JP3419533B2 - Magnetic scale and magnetic detection device having the same - Google Patents
Magnetic scale and magnetic detection device having the sameInfo
- Publication number
- JP3419533B2 JP3419533B2 JP03513894A JP3513894A JP3419533B2 JP 3419533 B2 JP3419533 B2 JP 3419533B2 JP 03513894 A JP03513894 A JP 03513894A JP 3513894 A JP3513894 A JP 3513894A JP 3419533 B2 JP3419533 B2 JP 3419533B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- pole
- scale
- poles
- magnetic poles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Optical Transform (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁気スケールおよびこ
れを備えた磁気式検出装置に係り、例えばエンコーダ等
のような変位を検出するのに好適な磁気スケールおよび
それを用いて所定方向における変位、速度又は角速度等
を検出する磁気式検出装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic scale and a magnetic detection device equipped with the magnetic scale, and more particularly to a magnetic scale suitable for detecting displacement such as an encoder and the like, and displacement in a predetermined direction using the magnetic scale. , A magnetic detection device for detecting velocity or angular velocity.
【0002】[0002]
【従来の技術】従来、磁気スケールは磁気式エンコーダ
等に使用されており、その磁気の読取方式としては次の
、のような2つの方式がある。
磁気記録再生用ヘッドと同等のヘッドを用い、磁束
が変化したとき高透磁率材に巻き付けたコイルで誘起さ
れる電流(ビオサバールの法則)の変化を読み取って磁
気スケール上の磁界分布を読み取る。2. Description of the Related Art Conventionally, a magnetic scale has been used in a magnetic encoder and the like, and there are two methods for reading the magnetism as follows. A magnetic recording / reproducing head is used to read the change in the current (Biosavart's law) induced by the coil wound around the high-permeability material when the magnetic flux changes to read the magnetic field distribution on the magnetic scale.
【0003】 磁気抵抗効果素子又はホール効果素子
を磁界強度の検出に用いる方式。近時の小型・高分解能
を要求されるものに多用されているのはの方式で、こ
の方式では所定の磁極表出面側に所定の磁極が表出す
る。例えばN極(正極)のみを並べた磁気スケールを用
い、磁気スケールが発生する磁界の強度を磁気抵抗効果
素子又はホール効果素子の何れかによって電気信号に変
換し、これを読み取っている。A method in which a magnetoresistive effect element or a Hall effect element is used to detect magnetic field strength. Recently, the method is often used for those requiring small size and high resolution. In this method, a predetermined magnetic pole is exposed on a predetermined magnetic pole exposing surface side. For example, a magnetic scale in which only N poles (positive electrodes) are arranged is used, the intensity of the magnetic field generated by the magnetic scale is converted into an electric signal by either the magnetoresistive effect element or the Hall effect element, and this is read.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の磁気式エンコーダ等にあっては、磁気抵抗効
果素子又はホール効果素子と、これに対向する磁極表出
面側に所定の磁極のみを表出させた磁気スケールとによ
って変位等の検出を行なっていたため、磁気抵抗素子や
ホール効果素子を磁気スケールに近接して配置すると、
実効的なノイズレベルが高くなってS/N比が低下する
という問題があった。すなわち、図15(a)に示すよ
うに、磁極上のP点およびR点から上向き(+z向き)
に出た磁化ベクトルは、磁極表出面と同一高さに位置す
る磁極間の中間点(O点)近傍で下向き(−z向き)に
なり、この下向きの磁化ベクトルが磁気抵抗効果素子又
はホール効果素子に作用した場合であっても、その素子
の電気抵抗又は発生電圧が増大することから、図15
(b)中に示す読取信号波形の小さなピークが生じてし
まう。したがって、磁気スケールの表面(磁極表出面)
近傍では、検出すべき+側の磁化ベクトルとこれとは逆
向きの−側の磁化ベクトルとが等価に検出され、実効的
なノイズレベルが増大するのである。However, in such a conventional magnetic encoder or the like, only the magnetoresistive effect element or the Hall effect element and a predetermined magnetic pole on the magnetic pole exposed surface side facing the magnetoresistive effect element or the Hall effect element are exposed. Since the displacement and the like were detected by the magnetic scale that was taken out, when the magnetoresistive element and the Hall effect element were placed close to the magnetic scale,
There is a problem that the effective noise level becomes high and the S / N ratio is lowered. That is, as shown in FIG. 15A, upward (+ z direction) from points P and R on the magnetic pole.
The magnetization vector appearing in the downward direction becomes downward (-z direction) in the vicinity of the midpoint (O point) between the magnetic poles located at the same height as the magnetic pole surface, and the downward magnetization vector is the magnetoresistive element or the Hall effect. Even when acting on the element, the electric resistance or the generated voltage of the element increases, so that FIG.
A small peak of the read signal waveform shown in (b) occurs. Therefore, the surface of the magnetic scale (magnetic pole exposed surface)
In the vicinity, the positive side magnetization vector to be detected and the negative side magnetization vector opposite thereto are detected equivalently, and the effective noise level increases.
【0005】このような問題を回避するために、従来、
磁気抵抗効果素子やホール効果素子を磁気スケールから
ある程度離し、−z向きの磁化が発生しないような領域
でスライドさせて、磁界検出(位置、変位等の検出)を
行っている。そのため、読取信号レベルが低下したり分
解能が低下したりするばかりか、高度な小型化の要求に
も応えられなかった。In order to avoid such a problem, conventionally,
The magnetoresistive effect element and the Hall effect element are separated from the magnetic scale to some extent and slid in a region where magnetization in the −z direction does not occur to detect a magnetic field (detection of position, displacement, etc.). Therefore, not only the read signal level and the resolution are lowered, but also it is not possible to meet the demand for a high degree of miniaturization.
【0006】分解能を向上させるためには、次のような
ことが考えられる。
イ)磁気スケールの磁気パターンのピッチを細かくする
とともに、磁気スケールと磁気抵抗効果素子又はホール
効果素子との間隔を狭める。
ロ)出力されるサインカーブを電子回路で分周する。
一般には、ロ)の方法が採られているが、電子回路が複
雑になり、信号レベルが大きく変動すると分割がし難く
なる。In order to improve the resolution, the following can be considered. B) The pitch of the magnetic pattern of the magnetic scale is made fine and the distance between the magnetic scale and the magnetoresistive effect element or the Hall effect element is narrowed. B) Divide the output sine curve by an electronic circuit. Generally, the method of (b) is adopted, but if the electronic circuit becomes complicated and the signal level fluctuates greatly, division becomes difficult.
【0007】このように、従来の磁気式エンコーダ等に
あっては、磁極間における磁化ベクトルの反対方向への
回り込みがあるため、磁極間隔を狭めることができず、
検出精度の大幅な向上が期待できなかった。そこで、本
発明は、磁極上とは反対向きとなる磁化の回り込みを磁
極間検出高さにおいて実効的に除去して、磁界強度検出
素子との配置間隔を狭めることの可能な磁気スケールを
提供することを第1の目的とし、それにより実効的にS
/N比を向上させた各種の磁気式検出装置を提供するこ
とを第2の目的とする。As described above, in the conventional magnetic encoder and the like, since the magnetization vector between the magnetic poles wraps around in the opposite direction, the magnetic pole interval cannot be narrowed.
No significant improvement in detection accuracy could be expected. Therefore, the present invention provides a magnetic scale capable of effectively removing the wraparound of the magnetization in the direction opposite to the direction on the magnetic poles at the detection height between the magnetic poles and narrowing the arrangement interval with the magnetic field strength detection element. The first purpose is to effectively use S
A second object is to provide various magnetic detection devices having an improved / N ratio.
【0008】[0008]
【課題を解決するための手段】上記目的達成のため、請
求項1〜3記載の発明は、複数の磁界発生手段からなる
所定磁界強度分布の磁気パターンを備え、該磁気パター
ン側の磁界強度が磁界強度検出素子の所定検出方向で規
則的に変化する磁気スケールにおいて、前記磁界強度検
出素子に対向する位置に配置されるための非磁性体を挟
んで前記検出方向と略直交する方向で互いに近接し同一
面側に表出するN極およびS極少なくとも2つの磁極を
1組として、少なくとも1組の磁極を前記検出方向の所
定位置に設けたことを特徴とするものである。このよう
な磁極の配置は、例えば略馬蹄形(例えばU字型やコの
字型)の磁石を用いることで実現できるし、磁石と高透
磁性材料とを組み合せて馬蹄形磁石と同様な磁路を構成
することでも実現することができる。To achieve the above object, the invention according to claims 1 to 3 is provided with a magnetic pattern having a predetermined magnetic field strength distribution consisting of a plurality of magnetic field generating means, and the magnetic field strength on the magnetic pattern side is the magnetic scale changes regularly at a predetermined detection direction of the magnetic field strength detection element, the magnetic field strength detection
Sandwich a non-magnetic material to be placed at a position facing the output element.
Examples detection direction and a set of N and S poles at least two magnetic poles adjacent to each other physician direction substantially perpendicular to exposed on the same side, provided with at least one pair of magnetic poles in a predetermined position in the detection direction Nde It is characterized by that. Such arrangement of magnetic poles can be realized by using, for example, a substantially horseshoe-shaped (for example, U-shaped or U-shaped) magnet, and a magnetic path similar to that of a horseshoe-shaped magnet can be obtained by combining the magnet with a highly permeable material. It can also be realized by configuring.
【0009】前記少なくとも1組の磁極は、例えば前記
検出方向に配列された複数組の磁極であり、請求項2記
載のように該複数組の磁極のうち同一列の磁極の極性が
交互に変化するよう複数組の磁極の極性配置を異ならせ
るか、あるいは、請求項3記載のように該複数組の磁極
のうち同一列の磁極の極性が所定の順番で変化するよう
複数組の磁極の極性配置を異ならせることができる。The at least one set of magnetic poles is, for example, a plurality of sets of magnetic poles arranged in the detection direction, and the polarities of the magnetic poles in the same row among the plurality of sets of magnetic poles are alternately changed. The polarities of the plurality of magnetic poles may be different from each other, or the polarities of the magnetic poles of the same row among the plurality of magnetic poles may be changed in a predetermined order. The placement can be different.
【0010】前記複数組の磁極又は同一列に配列された
N極およびS極少なくとも2つの磁極は、請求項4記載
のように、前記検出方向で長さの異なる磁極を含み、該
磁極の表出面が前記検出方向における該表出面の長さに
応じて異なる高さに位置するもの、あるいは、請求項5
記載のように、該磁極の表出面が前記検出方向における
該表出面の長さに応じて検出方向と直交する幅を変化さ
せたものであってもよい。The plurality of sets of magnetic poles or at least two magnetic poles of N-pole and S-pole arranged in the same row include magnetic poles having different lengths in the detection direction, and a table of the magnetic poles is provided. The one in which the projecting surface is located at a different height according to the length of the projecting surface in the detection direction, or
As described above, the exposed surface of the magnetic pole may have a width that is orthogonal to the detected direction changed according to the length of the exposed surface in the detection direction.
【0011】また、請求項6記載のように、前記検出方
向と直交する方向に複数の磁石を並列に配置し、該複数
の磁石の対向部により、前記複数組の磁極を、磁石の並
列数から1を引いた列数だけ構成することができる。な
お、勿論、同一列に配列されたN極およびS極少なくと
も2つの磁極を、前記複数の磁石の並列数から1を引い
た列数だけ構成することもできる。According to a sixth aspect of the present invention, a plurality of magnets are arranged in parallel in a direction orthogonal to the detection direction, and the plurality of sets of magnetic poles are arranged in parallel by the facing portions of the plurality of magnets. Can be configured by the number of columns minus 1. Of course, at least two magnetic poles of N pole and S pole arranged in the same row can be formed by the number of rows obtained by subtracting 1 from the parallel number of the plurality of magnets.
【0012】さらに、前記複数組の磁極は、請求項7記
載のように、前記検出方向である円周方向に所定角度間
隔を隔てるよう配列されたものであってもよい。請求項
8記載の発明に係る磁気式検出装置は、上記構成を有す
る何れかの磁気スケールと、光信号を出力する光出射手
段と、前記磁気スケールの磁極表出面側の前記非磁性体
に対向する位置に設けられ、各組のN極およびS極の磁
極により形成される磁界の強度に応じて前記光信号の偏
光方向を回転させる偏光回転手段と、特定方向の偏光の
みを透過させる偏光制御手段と、偏光制御手段透過後の
光強度信号を電気信号に変換する光電気変換手段と、光
電変換手段からの電気信号を処理して該信号に応じた特
定の物理量を求める電気信号処理手段と、を備えてい
る。また、その電気信号処理手段は、請求項9記載のよ
うに、前記光電変換手段からの電気信号に基づいて、前
記磁気スケールと前記偏光回転手段との相対的な変位、
速度および加速度のうち何れかを求める手段とすること
ができる。Further, the plurality of sets of magnetic poles may be arranged so as to be spaced at a predetermined angular interval in the circumferential direction which is the detection direction. The magnetic detection device according to the invention of claim 8 is any one of the magnetic scales having the above configuration, a light emitting means for outputting an optical signal, and the non-magnetic body on the magnetic pole surface of the magnetic scale.
And a polarization rotation means for rotating the polarization direction of the optical signal according to the strength of the magnetic field formed by the magnetic poles of the N-pole and the S-pole of each set, and transmitting only the polarized light of a specific direction. Polarization control means, photoelectric conversion means for converting a light intensity signal after passing through the polarization control means into an electric signal, and electric signal processing for processing an electric signal from the photoelectric conversion means to obtain a specific physical quantity according to the signal. And means. Further, the electric signal processing means, as described in claim 9, based on an electric signal from the photoelectric conversion means, a relative displacement between the magnetic scale and the polarization rotation means,
It can be a means for determining either the speed or the acceleration.
【0013】請求項10記載の発明に係る磁気式検出装
置は、請求項7記載のように円周方向に所定角度間隔を
隔てるよう配列された磁極を有する磁気スケールと、光
信号を出力する光出射手段と、前記磁気スケールの磁極
表出面側の前記非磁性体に対向する位置に設けられ、各
組のN極およびS極の磁極により形成される磁界の強度
に応じて前記光信号の偏光方向を回転させる偏光回転手
段と、特定方向の偏光のみを透過させる偏光制御手段
と、偏光制御手段透過後の光強度信号を電気信号に変換
する光電気変換手段と、光電変換手段からの電気信号を
処理して該信号に応じた特定の物理量を求める電気信号
処理手段と、を備えている。また、その電気信号処理手
段は、請求項11記載のように、前記光電変換手段から
の電気信号に基づいて、前記磁気スケールと前記偏光回
転手段との相対的な角変位、角速度および角加速度のう
ち何れかを求める手段とすることができる。According to a tenth aspect of the present invention, there is provided a magnetic detection device including a magnetic scale having magnetic poles arranged at predetermined angular intervals in the circumferential direction, and a light for outputting an optical signal. Polarization of the optical signal is provided depending on the intensity of the magnetic field formed by the emitting means and the non-magnetic body on the magnetic pole exposed surface side of the magnetic scale and formed by the N-pole and S-pole magnetic poles of each set. Polarization rotating means for rotating the direction, polarization control means for transmitting only the polarized light in a specific direction, photoelectric conversion means for converting the light intensity signal after passing through the polarization control means into an electric signal, and an electric signal from the photoelectric conversion means And an electric signal processing means for calculating a specific physical quantity according to the signal. Further, the electric signal processing means is configured to detect relative angular displacement, angular velocity and angular acceleration of the magnetic scale and the polarization rotating means based on the electric signal from the photoelectric conversion means. It can be used as a means for obtaining any one of them.
【0014】上記構成の磁気式検出装置においては、請
求項12記載のように、前記磁気スケールが、複数組の
磁極を複数列に並列させたものであり、前記偏光回転手
段が、該複数列の各列の磁極により形成される磁界の強
度に応じて前記光信号の偏光方向を回転させる複数の偏
光回転素子を有し、前記光電変換手段が、偏光制御手段
透過後の複数の光強度信号を複数の電気信号に変換する
ものであってもよい。In the magnetic detection device having the above structure, as described in claim 12, the magnetic scale comprises a plurality of sets of magnetic poles arranged in parallel in a plurality of rows, and the polarization rotating means has a plurality of rows. A plurality of polarization rotation elements that rotate the polarization direction of the optical signal in accordance with the strength of the magnetic field formed by the magnetic poles of each column, wherein the photoelectric conversion means transmits a plurality of light intensity signals after passing through the polarization control means. May be converted into a plurality of electric signals.
【0015】また、請求項13記載の発明に係る磁気式
検出装置は、複数の磁界発生手段からなる所定磁界強度
分布の磁気パターンを備え、該磁気パターン側の磁界強
度が所定検出方向で規則的に異なるとともに、前記検出
方向で非磁性体を挟んで互いに近接し同一面側に表出す
るN極およびS極少なくとも2つの磁極を前記検出方向
に同一列に配列した磁気スケールと、光信号を出力する
光出射手段と、前記磁気スケールの磁極表出面側の前記
非磁性体に対向する位置に設けられ、各組のN極および
S極の磁極により形成される磁界の強度に応じて前記光
信号の偏光方向を回転させる偏光回転手段と、特定方向
の偏光のみを透過させる偏光制御手段と、偏光制御手段
透過後の光強度信号を電気信号に変換する光電気変換手
段と、光電変換手段からの電気信号を処理し、該信号に
応じて前記磁気スケールと前記偏光回転手段との相対的
な変位、速度、加速度、角変位、角速度および角加速度
のうち少なくとも何れかを求める電気信号処理手段と、
を備えたことを特徴とするものであり、請求項14記載
の発明のように、前記磁気スケールが、前記同一列に配
列されたN極およびS極少なくとも2つの磁極を複数列
に並列させたものであり、前記偏光回転手段が、該複数
列の各列の磁極により形成される磁界の強度に応じて前
記光信号の偏光方向を回転させる複数の偏光回転素子を
有し、前記光電変換手段が、偏光制御手段透過後の複数
の光強度信号を複数の電気信号に変換する(すなわち、
複数ビットの光強度信号に対応する)ようにしたことを
特徴とするものでもよい。このような検出装置における
磁気スケールの磁極配置は、例えばクシ(櫛)形の磁石
を対向させるなどして実現することができる。A magnetic detection device according to a thirteenth aspect of the present invention includes a magnetic pattern having a predetermined magnetic field intensity distribution composed of a plurality of magnetic field generating means, and the magnetic field intensity on the magnetic pattern side is regular in a predetermined detection direction. And a magnetic scale in which at least two magnetic poles of an N pole and an S pole which are close to each other with a non-magnetic body sandwiched therebetween in the detection direction and are exposed on the same plane side are arranged in the same row in the detection direction, The light emitting means for outputting, and the magnetic scale exposed surface side of the magnetic scale
Polarization rotating means provided at a position facing the non-magnetic body, for rotating the polarization direction of the optical signal according to the strength of the magnetic field formed by the magnetic poles of the N pole and the S pole of each set, and only the polarization of the specific direction. A polarization control means for transmitting, a photoelectric conversion means for converting a light intensity signal after transmission through the polarization control means into an electric signal, and an electric signal from a photoelectric conversion means are processed, and the magnetic scale and the Electrical signal processing means for determining at least one of displacement relative to the polarization rotation means, velocity, acceleration, angular displacement, angular velocity and angular acceleration,
According to the invention of claim 14, the magnetic scale has at least two magnetic poles of N pole and S pole arranged in the same row arranged in parallel in a plurality of rows. The polarization rotation means has a plurality of polarization rotation elements for rotating the polarization direction of the optical signal according to the strength of the magnetic field formed by the magnetic poles of each row of the plurality of rows, and the photoelectric conversion means. Converts a plurality of light intensity signals after passing through the polarization control means into a plurality of electric signals (that is,
(Corresponding to a light intensity signal of a plurality of bits). The magnetic pole arrangement of the magnetic scale in such a detection device can be realized by, for example, facing comb-shaped magnets.
【0016】さらに、上記構成の磁気スケールを他の磁
界強度検出素子と組み合せた磁気式検出装置としてもよ
い。すなわち、請求項15又は17記載のように、上記
構成の何れかを有する磁気スケールと、磁気スケールの
磁極表出面側の前記非磁性体に対向する位置に設けら
れ、該磁気スケールのN極およびS極の磁極により形成
される磁界の強度に応じた電圧を発生する磁気電気変換
素子からなる磁界強度検出素子と、該磁界強度検出素子
の発生電圧に対応する電気信号を処理して特定の物理量
を求める電気信号処理手段と、を備えたことを特徴とす
る磁気式検出装置とすることができる。Further, the magnetic scale having the above structure may be combined with another magnetic field strength detecting element to form a magnetic detecting device. That is, as set forth in claim 15 or 17, the magnetic scale having any one of the above-mentioned structures is provided at a position facing the non-magnetic body on the magnetic pole exposed surface side of the magnetic scale, and the N pole of the magnetic scale and A magnetic field strength detection element including a magnetoelectric conversion element that generates a voltage according to the strength of a magnetic field formed by an S pole, and a specific physical quantity by processing an electric signal corresponding to the generated voltage of the magnetic field strength detection element. It is possible to provide a magnetic detection device characterized by comprising:
【0017】これらの場合にも、前記電気信号処理手段
は、請求項16記載のように、前記電気信号に基づい
て、前記磁気スケールと前記磁界強度検出素子との相対
的な変位、速度および加速度のうち何れかを求める手段
とすることができるし、請求項18記載のように、前記
電気信号に基づいて、前記磁気スケールと前記磁界強度
検出素子との相対的な角変位、角速度および角加速度の
うち何れかを求める手段とすることもできる。Also in these cases, the electric signal processing means is arranged such that relative displacement, velocity and acceleration between the magnetic scale and the magnetic field strength detecting element are based on the electric signal. Any of the above can be used as a means for obtaining any one of them, and as described in claim 18, relative angular displacement, angular velocity and angular acceleration between the magnetic scale and the magnetic field strength detection element based on the electric signal. It may be a means for obtaining any one of them.
【0018】なお、上記磁気電気変換素子としては、ホ
ール効果素子や磁気抵抗効果素子を用いることができ
る。また、上記磁気式検出装置の偏光回転手段として
は、磁気光学効果素子を用いるのが好ましい。その場
合、特定方向の偏光(直線偏光)を磁気光学効果素子に
入射させ、該光に対し略直交するよう外部磁界を印加さ
せることで、磁気光学効果素子内部に発生していた磁区
構造は消失し、偏光方向が回転しない状態で直進した前
記光が偏光子(偏光制御手段)を透過して、光出力が得
られる。また、外部に磁界が無いとき、自ら磁気的に飽
和した磁気光学効果素子中の磁区によって、前記光は、
磁気光学効果素子を通過する間にその偏光面を90度回
転し、偏光子を透過できないので、光出力はない。さら
に、磁界発生手段を磁石とするとき、変位方向(所定検
出方向)に対し直交する方向となるよう磁石を配置する
もの(並列型)と、変位方向に対し平行となるよう磁石
を配置するもの(直列型)とのうち何れのタイプでも採
用可能である。A Hall effect element or a magnetoresistive effect element can be used as the magnetoelectric conversion element. Further, it is preferable to use a magneto-optical effect element as the polarization rotating means of the magnetic detection device. In that case, polarized light in a specific direction (linearly polarized light) is incident on the magneto-optical effect element, and an external magnetic field is applied so as to be substantially orthogonal to the light, whereby the magnetic domain structure generated inside the magneto-optical effect element disappears. Then, the light traveling straight in a state where the polarization direction does not rotate passes through the polarizer (polarization control means), and an optical output is obtained. Further, when there is no magnetic field outside, due to the magnetic domain in the magneto-optical effect element which is magnetically saturated by itself, the light is
While passing through the magneto-optical effect element, its plane of polarization is rotated by 90 degrees and cannot pass through the polarizer, so there is no light output. Further, when the magnetic field generating means is a magnet, the magnet is arranged so as to be in a direction orthogonal to the displacement direction (predetermined detection direction) (parallel type), and the magnet is arranged so as to be parallel to the displacement direction. Any type of (series type) can be adopted.
【0019】[0019]
【作用】請求項1〜3記載の発明では、磁界強度検出素
子に対向する位置に配置されるための非磁性体を挟んで
所定検出方向と略直交する方向で互いに近接し同一面側
に表出するN極およびS極少なくとも2つの磁極が、所
定検出方向の所定位置に設けられるから、一方の磁極か
ら磁極表出面上に出た磁化ベクトルはこの一方の磁極と
同一高さに位置する他方の磁極の近傍で下向きになる
が、検出場所での磁化の向きは水平方向である。したが
って、従来なら所定検出方向で近接する磁極間に生じて
いたであろう反対向きの磁化が実効的に除去され、反対
向きの磁化による実効的なノイズレベルの増大という問
題が解消する。In the invention described in claims 1 to 3, the magnetic field strength detection element is
N and S poles at least two to exposed to a non-magnetic material interposed therebetween proximate the <br/> each other physician predetermined detection direction and a direction substantially orthogonal same side for being disposed in a position facing the child Since the magnetic pole is provided at the predetermined position in the predetermined detection direction, the magnetization vector emitted from the one magnetic pole on the magnetic pole surface becomes downward near the other magnetic pole located at the same height as the one magnetic pole, The direction of magnetization at the detection location is horizontal. Therefore, the magnetization in the opposite direction, which has been conventionally generated between the magnetic poles adjacent to each other in the predetermined detection direction, is effectively removed, and the problem that the effective noise level is increased by the magnetization in the opposite direction is solved.
【0020】また、請求項2又は3記載のように、前記
検出方向に配列された複数組の磁極のうち同一列の磁極
の極性が交互に又は所定の順番で変化するよう複数組の
磁極の極性配置を異ならせると、所定検出方向で近接す
るN極およびS極の磁極の中間位置近傍において下向き
の磁化ベクトルが生じないとともに、磁化ベクトルの向
きが変位方向と平行になる。したがって、反対方向の磁
化がより確実に除去される。さらに、磁極上の磁界のみ
ならず、変位方向で隣合う磁極間に生ずる変位方向の磁
化をも積極的に活用できるセンサヘッドを使用すること
で、検出精度の優れた変位検出および他の制御信号を同
一スケール上に記録することが可能になる。According to the second or third aspect of the invention, among the plurality of sets of magnetic poles arranged in the detection direction, the polarities of the magnetic poles in the same row change alternately or in a predetermined order. If the polar arrangements are made different, no downward magnetization vector is generated in the vicinity of the intermediate position between the N and S magnetic poles that are close to each other in the predetermined detection direction, and the direction of the magnetization vector becomes parallel to the displacement direction. Therefore, the magnetization in the opposite direction is more surely removed. Further, by using a sensor head that can positively utilize not only the magnetic field on the magnetic pole but also the magnetization in the displacement direction generated between the adjacent magnetic poles in the displacement direction, the displacement detection and other control signals with excellent detection accuracy can be achieved. Can be recorded on the same scale.
【0021】請求項4、5記載の発明では、前記複数組
の磁極又は同一列に配列されたN極およびS極少なくと
も2つの磁極が、前記検出方向で長さの異なるものを含
み、その表出面の長さに応じて異なる高さに位置し、又
は異なる幅を有する。したがって、磁極表出面積の大小
に拘らず検出高さにおける磁界強度を均一化することが
できる。According to the inventions of claims 4 and 5, the plurality of sets of magnetic poles or at least two magnetic poles of N pole and S pole arranged in the same row include those having different lengths in the detection direction. They are located at different heights or have different widths depending on the length of the exit surface. Therefore, the magnetic field strength at the detection height can be made uniform regardless of the size of the magnetic pole exposed area.
【0022】請求項6記載の発明では、並列に配置した
複数の磁石の対向部によって、複数組の磁極又は同一列
に配列されたN極およびS極少なくとも2つの磁極が、
前記複数の磁石の並列数から1を引いた列数だけ構成さ
れる。したがって、マルチチャンネルの磁気スケールを
小型化することができるとともに、その製造上の歩留り
も向上する。In a sixth aspect of the present invention, a plurality of pairs of magnetic poles or at least two magnetic poles of N pole and S pole arranged in the same row are formed by facing portions of a plurality of magnets arranged in parallel.
The number of rows is one that is obtained by subtracting 1 from the parallel number of the plurality of magnets. Therefore, the multi-channel magnetic scale can be downsized, and the manufacturing yield thereof can be improved.
【0023】請求項7記載では、前記複数組の磁極が円
周方向に所定角度間隔を隔てるよう配列される。したが
って、角変位、角速度、角加速度等が検出可能な磁気ス
ケールとなる。請求項8、9記載の発明では、N極およ
びS極の磁極を所定検出方向と直交する方向に近接させ
た磁気スケールの磁極表出面側の非磁性体に対向する位
置に偏光回転手段が設けられ、光出射手段から該偏光回
転手段に送られた光信号が、前記磁極により形成される
磁界の強度に応じてその偏光方向を回転させる。そし
て、特定方向の偏光のみを透過させる偏光制御手段を光
信号の経路に介在させることで、磁界強度に応じた光強
度信号を生成し、これを電気信号に変換し信号処理する
と、特定の物理量である磁気スケールと前記偏光回転手
段との相対的な変位(一方を固定した場合の固定側を基
準とする位置を含む)、速度又は加速度等が求まる。こ
のとき、正の磁極から磁極表出面上に出た磁化ベクトル
はこの磁極と同一高さに位置する負の磁極の近傍で反対
向きになるが、検出方向での位置は同じであり、検出方
向で近接する磁極との中間位置近傍で反対向きの磁化が
生ずることはない。したがって、反対向きの磁化による
実効的ノイズレベルの増大という問題が解消され、S/
N比および分解能に優れた検出装置となる。According to a seventh aspect of the present invention, the plurality of sets of magnetic poles are arranged so as to be spaced at a predetermined angular interval in the circumferential direction. Therefore, the magnetic scale can detect angular displacement, angular velocity, angular acceleration, and the like. According to the eighth and ninth aspects of the present invention, the magnetic poles of the N pole and the S pole are close to each other in the direction orthogonal to the predetermined detection direction so as to face the non-magnetic body on the magnetic pole surface of the magnetic scale.
A polarization rotating means is provided in the position , and the optical signal sent from the light emitting means to the polarization rotating means rotates the polarization direction according to the strength of the magnetic field formed by the magnetic poles. Then, by interposing a polarization control means for transmitting only the polarized light in a specific direction in the path of the optical signal, a light intensity signal corresponding to the magnetic field strength is generated, and this is converted into an electric signal and signal processing is performed. The relative displacement between the magnetic scale and the polarization rotation means (including the position with one side fixed relative to the fixed side), the speed, the acceleration, and the like are obtained. At this time, the magnetization vector emerging from the positive magnetic pole on the magnetic pole surface is opposite in the vicinity of the negative magnetic pole located at the same height as this magnetic pole, but the position in the detection direction is the same. In the vicinity of the intermediate position between adjacent magnetic poles, the opposite magnetization does not occur. Therefore, the problem that the effective noise level increases due to the magnetization in the opposite direction is solved, and S /
The detector has an excellent N ratio and resolution.
【0024】請求項10、11記載の発明では、磁極を
円周方向に配列させた磁気スケールの磁極表出面側の非
磁性体に対向する位置に偏光回転手段が設けられ、光出
射手段から該偏光回転手段に送られた光信号が、前記磁
極により形成される磁界の強度に応じてその偏光方向を
回転させる。そして、特定方向の偏光のみを透過させる
偏光制御手段を光信号の経路に介在させることで、磁界
強度に応じた光強度信号を生成し、これを電気信号に変
換し信号処理すると、特定の物理量である磁気スケール
と前記偏光回転手段との相対的な変位角(一方を固定し
た場合の固定側を基準とする角度位置を含む)、角速度
又は角加速度等が求まる。このとき、正の磁極から磁極
表出面上に出た磁化ベクトルはこの磁極と同一高さに位
置する負の磁極の近傍で反対向きになるが、検出方向で
の位置は同じであり、検出方向で近接する磁極との中間
位置近傍で反対向きの磁化が生ずることはない。したが
って、反対向きの磁化による実効的ノイズレベルの増大
という問題が解消され、S/N比および分解能に優れた
検出装置となる。According to the tenth and eleventh aspects of the present invention, the magnetic scales in which the magnetic poles are arranged in the circumferential direction are provided on the non-contact side of the magnetic pole.
A polarization rotating means is provided at a position facing the magnetic body, and an optical signal sent from the light emitting means to the polarization rotating means rotates the polarization direction according to the strength of the magnetic field formed by the magnetic poles. Then, by interposing a polarization control means for transmitting only the polarized light in a specific direction in the path of the optical signal, a light intensity signal corresponding to the magnetic field strength is generated, and this is converted into an electric signal and signal processing is performed. The relative displacement angle between the magnetic scale and the polarization rotating means (including the angular position with reference to the fixed side when one is fixed), the angular velocity or the angular acceleration, and the like are obtained. At this time, the magnetization vector emerging from the positive magnetic pole on the magnetic pole surface is opposite in the vicinity of the negative magnetic pole located at the same height as this magnetic pole, but the position in the detection direction is the same. In the vicinity of the intermediate position between adjacent magnetic poles, the opposite magnetization does not occur. Therefore, the problem that the effective noise level increases due to the magnetization in the opposite direction is solved, and the detection device has an excellent S / N ratio and resolution.
【0025】請求項12記載の発明では、複数組の磁極
を並列させた又は同一列に配列されたN極およびS極少
なくとも2つの磁極を複数列に並列させた磁気スケール
と、該複数列の各列の磁極により形成される磁界の強度
に応じて光信号の偏光方向を回転させる複数の偏光回転
素子を有する偏光回転手段とを用い、複数の光強度信号
を複数の電気信号に変換することで、S/N比および分
解能に優れた所謂アブソリュート型の検出装置や磁気パ
ターンの位相を90度ずらす2組の磁石列を用いること
で変位方向が検出可能なインクリメンタル型検出装置を
実現できる。According to a twelfth aspect of the present invention, a magnetic scale having a plurality of pairs of magnetic poles arranged in parallel or having at least two magnetic poles of N pole and S pole arranged in parallel in a plurality of rows and a magnetic scale of the plurality of rows. Converting a plurality of light intensity signals into a plurality of electric signals by using a polarization rotating means having a plurality of polarization rotating elements for rotating the polarization direction of the optical signal according to the strength of the magnetic field formed by the magnetic poles of each row. Thus, it is possible to realize a so-called absolute type detection device having an excellent S / N ratio and resolution and an incremental type detection device capable of detecting the displacement direction by using two sets of magnet arrays that shift the phase of the magnetic pattern by 90 degrees.
【0026】請求項13、14記載の発明では、所定検
出方向で非磁性体を挟んで互いに近接し同一面側に表出
するN極およびS極少なくとも2つの磁極が、所定検出
方向に配列されるから、所定検出方向で近接するN極お
よびS極の磁極の中間位置近傍において下向きの磁化ベ
クトルが生じないとともに、磁化ベクトルの向きが検出
方向となる。したがって、所定検出方向における磁極の
中間位置近傍で反対向きの磁化が生じないことになり、
これによる実効的なノイズレベルの増大を回避すること
ができる。According to the thirteenth and fourteenth aspects of the present invention, at least two magnetic poles, an N pole and an S pole, which are close to each other with a non-magnetic material interposed therebetween in the predetermined detection direction and which are exposed on the same plane side, are arranged in the predetermined detection direction. Therefore, a downward magnetization vector does not occur in the vicinity of the intermediate position between the N and S magnetic poles that are close to each other in the predetermined detection direction, and the direction of the magnetization vector is the detection direction. Therefore, in the vicinity of the middle position of the magnetic pole in the predetermined detection direction, magnetization in the opposite direction does not occur,
It is possible to avoid an effective increase in noise level.
【0027】請求項15、17記載の発明では、磁気ス
ケールの磁極表出面側の非磁性体に対向する位置に、該
磁気スケールのN極およびS極の磁極により形成される
磁界の強度に応じた電圧を発生する磁気電気変換素子か
らなる磁界強度検出素子が設けられ、該素子の発生電圧
に対応する電気信号を処理して特定の物理量が求められ
る。したがって、センサヘッドから電気信号処理手段ま
での構成を簡素で低コストのものとすることができる。According to the fifteenth and seventeenth aspects of the present invention, depending on the strength of the magnetic field formed by the magnetic poles of the N pole and the S pole of the magnetic scale, the magnetic scale is located at a position facing the non-magnetic body on the magnetic pole surface of the magnetic scale. A magnetic field strength detection element including a magnetoelectric conversion element that generates a voltage is provided, and an electric signal corresponding to the voltage generated by the element is processed to obtain a specific physical quantity. Therefore, the structure from the sensor head to the electric signal processing means can be simple and low in cost.
【0028】また、請求項16、18記載の発明によう
に、磁気抵抗効果素子やホール効果素子等の磁気電気変
換素子を用いる請求項15、17記載の発明において
も、前記電気信号に基づいて磁気スケールと磁界強度検
出素子との相対的な変位、速度および加速度のうち何れ
か、あるいは、前記磁気スケールと前記磁界強度検出素
子との相対的な角変位、角速度および角加速度のうち何
れかを求めることができる。Further, in the inventions as claimed in claims 16 and 18, wherein a magneto-electric conversion element such as a magnetoresistive effect element or a Hall effect element is used as in the invention as claimed in claims 16 and 18, the invention is also based on the electric signal. One of relative displacement, velocity and acceleration between the magnetic scale and the magnetic field strength detection element, or any one of relative angular displacement, angular velocity and angular acceleration between the magnetic scale and the magnetic field strength detection element. You can ask.
【0029】[0029]
【実施例】以下、本発明の実施例を図面に基づいて具体
的に説明する。
<第1実施例>図1、図2は、請求項1記載の発明に係
る第1実施例の磁気スケールを示す図で、直線型位置セ
ンサ(リニア位置センサ)としての磁気式エンコーダに
適用した例を示している。Embodiments of the present invention will be described below in detail with reference to the drawings. <First Embodiment> FIGS. 1 and 2 are views showing a magnetic scale according to a first embodiment of the present invention, which is applied to a magnetic encoder as a linear position sensor (linear position sensor). An example is shown.
【0030】まず、その構成を説明する。図1(a)〜
(c)において、1はセンサヘッド、10は磁気スケール
である。センサヘッド1は、例えば磁気スケール10が軸
19を介して図外の変位検出対象物と一体にx方向(所定
検出方向)に移動することで、磁気スケール10に対し相
対的に変位るものである。詳細は図示しないが、このセ
ンサヘッド1は、例えばキャリッジを兼ねたヘッド本体
に、公知の磁気電気変換素子、例えばホール効果素子又
は磁気抵抗効果素子からなる検出部(磁界強度検出素
子)を装着したもので、検出部に作用する磁界の強度に
応じた発生電圧又は電気抵抗を生ずるようになってい
る。勿論、磁界強度検出素子を有する他方式のセンサヘ
ッド(例えば第7実施例として後述する磁気光学効果素
子を用いるセンサヘッド)を使用してもよいことはいう
までもない。First, the structure will be described. 1 (a)-
In (c), 1 is a sensor head and 10 is a magnetic scale. The sensor head 1 has, for example, a magnetic scale 10 as an axis.
It moves relative to the magnetic scale 10 by moving in the x direction (predetermined detection direction) integrally with the displacement detection target (not shown) via 19. Although not shown in detail, in the sensor head 1, for example, a known magnetic-electric conversion element, for example, a detection unit (magnetic field strength detection element) including a Hall effect element or a magnetoresistive effect element is mounted on a head body that also serves as a carriage. The generated voltage or the electric resistance is generated according to the strength of the magnetic field acting on the detector. Of course, it is needless to say that another type of sensor head having a magnetic field strength detecting element (for example, a sensor head using a magneto-optical effect element described later as the seventh embodiment) may be used.
【0031】磁気スケール10は、図1のx方向(所定検
出方向)と略直交するy方向で所定厚さtの非磁性体14
(厚さ:t)を挟んで互いに近接し、かつ、そのスケー
ル面10a(磁極表出面)上に表出するN極およびS極の
少なくとも2つの磁極12a、12bを1組として、複数組
(少なくとも1組)の磁極12a、12bを、x方向で所定
間隔p(但しp>t)を隔てる複数の所定位置に設けた
ものであり、各組の磁極12a、12bの配置を、例えば図
2(a)〜(e)に示すような各種態様の磁界発生手段
12により実現している。The magnetic scale 10 has a non-magnetic material 14 having a predetermined thickness t in the y direction substantially orthogonal to the x direction (predetermined detection direction) in FIG.
At least two magnetic poles 12a and 12b of N pole and S pole which are close to each other with (thickness: t) sandwiched therebetween and which are exposed on the scale surface 10a (magnetic pole exposed surface) are set as a plurality of sets ( At least one set of magnetic poles 12a and 12b are provided at a plurality of predetermined positions with a predetermined spacing p (p> t) in the x direction, and the arrangement of the magnetic poles 12a and 12b of each set is, for example, as shown in FIG. (A) to (e) Various modes of magnetic field generating means
It is realized by 12.
【0032】図2(a)に示す磁界発生手段12は、略馬
蹄形(U字型又はコの字型)の磁石121の両端部を磁極1
2a、12bとして利用するものである。図2(b)に示
す磁界発生手段12は、長手方向に磁化した棒磁石122の
磁気スケール表面10a側とは反対側にL字形の高透磁率
材123を近接配置することで、棒磁石122とは反対側の高
透磁率材123の端部にS極の磁極を誘起させるものであ
る。図2(c)に示す磁界発生手段12は、長手方向(y
方向)に磁化した棒磁石124の両端に高透磁率材125、12
6を垂直に配置してN、Sの磁極12a、12bを誘起させ
るものである。また、図2(d)に示す磁界発生手段12
は、磁極を逆向きに配置した2つの棒磁石127、128の間
に非磁性体14を挟み、両磁石127、128のスケール面10a
側の磁極をN、Sの磁極12a、12bとして利用するもの
である。図2(e)に示す磁界発生手段12は、y方向に
向けた棒磁石129のスケール面10a側の壁面部に溝129a
を形成してその両側を磁極12a,12bとして利用するよ
うにしたものである。In the magnetic field generating means 12 shown in FIG. 2A, both ends of a substantially horseshoe-shaped (U-shaped or U-shaped) magnet 121 are connected to the magnetic pole 1.
It is used as 2a and 12b. In the magnetic field generating means 12 shown in FIG. 2B, the L-shaped high magnetic permeability material 123 is disposed in the vicinity of the bar magnet 122 magnetized in the longitudinal direction on the side opposite to the magnetic scale surface 10a side. The magnetic pole of the S pole is induced at the end of the high magnetic permeability material 123 on the side opposite to. The magnetic field generating means 12 shown in FIG.
Direction) magnetized bar magnets 124 with high permeability material 125, 12 on both ends.
6 is arranged vertically to induce N and S magnetic poles 12a and 12b. In addition, the magnetic field generating means 12 shown in FIG.
Has a non-magnetic material 14 sandwiched between two bar magnets 127 and 128 whose magnetic poles are arranged in opposite directions.
The side magnetic poles are used as N and S magnetic poles 12a and 12b. The magnetic field generating means 12 shown in FIG. 2 (e) has a groove 129a on the wall surface portion of the bar magnet 129 facing the y-direction on the scale surface 10a side.
Is formed and both sides thereof are used as the magnetic poles 12a and 12b.
【0033】すなわち、磁気スケール10は、非磁性体か
らなるそのスケール本体11に上述した複数の磁界発生手
段12を所定間隔で埋設した所定磁界強度分布の磁気パタ
ーンを備えており、センサヘッド1が磁気スケール10と
相対変位するとき、そのz方向の高さ(以下、検出高さ
という)において、前記磁気パターンからの磁界の強度
がx方向で規則的に変化するようになっている。That is, the magnetic scale 10 is provided with a magnetic pattern having a predetermined magnetic field intensity distribution in which a plurality of magnetic field generating means 12 described above are embedded in the scale main body 11 made of a non-magnetic material at predetermined intervals. When the magnetic scale 10 is displaced relative to the magnetic scale 10, the intensity of the magnetic field from the magnetic pattern changes regularly in the x direction at the height in the z direction (hereinafter referred to as the detection height).
【0034】なお、このような磁気スケール10を作製す
る際には、まず、非磁性体からなるスケール本体11に、
x方向に所定間隔pで複数の磁界発生手段12を装着する
複数の凹部を形成し、その複数の凹部内に、Nの磁極が
x方向に所定間隔で一列現れるとともに、この一列のN
の磁極に対してy方向に所定の間隔tをあけて複数のS
の磁極が現れるように、複数の磁界発生手段12をx方向
に所定間隔pで1列に並べる。次いで、スケール面10a
上にNとSの磁極を表出した磁界発生手段12の凹部内
に、非磁性体14を装填する。次いで、磁界発生手段12の
周囲を非磁性材質の接着剤等により固定し、所定の信号
を必要とする領域を残して磁極12a、12b近傍の不要な
部分を切削加工等によって削除し、図示形状の磁気スケ
ール10とする。非磁性体14は空気又は真空であってもよ
い。また、本実施例では磁界発生手段12に永久磁石を用
いているが、電磁石であってもよいことはいうまでもな
い。When manufacturing such a magnetic scale 10, first, the scale main body 11 made of a non-magnetic material is
A plurality of recesses for mounting the plurality of magnetic field generating means 12 are formed at a predetermined interval p in the x direction, and N magnetic poles appear in a row at predetermined intervals in the x direction in the plurality of recesses, and the N of this row is formed.
A plurality of S with a predetermined interval t in the y direction with respect to the magnetic poles of
The plurality of magnetic field generating means 12 are arranged in a line at a predetermined interval p in the x direction so that the magnetic poles of 1 appear. Next, scale surface 10a
A non-magnetic material 14 is loaded in the recess of the magnetic field generating means 12 having the N and S magnetic poles exposed above. Next, the periphery of the magnetic field generating means 12 is fixed with an adhesive agent of a non-magnetic material, and unnecessary portions near the magnetic poles 12a and 12b are removed by cutting or the like, leaving a region requiring a predetermined signal, and the shape shown in the drawing is obtained. Magnetic scale of 10 is used. The non-magnetic material 14 may be air or vacuum. Further, in this embodiment, a permanent magnet is used as the magnetic field generating means 12, but it goes without saying that it may be an electromagnet.
【0035】次に、作用を説明する。本実施例では、y
方向で互いに近接し同一スケール面10a上に表出するN
極およびS極少なくとも2つの磁極12a、12bが、所定
間隔を隔てるx方向の複数の所定位置に設けられるか
ら、そのそれぞれの位置で、一方の磁極12aからスケー
ル面10a上に出た磁化ベクトルはこの一方の磁極12aと
同一高さに位置する他方の磁極12bの近傍で反対向き
(下向き)になるが、検出方向(x方向)での位置は同
じである。したがって、センサヘッド1の検出部に作用
する磁化は、ほとんどy方向のベクトルを持つ。x方向
で磁極12a同士の中間となり、かつy方向で磁極12a,
12bの中間となる位置付近では、センサヘッド1に実効
的にz方向の磁化は生じない。すなわち、磁界発生手段
12のN、Sの磁極12a、12bがy方向に近接しているか
ら、従来であればx方向に近接する単極間の中間位置近
傍で生じたであろう反対向きの磁化(+z向きの磁化を
検出する磁界強度検出素子に作用する−z向きの磁化に
相当する)が生じ難くなり、これが実効的に除去され
る。したがって、センサヘッド1の検出部に磁気抵抗効
果素子やホール効果素子といった磁気電気変換素子を用
い、センサヘッド1と磁気スケール10をz方向で近接す
る配置にしたとしても、前記反対向きの磁化により実効
的なノイズレベルが増大してS/N比が低下するといっ
た従来のような問題はなく、高分解能で出力の安定した
高制度な位置又は変位の検出が可能(勿論、信号処理す
れば速度や加速度検出も可能)になる。
<第2実施例>図3(a)は、請求項1、2記載の発明
に係る第2実施例の磁気スケールを示す図である。Next, the operation will be described. In this embodiment, y
N approaching each other in the direction and appearing on the same scale surface 10a
Since at least two magnetic poles 12a and 12b having a pole and an S pole are provided at a plurality of predetermined positions in the x direction with a predetermined space therebetween, at each position, the magnetization vector emitted from one magnetic pole 12a onto the scale surface 10a is The other magnetic pole 12b located at the same height as the one magnetic pole 12a is in the opposite direction (downward), but the position in the detection direction (x direction) is the same. Therefore, the magnetization acting on the detecting portion of the sensor head 1 has a vector in the y direction. In the x direction, the magnetic poles 12a are in the middle, and in the y direction, the magnetic poles 12a,
In the vicinity of the middle position of 12b, the sensor head 1 is not effectively magnetized in the z direction. That is, the magnetic field generating means
Since the 12 N and S magnetic poles 12a and 12b are close to each other in the y direction, the magnetizations in the opposite directions (in the + z direction) that would have been generated near the intermediate position between the single poles that are close to the x direction in the related art. (Corresponding to the magnetization in the −z direction, which acts on the magnetic field strength detection element for detecting the magnetization) is less likely to occur, and this is effectively removed. Therefore, even if a magneto-electric conversion element such as a magnetoresistive effect element or a Hall effect element is used for the detection portion of the sensor head 1 and the sensor head 1 and the magnetic scale 10 are arranged close to each other in the z direction, the magnetization in the opposite direction causes There is no conventional problem that the effective noise level increases and the S / N ratio decreases, and it is possible to detect highly accurate position or displacement with high resolution and stable output. And acceleration can be detected). <Second Embodiment> FIG. 3A is a diagram showing a magnetic scale according to a second embodiment of the present invention.
【0036】本実施例は、磁極配置以外は第1実施例と
全く同様のものである。すなわち、図3(a)に示すよ
うに、x方向に配列された複数組の磁極12a、12bのう
ち一方の列(同一列)にある複数の磁極12aと、他の列
(同一列)にある複数の磁極12bとの極性が、それぞれ
x方向にN、S、N、Sと変化するよう、複数組の磁極
12a、12bの極性配置を交互に異ならせている。This embodiment is exactly the same as the first embodiment except for the magnetic pole arrangement. That is, as shown in FIG. 3A, a plurality of pairs of magnetic poles 12a and 12b arranged in the x direction are arranged in a plurality of magnetic poles 12a in one row (the same row) and another row (the same row). A plurality of sets of magnetic poles so that the polarity with a certain plurality of magnetic poles 12b changes in the x direction as N, S, N, S, respectively.
The polar arrangements of 12a and 12b are alternately different.
【0037】本実施例では、第1実施例と同様な効果が
得られるとともに、x方向に配列された複数組の磁極12
a、12bのうち同一列の磁極12a又は12bの極性が交互
に変化していることで、x方向で近接するN、Sの磁極
の中間位置近傍において、反対向き(−z方向)への磁
化ベクトルがより生じ難くなる。さらに、磁極12a、12
b上のy方向の磁界と、x方向で隣合う磁極12a同士、
磁極12b同士の間に生ずるx方向の磁化を共に積極的に
利用し、磁気光学効果素子を有するセンサヘッドによっ
て光のスイッチングを行なうようにすれば、分解能や方
向検出等の機能を更に高めることができる(その実施例
は後述する)。In this embodiment, the same effect as that of the first embodiment is obtained, and a plurality of magnetic poles 12 arranged in the x direction are arranged.
Since the polarities of the magnetic poles 12a or 12b in the same row among a and 12b are alternately changed, magnetization in the opposite direction (-z direction) is generated near the intermediate position between the N and S magnetic poles that are close in the x direction. Vectors are less likely to occur. Further, the magnetic poles 12a, 12
a magnetic field in the y direction on b and magnetic poles 12a adjacent to each other in the x direction,
If the magnetization in the x direction generated between the magnetic poles 12b is positively used together and the light is switched by the sensor head having the magneto-optical effect element, the functions such as resolution and direction detection can be further enhanced. Yes, an example of which will be described later.
【0038】ここで、変位方向検出や高分解能化の工程
を図4(a)を用いて補足説明すると、同一列上の複数
の磁極12aが交互に逆極性となる場合、同図(a)のB
4−B4上空では、x方向の磁化ベクトル(Hx)はx方
向で隣合う2つの磁極12aの間で最大値又は最小値をと
る。一方、y方向で隣合う磁極12a,12bの中間である
C4−C4上空では、y方向の磁化ベクトル(Hy)は磁
極12a,12bの位置で最大値又は最小値をとる。したが
って、y方向の複数の場所で磁界強度を検出しながら磁
気スケール10とセンサヘッド1をx方向(検出方向)に
相対変位させると、図4(b)および図4(c)に示し
た磁界強度分布に対応して90度だけ位相のずれた信号
が得られ、両信号の検出タイミングから変位の方向(+
x又は−x)が検出できる。なお、分周により1周期の
信号を多分割する技術は、方向検出又は他の検出を行な
う一般的な産業用エンコーダ等に広く採用されている公
知の技術であり、ここでは詳述しない。
<第3実施例>図3(b)は、請求項1、3記載の発明
に係る第3実施例の磁気スケールを示す図である。Here, a supplementary description of the steps of detecting the displacement direction and increasing the resolution will be given with reference to FIG. 4A. When a plurality of magnetic poles 12a on the same column are alternately opposite in polarity, FIG. B
Above 4-B4, the magnetization vector (Hx) in the x direction has the maximum value or the minimum value between two magnetic poles 12a adjacent to each other in the x direction. On the other hand, above C4-C4 which is the middle of the adjacent magnetic poles 12a and 12b in the y direction, the magnetization vector (Hy) in the y direction takes the maximum value or the minimum value at the positions of the magnetic poles 12a and 12b. Therefore, when the magnetic scale 10 and the sensor head 1 are relatively displaced in the x direction (detection direction) while detecting the magnetic field strength at a plurality of locations in the y direction, the magnetic fields shown in FIGS. 4B and 4C are obtained. A signal with a phase difference of 90 degrees corresponding to the intensity distribution is obtained, and the direction of displacement (+
x or -x) can be detected. Note that the technique of dividing a signal of one cycle into multiple parts by frequency division is a well-known technique that is widely adopted in general industrial encoders that perform direction detection or other detection, and will not be described in detail here. <Third Embodiment> FIG. 3B is a diagram showing a magnetic scale according to a third embodiment of the present invention.
【0039】本実施例は磁極12a、12bの配置以外は第
2実施例と全く同様のものである。すなわち、x方向に
配列された複数組の磁極12a、12bは、図3(b)に示
すように、これらのうち一方の列(同一列)の複数の磁
極12aと他の列(同一列)の複数の磁極12bとの極性
が、それぞれx方向に所定の順番(図ではN、N、S、
N……N、N)で変化するよう、複数組の磁極12a、12
bの極性配置を異ならせている。This embodiment is exactly the same as the second embodiment except the arrangement of the magnetic poles 12a and 12b. That is, as shown in FIG. 3B, the plurality of pairs of magnetic poles 12a and 12b arranged in the x-direction include the plurality of magnetic poles 12a in one row (the same row) and the other row (the same row). The polarities of the plurality of magnetic poles 12b in the x direction in a predetermined order (N, N, S,
N ... N, N) so that the number of pairs of magnetic poles 12a, 12 varies.
The polar arrangement of b is different.
【0040】本実施例では、第1実施例と同様な効果が
得られるとともに、検出方向であるx方向に配列された
複数組の磁極12a、12bのうち同一列の磁極12a又は12
bの極性が所定の順番で変化することで、任意の信号周
期を得ることが可能になり、y方向の位置信号に加え、
他の制御信号(例えば流体圧アクチュエータ等と併用さ
れるバルブの制御信号、流量制御信号等)を同一スケー
ル上に記録することができるという利点がある。In this embodiment, the same effect as that of the first embodiment can be obtained, and among the plurality of sets of magnetic poles 12a, 12b arranged in the x direction which is the detection direction, the magnetic pole 12a or 12 in the same row.
By changing the polarity of b in a predetermined order, it becomes possible to obtain an arbitrary signal period, and in addition to the position signal in the y direction,
There is an advantage that other control signals (for example, a control signal of a valve used together with a fluid pressure actuator, a flow control signal, etc.) can be recorded on the same scale.
【0041】また、図4(d)に示すように、同極性の
磁極が並ぶ数を変化させると、x方向の基準位置からの
磁石列の個数、すなわちx方向における基準位置からの
距離がわかることになる。例えば、連続してN極が3個
存在する場合、基準位置から7〜9のピーク位置である
ことがわかるし、複数の磁極を同一ピッチで並べていれ
ば、同一極が何個連続しているかもわかる。また、前後
に複数個のピークが検出されるようx方向に変位させる
ことで、前後の同一極性の磁極の個数を検出することも
できる。さらに、殆どの磁極12a,12bをx方向で交互
に逆極性となるよう配置し、機械的にこれ以上変位する
と故障が生ずる、あるいは危険であるという位置付近に
同一極性の磁極を連続させることで、危険信号としての
前記制御信号を発生させることもできる。
<第4実施例>図5は、請求項1、7、13記載の発明
に係る第4実施例の磁気スケールおよび磁気式検出装置
を示す図であり、角度センサとしての磁気式ロータリー
エンコーダに適用した例を示している。Further, as shown in FIG. 4D, when the number of magnetic poles of the same polarity arranged is changed, the number of magnet rows from the reference position in the x direction, that is, the distance from the reference position in the x direction is known. It will be. For example, when there are three N poles in succession, it can be seen that the peak position is 7 to 9 from the reference position. If a plurality of magnetic poles are arranged at the same pitch, the number of the same poles is continuous. I also understand. Further, by displacing in the x direction so that a plurality of front and rear peaks can be detected, it is possible to detect the number of front and rear magnetic poles having the same polarity. Furthermore, by arranging most of the magnetic poles 12a and 12b so as to have opposite polarities alternately in the x direction, and continuously arranging magnetic poles of the same polarity in the vicinity of a position where a mechanical displacement causes a failure or is dangerous. It is also possible to generate the control signal as a danger signal. <Fourth Embodiment> FIG. 5 is a diagram showing a magnetic scale and a magnetic detection device according to a fourth embodiment of the present invention, which is applied to a magnetic rotary encoder as an angle sensor. An example is shown.
【0042】図5に示すように、本実施例の磁気スケー
ル30では、複数組の磁極12a、12bが、所定検出方向で
あるR方向(円周方向)に所定角度間隔を隔てるよう配
列されており、複数組の磁極12a、12bの間に挟まれた
複数の非磁性体14は同一円周上にある。また、複数組の
磁極12a、12bは、これらのうち外側の列(同一列)の
複数の磁極12a同士、内側の列(同一列)の複数の磁極
12b同士が同一極性となるよう、複数組の磁極12a、12
bの極性配置を一定にしている。すなわち、本実施例の
磁気スケール30は、スケール本体31に複数の磁界発生手
段12を所定の角度間隔で同一極性配置となるよう埋設し
た円板形のものであり、第1実施例の磁気スケール10と
ほぼ同様な手順で作製される。As shown in FIG. 5, in the magnetic scale 30 of this embodiment, a plurality of pairs of magnetic poles 12a and 12b are arranged at a predetermined angular interval in the R direction (circumferential direction) which is the predetermined detection direction. Therefore, the plurality of non-magnetic bodies 14 sandwiched between the plurality of sets of magnetic poles 12a and 12b are on the same circumference. In addition, a plurality of pairs of magnetic poles 12a and 12b include a plurality of magnetic poles 12a in the outer row (same row) and a plurality of magnetic poles in the inner row (same row) among them.
Plural pairs of magnetic poles 12a, 12 so that 12b have the same polarity.
The polarity arrangement of b is constant. That is, the magnetic scale 30 of the present embodiment is a disk-shaped one in which a plurality of magnetic field generating means 12 are embedded in the scale main body 31 at predetermined angular intervals so as to have the same polarity, and the magnetic scale of the first embodiment. The procedure is similar to that of 10.
【0043】このように複数組の磁極12a、12bが円周
方向に所定角度間隔を隔てるよう配列されるから、角度
位置や角変位が検出可能(勿論、信号処理すれば角速度
や角加速度検出も可能)で、しかも、第1実施例と同様
な作用効果により高精度な検出が可能になる。なお、図
5では、円板上に磁極面が配置される例を示したが、円
柱の側面に磁極を表出させてもよいことはいうまでもな
い。
<第5実施例>図6(a)は、請求項1、2、7記載の
発明に係る第5実施例の磁気スケールを示す図で、第4
実施例とは磁極の極性配置を異ならせたものである。Since a plurality of pairs of magnetic poles 12a and 12b are arranged in the circumferential direction at predetermined angular intervals in this way, angular position and angular displacement can be detected (of course, if signal processing is performed, angular velocity and angular acceleration can also be detected. (Possible), and moreover, highly accurate detection is possible due to the same effect as the first embodiment. Although FIG. 5 shows an example in which the magnetic pole surface is arranged on the disc, it goes without saying that the magnetic pole may be exposed on the side surface of the cylinder. <Fifth Embodiment> FIG. 6A is a view showing a magnetic scale of a fifth embodiment according to the inventions described in claims 1, 2, and 7, and
The magnetic poles are arranged differently from those in the embodiment.
【0044】同図に示すように、本実施例では、第4実
施例と同様に、複数組の磁極12a、12bが、所定検出方
向であるR方向(円周方向)に所定角度間隔を隔てるよ
う配列されており、複数組の磁極12a、12bの間に挟ま
れた複数の非磁性体14は同一円周上にある。また、複数
組の磁極12a、12bは、これらのうち外側の列(同一
列)の複数の磁極12aと内側の列(同一列)の複数の磁
極12bとの極性が、それぞれR方向に交互にN、S、
N、Sと変化するよう、複数組の磁極12a、12bの極性
配置を交互に異ならせている。すなわち、本実施例の磁
気スケール30は、スケール本体31に複数の磁界発生手段
12を所定の角度間隔で交互に逆極性となるよう埋設した
円板形のものであり、第1実施例の磁気スケール10とほ
ぼ同様な手順で作製される。As shown in the figure, in this embodiment, as in the case of the fourth embodiment, a plurality of pairs of magnetic poles 12a, 12b are separated by a predetermined angle in the R direction (circumferential direction) which is the predetermined detection direction. The plurality of non-magnetic bodies 14 arranged between the plurality of pairs of magnetic poles 12a and 12b are on the same circumference. Further, among the plurality of pairs of magnetic poles 12a and 12b, the polarities of the plurality of magnetic poles 12a in the outer row (the same row) and the plurality of magnetic poles 12b in the inner row (the same row) are alternately arranged in the R direction. N, S,
The polarities of the plurality of magnetic poles 12a and 12b are alternately changed so as to change from N to S. That is, the magnetic scale 30 of this embodiment has a plurality of magnetic field generating means in the scale body 31.
It is a disk type in which 12 are embedded at predetermined angular intervals so as to be alternately opposite in polarity, and is manufactured by substantially the same procedure as the magnetic scale 10 of the first embodiment.
【0045】このように複数組の磁極12a、12bが円周
方向に所定角度間隔を隔てるよう配列されるから、第4
実施例と同様に角度位置や角変位等が検出可能で、しか
も、第1、第2実施例と同様な作用効果により高精度な
検出が可能になる。
<第6実施例>図6(b)は、請求項1、3、7記載の
発明に係る第6実施例の磁気スケールを示す図で、第
4、第5実施例とは磁極の極性配置を異ならせたもので
ある。同図に示すように、本実施例では、複数組の磁極
12a、12bが、第4、第5実施例と同様にR方向(円周
方向)に所定角度間隔を隔てるよう配列されている。ま
た、複数組の磁極12a、12bは、これらのうち外側の列
(同一列)の複数の磁極12aと内側の列(同一列)の複
数の磁極12bとの極性が、それぞれR方向に所定の順番
(例えばN、N、S、N、N、S……)で変化するよ
う、複数組の磁極12a、12bの極性配置を異ならせてい
る。すなわち、本実施例の磁気スケール30はスケール本
体41に複数の磁界発生手段12を所定の順番に極性が変化
するよう所定角度間隔で埋設した円板形のものである。In this way, the plurality of sets of magnetic poles 12a, 12b are arranged so as to be spaced at a predetermined angular interval in the circumferential direction.
Similar to the embodiment, the angular position, the angular displacement, etc. can be detected, and moreover, highly accurate detection can be achieved by the same operational effect as the first and second embodiments. <Sixth Embodiment> FIG. 6B is a diagram showing a magnetic scale of a sixth embodiment according to the invention described in claims 1, 3, and 7. The magnetic poles are arranged in different polarities from the fourth and fifth embodiments. Is different. In this embodiment, as shown in FIG.
Similar to the fourth and fifth embodiments, 12a and 12b are arranged so as to be separated by a predetermined angle in the R direction (circumferential direction). Further, among the plurality of pairs of magnetic poles 12a and 12b, the polarities of the plurality of magnetic poles 12a in the outer row (the same row) and the plurality of magnetic poles 12b in the inner row (the same row) are predetermined in the R direction. The polar arrangements of the plurality of magnetic poles 12a and 12b are different so as to change in order (for example, N, N, S, N, N, S ...). That is, the magnetic scale 30 of the present embodiment is a disk type in which a plurality of magnetic field generating means 12 are embedded in the scale body 41 at predetermined angular intervals so that the polarities change in a predetermined order.
【0046】このように複数組の磁極12a、12bが円周
方向に所定角度間隔を隔てるよう配列されるから、第
4、第5実施例と同様に角度位置や角変位等が検出可能
で、しかも、第1、第3実施例と同様な作用効果により
高精度な検出が可能になる。
<第7実施例>図7は、請求項1、2、3、8、9記載
の発明に係る第7実施例を示す図で、リニア位置センサ
としての磁気式エンコーダに適用した例を示している。Since a plurality of sets of magnetic poles 12a, 12b are arranged in the circumferential direction at a predetermined angular interval in this manner, the angular position, angular displacement, etc. can be detected as in the fourth and fifth embodiments. Moreover, it is possible to perform highly accurate detection due to the same effects as those of the first and third embodiments. <Seventh Embodiment> FIG. 7 is a diagram showing a seventh embodiment of the invention according to claims 1, 2, 3, 8, and 9 and shows an example applied to a magnetic encoder as a linear position sensor. There is.
【0047】本実施例では、複数組の磁極12a、12bを
y方向に一定の間隔を隔てて複数の所定列数だけ並列さ
せた磁気スケール10Aと、磁気光学効果を利用して光磁
気変調を行うセンサヘッド21とを用いている。ここで、
磁気スケール10Aは、詳細を図示していないが、例えば
第1、第2又は第3実施例の磁気スケール10を複数並設
してそれらのスケール本体11のみを一体化したものであ
る。In this embodiment, a plurality of pairs of magnetic poles 12a and 12b are arranged in parallel in the y direction by a predetermined number of rows in parallel and a magnetic scale 10A is used, and magneto-optical effect is used to perform magneto-optical modulation. The sensor head 21 is used. here,
Although not shown in detail in the magnetic scale 10A, for example, a plurality of magnetic scales 10 of the first, second or third embodiment are arranged in parallel and only the scale main body 11 is integrated.
【0048】また、センサヘッド21は、基板上に所定パ
ターンの導波路(光の通路)を形成した光導波路形成素
子22(以下、単に光導波路という)と、その光導波路22
に光の進行経路中に介在するよう一体に装着され入射光
から特定方向の偏光を透過させる偏光子23と、光導波路
22の先端部に一面側で接合された磁気光学効果素子25
と、その磁気光学効果素子25の他面側に形成された反射
ミラー部26と、から構成されている。磁気光学効果素子
25は、例えば軟磁性体からなり、光の進行方向と略平行
な方向に自発磁化を持ちその自発磁化により内部では磁
気的に飽和している。そして、偏光子23を透過した直線
偏光の偏光方向は、この磁気光学効果素子25によって回
転させられる。したがって、この磁気光学効果素子25に
光の進行方向(x方向)と略直交するy方向に内部磁化
を配向させるよう磁極12a、12bによって磁界を作用さ
せ、前記直線偏光の偏光方向の回転が最小となるように
することができる。また、詳細を図示していないが、こ
のセンサヘッド21は、所定形状(例えば長さ50mm程度
で、幅が5〜20mm程度の大きさ)の基板上に所定チャ
ンネル数(例えば2〜16ch)分だけ並列に一体的に設
けられている。すなわち、センサヘッド21はマルチチャ
ンネルヘッドの1ch分のセンサヘッドとなっており、
その光導波路22は例えば入射側の複数の(あるいは途中
で複数に分岐する)導波路と、出射側の複数の(あるい
は途中で単一に結合される)導波路とを形成したものと
なっている。Further, the sensor head 21 includes an optical waveguide forming element 22 (hereinafter simply referred to as an optical waveguide) in which a waveguide (light path) having a predetermined pattern is formed on a substrate, and the optical waveguide 22.
A polarizer 23 that is integrally mounted so as to intervene in the light traveling path and transmits polarized light in a specific direction from the incident light; and an optical waveguide.
Magneto-optical effect element 25 joined to the tip of 22 on one side
And a reflection mirror portion 26 formed on the other surface side of the magneto-optical effect element 25. Magneto-optical effect element
25 is made of, for example, a soft magnetic material, has spontaneous magnetization in a direction substantially parallel to the traveling direction of light, and is magnetically saturated inside due to the spontaneous magnetization. Then, the polarization direction of the linearly polarized light transmitted through the polarizer 23 is rotated by the magneto-optical effect element 25. Therefore, a magnetic field is caused to act on the magneto-optical effect element 25 by the magnetic poles 12a and 12b so as to orient the internal magnetization in the y direction substantially orthogonal to the light traveling direction (x direction), and the rotation of the polarization direction of the linearly polarized light is minimized. Can be Although not shown in detail, the sensor head 21 has a predetermined number of channels (for example, 2 to 16 channels) on a substrate having a predetermined shape (for example, a length of about 50 mm and a width of about 5 to 20 mm). It is provided integrally only in parallel. That is, the sensor head 21 is a sensor head for one channel of the multi-channel head,
The optical waveguide 22 is formed by, for example, forming a plurality of waveguides on the incident side (or branching into a plurality on the way) and a plurality of waveguides on the emitting side (or a single waveguide on the way). There is.
【0049】このセンサヘッド21は、次のように動作す
る。まず、図外の光出射手段から出射された光が光導波
路22に入るとともに偏光子23を透過すると、特定方向の
偏光(直線偏光)が生成され、この光が一定の方向に自
発磁化している磁気光学効果素子25に入射すると、その
自発磁化によって偏光方向の回転(ファラデー回転)を
生ずる。また、磁気スケール10によって磁気光学効果素
子25に対し図1のy方向に外部磁界が印加されると、前
記直線偏光はその偏光方向を回転しないまま前進する。
そして、反射ミラー部26により反射されながら所定の確
率で出射側の導波路に達した前記光が、その偏光方向に
応じて検光子としての偏光子23(偏光制御手段)を透過
し、あるいは遮光される。すなわち、センサヘッド21と
磁気スケール10とが相対変位するとき、磁気光学効果素
子25に作用していた磁界の強度が所定レベルより低下す
れば、前記光は自ら磁気的に飽和した磁気光学効果素子
25内の磁区により、磁気光学効果素子25を通過する間に
その偏光方向を約90度回転させ、その後は偏光子23を
透過することができないので、センサヘッド21は光信号
を出力しない。一方、センサヘッド21と磁気スケール10
の相対変位に伴い、磁気スケール10によって磁気光学効
果素子25にy方向の磁界が印加されると、磁気光学効果
素子25の内部に発生していた磁区構造が消失し、前記直
線偏光は、その偏光方向を回転しないまま前進するの
で、センサヘッド21は光信号を出力する(勿論、検光子
を異なる向きに配置して出力の有無を逆にすることもで
きる)。このように、磁気スケール10とセンサヘッド21
との相対変位に応じて、センサヘッド21から図外の光信
号処理回路(図示しない光電気変換手段および信号処理
手段からなる)に光信号が出力される。なお、前記光信
号処理回路は、後述の第12〜16実施例で詳述するセ
ンサヘッド1に接続するコントローラ、あるいはセンサ
ヘッド21に接続するレーザダイオード、フォトダイオー
ドおよびコントローラに相当するものであり、ここでの
詳細な説明は磁気スケールのみにとどめる。The sensor head 21 operates as follows. First, when light emitted from a light emitting means (not shown) enters the optical waveguide 22 and passes through the polarizer 23, polarized light in a specific direction (linearly polarized light) is generated, and this light is spontaneously magnetized in a certain direction. When incident on the existing magneto-optical effect element 25, its spontaneous magnetization causes rotation of the polarization direction (Faraday rotation). When an external magnetic field is applied to the magneto-optical effect element 25 by the magnetic scale 10 in the y direction of FIG. 1, the linearly polarized light advances without rotating its polarization direction.
Then, the light reaching the waveguide on the exit side with a certain probability while being reflected by the reflection mirror section 26 is transmitted through the polarizer 23 (polarization control means) as an analyzer or shielded according to the polarization direction. To be done. That is, when the sensor head 21 and the magnetic scale 10 are relatively displaced, if the strength of the magnetic field acting on the magneto-optical effect element 25 falls below a predetermined level, the light is magnetically saturated by itself.
Due to the magnetic domains in 25, the polarization direction is rotated by about 90 degrees while passing through the magneto-optical effect element 25, and thereafter the polarizer 23 cannot be transmitted, so that the sensor head 21 does not output an optical signal. On the other hand, the sensor head 21 and the magnetic scale 10
When a magnetic field in the y direction is applied to the magneto-optical effect element 25 by the magnetic scale 10 due to the relative displacement of, the magnetic domain structure generated inside the magneto-optical effect element 25 disappears, and the linearly polarized light is The sensor head 21 outputs an optical signal because it moves forward without rotating the polarization direction (of course, the presence or absence of the output can be reversed by disposing the analyzer in different directions). In this way, the magnetic scale 10 and the sensor head 21
An optical signal is output from the sensor head 21 to an optical signal processing circuit (not shown) composed of an opto-electric conversion means and a signal processing means in accordance with the relative displacement between The optical signal processing circuit corresponds to a controller connected to the sensor head 1 or a laser diode, a photodiode and a controller connected to the sensor head 21, which will be described later in detail in twelfth to sixteenth embodiments. The detailed description here is limited to the magnetic scale.
【0050】本実施例では、磁気スケール10Aの磁極12
a、12bの極性配置に応じて第1〜第3実施例の何れか
と同様な作用効果が得られるのに加え、センサヘッド21
が、光導波路22、偏光子23、磁気光学効果素子25および
反射ミラー部26を同一基板に一体化したマルチチャンネ
ルヘッドとして構成されることから、多チャンネルでも
小型・軽量なセンサヘッドを容易に作製することができ
る。In this embodiment, the magnetic pole 12 of the magnetic scale 10A is used.
In addition to the same effects as those of any of the first to third embodiments, the sensor head 21 can be obtained depending on the polar arrangement of a and 12b.
However, since it is configured as a multi-channel head in which the optical waveguide 22, the polarizer 23, the magneto-optical effect element 25, and the reflection mirror section 26 are integrated on the same substrate, it is easy to manufacture a small and lightweight sensor head even with multiple channels. can do.
【0051】また、本実施例では、磁極12a、12bのう
ちNの磁極から磁極表出面10a上に出た磁化ベクトルは
この磁極と同一高さに位置するSの磁極の近傍で下向き
になるまでx方向の略同一位置でy方向一方側に向か
う。また、x方向で近接する磁極12a間、磁極12b間の
間隔pはy方向で隣接する磁極12a、12b(N、S)の
磁極間の間隔tより十分に大きく、x方向で近接する磁
極12a同士、12b同士の中間位置近傍に磁極12a、12b
と反対向き(y方向他方側)への磁化の回り込みが生じ
難い。したがって、x方向で近接する磁極12a同士、12
b同士の中間位置近傍でy方向の磁界がセンサヘッド21
の磁気光学効果素子25に実効的に作用することがなく、
反対向きの磁化による実効的ノイズレベルの増大という
従来の問題が確実に解消され、S/N比および分解能に
優れた検出装置となる。In the present embodiment, the magnetization vector of the magnetic pole N of the magnetic poles 12a and 12b on the magnetic pole surface 10a is directed downward until the magnetic pole of S located at the same height as this magnetic pole is directed downward. Heading toward one side in the y direction at substantially the same position in the x direction. Further, the distance p between the magnetic poles 12a adjacent to each other in the x direction is sufficiently larger than the distance t between the magnetic poles 12a and 12b (N, S) adjacent to each other in the y direction, and the magnetic poles 12a adjacent to each other in the x direction. Magnetic poles 12a and 12b in the vicinity of the intermediate position between the two and 12b
It is difficult for the magnetization to wrap around in the opposite direction (on the other side in the y direction). Therefore, the magnetic poles 12a that are close to each other in the x direction,
In the vicinity of the intermediate position between b, the magnetic field in the y direction is
Without effectively acting on the magneto-optical effect element 25 of
The conventional problem that the effective noise level is increased by the magnetization in the opposite direction is surely solved, and the detector has an excellent S / N ratio and resolution.
【0052】さらに、磁気スケール10Aの磁極の極性配
置を第2実施例又は第3実施例と同様にした場合、磁極
12a、12b上のy方向の磁界と、x方向で隣合う磁極12
a同士、磁極12b同士の間に生ずるx方向の磁化を共に
積極的に利用して、センサヘッド21の光変調機能(光の
スイッチング機能)を行わせ、分解能を更に向上させる
ことができる。
<第8実施例>図8(a)、(b)は、請求項1、2、
3、4、13、14記載の発明に係る第8実施例を示す
図である。Furthermore, when the polar arrangement of the magnetic poles of the magnetic scale 10A is the same as in the second or third embodiment, the magnetic poles are
The magnetic field in the y direction on 12a and 12b and the magnetic poles 12 adjacent in the x direction
It is possible to positively utilize both the magnetizations in the x direction generated between a and between the magnetic poles 12b to perform the light modulation function (light switching function) of the sensor head 21 and further improve the resolution. <Eighth Embodiment> FIGS. 8 (a) and 8 (b) show claims 1, 2 and
It is a figure which shows 8th Example which concerns on 3, 4, 13, 14 invention.
【0053】同図(a)、(b)に示すように、本実施
例では複数組の磁極12a、12b(後述する第10実施例
のように同一列に配列されたN極およびS極少なくとも
2つの磁極であってもよい)が、y方向で同一幅を有し
x方向(所定検出方向)で長さの異なる磁極12a1、12
a2、12b1、12b2を含んでおり、これら磁極12a、12
bの表出面e1、e2が前記検出方向における長さL1、
L2の比(面積の比)に応じて段差hだけ異なる高さに
位置している。具体的には、長い方の磁極12a2、12b2
を形成する磁石に高さ寸法の小さいものを用いたり、ス
ケール本体11に埋設した後の切削量を相違させること
で、長いもの(大面積のもの)ほど高さを低く設定して
いる。検出側には、上述のセンサヘッド1又は21と、こ
れに接続する前記光信号処理回路(図示しない光電気変
換手段および信号処理手段からなる)を用いている。As shown in FIGS. 9A and 9B, in this embodiment, a plurality of pairs of magnetic poles 12a and 12b (at least N pole and S pole arranged in the same row as in a tenth embodiment described later) are used. Two magnetic poles may be used), but the magnetic poles 12a 1 and 12 have the same width in the y direction and different lengths in the x direction (predetermined detection direction).
a 2, 12b 1, includes a 12b 2, magnetic poles 12a, 12
The exposed surfaces e 1 and e 2 of b are lengths L 1 in the detection direction,
It is located at a different height by a step h according to the ratio of L 2 (ratio of areas). Specifically, the longer magnetic poles 12a 2 and 12b 2
A magnet having a small height is used as the magnet forming the magnet, or the cutting amount after being embedded in the scale main body 11 is made different, so that the longer the magnet (larger area), the lower the height is set. On the detection side, the above-mentioned sensor head 1 or 21 and the optical signal processing circuit (comprising an opto-electric conversion means and a signal processing means (not shown)) connected thereto are used.
【0054】本実施例では、第1実施例と同様の効果が
得られるのに加えて、複数組の磁極12a、12b(又は同
一列に配列されたN極およびS極少なくとも2つの磁
極)がx方向で長さの異なる磁極12a1、12a2、12
b1、12b2を含み、それらの磁極の表出面e1、e2がx
方向における長さL1、L2(L1<L2)に応じて異なる
高さに位置しているから、例えば磁極12a2、12b2から
の印加磁界に対応するセンサヘッド1の出力信号レベル
が、段差h分だけ低くなり、図8(a)に示す仮想線の
信号レベルから同図中の実線の信号レベルまで変化す
る。このように、磁極表出面積の大小に拘らず、センサ
ヘッド1又は21の検出高さ近傍に生じる磁界強度を均一
化することができるので、検出精度を安定させることが
できる。
<第9実施例>図8(c)は、請求項1、2、3、6、
13、14記載の発明に係る第9実施例を示す図であ
る。In this embodiment, the same effect as that of the first embodiment can be obtained, and in addition, a plurality of pairs of magnetic poles 12a and 12b (or at least two magnetic poles of N pole and S pole arranged in the same row) are provided. Magnetic poles 12a 1 , 12a 2 , 12 having different lengths in the x direction
b 1 and 12 b 2 , and the exposed surfaces e 1 and e 2 of those magnetic poles are x.
Since they are located at different heights depending on the lengths L 1 and L 2 (L 1 <L 2 ) in the direction, for example, the output signal level of the sensor head 1 corresponding to the magnetic field applied from the magnetic poles 12a 2 and 12b 2. However, the signal level becomes lower by the step h and changes from the signal level of the virtual line shown in FIG. 8A to the signal level of the solid line in FIG. In this way, the magnetic field strength generated in the vicinity of the detection height of the sensor head 1 or 21 can be made uniform irrespective of the size of the magnetic pole exposed area, so that the detection accuracy can be stabilized. <Ninth Embodiment> FIG. 8 (c) shows the features of claim 1, 2, 3, 6,
It is a figure which shows the 9th Example which concerns on invention of 13 and 14.
【0055】同図(c)に示すように、本実施例では複
数組の磁極12a、12b(後述する第10実施例のように
同一列に配列されたN極およびS極少なくとも2つの磁
極であってもよい)が、y方向で異なる幅を有する磁極
12a1、12a2、12b1、12b2を含んでおり、これら磁極
12a、12bの表出面が前記検出方向における長さL1、
L2(L1<L2)の比(面積の比)に応じて異なる幅
w1、w2(w1>w2)に設定されている。具体的には、
長い方の磁極12a2、12b2を形成する磁石に幅寸法の小
さいものを用いたり、スケール本体11に埋設した後の幅
方向切削量を相違させることで、長いもの(大面積のも
の)ほど幅を狭くしている。検出側の構成は第8実施例
と全く同様である。As shown in FIG. 7C, in this embodiment, a plurality of pairs of magnetic poles 12a and 12b (with at least two magnetic poles N and S arranged in the same row as in the tenth embodiment described later) are used. Magnetic poles having different widths in the y direction
12a 1 , 12a 2 , 12b 1 , 12b 2 are included, and these magnetic poles
The exposed surfaces of 12a and 12b have a length L 1 in the detection direction,
Different widths w 1 and w 2 (w 1 > w 2 ) are set according to the ratio (area ratio) of L 2 (L 1 <L 2 ). In particular,
Longer magnets (larger areas) can be obtained by using magnets that form the longer magnetic poles 12a 2 and 12b 2 with smaller width dimensions, or by differentiating the width direction cutting amount after embedding in the scale body 11. The width is narrow. The structure of the detection side is exactly the same as that of the eighth embodiment.
【0056】本実施例でも、第8実施例と同様の効果が
得られる。なお、磁極表出面積に応じて第8実施例のよ
うにz方向の高さを調節し、これと併せてy方向の幅を
調節してもよい。
<第10実施例>図9(a)〜(c)は、それぞれ請求
項13、14記載の発明に係る第10実施例の磁気スケ
ールを示す図であり、リニア位置センサとしての磁気式
エンコーダに適用した例を示している。Also in this embodiment, the same effect as that of the eighth embodiment can be obtained. The height in the z direction may be adjusted according to the magnetic pole exposed area as in the eighth embodiment, and the width in the y direction may be adjusted together with the height. <Tenth Embodiment> FIGS. 9A to 9C are views showing a magnetic scale of a tenth embodiment according to the invention of claims 13 and 14, respectively, and showing a magnetic encoder as a linear position sensor. The applied example is shown.
【0057】同図に示すように、本実施例の磁気スケー
ル40では、2つの磁石のうち一方の磁石41のN極と他方
の磁石42のS極とにそれぞれX方向(所定検出方向)に
所定間隔を隔てる複数の磁極凸部41a、42aを形成し、
両磁石41、42を、磁極凸部41a、42aがx方向に交互に
配置されるようy方向に対向させている。そして、x方
向で互いに隣合い同一面上(同一面側)に表出するN極
およびS極の少なくとも2つの磁極凸部41a、42a(磁
極)をx方向に同一列に配列するとともに、y方向では
各磁極凸部41a又は42aを逆極性の磁石42又は41に近接
させている。As shown in the figure, in the magnetic scale 40 of this embodiment, the N pole of one magnet 41 and the S pole of the other magnet 42 of the two magnets are respectively moved in the X direction (predetermined detection direction). Forming a plurality of magnetic pole projections 41a, 42a spaced apart by a predetermined distance,
Both magnets 41 and 42 are opposed to each other in the y direction so that the magnetic pole convex portions 41a and 42a are alternately arranged in the x direction. Then, at least two magnetic pole convex portions 41a, 42a (magnetic poles) of N pole and S pole which are adjacent to each other in the x direction and appear on the same surface (on the same surface side) are arranged in the same row in the x direction, and y In the direction, each magnetic pole convex portion 41a or 42a is brought close to the opposite polarity magnet 42 or 41.
【0058】すなわち、本実施例の磁気スケール40は、
図9(a)に示すようなクシ形の磁石41、42を突合せる
ことでN極およびS極の磁極41a、42aを同一列上に配
置するような磁極配置を簡素に実現したものであり、複
数の磁石41、42の複数組の磁極凸部41a、42a(磁界発
生手段)からなる所定磁界強度分布の磁気パターンを備
えている。That is, the magnetic scale 40 of this embodiment is
The magnetic pole arrangement in which the N-pole and S-pole magnetic poles 41a and 42a are arranged on the same row is simply realized by abutting the comb-shaped magnets 41 and 42 as shown in FIG. 9A. , A magnetic pattern having a predetermined magnetic field strength distribution, which is composed of a plurality of sets of magnetic pole convex portions 41a and 42a (magnetic field generating means) of a plurality of magnets 41 and 42.
【0059】また、本実施例では、例えばz方向の磁界
を検出するために偏光回転手段(磁気光学効果素子)を
有するセンサヘッドを設けており、具体的には上述のセ
ンサヘッド21を使用している。この場合、センサヘッド
21を、例えば磁気光学効果素子25が磁石41、42のうち何
れか一方側に偏倚し、かつ、光の進行方向がx方向とな
るように配置し、磁極41a、42aの間の上空では光の進
行方向(x方向)と略平行な方向に磁石41、42間の磁界
を作用させ、その変位中に光の進行方向と平行するx方
向、更に+z方向(この場合、磁気光学効果素子25の自
発磁化を消失させる磁界の方向)に磁界を作用させるよ
うになっている。Further, in this embodiment, a sensor head having a polarization rotating means (magneto-optical effect element) for detecting a magnetic field in the z direction is provided, and specifically, the above-mentioned sensor head 21 is used. ing. In this case, the sensor head
21 is arranged such that the magneto-optical effect element 25 is biased to one side of the magnets 41 and 42 and the traveling direction of light is in the x direction. In the sky between the magnetic poles 41a and 42a, The magnetic field between the magnets 41 and 42 in a direction substantially parallel to the traveling direction (x direction) of the magnets, and the x direction parallel to the traveling direction of the light during the displacement, and the + z direction (in this case, the magneto-optical effect element 25). The direction of the magnetic field that eliminates the spontaneous magnetization of the magnetic field) is applied.
【0060】本実施例では、x方向で互いに近接し同一
スケール面上に表出するN極およびS極少なくとも2つ
の磁極41a、42aが、所定検出方向であるx方向に配列
されるから、x方向にはNからSへの磁気回路を形成す
ることになり、x方向で隣合うN極およびS極の磁極凸
部41a、42aの中間位置近傍の磁化ベクトルの向きはx
方向、磁極41a、42a上の磁界の向きは+z方向とな
る。したがって、磁極41a、42aの中間位置で実効的な
−z方向の磁界がセンサヘッド21に作用することはな
く、それにより実効的なノイズレベルが増大してS/N
比が低下するといった問題が生じない。In this embodiment, at least two magnetic poles 41a and 42a, which are close to each other in the x direction and which are exposed on the same scale surface, are arranged in the x direction, which is the predetermined detection direction. A magnetic circuit from N to S is formed in the x direction, and the direction of the magnetization vector near the intermediate position between the magnetic pole projections 41a and 42a of the N pole and the S pole that are adjacent in the x direction is x.
The direction and the direction of the magnetic field on the magnetic poles 41a and 42a are the + z direction. Therefore, the effective magnetic field in the −z direction does not act on the sensor head 21 at the intermediate position between the magnetic poles 41a and 42a, which increases the effective noise level and increases the S / N ratio.
The problem that the ratio is lowered does not occur.
【0061】また、図9(b)に示すように、複数のク
シ状磁石41、42、43(43のS極側のみ図示し、それより
図中下方の磁石は図示していない)のN極およびS極の
磁極凸部41a、42a、42b、43aを、空気層14を挟んで
複数列の各列にN極およびS極の少なくとも2つの磁極
がそれぞれ並ぶように配置し、これによって複数ビット
の光強度信号を検出するようにすることもできる。勿
論、図9(c)に示すように、複数の磁石45と非磁性体
14と(例えばどちらも板状のもの)を交互に逆極性とな
るように並べ、同一列中にN極およびS極の少なくとも
2つの磁極が配列されるようにしてもよい。
<第11実施例>図10は請求項13、14記載の発明
に係る第11実施例の角度検出用の磁気スケールを示す
図である。なお、この実施例のセンサヘッドは例えば第
10実施例のセンサヘッド21と同様に構成される。Further, as shown in FIG. 9 (b), a plurality of comb-shaped magnets 41, 42, 43 (only the S pole side of 43 is shown, and the magnet below it is not shown) N The pole and S pole magnetic pole projections 41a, 42a, 42b, 43a are arranged such that at least two magnetic poles of N pole and S pole are arranged side by side in each row of a plurality of rows with the air layer 14 sandwiched therebetween, and thereby a plurality of poles are formed. It is also possible to detect the light intensity signal of the bit. Of course, as shown in FIG. 9C, a plurality of magnets 45 and a non-magnetic material are used.
14 and (for example, both are plate-shaped) may be arranged alternately so as to have opposite polarities, and at least two magnetic poles of N pole and S pole may be arranged in the same row. <Eleventh Embodiment> FIG. 10 is a diagram showing a magnetic scale for angle detection of an eleventh embodiment according to the invention as claimed in claims 13 and 14. The sensor head of this embodiment has the same structure as the sensor head 21 of the tenth embodiment, for example.
【0062】同図に示すように、本実施例では、2つの
磁石のうち一方の環状の磁石51の内周部であるN極と、
他方の円板状又は環状磁石52の外周部であるS極とに、
それぞれ所定検出方向であるR方向(円周方向)に所定
間隔を隔てる複数の磁極凸部51a、52aを形成し、両磁
石51、52を磁極凸部51a、52aがR方向に交互に配置さ
れるよう放射方向内外に突き合わせている。そして、R
方向で互いに近接し同一面側に表出するN極およびS極
少なくとも2つの磁極凸部51a、52a(磁極)を、R方
向に同一列に配列している。すなわち、本実施例では、
図10に示すように湾曲したクシ形の磁石51、52を内外
に突合せることで、N極およびS極の磁極51a、52aを
同一列上に配置するような磁極配置を簡素に実現してお
り、複数の磁石51、52の複数組の磁極凸部51a、52a
(磁界発生手段)からなる所定磁界強度分布の磁気パタ
ーンを備えている。As shown in the figure, in this embodiment, one of the two magnets, which is the inner peripheral portion of the annular magnet 51, has the N pole,
To the S pole which is the outer peripheral portion of the other disk-shaped or annular magnet 52,
A plurality of magnetic pole projections 51a and 52a are formed at predetermined intervals in the R direction (circumferential direction) which is the predetermined detection direction, and both magnets 51 and 52 are alternately arranged in the R direction in the magnetic pole projections 51a and 52a. So that they butt inward and outward in the radial direction. And R
At least two magnetic pole convex portions 51a and 52a (magnetic poles) which are close to each other in the direction and are exposed on the same surface side are arranged in the same row in the R direction. That is, in this embodiment,
As shown in FIG. 10, the curved comb-shaped magnets 51 and 52 are abutted inside and outside to easily realize the magnetic pole arrangement such that the N-pole and S-pole magnetic poles 51a and 52a are arranged in the same row. And a plurality of sets of magnetic pole projections 51a, 52a of a plurality of magnets 51, 52
A magnetic pattern having a predetermined magnetic field intensity distribution (magnetic field generating means) is provided.
【0063】このように本実施例では、x方向で互いに
近接し同一スケール面上に表出するN極およびS極少な
くとも2つの磁極51a、52aが、所定検出方向であるR
方向に配列されるから、角変位(一方を基準とした他方
の角度を含む)、角速度又は各か速度が検出可能で、し
かも、第10実施例と同様な作用効果によって検出精度
の優れた検出が可能になる。
<第12実施例>図11は請求項1、2、3、6、1
5、16記載の発明に係る第12実施例の磁気スケール
および磁気式検出装置を示す図である。なお、この実施
例のセンサヘッドは例えば上述例のセンサヘッド1又は
センサヘッド21をy方向に複数個並列に設けたものであ
る。As described above, in the present embodiment, at least two magnetic poles 51a and 52a which are close to each other in the x direction and appear on the same scale surface on the same scale surface have the predetermined detection direction R.
Since they are arranged in the same direction, angular displacement (including the other angle based on one side), angular velocity or each velocity can be detected, and detection with excellent detection accuracy is achieved by the same effect as in the tenth embodiment. Will be possible. <Twelfth Embodiment> FIG. 11 shows claims 1, 2, 3, 6, and 1.
It is a figure which shows the magnetic scale and magnetic detection apparatus of the 12th Example which concerns on invention of 5 and 16. The sensor head of this embodiment is, for example, one in which a plurality of the sensor heads 1 or 21 of the above-described example are provided in parallel in the y direction.
【0064】同図に示すように、本実施例の磁気スケー
ル60では、X方向(所定検出方向)と直交するy方向
に、複数の磁石61、62、63、64をそれぞれの間に非磁性
体65を挟んで図示しないリニアスケール本体に並列に配
置し、これらの複数の磁石61〜64の対向部により、複数
の列をなす複数組の磁極N,Sを、複数の磁石61〜64の
並列する数(この場合4)から1を引いた列数(この場
合3列)だけ構成している。そして、図中最上方の複数
組の磁極N,Sよりはその下方の複数組の磁極N,Sの
間隔が狭く、それより更に下方の複数組の磁極N,Sの
間隔が最も狭くなっている。もっとも、図示した磁気ス
ケール60から磁極を適宜削除したり各磁極のx方向長さ
を異なるものとしたりすることで、同一でない任意の磁
極間隔を設定することができる。また、この磁気スケー
ル60においては、前記磁石61〜64を1ブロックとして複
数ブロック(図中には2ブロックを図示)の磁石61〜64
をx方向に所定間隔で配置し、所定磁界強度分布の磁気
パターンを構成している。As shown in the figure, in the magnetic scale 60 of this embodiment, a plurality of magnets 61, 62, 63, 64 are non-magnetic between them in the y direction orthogonal to the X direction (predetermined detection direction). The body 65 is arranged in parallel to a linear scale main body (not shown), and a plurality of pairs of magnetic poles N and S forming a plurality of rows are provided to the plurality of magnets 61 to 64 by the facing portions of the plurality of magnets 61 to 64. The number of columns (3 in this case) obtained by subtracting 1 from the number of parallel lines (4 in this case) is configured. The distance between the magnetic poles N and S below the uppermost magnetic poles N and S is narrower, and the distance between the magnetic poles N and S lower than that is the narrowest. There is. However, arbitrary magnetic pole intervals which are not the same can be set by appropriately removing magnetic poles from the illustrated magnetic scale 60 or by making the lengths of the magnetic poles different in the x direction. In addition, in the magnetic scale 60, the magnets 61 to 64 are divided into a plurality of blocks (two blocks are shown in the drawing) and the magnets 61 to 64 are divided into a plurality of blocks.
Are arranged at a predetermined interval in the x direction to form a magnetic pattern having a predetermined magnetic field strength distribution.
【0065】このように、並列に配置した複数の磁石61
〜64の対向部によって、複数列をなす複数組の磁極N,
Sが、複数の磁石61〜64の並列数から1を引いた列数だ
け構成されるから、マルチチャンネルの直線位置検出用
の磁気スケール60が容易に製作可能となり、第1実施例
と同様にS/N比の向上を図りつつ多ビット化が図ら
れ、変位方向における分解能の向上が可能となる。As described above, the plurality of magnets 61 arranged in parallel are arranged.
~ 64 facing portions, a plurality of pairs of magnetic poles N,
Since S is constituted by the number of rows obtained by subtracting 1 from the parallel number of the plurality of magnets 61 to 64, the magnetic scale 60 for detecting the linear position of the multi-channel can be easily manufactured, and like the first embodiment. The number of bits can be increased while improving the S / N ratio, and the resolution in the displacement direction can be improved.
【0066】なお、磁石61〜64の対向部を第10実施例
のように複数の磁極凸部を有する櫛形のものとして、同
一列に配列されたN極およびS極少なくとも2つの磁極
を、磁石61〜64の並列数から1を引いた列数だけ構成す
ることもできる。また、本実施例の磁気式検出装置で
は、磁気スケール60の磁極表出面側に設けられたセンサ
ヘッド1が磁気スケール60からの磁界の強度に応じた電
気抵抗又は発生電圧を生ずる磁気電気変換素子(磁気抵
抗効果素子又はホール効果素子)からなる磁界強度検出
素子を有し、複数のセンサヘッド1に接続するコントロ
ーラ70(電気信号処理手段)がその磁界強度検出素子の
電気抵抗又は発生電圧に対応する電気信号を処理して特
定の物理量を求めるようになっている。すなわち、本実
施例では、磁気スケール60の磁極表出面側に、この磁気
スケール60の複数列の磁極N、Sにより形成される磁界
の強度に応じて前記磁界強度検出素子の出力に対応する
複数列分の異なる電気信号を公知の方法により処理して
例えば位置情報が求められる。すなわち、磁気スケール
60の磁気パターンと複数列分のセンサヘッド1とによっ
て所謂アブソリュート型のエンコーダとして機能させる
ことができる。勿論、磁気スケール60とセンサヘッド1
の検出部(磁界強度検出素子)との相対的な変位、速度
および加速度のうち何れかを求めることもできる。ま
た、複数ビットの信号を利用して変位方向を検出する所
謂インクリメンタル型のエンコーダとすることもでき
る。そして、第1実施例と同様な作用効果によって分解
能およびS/N比の向上を図り、高精度な磁気式検出装
置とすることができる。また、センサヘッド1を用いる
ことで、上述のようにS/N比および分解能を高めなが
らも、光磁気変調の場合に比べてセンサヘッドやコント
ローラ70の構成を簡素で低コストのものとすることがで
きる。The facing portions of the magnets 61 to 64 are comb-shaped having a plurality of magnetic pole convex portions as in the tenth embodiment, and at least two magnetic poles of N pole and S pole arranged in the same row are magnetized. It is also possible to configure the number of columns by subtracting 1 from the parallel number of 61 to 64. Further, in the magnetic detection device according to the present embodiment, the sensor head 1 provided on the magnetic pole exposed surface side of the magnetic scale 60 generates an electric resistance or a generated voltage according to the strength of the magnetic field from the magnetic scale 60. A controller 70 (electrical signal processing means) having a magnetic field strength detecting element composed of (a magnetoresistive effect element or a Hall effect element) and connected to a plurality of sensor heads 1 corresponds to the electric resistance or the generated voltage of the magnetic field strength detecting element. The electric signal to be processed is processed to obtain a specific physical quantity. That is, in this embodiment, on the magnetic pole surface of the magnetic scale 60, a plurality of magnetic field intensity detection elements corresponding to the outputs of the magnetic field intensity detection elements are formed according to the intensity of the magnetic field formed by the magnetic poles N and S of the plurality of columns of the magnetic scale 60. For example, the position information is obtained by processing the different electric signals for the columns by a known method. Ie magnetic scale
The 60 magnetic patterns and the sensor heads 1 for a plurality of rows can function as a so-called absolute encoder. Of course, magnetic scale 60 and sensor head 1
It is also possible to determine any one of displacement, velocity, and acceleration relative to the detection unit (magnetic field strength detection element). It is also possible to use a so-called incremental encoder that detects the displacement direction by using a signal of a plurality of bits. Then, the resolution and the S / N ratio can be improved by the same effect as that of the first embodiment, and a highly accurate magnetic detection device can be obtained. Further, by using the sensor head 1, the structure of the sensor head and the controller 70 can be made simple and low in cost as compared with the case of the magneto-optical modulation, while improving the S / N ratio and the resolution as described above. You can
【0067】なお、センサヘッドとして光磁気変調を行
なうセンサヘッド21を使用することができることはいう
までもない。このセンサヘッド21を用いた場合、本実施
例は請求項15、16に係る実施例ではなく、請求項
8、9記載の発明に係る実施例となる。
<第13実施例>図12は請求項1、2、3、6、7、
15〜18記載の発明に係る第13実施例の磁気スケー
ルおよび磁気式検出装置を示す図である。It goes without saying that the sensor head 21 for performing magneto-optical modulation can be used as the sensor head. When this sensor head 21 is used, this embodiment is not the embodiment according to claims 15 and 16 but the embodiment according to the invention of claims 8 and 9. <Thirteenth Embodiment> FIG. 12 shows claims 1, 2, 3, 6, 7,
It is a figure which shows the magnetic scale and magnetic detection apparatus of 13th Example based on invention of 15-18.
【0068】本実施例は、第12実施例の磁気スケール
60に代えて円板形の磁気スケールを用いたもので、それ
以外の構成は第12実施例と同様である。同図に示すよ
うに、本実施例の磁気スケール80では、そのスケール本
体81に、第12実施例と略同様な複数ブロックの磁石61
〜64(複数組の磁極を構成する)が検出方向であるR方
向(円周方向)に所定角度間隔を隔てるよう配列されて
いる。This embodiment is the magnetic scale of the twelfth embodiment.
A disk-shaped magnetic scale is used instead of 60, and the other structure is the same as that of the twelfth embodiment. As shown in the figure, in the magnetic scale 80 of the present embodiment, the scale main body 81 has a plurality of blocks of magnets 61 substantially similar to those of the twelfth embodiment.
.About.64 (constituting a plurality of sets of magnetic poles) are arranged at predetermined angular intervals in the R direction (circumferential direction) which is the detection direction.
【0069】このように、第12実施例と同様、並列に
配置した複数の磁石61〜64の対向部によって、複数列を
なす複数組の磁極N,Sが、複数の磁石61〜64の並列数
から1を引いた列数だけ構成されることから、マルチチ
ャンネルの回転位置検出用の磁気スケール80が容易に製
作可能となる。また、本実施例の磁気式検出装置は、コ
ントローラ70によって所謂アブソリュート型のロータリ
ーエンコーダとして機能させることができるし、磁気ス
ケール80と磁界強度検出素子との相対的な角変位、角速
度および角加速度のうち何れかを求めることもできる。
そして、第1および第12実施例と同様に、磁気抵抗効
果素子又はホール効果素子を用いたセンサヘッド1を採
用しながらも、S/N比の向上と高分解能確保によって
優れた検出精度を得ることができる。As described above, as in the twelfth embodiment, a plurality of pairs of magnetic poles N and S forming a plurality of rows are arranged in parallel by the facing portions of the plurality of magnets 61 to 64 arranged in parallel. Since the number of rows obtained by subtracting 1 from the number is configured, the magnetic scale 80 for detecting the rotational position of the multi-channel can be easily manufactured. Further, the magnetic detection device of the present embodiment can be made to function as a so-called absolute type rotary encoder by the controller 70, and the relative angular displacement, angular velocity and angular acceleration of the magnetic scale 80 and the magnetic field strength detection element. Either of them can be requested.
Further, similar to the first and twelfth embodiments, while adopting the sensor head 1 using the magnetoresistive effect element or the Hall effect element, excellent detection accuracy is obtained by improving the S / N ratio and ensuring high resolution. be able to.
【0070】なお、本実施例でもセンサヘッドとして光
磁気変調を行なうセンサヘッド21を使用することができ
ることはいうまでもない。センサヘッド21を用いた場
合、本実施例は請求項15〜18に係る実施例ではな
く、請求項10、11記載の発明に係る実施例となる。
<第14実施例>図13は請求項1、2、3、8、9記
載の発明に係る第14実施例の磁気スケールおよび磁気
式検出装置を示す図である。Needless to say, the sensor head 21 for performing magneto-optical modulation can also be used as the sensor head in this embodiment. When the sensor head 21 is used, this embodiment is not an embodiment according to claims 15 to 18, but an embodiment according to the invention of claims 10 and 11. <Fourteenth Embodiment> FIG. 13 is a view showing a magnetic scale and a magnetic detection device according to a fourteenth embodiment of the invention described in claims 1, 2, 3, 8, and 9.
【0071】同図に示すように、本実施例の磁気式検出
装置は、第1実施例と同様の磁気スケール10と、公知の
発光駆動回路101からの駆動信号に対応する光信号を出
力するレーザダイオード91(光出射手段)と、磁気スケ
ール10の磁極表出面側に設けられたセンサヘッド21と、
センサヘッド21を通過した後の光強度信号を電気信号に
変換するフォトダイオード95(光電気変換手段)と、フ
ォトダイオード95からの電気信号を処理してそれらの信
号に応じた特定の物理量を求めるコントローラ100(電
気信号処理手段)とを備えている。ここで、センサヘッ
ド21の磁気光学効果素子25は、各組のN、Sの磁極12
a、12bにより形成される磁界の強度に応じ、(例えば
磁気スケール10からの磁界が所定レベル以下になったと
きに自発磁化によって)偏光子23透過後の光信号の偏光
方向を約90度回転させる偏光回転手段となっている。
また、偏光子23は、レーザダイオード91からの光のうち
特定方向の偏光のみを透過させて直線偏光の光信号を作
るとともに、磁気光学効果素子25透過後の光の経路にお
いて特定方向の偏光のみを透過させる検光子(偏光制御
手段)ともなっている。コントローラ100は、フォトダ
イオード95からの電気信号を入力するコンパレータ102
と、変位量に相当するコンパレータ102の出力パルス数
をカウントするカウンタ103と、所定時間毎にカウンタ1
03のカウント値を入力して記憶保持すするとともにこの
カウント値から前回のカウント値を減算して速度に相当
する所定時間当りのカウント値を算出する減算器104と
を含んでおり、前記発光駆動回路101を制御する機能も
有している。なお、減算器104の出力を更にもう1つ減
算器に取り込んで所定時間当りの速度変化を計算し、加
速度を検出することもできる。すなわち、コントローラ
100は、フォトダイオード95からの電気信号に基づい
て、磁気スケール10とセンサヘッド21との相対的な変
位、速度および加速度のうち何れかを求める手段となっ
ている。As shown in the figure, the magnetic detection device of this embodiment outputs a magnetic scale 10 similar to that of the first embodiment and an optical signal corresponding to a drive signal from a known light emission drive circuit 101. A laser diode 91 (light emitting means), a sensor head 21 provided on the magnetic pole surface of the magnetic scale 10,
A photodiode 95 (photoelectric conversion means) for converting a light intensity signal after passing through the sensor head 21 into an electric signal, and an electric signal from the photodiode 95 is processed to obtain a specific physical quantity according to those signals. The controller 100 (electrical signal processing means) is provided. Here, the magneto-optical effect element 25 of the sensor head 21 includes the N and S magnetic poles 12 of each set.
Depending on the strength of the magnetic field formed by a and 12b, the polarization direction of the optical signal after passing through the polarizer 23 is rotated about 90 degrees (for example, by spontaneous magnetization when the magnetic field from the magnetic scale 10 falls below a predetermined level). It serves as a polarization rotating means.
In addition, the polarizer 23 transmits only the polarized light in the specific direction out of the light from the laser diode 91 to generate a linearly polarized optical signal, and only the polarized light in the specific direction in the light path after passing through the magneto-optical effect element 25. It also serves as an analyzer (polarization control means) for transmitting light. The controller 100 includes a comparator 102 that inputs an electric signal from the photodiode 95.
A counter 103 for counting the number of output pulses of the comparator 102 corresponding to the displacement amount, and a counter 1 for every predetermined time.
A count value of 03 is input and stored, and a subtracter 104 that calculates the count value per predetermined time corresponding to the speed by subtracting the previous count value from this count value and It also has a function of controlling the circuit 101. Note that the output of the subtractor 104 may be further taken into another subtractor to calculate the speed change per predetermined time to detect the acceleration. Ie controller
Reference numeral 100 is a means for obtaining any one of the relative displacement between the magnetic scale 10 and the sensor head 21, the speed, and the acceleration based on the electric signal from the photodiode 95.
【0072】本実施例では、N、Sの磁極12a、12bを
定検出方向と直交する方向に近接させた磁気スケール10
の磁極表出面側に磁気光学効果素子25を有するセンサヘ
ッド21が設けられ、レーザダイオード91から磁気光学効
果素子25に送られた光信号が、前記磁極12a、12bによ
り形成される磁界の強度に応じてその偏光方向を回転さ
せる。そして、特定方向の偏光のみを透過させる偏光子
23を光信号の経路に介在させることで、磁界強度に応じ
た光強度信号を作り、これをフォトダイオード95により
電気信号に変換し信号処理して、特定の物理量である磁
気スケール10とセンサヘッド21との相対的な変位(例え
ば片方を固定したときの可動側の位置)、速度又は加速
度が求められる。このとき、第7実施例と同様に、x方
向で近接する磁極12a同士又は12b同士の中間位置近傍
では実効的なノイズ成分を生ずる反対向きの磁化がきわ
めて生じ難い。したがって、不要な向きの磁化による実
効的ノイズレベルの増大という問題が解消され、第7実
施例と同様にS/N比および分解能に優れた磁気式検出
装置となる。
<第15実施例>図14は請求項1、2、3、8、9、
12記載の発明に係る第15実施例の磁気スケールおよ
び磁気式検出装置を示す図である。In the present embodiment, the magnetic scale 10 in which the N and S magnetic poles 12a and 12b are brought close to each other in the direction orthogonal to the constant detection direction.
A sensor head 21 having a magneto-optical effect element 25 is provided on the magnetic pole surface of the magnetic pole, and the optical signal sent from the laser diode 91 to the magneto-optical effect element 25 becomes the strength of the magnetic field formed by the magnetic poles 12a and 12b. The polarization direction is rotated accordingly. And a polarizer that transmits only polarized light in a specific direction
By interposing 23 in the path of the optical signal, a light intensity signal corresponding to the magnetic field intensity is created, and this is converted into an electric signal by the photodiode 95 and subjected to signal processing, and the magnetic scale 10 and the sensor head which are specific physical quantities. The relative displacement with respect to 21 (for example, the position on the movable side when one is fixed), the velocity, or the acceleration is obtained. At this time, similarly to the seventh embodiment, in the vicinity of the intermediate position between the magnetic poles 12a or 12b which are close to each other in the x direction, it is extremely difficult to generate magnetization in the opposite direction which produces an effective noise component. Therefore, the problem that the effective noise level increases due to the magnetization in the unnecessary direction is solved, and the magnetic detection device is excellent in the S / N ratio and the resolution as in the seventh embodiment. <Fifteenth Embodiment> FIG. 14 shows the features of claims 1, 2, 3, 8, 9,
It is a figure which shows the magnetic scale and magnetic type detection apparatus of the 15th Example which concerns on 12th invention.
【0073】同図に示すように、本実施例は、第13実
施例の磁気スケール60と複数のセンサヘッド21とを用い
たマルチチャンネルの磁気式検出装置となっている。す
なわち、X方向(所定検出方向)と直交するy方向に、
複数の磁石61、62、63、64を並列配置して、複数列をな
す複数組の磁極N,Sを構成している。また、本実施例
の磁気式検出装置は、光信号を出力するレーザダイオー
ド91、92、93(光出射手段)と、磁気スケール60の磁極
表出面側に設けられたセンサヘッド21と、センサヘッド
21を通過した後の光強度信号を電気信号に変換するフォ
トダイオード95、96、97(光電変換手段)と、光射出手
段91〜93に駆動信号を出力するとともにフォトダイオー
ド95〜97からの電気信号を処理してそれらの信号に応じ
た特定の物理量を求めるコントローラ100(電気信号処
理手段)と、を備えている。ここで、センサヘッド21の
磁気光学効果素子25は、磁極N、Sからの磁界の強度に
応じ、(例えば変位により磁気スケール60からの磁界が
所定レベル以下になったときに自発磁化によって)レー
ザダイオード91、92又は93からの光信号の偏光方向を回
転させる偏光回転手段となっている。また、偏光子23
は、レーザダイオード91、92、93からの光のうち特定方
向の偏光のみを透過させて直線偏光の光信号を作るとと
もに、磁気光学効果素子25透過後の光の経路において、
特定方向の偏光のみを透過させる検光子(偏光制御手
段)ともなっている。As shown in the figure, this embodiment is a multi-channel magnetic detection device using the magnetic scale 60 of the thirteenth embodiment and a plurality of sensor heads 21. That is, in the y direction orthogonal to the X direction (predetermined detection direction),
A plurality of magnets 61, 62, 63, 64 are arranged in parallel to form a plurality of pairs of magnetic poles N, S. Further, the magnetic detection device of the present embodiment includes laser diodes 91, 92, 93 (light emitting means) for outputting an optical signal, a sensor head 21 provided on the magnetic pole surface of the magnetic scale 60, and a sensor head.
Photodiodes 95, 96 and 97 (photoelectric conversion means) for converting the light intensity signal after passing through 21 into an electric signal and a drive signal to the light emitting means 91 to 93 and the electric power from the photodiodes 95 to 97. A controller 100 (electrical signal processing means) for processing signals to obtain a specific physical quantity according to the signals. Here, the magneto-optical effect element 25 of the sensor head 21 uses a laser depending on the strength of the magnetic field from the magnetic poles N and S (for example, by spontaneous magnetization when the magnetic field from the magnetic scale 60 is below a predetermined level due to displacement). It serves as a polarization rotation means for rotating the polarization direction of the optical signal from the diode 91, 92 or 93. Also, the polarizer 23
Is a linearly polarized optical signal by transmitting only the polarized light of a specific direction out of the light from the laser diodes 91, 92, 93, and in the light path after passing through the magneto-optical effect element 25,
It also serves as an analyzer (polarization control means) that transmits only polarized light in a specific direction.
【0074】また、コントローラ100は、詳細を図示し
ないが、CPUと、所定の処理プログラムを予め格納し
たROMと、CPUおよびROMとデータの授受を行な
うRAMと、発光駆動回路101およびフォトダイオード9
5に接続するI/O回路等から構成されており、ROM
内に予め格納した所定の制御プログラムに従い、フォト
ダイオード95〜98からの電気信号に基づいて、磁気スケ
ール60とセンサヘッド21との相対的な変位、速度又は加
速度を算出し、あるいは片側、例えばセンサヘッド21を
固定としたときの磁気スケール60の位置を求めることが
できる。勿論、複数の光強度信号を複数の電気信号に変
換して位置情報を含む複数ビットの信号とすることで、
所謂アブソリュート型のリニアエンコーダ等として機能
させることができる。Although not shown in detail, the controller 100 has a CPU, a ROM in which a predetermined processing program is stored in advance, a CPU and a RAM for exchanging data with the ROM, a light emission drive circuit 101 and a photodiode 9.
ROM composed of I / O circuit etc. connected to 5
According to a predetermined control program stored in advance, based on the electrical signals from the photodiodes 95 to 98, the relative displacement between the magnetic scale 60 and the sensor head 21, the velocity or acceleration is calculated, or one side, for example the sensor The position of the magnetic scale 60 when the head 21 is fixed can be obtained. Of course, by converting a plurality of light intensity signals into a plurality of electric signals to form a signal of a plurality of bits including position information,
It can function as a so-called absolute type linear encoder or the like.
【0075】本実施例では、磁極Nから磁極表出面上に
出た磁化ベクトルはこの磁極と同一高さに位置する磁極
Sの近傍で下向きになるまでy方向一方側に向かってい
る。また、x方向で近接する磁極同士の距離はy方向で
隣接するN、Sの磁極同士の距離より十分に大きい。し
たがって、x方向で近接する磁極同士の中間位置近傍に
磁極N,S上と反対の向き(y方向他方側)への磁化の
回り込みが生じない。したがって、上述の実施例と同様
に反対向きの磁化による実効的ノイズレベルの増大とい
う問題が解消され、S/N比および分解能に優れた検出
装置となる。In the present embodiment, the magnetization vector emerging from the magnetic pole N on the magnetic pole exposed surface is directed toward the one side in the y direction until it becomes downward near the magnetic pole S located at the same height as this magnetic pole. The distance between the magnetic poles that are close to each other in the x direction is sufficiently larger than the distance between the magnetic poles of N and S that are adjacent to each other in the y direction. Therefore, in the vicinity of the intermediate position between the magnetic poles that are close to each other in the x direction, there is no wraparound of the magnetization in the direction opposite to that on the magnetic poles N and S (the other side in the y direction). Therefore, the problem that the effective noise level increases due to the magnetization in the opposite direction is solved as in the above-described embodiment, and the detection device has an excellent S / N ratio and resolution.
【0076】上述の実施例で磁気光学効果素子を用いる
センサヘッド21は反射面を有する反射型のものであった
が、透過型であってもよいことはいうまでもない。Although the sensor head 21 using the magneto-optical effect element in the above-mentioned embodiment is of the reflective type having the reflective surface, it goes without saying that it may be of the transmissive type.
【0077】[0077]
【発明の効果】請求項1記載の発明によれば、所定検出
方向で非磁性体を挟んで近接する磁極間に検出すべき磁
界の向きと反対向きに生ずる磁界を実効的に除去する構
成としたので、磁気抵抗効果素子やホール効果素子等の
磁界強度検出素子を使用しても反対向きの磁化による実
効的なノイズレベルの増大という問題がなく、磁気スケ
ールと磁界強度検出素子との間隔を狭めることができ
る。その結果、これを用いる検出装置の分解能およびS
/N比を向上させることができる。According to the first aspect of the invention, the magnetic field generated in the direction opposite to the direction of the magnetic field to be detected between the adjacent magnetic poles sandwiching the non-magnetic material in the predetermined detection direction is effectively removed. Therefore, even if a magnetic field strength detection element such as a magnetoresistive effect element or a Hall effect element is used, there is no problem that the effective noise level increases due to magnetization in the opposite direction, and the distance between the magnetic scale and the magnetic field strength detection element is reduced. Can be narrowed. As a result, the resolution and S of the detector using it
The / N ratio can be improved.
【0078】請求項2記載の発明によれば、同一列の磁
極の極性を交互に変化させているので、請求項1記載の
発明の効果をより顕著にすることができ、磁極上の磁界
のみならず、所定検出方向で隣合う磁極間に生ずる磁化
をも積極的に活用できるセンサヘッドを使用して、検出
精度をより向上させることができる。請求項3記載の発
明によれば、同一列の磁極の極性を所定の順番で変化さ
せているので、請求項1記載の発明の効果をより顕著に
することができ、磁極上の磁界のみならず、所定検出方
向で隣合う磁極間に生ずる磁化をも積極的に活用できる
センサヘッドを使用して、検出精度をより向上させるこ
とができる。According to the invention described in claim 2, since the polarities of the magnetic poles in the same row are alternately changed, the effect of the invention described in claim 1 can be made more remarkable, and only the magnetic field on the magnetic poles can be made. Instead, it is possible to further improve the detection accuracy by using the sensor head that can positively utilize the magnetization generated between the adjacent magnetic poles in the predetermined detection direction. According to the invention of claim 3, since the polarities of the magnetic poles in the same row are changed in a predetermined order, the effect of the invention of claim 1 can be made more remarkable, and only the magnetic field on the magnetic poles can be obtained. Instead, it is possible to further improve the detection accuracy by using the sensor head that can positively utilize the magnetization generated between the adjacent magnetic poles in the predetermined detection direction.
【0079】請求項4記載の発明によれば、前記複数組
の磁極又は同一列に配列されたN極、S極少なくとも2
つの磁極を、その表出面の検出方向長さに応じて異なる
高さに位置するようにしているので、磁極表出面積の大
小に拘らず検出高さにおける磁界強度を均一化すること
ができ、検出精度を安定させることができる。請求項5
記載の発明によれば、前記複数組の磁極又は同一列に配
列されたN極、S極少なくとも2つの磁極を、その表出
面の検出方向長さに応じて検出方向と直交する幅の異な
るものにしているので、磁極表出面積の大小に拘らず検
出高さにおける磁界強度を均一化することができ、検出
精度を安定させることができる。According to the fourth aspect of the invention, at least two magnetic poles of the plurality of sets or N poles and S poles arranged in the same row are provided.
Since the two magnetic poles are positioned at different heights depending on the length of the exposed surface in the detection direction, the magnetic field strength at the detected height can be made uniform regardless of the size of the exposed area of the magnetic pole. The detection accuracy can be stabilized. Claim 5
According to the described invention, the plurality of sets of magnetic poles or at least two magnetic poles of N pole and S pole arranged in the same row have different widths orthogonal to the detection direction according to the detection direction length of the exposed surface. Therefore, the magnetic field strength at the detection height can be made uniform regardless of the size of the magnetic pole exposed area, and the detection accuracy can be stabilized.
【0080】請求項6記載の発明によれば、並列配置し
た複数の磁石の対向部によって該磁石の並列数から1を
引いた列数だけ複数組の磁極又は同一列に配列されたN
極およびS極少なくとも2つの磁極を構成するので、マ
ルチチャンネルの磁気スケールを容易に製作することが
できる。請求項7記載によれば、前記複数組の磁極を円
周方向に所定角度間隔を隔てるよう配列しているので、
角変位(固定側を基準とする角度位置を含む)、角速度
および角加速度のうち少なくとも1つの検出が可能で、
しかも検出精度に優れた磁気スケールを提供することが
できる。According to the sixth aspect of the present invention, a plurality of pairs of magnetic poles or N arranged in the same row are arranged by the number of rows obtained by subtracting 1 from the parallel number of the magnets by the facing portions of the plurality of magnets arranged in parallel.
Since at least two magnetic poles of the pole and the S pole are formed, a multi-channel magnetic scale can be easily manufactured. According to claim 7, since the plurality of sets of magnetic poles are arranged so as to be spaced at a predetermined angular interval in the circumferential direction,
It is possible to detect at least one of angular displacement (including angular position with reference to the fixed side), angular velocity and angular acceleration,
Moreover, it is possible to provide a magnetic scale having excellent detection accuracy.
【0081】請求項8記載の発明によれば、磁気スケー
ルの磁極表出面側の非磁性体に対向する位置に偏光回転
手段を設け、該偏光回転手段に送った光信号の偏光方向
を前記磁極により形成される所定方向の磁界の強度に応
じて回転させるとともに、偏光制御手段を光信号の経路
に介在させて磁界強度に応じた光強度信号を生成し、こ
れを電気信号に変換し信号処理するようにしているの
で、検出方向で近接する磁極間で検出すべき磁化方向と
反対向きの磁化が生ずるのを防止して該反対向きの磁化
による実効的ノイズレベルの増大という問題を解消し、
S/N比および分解能に優れた検出精度の高い光磁気変
調方式の磁気式検出装置を提供することができる。According to the present invention, the polarization rotating means is provided at a position facing the non-magnetic body on the magnetic pole exposing surface side of the magnetic scale, and the polarization direction of the optical signal sent to the polarization rotating means is set to the magnetic pole. Is rotated in accordance with the strength of the magnetic field in the predetermined direction formed by the above, and the polarization control means is interposed in the path of the optical signal to generate a light intensity signal corresponding to the magnetic field strength, and this is converted into an electrical signal for signal processing. Therefore, it is possible to prevent the occurrence of the magnetization in the opposite direction to the magnetization direction to be detected between the magnetic poles that are close to each other in the detection direction, and solve the problem that the effective noise level increases due to the magnetization in the opposite direction.
It is possible to provide a magneto-optical modulation type magnetic detection device having an excellent S / N ratio and resolution and high detection accuracy.
【0082】請求項9記載の発明によれば、特定の物理
量である磁気スケールと前記偏光回転手段との相対的な
変位(固定側を基準とする位置を含む)、速度および加
速度のうち少なくとも1つを精度良く求めることができ
る。請求項10記載の発明によれば、前記複数組の磁極
を円周方向に配列した磁気スケールの磁極表出面側の非
磁性体に対向する位置に偏光回転手段を設け、光信号の
偏光方向を前記磁極により形成される所定方向の磁界の
強度に応じて回転させ、更に偏光制御手段を光信号の経
路に介在させることで磁界強度に応じた光強度信号を生
成し、これを電気信号に変換し信号処理するようにして
いるので、検出方向で近接する磁極間で前記所定磁界方
向と反対向きの磁化が生ずるのを防止して反対向きの磁
化による実効的ノイズレベルの増大という問題を解消す
ることができ、S/N比および分解能に優れた検出精度
の高い光磁気変調方式の磁気式検出装置を提供すること
ができる。According to the ninth aspect of the invention, at least one of relative displacement (including a position on the fixed side as a reference) between the magnetic scale, which is a specific physical quantity, and the polarization rotating means, velocity and acceleration. One can be accurately determined. According to the invention as set forth in claim 10, the magnetic scales in which the plurality of sets of magnetic poles are arranged in the circumferential direction are arranged on the magnetic pole surface side of the magnetic scale.
Polarization rotating means is provided at a position facing the magnetic body, the polarization direction of the optical signal is rotated according to the strength of the magnetic field in a predetermined direction formed by the magnetic pole, and the polarization control means is interposed in the path of the optical signal. Since a light intensity signal corresponding to the magnetic field strength is generated and converted into an electric signal for signal processing, it is possible to prevent the magnetization in the direction opposite to the predetermined magnetic field direction between the magnetic poles that are close to each other in the detection direction. It is possible to prevent the problem of an increase in effective noise level due to magnetization in the opposite direction, and to provide a magneto-optical modulation type magnetic detection device having excellent S / N ratio and resolution and high detection accuracy. it can.
【0083】請求項11記載の発明によれば、特定の物
理量である磁気スケールと前記偏光回転手段との相対的
な変位角(一方を固定した場合の固定側を基準とする角
度位置を含む)、角速度および角加速度のうち少なくと
も1つを精度良く求めることができる。請求項12記載
の発明によれば、複数組の磁極を複数列に並列させた磁
気スケールと、該複数列の各列の磁極により形成される
磁界の強度に応じて光信号の偏光方向を回転させる複数
の偏光回転素子を有する偏光回転手段とを用いているの
で、複数の光強度信号を複数の電気信号に変換すること
で、S/N比および分解能に優れた所謂アブソリュート
型の検出装置を実現することができる。According to the eleventh aspect of the present invention, the relative displacement angle between the magnetic scale, which is a specific physical quantity, and the polarization rotating means (including the angular position with one side fixed relative to the fixed side). , At least one of the angular velocity and the angular acceleration can be accurately obtained. According to the twelfth aspect of the invention, the polarization direction of the optical signal is rotated according to the magnetic scale in which a plurality of pairs of magnetic poles are arranged in parallel in a plurality of rows and the strength of the magnetic field formed by the magnetic poles in each of the plurality of rows. A polarization rotating means having a plurality of polarization rotating elements is used, so that by converting a plurality of light intensity signals into a plurality of electric signals, a so-called absolute type detection device excellent in S / N ratio and resolution can be obtained. Can be realized.
【0084】請求項13記載の発明によれば、所定検出
方向で非磁性体を挟んで互いに近接し同一面側に表出す
るN極およびS極少なくとも2つの磁極を所定検出方向
に配列し、該検出方向で隣合うN極およびS極の磁極間
に下向きの磁化が生じないようにしているので、磁気抵
抗効果素子やホール効果素子等の磁気電気変換素子から
なる磁界強度検出素子を使用しても反対向きの磁化によ
る実効的なノイズレベルの増大という問題がなく、磁気
スケールと磁界強度検出素子との間隔を狭めることがで
きる。その結果、検出装置の分解能およびS/N比を向
上させることができる。また、磁極上の磁界のみなら
ず、所定検出方向で隣合う磁極間に生ずる磁化をも積極
的に活用できるセンサヘッドを使用すれば、検出精度を
より向上させることができる。According to the thirteenth aspect of the present invention, at least two magnetic poles, an N pole and an S pole, which are close to each other with a non-magnetic material interposed therebetween in the predetermined detection direction and which are exposed on the same plane side, are arranged in the predetermined detection direction. Since the downward magnetization is not generated between the magnetic poles of the N pole and the S pole which are adjacent to each other in the detection direction, a magnetic field strength detection element including a magnetoelectric conversion element such as a magnetoresistive effect element or a Hall effect element is used. However, there is no problem that the effective noise level is increased by the magnetization in the opposite direction, and the gap between the magnetic scale and the magnetic field strength detection element can be narrowed. As a result, the resolution and S / N ratio of the detection device can be improved. Further, if a sensor head that can positively utilize not only the magnetic field on the magnetic poles but also the magnetization generated between the adjacent magnetic poles in the predetermined detection direction, the detection accuracy can be further improved.
【0085】請求項14記載の発明によれば、同一列に
配列されたN極およびS極少なくとも2つの磁極を複数
列に並列させた磁気スケールと、該複数列の各列の磁極
により形成される磁界の強度に応じて光信号の偏光方向
を回転させる複数の偏光回転素子を有する偏光回転手段
とを用いているので、複数の光強度信号を複数の電気信
号に変換することで、S/N比および分解能に優れた所
謂アブソリュート型の検出装置を実現することができ
る。According to the fourteenth aspect of the invention, the magnetic scale is formed by arranging at least two magnetic poles of N poles and S poles arranged in the same row in parallel in a plurality of rows, and magnetic poles in each row of the plurality of rows. Since the polarization rotating means having a plurality of polarization rotating elements for rotating the polarization direction of the optical signal according to the strength of the magnetic field is used, by converting the plurality of light intensity signals into a plurality of electric signals, S / It is possible to realize a so-called absolute type detection device having excellent N ratio and resolution.
【0086】請求項15記載の発明によれば、磁気スケ
ールの磁極表出面側の非磁性体に対向する位置に複数組
のN極およびS極の磁極により形成される磁界の強度に
応じた電圧を発生する磁気電気変換素子からなる磁界強
度検出素子を設け、該検出素子の発生電圧に対応する電
気信号を処理して特定の物理量であるを求めているの
で、S/N比および分解能を向上させながらも、センサ
ヘッドや電気信号処理手段の構成を簡素で低コストのも
のとすることができる。According to the fifteenth aspect of the invention, the voltage corresponding to the strength of the magnetic field formed by the plurality of sets of the N-pole and the S-pole at the position facing the non-magnetic body on the magnetic pole surface of the magnetic scale. Since a magnetic field strength detection element composed of a magneto-electric conversion element for generating is provided and an electric signal corresponding to the voltage generated by the detection element is processed to obtain a specific physical quantity, the S / N ratio and the resolution are improved. However, the structure of the sensor head and the electric signal processing means can be made simple and low cost.
【0087】請求項16記載の発明によれば、磁界強度
検出素子として磁気抵抗効果素子やホール効果素子とい
った磁気電気変換素子を用いる場合も、特定の物理量で
ある磁気スケールと前記磁界強度検出素子との相対的な
変位(固定側を基準とする位置を含む)、速度および加
速度のうち少なくとも1つを精度良く求めることができ
る。According to the sixteenth aspect of the invention, even when a magnetoelectric conversion element such as a magnetoresistive effect element or a Hall effect element is used as the magnetic field strength detection element, the magnetic scale and the magnetic field strength detection element which are specific physical quantities are It is possible to accurately determine at least one of the relative displacement (including the position with the fixed side as a reference), the speed, and the acceleration.
【0088】請求項17記載の発明によれば、複数のN
極およびS極の磁極を円周方向に所定間隔で配列した磁
気スケールの磁極表出面側の非磁性体に対向する位置
に、N極およびS極の磁極により形成される磁界の強度
に応じた電圧を発生する磁気電気変換素子からなる磁界
強度検出素子を設け、該素子の発生電圧に対応する電気
信号を処理して特定の物理量を求めているので、角度検
出等におけるS/N比および分解能を向上させながら
も、センサヘッドや電気信号処理手段の構成を簡素で低
コストのものとすることができる。According to the invention of claim 17, a plurality of N
Magnets with poles and S poles arranged in the circumferential direction at predetermined intervals
Qi scale magnetic pole surface sidePosition facing the non-magnetic material of
The strength of the magnetic field formed by the N and S poles
Magnetic field consisting of magneto-electric conversion element that generates voltage according to
An intensity detection element is provided, and electricity corresponding to the voltage generated by the element is detected.
Since the signal is processed to obtain a specific physical quantity, the angle detection
While improving the S / N ratio and resolution at the time of output, etc.
The sensor head and electrical signal processing means are simple and low
Can be of cost.
【0089】請求項18記載の発明によれば、特定の物
理量である磁気スケールと前記磁界強度検出素子との相
対的な変位角(固定側を基準とする角度位置を含む)、
角速度および角加速度のうち少なくとも1つを精度良く
求めることができる。According to the eighteenth aspect of the present invention, the relative displacement angle between the magnetic scale, which is a specific physical quantity, and the magnetic field strength detection element (including the angular position with the fixed side as a reference),
At least one of the angular velocity and the angular acceleration can be accurately obtained.
【図1】本発明の第1実施例を示す図で、(a)はその
磁気スケールおよびセンサヘッドからなる直線型リニア
センサの斜視図、(b)はそのセンサの平面図、(c)
は(b)のC1−C1断面図である。1A and 1B are views showing a first embodiment of the present invention, in which FIG. 1A is a perspective view of a linear type linear sensor including a magnetic scale and a sensor head, FIG. 1B is a plan view of the sensor, and FIG.
FIG. 7B is a sectional view taken along line C1-C1 of FIG.
【図2】その磁界発生手段の5つの態様を示す磁気スケ
ールの横断面図である。FIG. 2 is a cross-sectional view of a magnetic scale showing five modes of the magnetic field generating means.
【図3】本発明の第2、第3実施例の概略平面図で、
(a)が磁極の配置を交互に異ならせた第2実施例の磁
気スケールを、(b)が磁極の配置を所定の順番に異な
らせた第3実施例の磁気スケールを示している。FIG. 3 is a schematic plan view of second and third embodiments of the present invention,
(A) shows the magnetic scale of the second embodiment in which the arrangement of the magnetic poles is alternately changed, and (b) shows the magnetic scale of the third embodiment in which the arrangement of the magnetic poles is changed in a predetermined order.
【図4】(a)〜(c)は図3(a)に示した第2実施
例における磁界強度分布の説明図で、(d)は第3実施
例の磁極配置の変形態様を示す図である。4A to 4C are explanatory views of the magnetic field strength distribution in the second embodiment shown in FIG. 3A, and FIG. 4D is a diagram showing a modification of the magnetic pole arrangement of the third embodiment. Is.
【図5】本発明の第4実施例を示すその磁気式ロータリ
ーエンコーダの概略正面図である。FIG. 5 is a schematic front view of the magnetic rotary encoder according to the fourth embodiment of the present invention.
【図6】(a)は本発明の第5実施例の磁気スケールを
示す正面図、(b)は本発明の第6実施例の磁気スケー
ルを示す正面図で、それぞれ第4実施例とは磁極の極性
配置が異なるものを示している。6A is a front view showing a magnetic scale according to a fifth embodiment of the present invention, and FIG. 6B is a front view showing a magnetic scale according to the sixth embodiment of the present invention. The magnetic poles are arranged in different polarities.
【図7】本発明の係る第7実施例を示すその磁気式リニ
アエンコーダの概略平面図である。FIG. 7 is a schematic plan view of the magnetic linear encoder showing a seventh embodiment of the present invention.
【図8】本発明の第8、第9実施例の説明図で、
(a)、(b)は磁極表出面高さを異ならせた第8実施
例を示し、(c)は検出方向と直交する磁極の幅寸法を
異ならせた第9実施例を示している。FIG. 8 is an explanatory view of eighth and ninth embodiments of the present invention,
(A) and (b) show the eighth embodiment in which the height of the magnetic pole exposed surface is different, and (c) shows the ninth embodiment in which the width of the magnetic poles orthogonal to the detection direction is different.
【図9】(a)は本発明の第10実施例の磁気スケール
を示す平面図、(b)マルチヘッドとした場合の態様を
示す平面図、(c)は複数の板状磁石を非磁性体を挟ん
で同一列に配列した態様を示す斜視図である。9A is a plan view showing a magnetic scale according to a tenth embodiment of the present invention, FIG. 9B is a plan view showing a mode when a multi-head is used, and FIG. 9C is a non-magnetic view of a plurality of plate-shaped magnets. It is a perspective view showing the mode arranged in the same line on both sides of the body.
【図10】本発明の第11実施例の角度検出用の磁気ス
ケールを示す平面図である。FIG. 10 is a plan view showing a magnetic scale for angle detection according to an eleventh embodiment of the present invention.
【図11】本発明の第12実施例の磁気スケールおよび
磁気式検出装置を示す要部構成図である。FIG. 11 is a main part configuration diagram showing a magnetic scale and a magnetic detection device according to a twelfth embodiment of the present invention.
【図12】本発明の第13実施例の磁気スケールおよび
磁気式検出装置を示す要部構成図である。FIG. 12 is a main part configuration diagram showing a magnetic scale and a magnetic detection device of a thirteenth embodiment of the present invention.
【図13】本発明の第14実施例の磁気スケールおよび
磁気式検出装置を示す要部構成図である。FIG. 13 is a main part configuration diagram showing a magnetic scale and a magnetic detection device according to a fourteenth embodiment of the present invention.
【図14】本発明の第15実施例の磁気スケールおよび
磁気式検出装置を示す要部構成図である。FIG. 14 is a main part configuration diagram showing a magnetic scale and a magnetic detection device according to a fifteenth embodiment of the present invention.
【図15】従来例の課題の説明図である。FIG. 15 is an explanatory diagram of a problem of the conventional example.
1 センサヘッド(磁界強度検出素子)
10、30、40、60、80 磁気スケール
10a スケール面(磁極表出面)
11、31、41、81 スケール本体
12 磁界発生手段
12a、12b、41a、42a 複数組の磁極
14 非磁性体
21 センサヘッド(磁気光学効果素子を用いたセンサ
ヘッド)
22 光導波路(光導波路形成素子)
23 偏光子(偏光制御手段)
25 磁気光学効果素子(偏光回転手段)
41、42、51、52、61、62、63、64 磁石
41a、42a、51a、52a 磁極凸部(磁極、磁界発生
手段)
91、92、93 レーザダイオード(光射出手段)
95、96、97 フォトダイオード95(光電気変換手段)
100 コントローラ(電気信号処理手段)
c1、c2 表出面
L1、L2 検出方向における磁極の長さ
w1、w2 検出方向と直交する磁極の幅1 Sensor head (magnetic field strength detection element) 10, 30, 40, 60, 80 Magnetic scale 10a Scale surface (magnetic pole surface) 11, 31, 41, 81 Scale main body 12 Magnetic field generating means 12a, 12b, 41a, 42a Plural sets Magnetic pole 14 Non-magnetic material 21 Sensor head (sensor head using magneto-optical effect element) 22 Optical waveguide (optical waveguide forming element) 23 Polarizer (polarization control means) 25 Magneto-optical effect element (polarization rotation means) 41, 42 , 51, 52, 61, 62, 63, 64 Magnets 41a, 42a, 51a, 52a Magnetic pole projections (magnetic poles, magnetic field generating means) 91, 92, 93 Laser diodes (light emitting means) 95, 96, 97 Photodiodes 95 (Photoelectric conversion means) 100 controller (electrical signal processing means) c 1 , c 2 exposed surface L 1 , L 2 magnetic pole length w 1 in the detection direction, w 2 magnetic pole width orthogonal to the detection direction
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 勉 岐阜県不破郡垂井町宮代字尾崎1110−1 帝人製機株式会社岐阜第一工場内 (56)参考文献 特開 平1−224623(JP,A) 特開 昭60−119413(JP,A) 特開 平4−351916(JP,A) 特開 昭63−148104(JP,A) 特開 昭59−188519(JP,A) 特開 平1−119716(JP,A) 実開 平4−78561(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01D 5/00 - 5/62 G01B 7/00 - 7/34 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tsutomu Takahashi 1110-1 Ozaki, Miyashiro, Tarui-cho, Fuwa-gun, Gifu Teijin Seiki Co., Ltd. Gifu No. 1 factory (56) Reference JP-A-1-224623 (JP, A) JP 60-119413 (JP, A) JP 4-351916 (JP, A) JP 63-148104 (JP, A) JP 59-188519 (JP, A) JP 1 −119716 (JP, A) Fukukaihei 4-78561 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) G01D 5/00-5/62 G01B 7 /00-7/34
Claims (18)
分布の磁気パターンを備え、該磁気パターン側の磁界強
度が磁界強度検出素子の所定検出方向で規則的に異なる
磁気スケールにおいて、前記磁界強度検出素子に対向する位置に配置されるため
の非磁性体を挟んで 前記検出方向と略直交する方向で互
いに近接し同一面側に表出するN極およびS極少なくと
も2つの磁極を1組として、少なくとも1組の磁極を前
記検出方向の所定位置に設けたことを特徴とする磁気ス
ケール。1. A magnetic scale comprising a magnetic pattern having a predetermined magnetic field strength distribution composed of a plurality of magnetic field generating means, wherein the magnetic field strength on the magnetic pattern side is regularly different in a predetermined detection direction of a magnetic field strength detecting element. Since it is placed at the position facing the detection element
Of at least two magnetic poles of N pole and S pole which are close to each other in the direction substantially orthogonal to the detection direction and are exposed on the same surface side with the non-magnetic body sandwiched therebetween . A magnetic scale characterized in that a magnetic pole is provided at a predetermined position in the detection direction.
に配列された複数組の磁極であり、該複数組の磁極のう
ち同一列の磁極の極性が交互に変化するよう、複数組の
磁極の極性配置を異ならせたことを特徴とする請求項1
記載の磁気スケール。2. The at least one set of magnetic poles is a plurality of sets of magnetic poles arranged in the detection direction, and the plurality of sets of magnetic poles are arranged so that the polarities of the magnetic poles in the same row alternate with each other. 2. The polar arrangement of the two is different.
The magnetic scale shown.
に配列された複数組の磁極であり、該複数組の磁極のう
ち同一列の磁極の極性が所定の順番で変化するよう、複
数組の磁極の極性配置を異ならせたことを特徴とする請
求項1記載の磁気スケール。3. The at least one set of magnetic poles is a plurality of sets of magnetic poles arranged in the detection direction, and the plurality of sets of magnetic poles are arranged such that the polarities of the magnetic poles in the same row change in a predetermined order. 2. The magnetic scale according to claim 1, wherein the magnetic poles are arranged in different polarities.
N極およびS極少なくとも2つの磁極が、前記検出方向
で長さの異なる磁極を含み、 該磁極の表出面が前記検出方向における該表出面の長さ
に応じて異なる高さに位置することを特徴とする請求項
1、2又は3記載の磁気スケール。4. The plurality of sets of magnetic poles or at least two magnetic poles of N pole and S pole arranged in the same row include magnetic poles having different lengths in the detection direction, and an exposed surface of the magnetic poles in the detection direction. The magnetic scale according to claim 1, wherein the magnetic scale is located at different heights according to the length of the exposed surface.
N極およびS極少なくとも2つの磁極が、前記検出方向
で長さの異なる磁極を含み、 該磁極の表出面が前記検出方向における該表出面の長さ
に応じて検出方向と直交する幅を変化させたものである
ことを特徴とする請求項1〜4の何れかに記載の磁気ス
ケール。5. A plurality of sets of magnetic poles or at least two magnetic poles of N pole and S pole arranged in the same row include magnetic poles having different lengths in the detection direction, and an exposed surface of the magnetic poles in the detection direction. The magnetic scale according to claim 1, wherein the width orthogonal to the detection direction is changed according to the length of the exposed surface.
を並列に配置し、該複数の磁石の対向部により、前記複
数組の磁極を、磁石の並列数から1を引いた列数だけ構
成したことを特徴とする請求項1〜5の何れかに記載の
磁気スケール。6. A plurality of magnets are arranged in parallel in a direction orthogonal to the detection direction, and the plurality of sets of magnetic poles are arranged by the number of rows obtained by subtracting 1 from the parallel number of magnets by the facing portions of the plurality of magnets. It comprised, The magnetic scale in any one of Claims 1-5.
周方向に所定角度間隔を隔てるよう配列されていること
を特徴とする請求項1〜6の何れかに記載の磁気スケー
ル。7. The magnetic scale according to claim 1, wherein the plurality of sets of magnetic poles are arranged at predetermined angular intervals in a circumferential direction which is the detection direction.
ルと、 光信号を出力する光出射手段と、 前記磁気スケールの磁極表出面側の前記非磁性体に対向
する位置に設けられ、各組のN極およびS極の磁極によ
り形成される磁界の強度に応じて前記光信号の偏光方向
を回転させる偏光回転手段と、 特定方向の偏光のみを透過させる偏光制御手段と、 偏光制御手段透過後の光強度信号を電気信号に変換する
光電気変換手段と、 光電変換手段からの電気信号を処理して該信号に応じた
特定の物理量を求める電気信号処理手段と、を備えたこ
とを特徴とする磁気式検出装置。8. A magnetic scale according to any one of claims 1 to 6, a light emitting means for outputting an optical signal, and a surface facing the non-magnetic body on the magnetic pole surface of the magnetic scale.
And a polarization control means for rotating the polarization direction of the optical signal according to the strength of the magnetic field formed by the N and S poles of each set, and the polarization control for transmitting only the polarization in the specific direction. Means, an opto-electric conversion means for converting the light intensity signal after passing through the polarization control means into an electric signal, and an electric signal processing means for processing the electric signal from the photoelectric conversion means to obtain a specific physical quantity according to the signal. And a magnetic detection device.
段からの電気信号に基づいて、前記磁気スケールと前記
偏光回転手段との相対的な変位、速度および加速度のう
ち何れかを求めることを特徴とする請求項8記載の磁気
式検出装置。9. The electric signal processing means determines any one of relative displacement, velocity and acceleration between the magnetic scale and the polarization rotating means based on the electric signal from the photoelectric conversion means. The magnetic detection device according to claim 8, which is characterized in that.
する位置に設けられ、各組のN極およびS極の磁極によ
り形成される磁界の強度に応じて前記光信号の偏光方向
を回転させる偏光回転手段と、 特定方向の偏光のみを透過させる偏光制御手段と、 偏光制御手段透過後の光強度信号を電気信号に変換する
光電気変換手段と、 光電変換手段からの電気信号を処理して該信号に応じた
特定の物理量を求める電気信号処理手段と、を備えたこ
とを特徴とする磁気式検出装置。10. A magnetic scale according to claim 7, a light emitting means for outputting an optical signal, and a non-magnetic body facing the magnetic pole surface of the magnetic scale.
And a polarization control means for rotating the polarization direction of the optical signal according to the strength of the magnetic field formed by the N and S poles of each set, and the polarization control for transmitting only the polarization in the specific direction. Means, an opto-electric conversion means for converting the light intensity signal after passing through the polarization control means into an electric signal, and an electric signal processing means for processing the electric signal from the photoelectric conversion means to obtain a specific physical quantity according to the signal. And a magnetic detection device.
手段からの電気信号に基づいて、前記磁気スケールと前
記偏光回転手段との相対的な角変位、角速度および角加
速度のうち何れかを求めることを特徴とする請求項10
記載の磁気式検出装置。11. The electrical signal processing means obtains any one of relative angular displacement, angular velocity and angular acceleration between the magnetic scale and the polarization rotation means based on the electrical signal from the photoelectric conversion means. 11. The method according to claim 10, wherein
The magnetic detection device described.
数列に並列させたものであり、 前記偏光回転手段が、該複数列の各列の磁極により形成
される磁界の強度に応じて前記光信号の偏光方向を回転
させる複数の偏光回転素子を有し、 前記光電変換手段が、偏光制御手段透過後の複数の光強
度信号を複数の電気信号に変換することを特徴とする請
求項8、9、10又は11記載の磁気式検出装置。12. The magnetic scale comprises a plurality of pairs of magnetic poles arranged in parallel in a plurality of rows, and the polarization rotation means is arranged to correspond to the strength of a magnetic field formed by the magnetic poles in each of the plurality of rows. 9. A plurality of polarization rotation elements for rotating the polarization direction of an optical signal, wherein the photoelectric conversion means converts the plurality of light intensity signals after passing through the polarization control means into a plurality of electric signals. , 9, 10 or 11, the magnetic detection device.
度分布の磁気パターンを備え、該磁気パターン側の磁界
強度が所定検出方向で規則的に異なるとともに、前記検
出方向で非磁性体を挟んで互いに近接し同一面側に表出
するN極およびS極少なくとも2つの磁極を前記検出方
向に同一列に配列した磁気スケールと、 光信号を出力する光出射手段と、 前記磁気スケールの磁極表出面側の前記非磁性体に対向
する位置に設けられ、各組のN極およびS極の磁極によ
り形成される磁界の強度に応じて前記光信号の偏光方向
を回転させる偏光回転手段と、 特定方向の偏光のみを透過させる偏光制御手段と、 偏光制御手段透過後の光強度信号を電気信号に変換する
光電気変換手段と、 光電変換手段からの電気信号を処理し、該信号に応じて
前記磁気スケールと前記偏光回転手段との相対的な変
位、速度、加速度、角変位、角速度および角加速度のう
ち少なくとも何れかを求める電気信号処理手段と、を備
えたことを特徴とする磁気式検出装置。13. A magnetic pattern having a predetermined magnetic field intensity distribution comprising a plurality of magnetic field generating means, wherein the magnetic field intensity on the magnetic pattern side is regularly different in a predetermined detection direction, and a non-magnetic body is sandwiched in the detection direction. A magnetic scale in which at least two magnetic poles of an N pole and an S pole which are close to each other and are exposed on the same surface side are arranged in the same row in the detection direction, a light emitting means for outputting an optical signal, and a magnetic pole exposed surface of the magnetic scale. Facing the non-magnetic body on the side
And a polarization control means for rotating the polarization direction of the optical signal according to the strength of the magnetic field formed by the N and S poles of each set, and the polarization control for transmitting only the polarization in the specific direction. Means, an opto-electric conversion means for converting the light intensity signal after passing through the polarization control means into an electric signal, and an electric signal from the photoelectric conversion means, and according to the signal, the magnetic scale and the polarization rotation means An electric signal processing means for determining at least one of relative displacement, velocity, acceleration, angular displacement, angular velocity, and angular acceleration, and a magnetic detection device.
されたN極およびS極少なくとも2つの磁極を複数列に
並列させたものであり、 前記偏光回転手段が、該複数列の各列の磁極により形成
される磁界の強度に応じて前記光信号の偏光方向を回転
させる複数の偏光回転素子を有し、 前記光電変換手段が、偏光制御手段透過後の複数の光強
度信号を複数の電気信号に変換することを特徴とする請
求項13記載の磁気式検出装置。14. The magnetic scale is one in which at least two magnetic poles of an N pole and an S pole arranged in the same row are arranged in parallel in a plurality of rows, and the polarization rotation means is provided in each row of the plurality of rows. A plurality of polarization rotation elements that rotate the polarization direction of the optical signal according to the strength of the magnetic field formed by the magnetic poles, wherein the photoelectric conversion means converts the plurality of light intensity signals after passing through the polarization control means into a plurality of electrical signals. 14. The magnetic detection device according to claim 13, which is converted into a signal.
ールと、 磁気スケールの磁極表出面側の前記非磁性体に対向する
位置に設けられ、該磁気スケールのN極およびS極の磁
極により形成される磁界の強度に応じた電圧を発生する
磁気電気変換素子からなる磁界強度検出素子と、 該磁界強度検出素子の発生電圧に対応する電気信号を処
理して特定の物理量を求める電気信号処理手段と、を備
えたことを特徴とする磁気式検出装置。15. The magnetic scale according to claim 1, and the magnetic scale facing the non-magnetic body on the magnetic pole exposed surface side of the magnetic scale.
A magnetic field strength detecting element, which is provided at a position and which generates a voltage according to the strength of the magnetic field formed by the magnetic poles of the N pole and the S pole of the magnetic scale, and the generated voltage of the magnetic field strength detecting element. And an electric signal processing means for processing the electric signal corresponding to to obtain a specific physical quantity, and a magnetic detection device.
に基づいて、前記磁気スケールと前記磁界強度検出素子
との相対的な変位、速度および加速度のうち何れかを求
めることを特徴とする請求項15記載の磁気式検出装
置。16. The electric signal processing means obtains any one of relative displacement, velocity and acceleration between the magnetic scale and the magnetic field strength detecting element based on the electric signal. Item 15. The magnetic detection device according to Item 15.
位置に設けられ、該磁気スケールのN極およびS極の磁
極により形成される磁界の強度に応じた電圧を発生する
磁気電気変換素子からなる磁界強度検出素子と、 該磁界強度検出素子の発生電圧に対応する電気信号を処
理して特定の物理量を求める電気信号処理手段と、を備
えたことを特徴とする磁気式検出装置。17. The magnetic scale according to claim 7, and the non-magnetic body on the magnetic pole exposed surface side of the magnetic scale.
A magnetic field strength detecting element, which is provided at a position and which generates a voltage according to the strength of the magnetic field formed by the magnetic poles of the N pole and the S pole of the magnetic scale, and the generated voltage of the magnetic field strength detecting element. And an electric signal processing means for processing the electric signal corresponding to to obtain a specific physical quantity, and a magnetic detection device.
に基づいて、前記磁気スケールと前記磁界強度検出素子
との相対的な角変位、角速度および角加速度のうち何れ
かを求めることを特徴とする請求項17記載の磁気式検
出装置。18. The electrical signal processing means obtains any one of relative angular displacement, angular velocity and angular acceleration between the magnetic scale and the magnetic field strength detection element based on the electrical signal. The magnetic detection device according to claim 17.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03513894A JP3419533B2 (en) | 1994-03-07 | 1994-03-07 | Magnetic scale and magnetic detection device having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03513894A JP3419533B2 (en) | 1994-03-07 | 1994-03-07 | Magnetic scale and magnetic detection device having the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07243867A JPH07243867A (en) | 1995-09-19 |
JP3419533B2 true JP3419533B2 (en) | 2003-06-23 |
Family
ID=12433562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03513894A Expired - Fee Related JP3419533B2 (en) | 1994-03-07 | 1994-03-07 | Magnetic scale and magnetic detection device having the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3419533B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3517185B2 (en) * | 2000-07-19 | 2004-04-05 | 株式会社ミツトヨ | Scale member, manufacturing method thereof, and displacement meter using the same |
JP5073183B2 (en) * | 2005-07-08 | 2012-11-14 | 日本電産サンキョー株式会社 | Magnetic encoder |
JP5041401B2 (en) | 2006-12-18 | 2012-10-03 | 古河電気工業株式会社 | Rotation sensor |
JP5617205B2 (en) * | 2009-08-26 | 2014-11-05 | 株式会社ニコン | Encoder |
JP5513838B2 (en) * | 2009-10-21 | 2014-06-04 | カヤバ工業株式会社 | Power steering device |
JP2015175762A (en) * | 2014-03-17 | 2015-10-05 | セイコーエプソン株式会社 | Encoder, electromechanical device, robot, and railway vehicle |
WO2017073151A1 (en) * | 2015-10-28 | 2017-05-04 | アルプス電気株式会社 | Position detection device |
JP2020071028A (en) * | 2018-10-29 | 2020-05-07 | 大銀微系統股▲分▼有限公司 | Grid encoder and grid encoder device |
-
1994
- 1994-03-07 JP JP03513894A patent/JP3419533B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07243867A (en) | 1995-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6118271A (en) | Position encoder using saturable reactor interacting with magnetic fields varying with time and with position | |
US5898301A (en) | Magnetic encoder for producing an index signal | |
KR100810784B1 (en) | Sensor for the detection of the direction of a magnetic field | |
JP6472175B2 (en) | Position detection device | |
JP5046850B2 (en) | POSITION DETECTION DEVICE AND BIAS MAGNETIC GENERATION DEVICE | |
WO2007007585A1 (en) | Magnetic encoder | |
CA2869294A1 (en) | Magnetic sensor | |
JP3419533B2 (en) | Magnetic scale and magnetic detection device having the same | |
JPH10225083A (en) | Linear actuator and optical instrument using the linear actuator | |
JP3487452B2 (en) | Magnetic detector | |
US9322677B2 (en) | Position detecting device | |
JP5006671B2 (en) | Magnetic encoder | |
EP2865997B1 (en) | Magnetic medium for magnetic encoder, magnetic encoder and method for manufacturing magnetic medium | |
US5172057A (en) | Magnetic encoder including plural magnetic pole lines having differing magnetic pitches and plural magnetic resistance effect elements | |
JPH10206104A (en) | Position detecting apparatus | |
JP2619621B2 (en) | Encoder device | |
JPH10260059A (en) | Magnetic scale and magnetic type detecting device having it | |
JP4912595B2 (en) | Position detection device | |
JPH0562383A (en) | Disk drive device | |
JPH0711429B2 (en) | Encoder device | |
JP2006220506A (en) | Device for detecting angle of rotation | |
JP2019211327A (en) | Magnetic encoder | |
JPS61186814A (en) | Magneto-resistance effect type element | |
JPH08271207A (en) | Position sensor and position detection device | |
JPH08271283A (en) | Position sensor and detecting device of position |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |