.

【0026】なお、Mg系酸化物個数はX線マイクロア
ナライザー(EPMA)で測定し決定したものである。
上記の処理を経た鋳片は次に1200〜1300℃の温
度域に再加熱する。この温度域に再加熱温度を限定した
のは、熱間加工による形鋼の製造には塑性変形を容易に
するため1200℃以上の加熱が必要であり、且つV、
Nbなどの元素を十分に固溶させる必要があるため再加
熱温度の下限を1200℃とした。その上限は加熱炉の
性能、経済性から1300℃とした。
The number of Mg-based oxides is determined by measuring with an X-ray microanalyzer (EPMA).
The slab that has undergone the above treatment is then reheated to a temperature range of 1200 to 1300 ° C. The reason for limiting the reheating temperature to this temperature range is that in the production of shaped steel by hot working, heating at 1200 ° C. or higher is required to facilitate plastic deformation, and V,
The lower limit of the reheating temperature was set to 1200 ° C. because it is necessary to sufficiently dissolve Nb and other elements in solid solution. The upper limit was set to 1300 ° C. in view of the performance and economical efficiency of the heating furnace.

【0027】熱間圧延のパス間で水冷し、圧延中に一回
以上、フランジ表面温度を700℃以下に冷却し、次の
圧延パス間の復熱過程で圧延する水冷・圧延工程を1回
以上繰り返し行うとしたのは、圧延パス間の水冷によ
り、フランジの表層部と内部とに温度差を付与し、軽圧
下条件においても内部への加工歪みを浸透させるため
と、水冷により短時間で低温圧延を実現させTMCPを
効率的に行うためである。
One water-cooling / rolling step is performed in which water is cooled between hot rolling passes, the flange surface temperature is cooled to 700 ° C. or less during rolling once, and rolling is performed in the reheat process between subsequent rolling passes. The reason for repeating the above is to impart a temperature difference between the surface layer portion and the inside of the flange by water cooling between rolling passes, and to permeate the processing strain into the inside even under a light reduction condition, and in a short time by water cooling. This is because low-temperature rolling is realized and TMCP is efficiently performed.

【0028】フランジ表面温度を700℃以下に冷却し
た後、復熱過程で圧延するのは、仕上げ圧延後の加速冷
却による表面の焼入れ硬化を抑制し軟化させるために行
うものである。その理由はフランジ表面温度を700℃
以下に冷却すれば一旦γ/α変態温度を切り、次の圧延
までに表層部は復熱昇温し、圧延はγ/αの二相共存温
度域での加工となり、γ細粒化と加工された微細αとの
混合組織を形成する。これにより表層部の焼入性を著し
く低減でき、加速冷却により生じる表面層の硬化を防止
できるからである。
After the flange surface temperature is cooled to 700 ° C. or lower, rolling in the recuperation process is carried out in order to suppress quench-hardening and soften the surface due to accelerated cooling after finish rolling. The reason is that the flange surface temperature is 700 ° C.
If cooled below, the γ / α transformation temperature is cut once, the surface layer temperature rises to the recuperative temperature until the next rolling, and rolling is performed in the γ / α two-phase coexisting temperature range, and γ grain refinement and processing To form a mixed structure with the fine α. This is because the hardenability of the surface layer portion can be significantly reduced, and the hardening of the surface layer caused by accelerated cooling can be prevented.

【0029】また、圧延終了後、引続き、0.5〜10
℃/sの冷却速度で700〜400℃まで冷却し放冷す
るとしたのは、加速冷却によりフェライトの粒成長抑制
とベイナイト組織を微細化し高強度・高靭性を得るため
である。次いで、加速冷却を700〜400℃で停止す
るのは、700℃を超える温度で停止した場合には、表
層部の一部がAr1点以上となりγ相を残存し、このγ相
が、共存するフェライトを核にフェライト変態し、さら
にフェライトが成長し粗粒化するため加速冷却の停止温
度を700℃以下とした。また、400℃未満の冷却で
は、その後の放冷中にベイナイト相のラス間に生成する
高炭素マルテンサイトが、冷却中にセメンタイトを析出
することにより分解できず、硬化相として存在すること
になる。この高炭素マルテンサイトは脆性破壊の起点と
して作用し、靭性の低下を招くことになる。これらの理
由により、加速冷却の停止温度を700〜400℃に限
定した。
After rolling is completed, 0.5-10
The reason for cooling to 700 to 400 ° C at a cooling rate of ° C / s and allowing to cool is to suppress grain growth of ferrite and refine the bainite structure by accelerated cooling to obtain high strength and high toughness. Then, the accelerated cooling is stopped at 700 to 400 ° C. When the temperature is stopped at a temperature higher than 700 ° C., a part of the surface layer portion becomes Ar 1 point or more and the γ phase remains, and this γ phase coexists. The ferrite was transformed into a nucleus, and the ferrite was grown and coarsened into grains, so that the accelerated cooling stop temperature was set to 700 ° C. or lower. Further, in the case of cooling below 400 ° C., the high carbon martensite formed between the laths of the bainite phase during the subsequent cooling cannot be decomposed by precipitating cementite during the cooling and exists as a hardening phase. . This high carbon martensite acts as a starting point of brittle fracture, resulting in a decrease in toughness. For these reasons, the stop temperature of accelerated cooling is limited to 700 to 400 ° C.

【0030】[0030]

【実施例】試作形鋼は転炉溶製し、合金を添加後、予備
脱酸処理を行い、溶鋼の酸素濃度を調整後、Ti、B、
次いでMg合金を添加し、連続鋳造により250 〜300mm
厚鋳片に鋳造した。鋳片の冷却はモールド下方の二次冷
却帯の水量と鋳片の引き抜き速度の選択により制御し
た。該鋳片を加熱し、粗圧延工程の図示は省略するが、
図1に示すユニバーサル圧延装置列でH形鋼に圧延し
た。圧延パス間水冷は中間ユニバーサル圧延機4の前後
に水冷装置5aを設け、フランジ外側面のスプレー冷却
とリバース圧延の繰り返しにより行い、圧延後の加速冷
却は仕上げユニバーサル圧延機6で圧延終了後にその後
面に設置した冷却装置5bでフランジ外側面をスプレー
冷却した。
[Examples] Prototype shaped steel was melted in a converter, added with an alloy, and then pre-deoxidized to adjust the oxygen concentration in the molten steel.
Next, add Mg alloy and 250-300mm by continuous casting
It was cast into a thick slab. The cooling of the slab was controlled by selecting the amount of water in the secondary cooling zone below the mold and the drawing speed of the slab. Although the slab is heated and the rough rolling step is not shown,
It was rolled into H-section steel by the universal rolling apparatus train shown in FIG. Water cooling between rolling passes is performed by providing water cooling devices 5a before and after the intermediate universal rolling mill 4 and repeating spray cooling and reverse rolling on the outer surface of the flange. The outer side surface of the flange was spray-cooled by the cooling device 5b installed in.

【0031】機械特性は図2に示す、フランジ2の板厚
t2 の中心部(1/2t2 )でフランジ幅全長(B) の1/4,1/
2 幅(1/4B,1/2B) から、採集した試験片を用い求めた。
なお、これらの箇所についての特性を求めたのは、フラ
ンジ1/4F部はH形鋼の平均的な機械特性を示し、フラン
ジ1/2F部はその特性が最も低下するので、これらの2箇
所によりH形鋼の機械試験特性を代表できると判断した
ためである。
The mechanical characteristics are shown in FIG. 2, which is 1 / 4,1 / of the total flange width (B) at the center (1 / 2t2) of the plate thickness t2 of the flange 2.
2 From the width (1 / 4B, 1 / 2B), it was determined using the collected test pieces.
The characteristics of these points were determined because the flange 1 / 4F shows the average mechanical characteristics of H-section steel and the flange 1 / 2F has the lowest deterioration of these characteristics. This is because it was judged that the mechanical test characteristics of H-section steel can be represented by.

【0032】表1、表3には、本発明鋼及び比較鋼の化
学成分値を、表2、表4には、それらの鋼の鋳込み後の
冷却速度及び鋳片中のMg系酸化物の分散密度を示す。
表5、表6には、圧延加熱時のγ粒度、圧延・加速冷却
条件を,次いで表7、表8には、それらのH形鋼の機械
試験特性値を示す。なお、圧延加熱温度を1300℃に
揃えたのは、一般的に加熱温度の低下によりγ粒は細粒
化し、機械試験特性を向上させることは周知であり、高
温加熱条件では機械特性の最低値を示すと推定され、こ
の値がそれ以下の加熱温度での機械試験特性を代表でき
ると判断したためである。
Tables 1 and 3 show the chemical composition values of the steels of the present invention and comparative steels, and Tables 2 and 4 show the cooling rates after casting of these steels and the Mg-based oxides in the cast pieces. The dispersion density is shown.
Tables 5 and 6 show the γ grain size during rolling heating, rolling and accelerated cooling conditions, and Tables 7 and 8 show the mechanical test characteristic values of these H-section steels. It is well known that the rolling heating temperature is set to 1300 ° C. Generally, it is well known that the γ grains become finer and the mechanical test characteristics are improved by lowering the heating temperature. This is because it was judged that this value can represent the mechanical test characteristics at heating temperatures below that.

【0033】表5、6に示すように、本発明によるH形
鋼1〜5、A1〜A3では、SM490級鋼でのJIS規格
の降伏強度の下限値+120N/mm2以内(YP=325〜445N/m
m2)に制御され、しかも、降伏比(YP/TS )も0.8 以下
の低YR値を満たし、抗張力(前記JISG3106)及
び700℃での降伏強度が220N/mm2以上を満たしてい
る。シャルピー衝撃値についても−10℃で47(J) 以
上でありJIS規格値を十分に満たしている。
As shown in Tables 5 and 6, in the H-section steels 1 to 5 and A1 to A3 according to the present invention, the lower limit value of the JIS standard yield strength of SM490 grade steel is within +120 N / mm 2 (YP = 325 to 445N / m
m 2 ), the yield ratio (YP / TS) also satisfies the low YR value of 0.8 or less, and the tensile strength (JISG3106 described above) and the yield strength at 700 ° C. satisfy 220 N / mm 2 or more. The Charpy impact value is also 47 (J) or more at -10 ° C, which sufficiently satisfies the JIS standard value.

【0034】一方、比較鋼のH形鋼6では、Mo含有量
が、H形鋼6では、Cu含有量が、H形鋼7ではNb含
有量が下限値以下であり、700℃での高温強度の目標
値を満たさない。H形鋼8では、Nが過剰であるため、
固溶BがBNとして無効となり焼入性が低下し高温強度
不足となる。またH形鋼9では、Al含有量が上限値を
超えて過剰となるため、Mg酸化物の分散個数が不足
し、γ粒が粗大化し、組織の微細化が達成されず−10
℃でのシャルピー衝撃値が目標値以下となる。比較鋼の
H形鋼11およびH形鋼12では、それぞれTi、B含
有量が不足するために高温強度を満たせない。
On the other hand, in the H-section steel 6 of the comparative steel, the Mo content, the H-section steel 6 the Cu content, and the H-section steel 7 the Nb content is below the lower limit value, and the high temperature at 700 ° C. The strength target is not met. In H-section steel 8, since N is excessive,
The solid solution B becomes ineffective as BN and the hardenability deteriorates, resulting in insufficient high temperature strength. Further, in the H-section steel 9, the Al content exceeds the upper limit value and becomes excessive, so the number of dispersed Mg oxides is insufficient, the γ grains are coarsened, and the refinement of the structure is not achieved −10
The Charpy impact value at ° C is below the target value. Comparative steels H-section steel 11 and H-section steel 12 cannot satisfy the high temperature strength due to lack of Ti and B contents, respectively.

【0035】また、H形鋼13では、Mgを添加してい
ないので、組織の微細化が達成できずシャルピー衝撃値
の目標値を得ることができない。H形鋼A4では、Ti
添加前の溶鋼の酸素濃度が本発明の下限値以下となって
いるためにMg系酸化物の個数が不足し、それに反し、
比較鋼のH形鋼A5では、この酸素濃度の上限値を超え
ているために3μm以上の大きさの粗大な酸化物が形成
されるために、何れもシャルピー衝撃値が開発目標の−
10℃で47J以上を達成できない。比較鋼のH形鋼A
6ではMgは添加されているが圧延中の水冷がなされい
ず、いずれのH形鋼も十分な組織微細化がなされず、7
00℃での降伏強度および−10℃でのシャルピー衝撃
値の目標値を達成できない。
Further, in the H-section steel 13, since Mg is not added, the refinement of the structure cannot be achieved and the target value of the Charpy impact value cannot be obtained. For H-section steel A4, Ti
The oxygen concentration of the molten steel before addition is less than or equal to the lower limit value of the present invention, so the number of Mg-based oxides is insufficient, on the contrary,
In the H-section steel A5, which is a comparative steel, since the coarse oxide having a size of 3 μm or more is formed because the upper limit value of the oxygen concentration is exceeded, the Charpy impact value is the development target of all.
47J or more cannot be achieved at 10 ° C. Comparative steel H-section steel A
In No. 6, Mg was added, but water cooling was not performed during rolling, and any of the H-section steels was not sufficiently refined.
The target values of the yield strength at 00 ° C and the Charpy impact value at -10 ° C cannot be achieved.

【0036】即ち、本発明の製造法の要件が総て満たさ
れた時に、表7、8に示されるH形鋼1〜5、A1〜A
3のように、圧延形鋼の機械試験特性の最も保証しにく
いフランジ板厚1/2,幅1/2 部においても十分な常温・高
温強度、低温靭性を有する、耐火性及び靭性の優れた圧
延形鋼の生産が可能になる。なお、本発明が対象とする
圧延形鋼は上記実施例のH形鋼に限らずI形鋼、山形
鋼、溝形鋼、不等辺不等厚山形鋼等のフランジを有する
形鋼にも適用できることは勿論である。
That is, when all the requirements of the manufacturing method of the present invention are satisfied, H-section steels 1 to 5 and A1 to A shown in Tables 7 and 8 are obtained.
As shown in Fig. 3, the mechanical test characteristics of rolled steel, which are the most difficult to guarantee, have sufficient room temperature / high temperature strength and low temperature toughness even at a flange plate thickness of 1/2 and width of 1/2, and have excellent fire resistance and toughness. Allows production of rolled steel. The rolled shaped steel to which the present invention is applied is not limited to the H-shaped steel of the above-described embodiment, but is also applicable to shaped steel having a flange such as I-shaped steel, chevron steel, grooved steel, and unequal-thickness chevron steel. Of course you can.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【表6】 [Table 6]

【0043】[0043]

【表7】 [Table 7]

【0044】[0044]

【表8】 [Table 8]

【0045】[0045]

【発明の効果】本発明による圧延形鋼は機械試験特性の
最も保証しにくいフランジ板厚1/2,幅1/2 部においても
十分な強度、靭性を有し、高温特性に優れ、耐火材の被
覆を大幅に省略できる、優れた耐火性及び靭性を持つ形
鋼が圧延ままで製造可能になり、施工コスト低減、工期
の短縮による大幅なコスト削減が図られ、大型建造物の
信頼性向上、安全性の確保、経済性等の産業上の効果は
極めて顕著なものがある。
EFFECTS OF THE INVENTION The rolled steel according to the present invention has sufficient strength and toughness even in the flange plate thickness 1/2 and width 1/2 part where the mechanical test characteristics are the most difficult to guarantee, and has excellent high temperature characteristics and is a refractory material. Shaped steel with excellent fire resistance and toughness that can largely omit the coating can be manufactured as it is rolled, reducing the construction cost and the cost by shortening the construction period, and improving the reliability of large buildings The industrial effects such as ensuring safety and economic efficiency are extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法を実施する装置配置例の略図である。FIG. 1 is a schematic diagram of an example of device arrangement for carrying out the method of the present invention.

【図2】H形鋼の断面形状および機械試験片の採取位置
を示す図である。
FIG. 2 is a view showing a cross-sectional shape of H-section steel and a sampling position of a mechanical test piece.

【符号の説明】[Explanation of symbols]

1…H形鋼 2…フランジ 3…ウェブ 4…中間圧延機 5a…中間圧延機前後面の水冷装置 5b…仕上げ圧延機後面冷却装置 6…仕上げ圧延機 1 ... H section steel 2 ... Flange 3 ... Web 4 ... Intermediate rolling mill 5a ... Water cooling device on front and rear surfaces of intermediate rolling mill 5b ... Cooling device for rear surface of finishing rolling mill 6 ... Finishing rolling mill

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C21C 7/06 C21C 7/06 C21D 8/00 C21D 8/00 B C22C 38/16 C22C 38/16 38/54 38/54 (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 B22D 11/22 B22D 11/11 C21C 7/00 C21D 8/00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C21C 7/06 C21C 7/06 C21D 8/00 C21D 8/00 B C22C 38/16 C22C 38/16 38/54 38/54 ( 58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38/60 B22D 11/22 B22D 11/11 C21C 7/00 C21D 8/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 量% で C:0.02〜0.10% 、 Si:0.05 〜0.50% 、 Mn:0.4〜1.6%、 Mo:0.4〜0.8%、 Cu:0.7〜1.5%、 Nb:0.005〜0.05% 、 N:0.004%以下、 Al:0.005% 以下、 を含み、残部がFeおよび不可避不純物からなる溶鋼を、
予備脱酸処理によって、溶存酸素を量%で0.003 〜0.
015%に調整後、Ti:0.005〜0.025%、B:0.0005〜0.0030%
、次いでMg:0.001〜0.005%を順次添加して成分調整し
鋳込んだ鋳片であってC:0.02〜0.10%、Si:0.05〜0.
50%、Mn:0.4〜1.6%、Mo:0.4〜0.8%、Cu:0.7〜1.5%、Nb:
0.005〜0.05%、N:0.004%以下、Al:0.005%以下、Ti:0.00
5〜0.025%、B:0.0005〜0.0030%、Mg:0.001〜0.005%、O:
0.003〜0.015%を含み、残部がFeおよび不可避不純物か
らなり、鋳片内に大きさ3μm 以下のMg系酸化物を50個
/mm2以上含有することを特徴とする耐火圧延形鋼用鋳
片。
In 1. A mass% C: 0.02~0.10%, Si: 0.05 ~0.50%, Mn: 0.4~1.6%, Mo: 0.4~0.8%, Cu: 0.7~1.5%, Nb: 0.005~0.05% , N: 0.004% or less, Al: 0.005% or less, with the balance being Fe and inevitable impurities,
Preliminary deacidification, the dissolved oxygen in the mass% from 0.003 to 0.
After adjusting to 015%, Ti: 0.005 to 0.025%, B: 0.0005 to 0.0030%
, And then add Mg: 0.001-0.005% in order to adjust the composition.
A do it slab casting Te, C: 0.02~0.10%, Si: 0.05~0.
50%, Mn: 0.4 to 1.6%, Mo: 0.4 to 0.8%, Cu: 0.7 to 1.5%, Nb:
0.005-0.05%, N: 0.004% or less, Al: 0.005% or less, Ti: 0.00
5 to 0.025%, B: 0.0005 to 0.0030%, Mg: 0.001 to 0.005%, O:
Contains 0.003 to 0.015%, with the balance being Fe and unavoidable impurities
Rannahli, the size in the cast slab of 3μm following Mg-based oxides 50
A slab for refractory rolled steel, characterized by containing at least / mm 2 .
【請求項2】 量% で C:0.02〜0.10% 、 Si:0.05 〜0.50% 、 Mn:0.4〜1.6%、 Mo:0.4〜0.8%、 Cu:0.7〜1.5%、 Nb:0.005〜0.05% 、 N:0.004%以下、 Al:0.005% 以下、 を含み、加えてCr:1.0% 以下、Ni:2.0% 以下、V:0.1%以
下のいずれかの1種または2種以上を含有し残部がFe
および不可避不純物からなる溶鋼を、予備脱酸処理によ
って、溶存酸素を量%で0.003 〜0.015%に調整後、T
i:0.005〜0.025%、B:0.0005〜0.0030% 、次いでMg:0.00
1〜0.005%を順次添加して成分調整し鋳込んだ鋳片で
あってC:0.02〜0.10%、Si:0.05〜0.50%、Mn:0.4〜1.6
%、Mo:0.4〜0.8%、Cu:0.7〜1.5%、Nb:0.005〜0.05%、N:
0.004%以下、Al:0.005%以下、Ti:0.005〜0.025%、B:0.0
005〜0.0030%、Mg:0.001〜0.005%、O:0.003〜0.015%を
含み、加えてCr:1.0%以下、Ni:2.0%以下、V:0.1%以下の
いずれかの1種または2種以上を含有し、残部がFeおよ
び不可避不純物からなり、鋳片内に大きさ3μm 以下の
Mg系酸化物を50個/mm2以上含有することを特徴とする耐
火圧延形鋼用鋳片。
In 2. A mass% C: 0.02~0.10%, Si: 0.05 ~0.50%, Mn: 0.4~1.6%, Mo: 0.4~0.8%, Cu: 0.7~1.5%, Nb: 0.005~0.05% , N: 0.004% or less, Al: 0.005% or less, and in addition, Cr: 1.0% or less, Ni: 2.0% or less, V: 0.1% or less, and one or more of them , and the balance Is Fe
And molten steel consisting of unavoidable impurities, the preliminary de-acid treatment, was adjusted to 0.003 to 0.015% of dissolved oxygen in the mass%, T
i: 0.005-0.025%, B: 0.0005-0.0030%, then Mg: 0.00
In the 1 to 0.005 percent sequentially added to component adjustment and I'm cast in slab
There, C: 0.02~0.10%, Si: 0.05~0.50%, Mn: 0.4~1.6
%, Mo: 0.4 to 0.8%, Cu: 0.7 to 1.5%, Nb: 0.005 to 0.05%, N:
0.004% or less, Al: 0.005% or less, Ti: 0.005 to 0.025%, B: 0.0
005 to 0.0030%, Mg: 0.001 to 0.005%, O: 0.003 to 0.015%
In addition, Cr: 1.0% or less, Ni: 2.0% or less, V: 0.1% or less
It contains one or more of either, and the balance is Fe and
And unavoidable impurities with a size of 3 μm or less
A cast slab for refractory rolled steel, which contains 50 or more Mg-based oxides / mm 2 .
【請求項3】 量% で C:0.02〜0.10% 、 Si:0.05 〜0.50% 、 Mn:0.4〜1.6%、 Mo:0.4〜0.8%、 Cu:0.7〜1.5%、 Nb:0.005〜0.05% 、 N:0.004%以下、 Al:0.005% 以下、 を含み、残部がFeおよび不可避不純物からなる溶鋼を、
予備脱酸処理によって、溶存酸素を量%で0.003 〜0.
015%に調整後、Ti:0.005〜0.025%、B:0.0005〜0.0030%
、次いでMg:0.001〜0.005%を順次添加して成分調整し
鋳込んだ鋳片であってC:0.02〜0.10%、Si:0.05〜0.
50%、Mn:0.4〜1.6%、Mo:0.4〜0.8%、Cu:0.7〜1.5%、Nb:
0.005〜0.05%、N:0.004%以下、Al:0.005%以下、Ti:0.00
5〜0.025%、B:0.0005〜0.0030%、Mg:0.001〜0.005%、O:
0.003〜0.015%を含み、残部がFeおよび不可避不純物か
らなり、鋳片内に大きさ3μm 以下のMg系酸化物を50個
/mm2以上含有させた鋳片を1200〜1300℃の温度域に再加
熱した後に圧延を開始し、圧延工程で形鋼のフランジ表
面温度を700 ℃以下に水冷し、以降の圧延パス間の復熱
過程で圧延する水冷・圧延工程を一回以上繰り返し圧延
し、圧延終了後に0.5〜10℃/sの冷却速度で700 〜400
℃まで冷却し放冷することを特徴とする耐火圧延形鋼の
製造方法。
In 3. Weight% C: 0.02~0.10%, Si: 0.05 ~0.50%, Mn: 0.4~1.6%, Mo: 0.4~0.8%, Cu: 0.7~1.5%, Nb: 0.005~0.05% , N: 0.004% or less, Al: 0.005% or less, with the balance being Fe and inevitable impurities,
Preliminary deacidification, the dissolved oxygen in the mass% from 0.003 to 0.
After adjusting to 015%, Ti: 0.005 to 0.025%, B: 0.0005 to 0.0030%
, And then add Mg: 0.001-0.005% in order to adjust the composition.
A do it slab casting Te, C: 0.02~0.10%, Si: 0.05~0.
50%, Mn: 0.4 to 1.6%, Mo: 0.4 to 0.8%, Cu: 0.7 to 1.5%, Nb:
0.005-0.05%, N: 0.004% or less, Al: 0.005% or less, Ti: 0.00
5 to 0.025%, B: 0.0005 to 0.0030%, Mg: 0.001 to 0.005%, O:
Contains 0.003 to 0.015%, with the balance being Fe and unavoidable impurities
Rannahli, the size in the cast slab of 3μm following Mg-based oxides 50
/ mm 2 or more contained slabs are reheated to a temperature range of 1200 to 1300 ° C, then rolling is started, and the flange surface temperature of the shaped steel is water-cooled to 700 ° C or less in the rolling process, and the subsequent rolling passes are performed. Repeat water-cooling / rolling process, which is rolling in the recuperative process, one or more times, and 700-400 at a cooling rate of 0.5-10 ° C / s after rolling.
A method for producing a fire-resistant rolled steel shape, which comprises cooling to ℃ and allowing to cool.
【請求項4】 量% で C:0.02〜0.10% 、 Si:0.05 〜0.50% 、 Mn:0.4〜1.6%、 Mo:0.4〜0.8%、 Cu:0.7〜1.5%、 Nb:0.005〜0.05% 、 N:0.004%以下、 Al:0.005% 以下、 を含み、加えてCr:1.0% 以下、Ni:2.0% 以下、V:0.1%以
下のいずれかの1種または2種以上を含有し残部がFeお
よび不可避不純物からなる溶鋼を、予備脱酸処理によっ
て、溶存酸素を量%で0.003 〜0.015%に調整後、Ti:
0.005〜0.025%、B:0.0005〜0.0030% 、次いでMg:0.001
〜0.005%を順次添加して成分調整し鋳込んだ鋳片であ
ってC:0.02〜0.10%、Si:0.05〜0.50%、Mn:0.4〜1.6
%、Mo:0.4〜0.8%、Cu:0.7〜1.5%、Nb:0.005〜0.05%、N:
0.004%以下、Al:0.005%以下、Ti:0.005〜0.025%、B:0.0
005〜0.0030%、Mg:0.001〜0.005%、O:0.003〜0.015%を
含み、加えてCr:1.0%以下、Ni:2.0%以下、V:0.1%以下の
いずれかの1種または2種以上を含有し、残部がFeおよ
び不可避不純物からなり、鋳片内に大きさ3μm 以下の
Mg系酸化物を50個/mm2以上含有させた鋳片を1200〜1300
℃の温度域に再加熱した後に圧延を開始し、圧延工程で
形鋼のフランジ表面温度を700 ℃以下に水冷し、以降の
圧延パス間の復熱過程で圧延する水冷・圧延工程を一回
以上繰り返し圧延し、圧延終了後に0.5 〜10℃/sの冷却
速度で700 〜400 ℃まで冷却し放冷することを特徴とす
る耐火圧延形鋼の製造方法。
In 4. Weight% C: 0.02~0.10%, Si: 0.05 ~0.50%, Mn: 0.4~1.6%, Mo: 0.4~0.8%, Cu: 0.7~1.5%, Nb: 0.005~0.05% , N: 0.004% or less, Al: 0.005% or less, and Cr: 1.0% or less, Ni: 2.0% or less, V: 0.1% or less, and the balance contains one or more. after adjusting the molten steel consisting of Fe and unavoidable impurities, the pre-deoxidation process, from 0.003 to 0.015% of dissolved oxygen in the mass%, Ti:
0.005-0.025%, B: 0.0005-0.0030%, then Mg: 0.001
The 0.005% sequentially added component adjustment and I cast to cast piece Der
I, C: 0.02~0.10%, Si: 0.05~0.50%, Mn: 0.4~1.6
%, Mo: 0.4 to 0.8%, Cu: 0.7 to 1.5%, Nb: 0.005 to 0.05%, N:
0.004% or less, Al: 0.005% or less, Ti: 0.005 to 0.025%, B: 0.0
005 to 0.0030%, Mg: 0.001 to 0.005%, O: 0.003 to 0.015%
In addition, Cr: 1.0% or less, Ni: 2.0% or less, V: 0.1% or less
It contains one or more of either, and the balance is Fe and
And unavoidable impurities with a size of 3 μm or less
The cast slab of Mg-based oxide is contained 50 / mm 2 or more 1200-1300
After reheating to the temperature range of ℃, rolling is started, the flange surface temperature of the shaped steel is water-cooled to 700 ℃ or less in the rolling process, and the water-cooling / rolling process is performed once during the reheating process between rolling passes. A method for producing a fire-resistant rolled steel section, which comprises repeating rolling as described above, cooling to 700 to 400 ° C at a cooling rate of 0.5 to 10 ° C / s, and then leaving to cool after the rolling is completed.
JP25879995A 1995-10-05 1995-10-05 Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same Expired - Lifetime JP3426425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25879995A JP3426425B2 (en) 1995-10-05 1995-10-05 Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25879995A JP3426425B2 (en) 1995-10-05 1995-10-05 Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same

Publications (2)

Publication Number Publication Date
JPH09104944A JPH09104944A (en) 1997-04-22
JP3426425B2 true JP3426425B2 (en) 2003-07-14

Family

ID=17325230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25879995A Expired - Lifetime JP3426425B2 (en) 1995-10-05 1995-10-05 Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same

Country Status (1)

Country Link
JP (1) JP3426425B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4828052B2 (en) * 2001-08-07 2011-11-30 新日本製鐵株式会社 Manufacturing method of steel sheet for thin sheet
BE1016550A3 (en) * 2005-03-16 2007-01-09 Ct Rech Metallurgiques Asbl Process for casting continuous metal mechanical resistance and improved product obtained by the process.
KR20180102175A (en) 2016-03-02 2018-09-14 신닛테츠스미킨 카부시키카이샤 H-section steel for low temperature and its manufacturing method

Also Published As

Publication number Publication date
JPH09104944A (en) 1997-04-22

Similar Documents

Publication Publication Date Title
JP2760713B2 (en) Method for producing controlled rolled steel with excellent fire resistance and toughness
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JP2661845B2 (en) Manufacturing method of oxide-containing refractory section steel by controlled rolling
JP5098210B2 (en) Refractory steel and method for producing the same
JP3507258B2 (en) 590 MPa class rolled section steel and method for producing the same
JP2007284712A (en) Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
JP2579841B2 (en) Method for producing as-rolled intragranular ferritic steel with excellent fire resistance and toughness
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JPH0765097B2 (en) Method for producing H-section steel excellent in fire resistance and weld toughness
JP3426425B2 (en) Slab for refractory rolled section steel and method for producing refractory rolled section steel from the same
JP3472017B2 (en) Refractory rolled steel and method for producing the same
JP3285732B2 (en) Rolled section steel for refractory and method for producing the same
JPH10204572A (en) 700×c fire resistant rolled shape steel and its production
JP3507259B2 (en) 590 MPa class rolled section steel and method for producing the same
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP2579842B2 (en) Method for producing intragranular ferritic section steel with excellent toughness as rolled and excellent weld toughness
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JPH04157117A (en) Production of rolled shape steel having excellent toughness of base metal and weld zone
JP3285731B2 (en) Rolled section steel for refractory and method for producing the same
JP3241198B2 (en) Oxide particle-dispersed slab for refractory and method for producing rolled section steel for refractory using this slab
JPH0790473A (en) Production of oxide-containing slab for fireproofing and rolled shape steel for fireproofing by the same slab
JP3403300B2 (en) 590 MPa class rolled section steel and method for producing the same
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JPH05132716A (en) Manufacture of rolled shape steel excellent in toughness
JPH09111397A (en) Production of cast bloom for 590n/mm2 class shape steel and high tensile strength rolled shape steel using same as stock

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 11

EXPY Cancellation because of completion of term