JP3417244B2 - Regeneration method of ion exchange resin - Google Patents
Regeneration method of ion exchange resinInfo
- Publication number
- JP3417244B2 JP3417244B2 JP03533197A JP3533197A JP3417244B2 JP 3417244 B2 JP3417244 B2 JP 3417244B2 JP 03533197 A JP03533197 A JP 03533197A JP 3533197 A JP3533197 A JP 3533197A JP 3417244 B2 JP3417244 B2 JP 3417244B2
- Authority
- JP
- Japan
- Prior art keywords
- exchange resin
- regeneration
- resin
- ion exchange
- regenerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、カチオンまたはア
ニオン交換樹脂の再生方法、特に純水製造装置に用いら
れているカチオンまたはアニオン交換樹脂の再生方法に
関する。
【0002】
【従来の技術】イオン交換樹脂を用いた純水製造装置な
どによる純水の製造においては、イオン交換樹脂に通水
して脱塩する工程と、再生剤を通液して再生する工程と
があり、イオン交換樹脂は再生して繰返し使用されてい
る。純水製造装置においては運転操作の都合上、一般的
には一日に脱塩工程と再生工程とを一回ずつ行うか、ま
たは二回ずつ行う運転方式が採用されている。
【0003】従来、イオン交換樹脂の再生は再生剤とし
てカチオン交換樹脂に対しては塩酸、硫酸等の酸を用
い、アニオン交換樹脂に対しては水酸化ナトリウム等の
アルカリを用いて再生している。この場合、再生剤とイ
オン交換樹脂との接触時間を十分とり、化学反応が完結
するように、再生剤の通液速度はSVで2〜10hr-1
程度で再生されている。ここで再生剤としては酸、アル
カリの場合とも4〜6重量%程度のものが使用され、イ
オン交換樹脂の充填層高としては100〜300cmが
採用されている。
【0004】上記従来の再生方法では、カチオン交換樹
脂に対する再生剤の使用量(以下、再生レベルという)
を仮に100gHCl/l−Rとすれば、この値を実現
するためには5%HClを樹脂量の2倍容積使用する必
要があり、SV=2hr-1では約1時間、SV=10h
r-1では12分間の薬注時間が必要となる。アニオン交
換樹脂に対する再生剤の再生レベルを仮に80gNaO
H/l−Rとすれば、この値を実現するためには4重量
%NaOHを樹脂量の2倍容積使用する必要があり、S
V=2hr-1では約1時間、SV=10hr-1では12
分間の薬注時間が必要となる。
【0005】樹脂の再生には上記再生剤の注入の他、再
生剤の押出工程や樹脂の洗浄工程なども必要であり、再
生工程全体では2時間程度の時間が必要であり、一日に
2回再生と通水を実施する運転が限界である。また従来
の再生方法では再生に必要な時間が長いため、効率が悪
くコスト高になるという問題点もある。
【0006】純水製造全体に占める樹脂再生工程の時間
的割合を低下させるために再生間隔を長くすることも考
えられるが、この場合は純水製造に用いるイオン交換樹
脂の量を多くする必要があり、このためコスト高にな
る。一方、再生間隔を短くすると、一定量のイオン交換
樹脂から一定量の処理水を得るには速い流速で通水して
脱塩する必要があるが、この場合余剰の処理水を貯蔵し
ておく大きな容量のタンクが必要であり、大きな設置面
積を必要とし、一般的には採用できない。
【0007】
【発明が解決しようとする課題】本発明の課題は、イオ
ン交換樹脂の再生を短時間で低コストで行うことがで
き、これにより装置の小型化を図ることが可能なイオン
交換樹脂の再生方法を提案することである。
【0008】
【課題を解決するための手段】本発明は、イオン交換樹
脂の再生方法において、1〜3.5重量%濃度の再生剤
を空間速度(SV)15〜40hr-1の流速で通液し、
イオン交換樹脂と接触させることを特徴とするイオン交
換樹脂の再生方法である。
【0009】本発明の方法で再生することができるイオ
ン交換樹脂は特に限定されず、強酸性もしくは弱酸性カ
チオン交換樹脂、あるいは強塩基性もしくは弱塩基性ア
ニオン交換樹脂などがあげられる。このようなイオン交
換樹脂としては、カチオン交換樹脂とアニオン交換樹脂
が別の塔に充填されているものでも、複床式または混床
式のものでもよい。混床を形成しているイオン交換樹脂
は分離して再生することができる。具体的なものとして
は、純水製造用のイオン交換樹脂があげられる。
【0010】再生剤はカチオン交換樹脂に対しては塩酸
水溶液、硫酸水溶液等の酸水溶液、アニオン交換樹脂に
対してはアンモニア水溶液、水酸化ナトリウム水溶液等
のアルカリ水溶液など、従来から用いられている薬剤が
使用できる。その濃度はいずれの再生剤も1〜3.5重
量%、好ましくは2〜3重量%であり、従来の再生剤の
濃度よりも低濃度で使用する。再生剤レベルは従来と同
様とされる。
【0011】本発明の再生方法は上記濃度の再生剤をイ
オン交換樹脂層に通液して接触させて再生する方法であ
る。この場合の再生剤のSVはアニオン交換樹脂および
カチオン交換樹脂の場合とも15〜40hr-1、好まし
くは20〜35hr-1とする。通液方向は上向流でも下
向流でもよいが上向流が好ましい。特に下向流で通水し
てイオン交換したイオン交換樹脂を上向流で再生する向
流再生が好ましい。
【0012】従来は再生剤を有効に利用するためには再
生剤を低流速で接触させる必要があり、上記のような高
流速では再生が十分完結しないと考えられていたが、本
発明では低濃度の再生剤を使用することにより、上記の
ような速い流速で通液しても再生が十分に行われること
がわかった。
【0013】一般にカラムに充填したイオン交換樹脂に
おける脱塩のためのイオン交換反応では、高流速で通液
すると交換帯の長さが長くなり、有効に使用される樹脂
量が減少することが知られている。交換帯の長さをZ
(m)、イオン交換樹脂の充填高さをL(m)とする
と、樹脂の最大利用率(%)は次式(1)で表される。
【0014】
なお交換帯の長さZは次式(2)で表される。
Z=a×LVb …(2)
〔ここで、LVは通液線流速(m/h)、aは交換する
イオンにより定まる係数、bは樹脂およびイオンにより
決まる係数である。〕
【0015】この利用率はイオン交換工程における樹脂
の有効利用率を示し、例えば樹脂の充填高さが150m
mのイオン交換装置では約93%の利用率であるとさ
れ、実用的な利用率とするために樹脂層高は100〜3
00cmとされている。
【0016】再生の場合はこのような樹脂の利用率とは
異なり、再生剤の利用効率が問題となるが、この再生剤
の利用効率も交換帯の長さ(通液方向の長さ)によって
決まってくる。従来の再生法のように低流速で再生する
場合は交換帯の長さは短く、ほとんど考慮する必要はな
かったが、本発明のように高流速になると交換帯の長さ
は長くなる。
【0017】再生の場合の負荷イオン除去についても、
脱塩のためのイオン交換反応と同様の傾向が認められ、
交換帯が存在する。この再生時の交換帯の長さは、前記
式(2)と同様に、流速が速くなれば長くなるが、再生
剤のイオン交換樹脂粒子内への拡散の影響を大きく受け
ることから、再生剤流速が大きい場合は、再生剤濃度を
低くすればその拡散が速くなり、交換帯の長さを短くで
きる。
【0018】本発明の方法において、低濃度の再生剤を
使用して高流速で再生しても、交換帯の影響をできるだ
け少なくしかつ樹脂の利用率を80%以上にするために
は、樹脂の充填高さを0.8m以上、好ましくは0.8
〜3m、さらに好ましくは0.8〜1.0mmとするの
が望ましい。
【0019】上記の条件で再生剤の注入を行ったのち、
純水注入することにより再生剤の押出を行うが、押出工
程における純水の量は再生剤と同容とされ、再生剤と同
流速すなわちSV15〜40hr-1、好ましくは20〜
35hr-1で通水する。
【0020】押出工程に続く洗浄工程は従来の再生と同
様に行われ、採水工程と同一流速で5〜10分間行われ
る。上記により再生を終り、イオン交換工程に移る。
【0021】
【発明の効果】本発明のイオン交換樹脂の再生方法は、
1〜3.5重量%濃度の再生剤をSVが15〜40hr
-1の流速で通液して再生するようにしているので、イオ
ン交換樹脂の再生を短時間で低コストで行うことがで
き、これにより装置の小型化も可能である。
【0022】
【発明の実施の形態】
実施例1
内径40mm、高さ1200mmの円筒形のアクリルカ
ラムを2個用意し、一方にはカチオン交換樹脂を1 lit
er(80cm高)、他方にはアニオン交換樹脂を1.4
liter(111cm高)充填した。このカラムの樹脂を
カチオン交換樹脂は80gHCl/l−R、アニオン樹
脂は60gNaOH/l−Rの再生レベルで再生し、厚
木市水を通水する試験を実施した。再生は各カラムに上
向流で再生剤を通液して行った。また通水は、カチオン
交換樹脂、アニオン交換樹脂の順に通水できるようにカ
ラムを直列に連結し、どちらのカラムにも下向流で通水
した。再生条件および通水条件を表1に示す。
【0023】
【表1】
【0024】このとき、全体の再生時間は約30分間、
通水時間と合せて10時間であった。1日24時間換算
の生産水量は2033 literであった。表1の再生・通
水条件で3回繰返し試験したところ、図1の水質を得
た。
【0025】実施例2
条件を表2のように変更した以外は実施例1と同様にし
て行った。
【表2】【0026】このとき、全体の再生時間は、約25分間
であった。通水と再生の各1回実施して5.5時間であ
り、1日換算での生産水量は2400 literであった。
この時の処理水質は図2のようであった。
【0027】比較例1
内径65mm、高さ2000mmの円筒形のアクリルカ
ラムを2個用意し、一方にはカチオン交換樹脂を3.6
liter(108cm高)、他方にはアニオン交換樹脂を
4.7 liter(142cm高)充填した。このカラムの
樹脂をカチオン交換樹脂は80gHCl/l−R、アニ
オン樹脂は60gNaOH/l−Rの再生レベルで再生
し、厚木市水を通水する試験を実施例1と同様にして実
施した。再生条件および通水条件を表3に示す。
【0028】
【表3】
【0029】再生時間は100分間で、通水時間と合せ
て約31時間であった。1日24時間換算の生産水量は
2250 literであった。表3の再生・通水条件で3回
繰返し試験したところ、図3の水質を得た。
【0030】以上の実施例および比較例から判るよう
に、本発明の方法によれば、小さな装置で同等の処理水
質の生産水量を、ほぼ同容積得ることができる。Description: TECHNICAL FIELD The present invention relates to a method for regenerating a cation or anion exchange resin, and more particularly to a method for regenerating a cation or anion exchange resin used in a pure water production apparatus. [0002] In the production of pure water by a pure water production apparatus or the like using an ion exchange resin, a step of passing water through the ion exchange resin to desalinate and a step of passing a regenerant to regenerate the water. There is a step, and the ion exchange resin is regenerated and used repeatedly. In the pure water production apparatus, an operation system in which the desalination step and the regeneration step are generally performed once or twice a day is adopted for the convenience of the operation. Conventionally, ion-exchange resins are regenerated by using an acid such as hydrochloric acid or sulfuric acid for a cation exchange resin and an alkali such as sodium hydroxide for an anion exchange resin as a regenerant. . In this case, the flow rate of the regenerant is 2 to 10 hr -1 in terms of SV so that the contact time between the regenerant and the ion exchange resin is sufficient to complete the chemical reaction.
Reproduced by the degree. Here, as the regenerating agent, those having an acid or alkali content of about 4 to 6% by weight are used, and the height of the packed bed of the ion exchange resin is 100 to 300 cm. In the above conventional regeneration method, the amount of the regenerant used for the cation exchange resin (hereinafter referred to as regeneration level)
Is assumed to be 100 g HCl / l-R, it is necessary to use 5% HCl twice as much as the resin amount in order to realize this value. For SV = 2 hr −1 , about 1 hour, SV = 10 h
At r -1 , a 12-minute injection time is required. Assume that the regeneration level of the regenerant with respect to the anion exchange resin is 80 g NaO.
Assuming that H / l-R, to achieve this value, it is necessary to use 4% by weight of NaOH twice as much as the resin amount.
V = 2 hr at -1 about 1 hour, SV = the 10 hr -1 12
A minute of infusion time is required. In order to regenerate the resin, in addition to the injection of the regenerating agent, a step of extruding the regenerating agent, a step of washing the resin, and the like are also required. The operation to perform regenerating and passing water is the limit. Further, the conventional reproducing method has a problem that the time required for the reproduction is long, so that the efficiency is low and the cost is high. It is conceivable to lengthen the regeneration interval in order to reduce the time ratio of the resin regeneration step in the total pure water production, but in this case, it is necessary to increase the amount of ion exchange resin used for pure water production. Yes, this increases costs. On the other hand, if the regeneration interval is shortened, it is necessary to pass water at a high flow rate to desalinate in order to obtain a fixed amount of treated water from a fixed amount of ion exchange resin. In this case, surplus treated water is stored. It requires a large capacity tank, requires a large installation area, and cannot be generally adopted. SUMMARY OF THE INVENTION An object of the present invention is to provide an ion-exchange resin capable of regenerating an ion-exchange resin in a short time and at a low cost, thereby making it possible to reduce the size of the apparatus. Is to propose a reproduction method. According to the present invention, in a method for regenerating an ion-exchange resin, a regenerant having a concentration of 1 to 3.5% by weight is passed at a space velocity (SV) of 15 to 40 hr -1. Liquid
This is a method for regenerating an ion exchange resin, which is brought into contact with the ion exchange resin. The ion exchange resin that can be regenerated by the method of the present invention is not particularly limited, and includes a strongly acidic or weakly acidic cation exchange resin, or a strongly basic or weakly basic anion exchange resin. Such an ion exchange resin may be one in which a cation exchange resin and an anion exchange resin are packed in another column, or may be a double bed type or a mixed bed type. The ion exchange resin forming the mixed bed can be separated and regenerated. Specific examples include an ion exchange resin for producing pure water. The regenerant is a conventionally used chemical such as an aqueous acid solution such as an aqueous solution of hydrochloric acid or sulfuric acid for a cation exchange resin, or an aqueous alkali solution such as an aqueous ammonia solution or an aqueous sodium hydroxide solution for an anion exchange resin. Can be used. The concentration of each regenerant is 1 to 3.5% by weight, preferably 2 to 3% by weight, and is used at a lower concentration than that of a conventional regenerant. The level of the regenerant is the same as before. The regenerating method of the present invention is a method in which a regenerating agent having the above-mentioned concentration is passed through an ion-exchange resin layer and brought into contact therewith to regenerate. SV of regenerant in this case is also the case of anion exchange resins and cation exchange resins 15~40hr -1, preferably to 20~35hr -1. The flowing direction may be an upward flow or a downward flow, but an upward flow is preferable. In particular, countercurrent regeneration in which ion-exchange resin, which has been ion-exchanged by passing water in a downward flow, is regenerated in an upward flow is preferable. Conventionally, in order to effectively use the regenerant, it was necessary to contact the regenerant at a low flow rate, and it was thought that regeneration was not sufficiently completed at the high flow rate as described above. It was found that by using the regenerating agent having the concentration, the regeneration was sufficiently performed even when the solution was passed at such a high flow rate. Generally, in an ion exchange reaction for desalting in an ion exchange resin packed in a column, it is known that when a liquid is passed at a high flow rate, the length of the exchange zone becomes longer, and the amount of resin used effectively decreases. Have been. Change the length of the exchange zone to Z
(M), assuming that the filling height of the ion exchange resin is L (m), the maximum utilization rate (%) of the resin is represented by the following equation (1). [0014] The length Z of the exchange zone is represented by the following equation (2). Z = a × LV b (2) [where LV is a liquid flow velocity (m / h), a is a coefficient determined by ions to be exchanged, and b is a coefficient determined by resins and ions. This utilization rate indicates an effective utilization rate of the resin in the ion exchange step. For example, when the filling height of the resin is 150 m
m is about 93% in the ion exchange apparatus, and the height of the resin layer is 100 to 3 in order to obtain a practical utilization rate.
00 cm. In the case of the regeneration, unlike the utilization rate of the resin, the utilization efficiency of the regenerating agent becomes a problem. The utilization efficiency of the regenerating agent also depends on the length of the exchange zone (length in the liquid passing direction). It will be decided. In the case of regeneration at a low flow rate as in the conventional regeneration method, the length of the exchange zone is short and hardly need be taken into consideration. However, when the flow rate is high as in the present invention, the length of the exchange zone increases. Regarding the removal of the loaded ions in the case of regeneration,
The same tendency as the ion exchange reaction for desalination was observed,
There is an exchange zone. The length of the exchange zone at the time of this regeneration becomes longer as the flow rate increases, as in the above formula (2). However, the length of the exchange zone is greatly affected by the diffusion of the regenerant into the ion exchange resin particles. When the flow rate is high, the diffusion becomes faster if the concentration of the regenerant is reduced, and the length of the exchange zone can be shortened. In the method of the present invention, in order to minimize the influence of the exchange zone and increase the resin utilization to 80% or more even if the regeneration is performed at a high flow rate using a low-concentration regenerant, 0.8 m or more, preferably 0.8 m
33 m, more preferably 0.8-1.0 mm. After injecting the regenerant under the above conditions,
Extrusion of the regenerant is performed by injecting pure water. The amount of pure water in the extrusion step is made the same as that of the regenerant, and the same flow rate as the regenerant, that is, SV 15 to 40 hr −1 , preferably 20 to
Water is passed at 35 hr -1 . The washing step following the extrusion step is performed in the same manner as the conventional regeneration, and is performed at the same flow rate as the water sampling step for 5 to 10 minutes. The regeneration is completed as described above, and the process proceeds to the ion exchange step. The method for regenerating an ion exchange resin according to the present invention comprises:
A regenerant having a concentration of 1 to 3.5% by weight has an SV of 15 to 40 hours.
Since the regeneration is performed by passing the liquid at a flow rate of -1 , the regeneration of the ion-exchange resin can be performed in a short time and at low cost, whereby the size of the apparatus can be reduced. Embodiment 1 Two cylindrical acrylic columns having an inner diameter of 40 mm and a height of 1200 mm are prepared, and one of them is provided with a cation exchange resin of 1 lit.
er (80 cm high) and the other anion exchange resin at 1.4
Filled liter (111 cm high). The resin in this column was regenerated at a regeneration level of 80 g HCl / l-R for the cation exchange resin and 60 g NaOH / l-R for the anion resin, and a test was conducted in which water from Atsugi City was passed. Regeneration was performed by passing a regenerant through each column in an upward flow. In addition, columns were connected in series so that water could be passed in the order of the cation exchange resin and the anion exchange resin, and water was passed down in both columns. Table 1 shows the conditions for regeneration and water flow. [Table 1] At this time, the whole reproduction time is about 30 minutes,
It was 10 hours in total with the water flow time. The amount of water produced in 24 hours a day was 2033 liter. When the test was repeated three times under the regeneration and water passing conditions shown in Table 1, the water quality shown in FIG. 1 was obtained. Example 2 Example 2 was carried out in the same manner as in Example 1 except that the conditions were changed as shown in Table 2. [Table 2] At this time, the entire reproduction time was about 25 minutes. The operation was carried out once each for passing water and regenerating 5.5 hours, and the amount of water produced per day was 2400 liters.
The treated water quality at this time was as shown in FIG. COMPARATIVE EXAMPLE 1 Two cylindrical acrylic columns having an inner diameter of 65 mm and a height of 2000 mm were prepared, and one of them was provided with a cation exchange resin of 3.6.
liter (108 cm high) and the other was filled with an anion exchange resin 4.7 liter (142 cm high). The resin in this column was regenerated at a regeneration level of 80 g HCl / l-R for the cation exchange resin and 60 g NaOH / l-R for the anion resin, and a test of passing Atsugi-shi water through was carried out in the same manner as in Example 1. Table 3 shows the regeneration conditions and water flow conditions. [Table 3] The regeneration time was 100 minutes, which was about 31 hours including the water flow time. The amount of water produced in 24 hours a day was 2250 liter. When the test was repeated three times under the regeneration and water passing conditions shown in Table 3, the water quality shown in FIG. 3 was obtained. As can be seen from the above Examples and Comparative Examples, according to the method of the present invention, it is possible to obtain substantially the same volume of treated water of the same quality by using a small apparatus.
【図面の簡単な説明】 【図1】実施例1の結果を示すグラフである。 【図2】実施例2の結果を示すグラフである。 【図3】比較例1の結果を示すグラフである。[Brief description of the drawings] FIG. 1 is a graph showing the results of Example 1. FIG. 2 is a graph showing the results of Example 2. FIG. 3 is a graph showing the results of Comparative Example 1.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 49/00 C02F 1/42 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B01J 49/00 C02F 1/42
Claims (1)
〜3.5重量%濃度の再生剤を空間速度(SV)15〜
40hr-1の流速で通液し、イオン交換樹脂と接触させ
ることを特徴とするイオン交換樹脂の再生方法。(57) [Claim 1] In a method for regenerating an ion exchange resin, 1
Space velocity (SV) 15 to 3.5% by weight of regenerant
A method for regenerating an ion-exchange resin, comprising passing the solution at a flow rate of 40 hr -1 and contacting the ion-exchange resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03533197A JP3417244B2 (en) | 1997-02-19 | 1997-02-19 | Regeneration method of ion exchange resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03533197A JP3417244B2 (en) | 1997-02-19 | 1997-02-19 | Regeneration method of ion exchange resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10230170A JPH10230170A (en) | 1998-09-02 |
JP3417244B2 true JP3417244B2 (en) | 2003-06-16 |
Family
ID=12438857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03533197A Expired - Fee Related JP3417244B2 (en) | 1997-02-19 | 1997-02-19 | Regeneration method of ion exchange resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3417244B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015159948A1 (en) * | 2014-04-16 | 2015-10-22 | 栗田工業株式会社 | Recovery method for weak acid cation exchange resin |
WO2016028643A1 (en) * | 2014-08-19 | 2016-02-25 | Purolite Corporation | Regeneration of weak base anion exchange resins |
-
1997
- 1997-02-19 JP JP03533197A patent/JP3417244B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10230170A (en) | 1998-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3417244B2 (en) | Regeneration method of ion exchange resin | |
JP3687829B2 (en) | Condensate treatment method and condensate demineralizer | |
US4299922A (en) | Method for regenerating anion exchange resins in bicarbonate form | |
JP3417256B2 (en) | Regeneration method of anion exchange resin | |
JPH10137751A (en) | Ion exchange method and ion exchange column used for ion exchange method | |
JP3765653B2 (en) | Separation method of mixed resin in mixed bed type ion exchange resin tower and regeneration method of mixed bed type sucrose purification device | |
US3975267A (en) | Liquid treating system | |
JP2002361247A (en) | Method for manufacturing pure water | |
US4547291A (en) | Method for treating aqueous solutions with weakly acidic cation exchange resins | |
JPS6111156A (en) | Reduction of necessary amount of washing water of weak basictype anion exchanger | |
JP4347491B2 (en) | Regeneration method of mixed-bed starch sugar liquid purification equipment | |
JP2940651B2 (en) | Pure water production equipment | |
JP3963101B2 (en) | Vanadium-containing water ion exchange method and apparatus | |
JP2003315496A5 (en) | ||
JP2575171B2 (en) | Improved method for desalting sugar-containing solutions | |
JP3963100B2 (en) | Method and apparatus for treating vanadium-containing water | |
JP2940648B2 (en) | Pure water production equipment | |
JP3592495B2 (en) | Sucrose liquid purifying apparatus and method for regenerating sucrose liquid purifying apparatus | |
JP3592452B2 (en) | Mixed-bed sugar liquid purification equipment | |
JP3638624B2 (en) | Regeneration method of mixed bed type sucrose solution purification equipment | |
JP2742975B2 (en) | Regeneration method of ion exchange device | |
US5942122A (en) | Method of deodorizing ion-exchanged purified water | |
JPH10128128A (en) | Method for separation and regeneration of ion exchange resin | |
JPH0615263A (en) | Ultrapure water producing apparatus | |
JPS6133624B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080411 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080411 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090411 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090411 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100411 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100411 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120411 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140411 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |