JP3415164B2 - System for surgery, biopsy and resection of tumors or other physical abnormalities - Google Patents
System for surgery, biopsy and resection of tumors or other physical abnormalitiesInfo
- Publication number
- JP3415164B2 JP3415164B2 JP53939298A JP53939298A JP3415164B2 JP 3415164 B2 JP3415164 B2 JP 3415164B2 JP 53939298 A JP53939298 A JP 53939298A JP 53939298 A JP53939298 A JP 53939298A JP 3415164 B2 JP3415164 B2 JP 3415164B2
- Authority
- JP
- Japan
- Prior art keywords
- tumor
- breast
- instrument
- transducer
- surgery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 56
- 238000001356 surgical procedure Methods 0.000 title claims abstract description 42
- 238000001574 biopsy Methods 0.000 title claims description 12
- 238000002271 resection Methods 0.000 title description 5
- 230000005856 abnormality Effects 0.000 title description 2
- 210000000481 breast Anatomy 0.000 claims abstract description 52
- 239000000853 adhesive Substances 0.000 claims description 7
- 230000001070 adhesive effect Effects 0.000 claims description 7
- 210000003484 anatomy Anatomy 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 210000000056 organ Anatomy 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims 5
- 210000004185 liver Anatomy 0.000 abstract description 15
- 238000003384 imaging method Methods 0.000 abstract description 13
- 238000000034 method Methods 0.000 description 19
- 239000000523 sample Substances 0.000 description 15
- 238000010586 diagram Methods 0.000 description 10
- 230000033001 locomotion Effects 0.000 description 8
- 238000002604 ultrasonography Methods 0.000 description 8
- 238000009607 mammography Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000004807 localization Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 238000002672 stereotactic surgery Methods 0.000 description 4
- 239000012736 aqueous medium Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000002601 radiography Methods 0.000 description 2
- 210000001835 viscera Anatomy 0.000 description 2
- 238000002679 ablation Methods 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/28—Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
- A61B5/283—Invasive
- A61B5/287—Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; Determining position of diagnostic devices within or on the body of the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
- A61B8/0833—Clinical applications involving detecting or locating foreign bodies or organic structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4245—Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/483—Diagnostic techniques involving the acquisition of a 3D volume of data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
- A61B90/14—Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins
- A61B90/17—Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins for soft tissue, e.g. breast-holding devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H3/00—Measuring characteristics of vibrations by using a detector in a fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H5/00—Measuring propagation velocity of ultrasonic, sonic or infrasonic waves, e.g. of pressure waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S11/00—Systems for determining distance or velocity not using reflection or reradiation
- G01S11/14—Systems for determining distance or velocity not using reflection or reradiation using ultrasonic, sonic, or infrasonic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/66—Sonar tracking systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/87—Combinations of sonar systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/87—Combinations of sonar systems
- G01S15/876—Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/18—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52053—Display arrangements
- G01S7/52057—Cathode ray tube displays
- G01S7/5206—Two-dimensional coordinated display of distance and direction; B-scan display
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52053—Display arrangements
- G01S7/52057—Cathode ray tube displays
- G01S7/52074—Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/56—Display arrangements
- G01S7/62—Cathode-ray tube displays
- G01S7/6245—Stereoscopic displays; Three-dimensional displays; Pseudo-three dimensional displays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/107—Visualisation of planned trajectories or target regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2063—Acoustic tracking systems, e.g. using ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2072—Reference field transducer attached to an instrument or patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/363—Use of fiducial points
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3904—Markers, e.g. radio-opaque or breast lesions markers specially adapted for marking specified tissue
- A61B2090/3908—Soft tissue, e.g. breast tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3925—Markers, e.g. radio-opaque or breast lesions markers ultrasonic
- A61B2090/3929—Active markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3954—Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI
- A61B2090/3958—Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI emitting a signal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0443—Modular apparatus
- A61B2560/045—Modular apparatus with a separable interface unit, e.g. for communication
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/04—Arrangements of multiple sensors of the same type
- A61B2562/043—Arrangements of multiple sensors of the same type in a linear array
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4519—Muscles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4528—Joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4209—Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
- A61B8/4236—Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames characterised by adhesive patches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
- A61B90/11—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M2025/0166—Sensors, electrodes or the like for guiding the catheter to a target zone, e.g. image guided or magnetically guided
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/02—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
- G01S15/06—Systems determining the position data of a target
- G01S15/08—Systems for measuring distance only
- G01S15/10—Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
- G01S15/101—Particularities of the measurement of distance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/86—Combinations of sonar systems with lidar systems; Combinations of sonar systems with systems not using wave reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/899—Combination of imaging systems with ancillary equipment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8993—Three dimensional imaging systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52003—Techniques for enhancing spatial resolution of targets
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52079—Constructional features
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Surgery (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Pulmonology (AREA)
- Physiology (AREA)
- Robotics (AREA)
- Anesthesiology (AREA)
- Neurosurgery (AREA)
- Acoustics & Sound (AREA)
- Human Computer Interaction (AREA)
- Hematology (AREA)
- Cardiology (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
関連出願
本出願は、1996年3月26日出願の同時係属している国
際出願第PCT/CA96/00194号の一部継続出願(CIP)であ
り、前記国際出願は、現在は米国特許第5,515,853号と
なっている1995年3月28日出願の米国特許出願第08/41
1,959号の一部継続出願(CIP)である。いずれの出願の
内容も、本明細書中に援用される。Detailed Description of the Invention Related Applications This application is a continuation-in-part (CIP) of co-pending International Application No. PCT / CA96 / 00194 filed March 26, 1996, which is , US Patent Application No. 08/41, filed March 28, 1995, which is now US Patent No. 5,515,853
This is a partial continuation application (CIP) of No. 1,959. The contents of both applications are incorporated herein.
発明の分野
本発明は、身体構造(たとえば、乳房、肝臓、膵臓、
腎臓、子宮またはその他の固体器官)に関して外科的処
置を行なうシステムに関し、特に身体構造内において器
具を追跡し、かつ腫瘍の位置を標示し、かつ該腫瘍を生
検または破壊するシステムに関する。FIELD OF THE INVENTION The present invention relates to body structures (eg, breast, liver, pancreas,
TECHNICAL FIELD This invention relates to systems for performing surgical procedures on the kidney, uterus or other solid organs, and more particularly to systems for tracking instruments and locating tumors in the body structure and biopsying or destroying the tumor.
発明の背景
乳房の生体組織検査は、現在は、コア生検システムと
して知られる装置を用いて行なわれる。このコア生検シ
ステムでは、まず最初に、患者の乳房を2枚の板の間に
おいて押圧することにより固定しながら、該乳房から立
体乳房X線像を得、これらの2つの像を用いて、疑わし
い腫瘍の3次元座標を計算する。次に、乳房に針を刺し
込み、前記疑わしい腫瘍の検体を採取する。検体が陽性
であれば、患者の腫瘍切除手術を計画する。生検手順を
開始する前に、放射線専門医が腫瘍を手作業で識別する
ことが必要であるという点に注意されたい。BACKGROUND OF THE INVENTION Breast biopsy is currently performed using a device known as a core biopsy system. In this core biopsy system, firstly a patient's breast is fixed by pressing it between two plates while obtaining a stereoscopic mammogram from the breast and using these two images the suspect tumor Calculate the three-dimensional coordinates of. Next, a needle is inserted into the breast, and a sample of the suspected tumor is collected. If the sample is positive, the patient is scheduled for tumor resection surgery. Note that it is necessary for the radiologist to manually identify the tumor before starting the biopsy procedure.
外科的処置は、一般に以下の態様で進められる。患者
は多平面乳房X線撮影を受け、放射線専門医がそのフィ
ルムを検討した後に、乳房にワイヤを挿入して、腫瘍が
該ワイヤにより穿刺されるようにする。この処置は、反
復的なX線撮影を用いて明視化される。より最近では、
定位乳房画像システムが用いられて、腫瘍の位置がより
正確に特定され、かつワイヤを挿入する上で補助的役割
を果たしている。その後、患者は手術室に送られ、乳房
に局所消毒薬を塗布することにより手術の用意が整えら
れる。次に、外科医は、ワイヤをたどって乳房を切開し
て、最終的に病巣を発見し、切除する。Surgical procedures generally proceed in the following manner. The patient undergoes multiplanar mammography, and after the radiologist reviews the film, a wire is inserted into the breast so that the tumor is punctured by the wire. The procedure is visualized using repetitive radiography. More recently,
Stereotactic breast imaging systems have been used to more accurately localize tumors and play an auxiliary role in inserting wires. The patient is then sent to the operating room where the breast is prepared for surgery by applying a topical antiseptic. The surgeon then follows the wire to make an incision in the breast, ultimately finding and excising the lesion.
前記処置のひとつの望ましくない要素は、手術を待つ
間、長いワイヤが何時間も引き続き乳房に挿入されたま
まになることである。これは、患者に非常に外傷を与え
るものであり、望ましくない。第2に、手術時に、外科
医は乳房の内部までワイヤをたどらなければならない。
これは最適な経路ではないかもしれないため、外科医
は、理想的には、ワイヤと無関係に進入経路を決めるこ
と、またはワイヤを全く用いないことを望む。これが行
なわれうるのは、乳房内部の病巣の位置が、乳房組織の
本来的な変形性を考慮するシステムを用いて識別されう
る場合のみである。乳房組織の変形性に付随する問題
は、容易に変形しうる肝臓等のその他の身体構造にも同
様に当てはまることが理解されよう。One undesirable element of the procedure is that long wires continue to be inserted into the breast for hours while waiting for surgery. This is very traumatic to the patient and is undesirable. Second, at the time of surgery, the surgeon must trace the wire inside the breast.
Since this may not be the optimal route, the surgeon ideally wants to route the approach independently of the wire, or not use the wire at all. This can only be done if the location of the lesion inside the breast can be identified using a system that takes into account the natural deformability of the breast tissue. It will be appreciated that the problems associated with the deformability of breast tissue apply equally to other body structures such as the liver, which can easily deform.
定位手術のまた他の方法は、欧州特許公開第EP 9728
446 A1号に説明されている。この公開では、特に乳房
手術に適用される定位システムおよび方法が開示されて
いる。患者は、磁気共鳴またはその他の画像装置を用い
て検査されて、モニタ上に表示される3D画像が作り出さ
れる。軟組織に隣接する外骨格質に固定される磁気共鳴
可視マーカと、発信器と受信器とを有する棒状体と、座
標系関係処理装置とを用いて、患者の座標系とモニタ上
に表示される画像の座標系との間の関係が判断される。
生検または切除等のための経路は、患者の支持構造に固
定される定位誘導装置を用いて計画される。この誘導装
置上の発信器を作動させることで、モニタ上に表示され
た画像を介して人間が読み取ることができる対応する経
路表示が得られる。適切な経路および深さは、前記人間
が読み取ることができる経路表示から選択され、医用器
具が前記誘導装置に沿って挿入されて、医療処置が行な
われる。Yet another method of stereotactic surgery is described in European Patent Publication No. EP 9728.
446 A1. This publication discloses a stereotactic system and method particularly applicable to breast surgery. The patient is examined using magnetic resonance or other imaging device to produce the 3D image displayed on the monitor. Displayed on the patient's coordinate system and monitor using a magnetic resonance visible marker fixed to the exoskeleton adjacent to the soft tissue, a rod having a transmitter and a receiver, and a coordinate system relation processing device. The relationship between the image and the coordinate system is determined.
The route for biopsy or ablation etc. is planned using a stereotactic guide fixed to the patient's support structure. By actuating the transmitter on this guidance device, a corresponding route display is obtained which can be read by a human through the image displayed on the monitor. The appropriate path and depth is selected from the human readable path display and a medical device is inserted along the guide device to perform the medical procedure.
定位乳房手術の適用を制限する現在の問題は、乳房X
線撮影時と手術時との間において乳房の位置と形状とが
大きく異なることである。このため、乳房X線撮影時に
撮影された画像は、外科的処置時の定位位置決めには使
用不能になる。定位手術は、乳房を押圧し、かつ患者を
定位台上に寝かせて行なわれうるが、これは望ましくな
い。この手術を行なう理想的な方法は、慣例的に行なわ
れるように、患者に背位をとらせることである。The current problem limiting the application of stereotactic breast surgery is breast X
That is, the position and shape of the breast are greatly different between the time of radiography and the time of surgery. Therefore, the image taken during the mammography cannot be used for stereotactic positioning during the surgical procedure. Stereotactic surgery can be performed by pressing the breast and laying the patient on a stereotactic table, which is undesirable. The ideal way to perform this surgery is to have the patient in a supine position, as is customary.
本発明は、従来システムの前記およびその他の欠点を
克服して、精度が有意に高められ、かつ患者の安楽さが
高められるシステムを提供する。The present invention provides a system that overcomes the above and other shortcomings of conventional systems, with significantly increased accuracy and patient comfort.
発明の概要
本発明によれば、精度と安楽さとを高めて定位手術を
行なうシステムが得られる。SUMMARY OF THE INVENTION The present invention provides a system for performing stereotactic surgery with increased accuracy and comfort.
本発明の目的は、身体構造において侵襲が最小限に抑
えられる態様で手術を行なうシステムを提供することに
ある。It is an object of the present invention to provide a system for performing surgery in a manner that minimizes invasiveness in body structures.
本発明の他の目的は、本来的に変形しうる身体構造に
関して手術を行なうシステムを提供することにある。Another object of the present invention is to provide a system for performing surgery on naturally deformable body structures.
本発明のまた他の目的は、手術を行なうシステムにお
いて、腫瘍の位置特定精度を高めて、より正確な手術を
可能にするシステムを提供することにある。It is another object of the present invention to provide a system for performing surgery, which improves the localization accuracy of a tumor and enables more accurate surgery.
本発明のさらに他の目的は、手術を行なうシステムに
おいて、一定の3次元基準フレームが確立されるシステ
ムを提供することにある。It is still another object of the present invention to provide a system for performing surgery in which a constant three-dimensional reference frame is established.
本発明のさらにまた他の目的は、手術を行なうシステ
ムにおいて、対象となる身体構造の変形が3次元基準フ
レームを変化させることがないシステムを提供すること
にある。Still another object of the present invention is to provide a system for performing surgery, in which the deformation of the target body structure does not change the three-dimensional reference frame.
本発明のまた別の目的は、乳房の手術を行なうシステ
ムにおいて、乳房の形状が変形または変化する可能性が
大きく減じられるシステムを提供することにある。Yet another object of the present invention is to provide a system for performing breast surgery in which the likelihood that the shape of the breast will be deformed or changed is greatly reduced.
本発明のさらに別の目的は、肝臓またはその他の体内
器官の手術を行なうシステムにおいて、腫瘍の位置特定
精度が高められるシステムを提供することにある。Still another object of the present invention is to provide a system for performing a surgery on a liver or other internal organs, in which the accuracy of locating a tumor can be improved.
本発明のさらにまた別の目的は、肝臓またはその他の
体内器官の手術を行なうシステムにおいて、外科用器具
の位置特定精度を高める必要がある手術を行なうシステ
ムを提供することにある。Still another object of the present invention is to provide a system for performing a surgery on a liver or other internal organs, which requires surgery to improve the accuracy of localization of a surgical instrument.
本発明のさらに他の目的および利点は、当業者には、
以下の詳細な説明と添付図面と添付の請求の範囲とを読
み、かつ理解することによって明らかになろう。Still other objects and advantages of the invention will be appreciated by those skilled in the art.
It will be apparent from a reading and understanding of the following detailed description, the accompanying drawings and the appended claims.
図面の簡単な説明
本発明は、ある部分または部分の構成において物理的
形態をとることができ、その好ましい具体例および方法
は、本明細書に詳細に説明され、かつ本明細書の一部分
をなす添付図面に図示される。BRIEF DESCRIPTION OF THE DRAWINGS The present invention may take physical forms in the construction of parts or parts, preferred embodiments and methods of which are described in detail herein and form a part of the specification. It is illustrated in the accompanying drawings.
図1は、本発明の好ましい実施例にしたがって3次元
トラッキングおよびイメージングシステムの図である。FIG. 1 is a diagram of a three-dimensional tracking and imaging system according to a preferred embodiment of the present invention.
図2は、乳房が押圧されているときに、その内部に基
準変換器が配置されている乳房の図である。FIG. 2 is a diagram of a breast with a reference transducer placed therein when the breast is being pressed.
図3は、本発明の好ましい実施例にしたがって変換器
の構成を示す図である。FIG. 3 is a diagram showing the construction of a converter according to a preferred embodiment of the present invention.
図4Aおよび4Bは、乳房を介してプローブ(探針)が進
入する様子をオリジナルの立体乳房X線像に対して示す
図である。4A and 4B are diagrams showing how a probe (probe) enters through the breast with respect to an original stereoscopic breast X-ray image.
図5Aは、基準変換器と、乳房上に配置される「定位ビ
ーコン(homing beacon)」変換器とを示す図である。FIG. 5A shows a reference transducer and a “homing beacon” transducer placed on the breast.
図5Bは、表示装置に3次元表示されるところの図5Aの
画面表示を示す図である。FIG. 5B is a diagram showing the screen display of FIG. 5A which is displayed three-dimensionally on the display device.
図6Aは、変換器を図4Aに示された乳房と接触させて有
するプローブの図である。6A is a diagram of a probe having a transducer in contact with the breast shown in FIG. 4A.
図6Bは、表示装置に3次元表示されるところの図6Aの
画面表示を示す図である。FIG. 6B is a diagram showing the screen display of FIG. 6A that is displayed three-dimensionally on the display device.
図7は、複数個の基準変換器が取り付けられている肝
臓の図である。FIG. 7 is a diagram of a liver with a plurality of reference transducers attached.
図8は、図7に示された肝臓の2次元超音波画像を含
む3次元画面表示を作り出す手順を示す図である。FIG. 8 is a diagram showing a procedure for producing a three-dimensional screen display including the two-dimensional ultrasonic image of the liver shown in FIG.
図9は、位置特定可能な管が図7に示された肝臓の内
部に挿入される様子を示す図である。FIG. 9 is a diagram showing a positionable tube inserted into the inside of the liver shown in FIG. 7.
図10は、凍結プローブ(cryoprobe)が腫瘍の部位に
配置される追跡可能なスリーブ内に挿入される様子を示
す図である。FIG. 10 shows a cryoprobe inserted into a trackable sleeve placed at the site of a tumor.
好ましい実施例の詳細な説明
高周波音波の飛行時間の法則(time−of−flight pri
nciple)を用いて、外科的処置時に生物の体内等の水様
(aqueous)媒質中において距離を正確に測定しうるこ
とは周知である。高周波音である超音波は、周波数が10
0kHzから10MHzまでの範囲内にある振動エネルギーとし
て定義される。音波を利用して3次元測定を達成するの
に用いられる装置は、ソノマイクロメータ(sonomicrom
eter)として知られている。一般に、ソノマイクロメー
タは、1対の圧電型変換器によって達成される(すなわ
ち、一方の変換器は送信器として機能する一方で、他方
の変換器は受信器として機能する。)。これらの変換器
は、媒質中に挿入され、かつ電子回路に接続される。変
換器間の距離を測定するためには、送信器を電気的に付
勢して超音波を発生させる。その結果として得られる超
音波は、その後、媒質を介して伝播されて、最終的に受
信器により検出される。Detailed Description of the Preferred Embodiments The time-of-flight pri
It is well known that nciples can be used to accurately measure distances in aqueous media, such as in living organisms, during surgical procedures. Ultrasound, which is a high frequency sound, has a frequency of 10
It is defined as vibrational energy in the range 0kHz to 10MHz. Devices used to achieve three-dimensional measurements using acoustic waves are sonomicromometers.
eter). In general, sonomicrometers are accomplished with a pair of piezoelectric transducers (ie, one transducer acts as a transmitter while the other transducer acts as a receiver). These transducers are inserted in the medium and connected to the electronic circuit. To measure the distance between the transducers, the transmitter is electrically energized to generate ultrasonic waves. The resulting ultrasonic waves are then propagated through the medium and finally detected by the receiver.
送信器は、一般に1マイクロ秒間維持する高電圧スパ
イク波、すなわち衝撃関数が印加される圧電結晶の形態
をとる。これが圧電結晶を該圧電結晶の固有共振周波数
で振動させる。送信信号の包絡線は時間とともに急速に
減衰して、通常的に送信器から離反する方向に水様媒体
を介して伝播される6周期以上のパルス列を生じる。ま
た、この音のエネルギーは、該エネルギーが遭遇するあ
らゆる境界面で減衰する。The transmitter is generally in the form of a piezoelectric crystal to which is applied a high voltage spike, or shock function, maintained for 1 microsecond. This causes the piezoelectric crystal to vibrate at its natural resonant frequency. The envelope of the transmitted signal decays rapidly over time, resulting in a pulse train of six or more periods that propagates through the aqueous medium, usually away from the transmitter. Also, the energy of this sound decays at any interface it encounters.
受信器も、一般に送信器により生成される音のエネル
ギーを検出し、かつ該エネルギーに呼応して振動開始す
る圧電結晶(送信用圧電結晶と同様の特性を持つ)の形
をとる。この振動によって、適切な受信回路により増幅
されうるミリボルトオーダーの電子信号が生み出され
る。The receiver also generally takes the form of a piezoelectric crystal (having similar characteristics to the transmitting piezoelectric crystal) that detects the energy of the sound produced by the transmitter and begins to vibrate in response to the energy. This vibration produces a millivolt order electronic signal that can be amplified by a suitable receiving circuit.
水様媒質中における超音波の伝播速度については、資
料が十分に整っている。したがって、超音波パルスの移
動距離は、音波が送り出される瞬間と該音波が受信され
る時点との間の時間的な遅延を記録することによって容
易に測定されうる。3次元座標は、この距離測定から決
定することができる。There are sufficient materials on the propagation velocity of ultrasonic waves in an aqueous medium. Therefore, the distance traveled by the ultrasonic pulse can be easily measured by recording the time delay between the moment when the sound wave is emitted and the time when the sound wave is received. Three-dimensional coordinates can be determined from this distance measurement.
ここで、単に本発明の好ましい実施例を例示するため
のものであって、本発明を制限するためのものではない
図面を参照すると、図1に、本発明の手順と関連して用
いられる3次元(3D)トラッキングおよびイメージング
システム1000が示されている。3Dトラッキングおよびイ
メージングシステム1000は、一般に、コンピュータ・シ
ステム1010と移動変換器1032と基準変換器1034と器具10
30と任意のロボット・サブシステム1040とからなる。Referring now to the drawings, which are merely for purposes of illustrating the preferred embodiments of the invention and not for limiting the same, FIG. 1 is used in connection with the procedure of the invention. A dimensional (3D) tracking and imaging system 1000 is shown. The 3D tracking and imaging system 1000 generally comprises a computer system 1010, a motion transducer 1032, a reference transducer 1034, and an instrument 10.
30 and optional robot subsystem 1040.
コンピュータ・システム1010は、一般に、3Dトラッキ
ングシステム1012とイメージングモダリティシステム10
14とイメージ登録(registration)システム1016と歪曲
および外形変形システム1018(「ワープシステム(warp
system)」とユーザ・インターフェース1020と表示装
置1022とからなる。3Dトラッキングシステム1012は、音
波を基本とするシステムまたは電磁波を基本とするシス
テムの形態を取りうることを理解されたい。飛行時間と
位相関係との両方を用いて距離を判断してもよい。3Dト
ラッキングシステム1012は、いずれも本明細書に援用さ
れる米国特許第5,515,853号および国際出願第WO96/3175
3号に記載の3D超音波トラッキングシステムの形態をと
ることが好ましい。Computer system 1010 generally includes a 3D tracking system 1012 and an imaging modality system 10.
14 and image registration system 1016 and distortion and contour deformation system 1018 ("warp system (warp system (warp
system) ”, a user interface 1020 and a display device 1022. It should be appreciated that the 3D tracking system 1012 can take the form of a sound wave based system or an electromagnetic wave based system. The distance may be determined using both the flight time and the phase relationship. 3D tracking system 1012 is described in US Pat. No. 5,515,853 and International Application No. WO 96/3175, all of which are incorporated herein by reference.
It preferably takes the form of the 3D ultrasound tracking system described in No. 3.
器具1030は、カテーテル、プローブ(たとえば、凍結
プローブ)、センサ、針、小刀、鉗子または外科的また
は診断的処置において用いられるその他の装置または器
具の形態をとりうる。移動変換器1032と基準変換器1034
とは、超音波変換器または電子変換器の形態をとりう
る。しかしながら、本発明の好ましい実施例を例示する
ことを目的として、変換器1032および1034は、超音波変
換器(すなわち、圧電結晶)の形態をとるものとする。Instrument 1030 may take the form of a catheter, probe (eg, cryoprobe), sensor, needle, scalpel, forceps or other device or instrument used in surgical or diagnostic procedures. Mobile converter 1032 and reference converter 1034
May take the form of an ultrasonic transducer or an electronic transducer. However, for purposes of illustrating the preferred embodiment of the present invention, transducers 1032 and 1034 are in the form of ultrasonic transducers (ie, piezoelectric crystals).
複数個の移動変換器1032が器具1030に取り付けられ
る。1つ以上の基準変換器1034は、移動変換器1032に対
する基準位置となる。この点に関しては、基準変換器10
34を患者の体内に配置して体内基準フレームを得るか、
または患者の体表面上に配置して体外基準フレームを得
ることができる。A plurality of transfer transducers 1032 are attached to the instrument 1030. One or more reference transducers 1034 provide a reference position for movement transducer 1032. In this regard, the reference converter 10
Place 34 inside the patient's body to get an internal frame of reference, or
Alternatively, it can be placed on the body surface of the patient to obtain an extracorporeal frame of reference.
上述されたように、基準変換器1034は、移動変換器10
32により検出可能な超音波または電磁波を生成しうる送
信器、送受信器または受信器とされうる。As described above, the reference converter 1034 is the moving converter 10
It may be a transmitter, a transceiver or a receiver capable of generating ultrasonic waves or electromagnetic waves detectable by 32.
3Dトラッキングシステム1012は、全ての変換器1032お
よび1034間における多数の距離測定を上記に詳細に説明
されたように基準軸に対するXYZ座標に変換する。移動
変換器1034により得られる基準フレームは、該基準フレ
ームが歪められた場合に、この歪みが移動変換器1034に
より検出される自己判断形でなければならないことが理
解されよう。検出は、一般に、あらゆる組合せの2つの
変換器間の距離を判断することができ、したがって3D空
間におけるこれらの変換器の相対的な空間座標を判断す
ることができる送受信器を用いて行なわれる。この点に
関しては、変換器の位置は、変換器が配置される位置が
「点」で示される身体構造の取得画像と、変換器が身体
構造内にあるときの変換器自体とから3次元的に得られ
る。全ての組合せの変換器間の距離において何らかの不
一致がある場合は、身体構造は、画像が取得された後に
変形(すなわち、「歪曲」)したのに相違ない。数学的
座標変換を用いることで、画像セットを補正し、かつ前
記歪曲を考慮に入れる方法を正確に特定することができ
る。あらゆる組合せの2つの変換器間の距離は、各々の
変換器に全ての他の変換器へ信号を送らせることによっ
て判断される。この方法で変換器間の全ての距離がわか
る。これらの距離から、原点となるいずれかの変換器を
基準にして、XYZ座標を計算することができる。The 3D tracking system 1012 transforms multiple distance measurements between all transducers 1032 and 1034 into XYZ coordinates with respect to a reference axis as described in detail above. It will be appreciated that the reference frame obtained by the motion converter 1034 must be self-determining, which distortion is detected by the motion converter 1034 if the reference frame is distorted. The detection is generally performed with a transceiver that is able to determine the distance between two transducers in any combination and thus the relative spatial coordinates of these transducers in 3D space. In this regard, the position of the transducer is three-dimensional from the acquired image of the body structure, where the position where the transducer is located is indicated by a "point", and the transducer itself when the transducer is in the body structure. Can be obtained. If there is any discrepancy in the distances between transducers of all combinations, then the anatomy must have been deformed (ie, “distorted”) after the image was acquired. Mathematical coordinate transformations can be used to pinpoint how to correct the image set and take the distortions into account. The distance between two transducers of any combination is determined by having each transducer signal all other transducers. In this way all distances between the transducers are known. From these distances, the XYZ coordinates can be calculated with reference to one of the transducers serving as the origin.
イメージングモダリティシステム1014は、X線透視、
MRI(磁気共鳴画像)、CT(コンピュータ連動断層撮
影)または2Dまたは3D超音波装置等の画像源から2D、3D
または4D画像データを取得して、追跡対象の器具1030の
形状と位置と動きとを表示する際に使用または対照され
うる「テンプレート」を提供する。このテンプレート
は、一般に、器具を取り巻く環境(たとえば、身体構
造)の画像の形態をとる。多数の(3D)容積を異なる時
間隔で取得すると、4D画像が得られる(すなわち、3D画
像は時間が経つと変化する)ことに注意されたい。The imaging modality system 1014 uses fluoroscopy,
2D, 3D from image sources such as MRI (magnetic resonance imaging), CT (computerized tomography) or 2D or 3D ultrasound
Alternatively, the 4D image data is acquired to provide a “template” that can be used or contrasted in displaying the shape, position and movement of the tracked instrument 1030. The template generally takes the form of an image of the environment (eg, anatomy) surrounding the device. Note that acquiring multiple (3D) volumes at different time intervals results in a 4D image (ie, the 3D image changes over time).
イメージ登録システム1016は、イメージングモダリテ
ィシステム1014により提供される画像データセットの空
間座標内において器具1030の位置を登録する。器具1030
の位置は、3Dトラッキングシステム1012により提供され
る。イメージ登録システム1016は、身体構造内において
適正な3D位置に、かつ身体構造そのものに対する適正な
配向で器具1030の表示を行なう。登録システム1016は、
ユーザ補助式または画像データセットにおいて画像処理
アルゴリズムが実行されて変換器(一般に基準変換器)
の空間位置が自動的に検出される場合は完全自動式とさ
れうることが理解されよう。The image registration system 1016 registers the position of the instrument 1030 within the spatial coordinates of the image dataset provided by the imaging modality system 1014. Appliance 1030
The position of the is provided by the 3D tracking system 1012. The image registration system 1016 displays the device 1030 in the proper 3D position within the body structure and in the proper orientation with respect to the body structure itself. Registration system 1016
Image processing algorithms are run on user-assisted or image datasets to provide a converter (typically a reference converter)
It will be appreciated that if the spatial position of is automatically detected, it may be fully automatic.
ワープシステム1018は、画像データセットを適切な値
だけ変形または「歪曲」させて、画像データセットが取
得された時点と手術中に前記手順が実行される時点との
間において基準フレーム内に生じた変形に対応させるソ
フトウェアを基本とするシステムである。したがって、
ワープシステム1018は、一般に、変形した外形をオリジ
ナルの画像データセット上に写像する行列変換ルーチン
からなる。The warp system 1018 deforms or “distorts” the image dataset by an appropriate amount to occur in the reference frame between the time the image dataset was acquired and the time the procedure was performed during surgery. It is a system based on software that supports transformation. Therefore,
Warp system 1018 generally consists of a matrix transformation routine that maps the deformed contour onto the original image data set.
ユーザ・インターフェース1020は、コンピュータ・シ
ステム1010のプログラミングを含めて、ユーザをコンピ
ュータ・システム1010と対話させて所望の機能を実行さ
せる。たとえば、特定の視点を選んで表示させることが
できる。器具1030(たとえば、プローブまたはカテーテ
ル)は、ユーザ・インターフェース1020を用いて作動さ
れうる。表示装置1022は、ユーザに対してイメージ登録
システム1016により提供される登録イメージを表示す
る。User interface 1020 allows a user to interact with computer system 1010 to perform desired functions, including programming of computer system 1010. For example, a specific viewpoint can be selected and displayed. Instrument 1030 (eg, probe or catheter) can be operated with user interface 1020. The display device 1022 displays the registered image provided by the image registration system 1016 to the user.
任意のロボット・システム1040は、一般に、ロボット
制御システム1042とロボット操作システム1044とからな
る。ロボット制御システム1042は、ロボット操作システ
ム1044を制御して、手術時における身体構造の変移、歪
曲または形状変化に基いて適切に変更されうるプログラ
ム経路をたどらせる。ロボット操作システム1044は、物
理的に器具1030をロボット制御システム1042により命令
されるように移動させる。The optional robot system 1040 generally consists of a robot control system 1042 and a robot manipulation system 1044. The robot control system 1042 controls the robot manipulating system 1044 to follow a program path that can be appropriately changed based on a change in body structure, distortion, or shape change during surgery. Robot manipulation system 1044 physically moves instrument 1030 as instructed by robot control system 1042.
前記3Dトラッキングおよびイメージングシステム1000
を用いることで、既存の定位手術台システムより高い対
話性で生検および手術時の定位位置特定を行なうこと
と、腫瘍に標識を付けて該腫瘍が従来の手術の際に位置
特定されうるようにすることとの両方が達成されうる。
本発明は、生検と腫瘍の切除とに関して説明されるが、
その他の身体的異常に関連ある用途にも適することが理
解されよう。The 3D tracking and imaging system 1000
To enable biopsy and stereotactic localization during surgery with greater interactivity than existing stereotactic operating table systems, and to allow tumors to be labeled and localized during conventional surgery. Both can be achieved.
Although the present invention is described with respect to biopsy and tumor resection,
It will be appreciated that it is also suitable for applications related to other physical abnormalities.
次に、図2を参照して、乳房内にある腫瘍の標識付け
を説明する。複数個の体外基準変換器20を乳房10の表面
に固定する。基準変換器20により、以下に説明されるよ
うに、体内変換器30の挿入時にプローブ40の動きを対話
的に3D表示するための定位体外基準フレームが得られ
る。腫瘍12は、押圧板8を用いることによって乳房10が
押圧下におかれる従来の乳房X線撮影時に体内超音波変
換器30を腫瘍12内に挿入することによって標識付けされ
る。変換器30は、現在のところ従来方法にしたがって腫
瘍内に挿入される定位針の代わりとなる。The labeling of tumors within the breast will now be described with reference to FIG. A plurality of extracorporeal reference transducers 20 are fixed to the surface of the breast 10. The reference transducer 20 provides a stereotactic extracorporeal reference frame for interactive 3D display of the movement of the probe 40 upon insertion of the intracorporeal transducer 30, as described below. The tumor 12 is labeled by inserting an internal ultrasound transducer 30 into the tumor 12 during conventional mammography, where the breast 10 is placed under pressure by using the pressure plate 8. Transducer 30 currently replaces a stereotactic needle that is inserted into a tumor according to conventional methods.
基準変換器20は、個別の貼付要素または帯状接着材の
一部分の形態をとりうる。図3に、接着材を用いて基準
変換器20を固定する構成の具体例が示されている。基準
変換器20は、接着パッチ24により支持される。適合する
ゲル26が接着パッチ24に塗布され、基準変換器20は、該
ゲル内に配置される。ゲル26は、音響結合を達成する。
基準変換器20の電線22は、接着パッチ24内の開口を介し
て外部に出る。The reference transducer 20 may take the form of a separate patch element or part of a strip of adhesive. FIG. 3 shows a specific example of a configuration in which the reference converter 20 is fixed using an adhesive material. Reference transducer 20 is supported by adhesive patch 24. A matching gel 26 is applied to the adhesive patch 24 and the reference transducer 20 is placed within the gel. The gel 26 achieves acoustic coupling.
The electrical wire 22 of the reference transducer 20 exits through an opening in the adhesive patch 24.
基準変換器20は、2つの若干異なる角度で得られる2
つの乳房X線像上に表示され、かつ腫瘍12の3D座標を基
準マーカに対して立体的に判断するための基準マーカを
形成するのに用いられうることが理解されよう。さら
に、プローブ40の動きも変換器30を用いた前記2平面の
乳房X線像に対して表示されうる。したがって、ユーザ
は、その後の生検または手術時に腫瘍に関する「定位ビ
ーコン」として機能する変換器30を配置する際に、プロ
ーブ40の動きを3D表示環境とオリジナルの放射線像に対
する表示との両方で追跡することができる。図4Aおよび
4Bに、乳房内部への器具の進入が乳房X線像に対して示
されている。Reference transducer 20 is available in two slightly different angles.
It will be appreciated that it may be displayed on one mammogram and used to form a fiducial marker for stereoscopically determining the 3D coordinates of the tumor 12 relative to the fiducial marker. In addition, the movement of the probe 40 can also be displayed on the biplanar mammogram using the transducer 30. Thus, the user will be able to track the movement of the probe 40 both in the 3D viewing environment and the display relative to the original radiological image when deploying the transducer 30 to act as a “stereo beacon” for the tumor during subsequent biopsy or surgery. can do. Figure 4A and
In 4B, the entry of the instrument into the breast is shown for a mammogram.
一旦変換器30が腫瘍12内に配置され、プローブ40が乳
房10から取り除かれると、変換器30に接続される電線32
は非常に柔軟であり、かつ患者の皮膚に貼付されうるた
め、患者は快適に歩き回ることができる。変換器30は、
挿入時に展開する小さいかぎによって腫瘍12内に留め置
かれたままになるため、その後の手術時において腫瘍12
の位置を確実に示しうることが理解されよう。Once the transducer 30 is placed in the tumor 12 and the probe 40 is removed from the breast 10, a wire 32 connected to the transducer 30.
Is very flexible and can be applied to the patient's skin, allowing the patient to walk around comfortably. The converter 30 is
Tumors 12 will be retained during subsequent surgery because they will remain trapped within tumors 12 due to the small keys that expand during insertion.
It will be appreciated that the position of can be reliably indicated.
前記方法は、従来の定位法より有意に改良されてい
る。乳房X線撮影時と手術時との間において乳房の形状
に著しい変化が起こるため、腫瘍は、以前に乳房X線撮
影時に認められた位置と完全に異なる位置にありうる。
その結果として、体外的な乳房形状と体内的な乳房画像
とのあらゆる定位整合が失われてしまう。しかしなが
ら、腫瘍は変換器30により標識付けされるため、その位
置をその後の処置時に常に判断することができる。The method is a significant improvement over conventional localization methods. Due to significant changes in the shape of the breast between mammography and surgery, the tumor may be in a completely different position than that previously seen on mammography.
As a result, any stereotactic alignment between the external breast shape and the internal breast image is lost. However, because the tumor is labeled by the transducer 30, its location can always be determined during subsequent treatments.
前記処置の後に、患者は手術室に送られ、乳房は手術
のための用意を整えられ、超音波変換器を埋設された新
しい接着材が皮膚に取り付けられる。変換器20および30
は、上述された3Dトラッキングおよびイメージングシス
テムに接続される。変換器20および30により、その後の
手術時に乳房内に挿入されうるまた他の変換器の追跡も
可能になることが理解されよう。After the procedure, the patient is sent to the operating room, the breast is prepared for surgery and a new adhesive with an ultrasonic transducer is attached to the skin. Transducers 20 and 30
Is connected to the 3D tracking and imaging system described above. It will be appreciated that the transducers 20 and 30 also enable tracking of other transducers that may be inserted into the breast during subsequent surgery.
図5Aに、体内変換器30により標識付けされた腫瘍12を
有する乳房10が示されている。体外基準変換器20が取り
付けられることと体内変換器30が腫瘍12内に配置される
こととによって、腫瘍12を乳房10に対して位置特定しう
る3D表示環境が作り出される(図5B)。この腫瘍12の空
間位置を乳房10の外側に対して明視化する手段は、腫瘍
切除手術の計画を立てる上で重要である。従来技術で
は、前もって乳房に挿入されたワイヤをたどるだけであ
る。これは、それが美容の面からとるべき最も望ましい
経路ではないかもしれないため、望ましくない。図5Bに
示されたような3D表示を分析することによって、外科医
は、どの方向から切開を開始するべきかを決定すること
ができる。In FIG. 5A, a breast 10 having a tumor 12 labeled with an internal transducer 30 is shown. The attachment of the extracorporeal reference transducer 20 and the placement of the intracorporeal transducer 30 within the tumor 12 create a 3D viewing environment in which the tumor 12 can be located relative to the breast 10 (FIG. 5B). The means for visualizing the spatial position of the tumor 12 to the outside of the breast 10 is important in planning a tumor resection operation. The prior art only follows the wire previously inserted into the breast. This is undesirable as it may not be the most desirable route to take cosmetically. By analyzing the 3D representation as shown in FIG. 5B, the surgeon can determine in which direction the incision should begin.
切開を行なうときに、第2のプローブ50を傷口に接触
させて、経路を修正するべきか否かを判断することがで
きる。図6Aに、乳房10に接触するプローブ50が示されて
いる。プローブ50は、その先端に変換器52が配置されて
いることに注意されたい。このため、図6Bに示されるよ
うな3D表示が得られる。一旦プローブ50に取り付けられ
た変換器52が組織と接触すると、該変換器は3D表示に表
示され、かつ変換器30(すなわち、「定位ビーコン)」
に対して位置特定される。したがって、この3D表示によ
り、外科的経路が明視化され、かつ必要に応じて修正さ
れうる。基準変換器20によって形成される体外基準フレ
ームは乳房10の外表面に固定されるため、たとえ乳房組
織が乳房X線像の撮影後に変形しても問題はない。この
点に関しては、変換器30は常に、乳房10の外表面に固定
された変換器20の新しい配置構成に対して表示されるこ
とになる。さらにまた、体外基準変換器20は互いに通信
するため、どれほど乳房組織が操作されても、新しい改
正座標フレームが設定されることになる。いずれの場合
も、変換器30の相対位置は、この座標系内に表示され
る。When making the incision, the second probe 50 can be contacted with the wound to determine if the path should be modified. In FIG. 6A, the probe 50 is shown in contact with the breast 10. Note that the probe 50 has a transducer 52 located at its tip. Therefore, the 3D display as shown in FIG. 6B is obtained. Once the transducer 52 attached to the probe 50 comes into contact with the tissue, the transducer is displayed in a 3D view and the transducer 30 (ie, a “stereo beacon”).
Is located relative to. Thus, this 3D display allows the surgical path to be visualized and modified as needed. Since the extracorporeal reference frame formed by the reference transducer 20 is fixed to the outer surface of the breast 10, there is no problem even if the breast tissue is deformed after the mammography. In this regard, the transducer 30 will always be displayed for the new configuration of the transducer 20 fixed to the outer surface of the breast 10. Furthermore, since the extracorporeal reference transducers 20 communicate with each other, no matter how much breast tissue is manipulated, a new revised coordinate frame will be set. In either case, the relative position of the transducer 30 is displayed within this coordinate system.
前記方法は、数多くの利点を提供し、かつ固定座標系
に基づく定位手術の現在の制限を克服する。臨床学的利
点に関しては、乳房手術は、侵襲をはるかに少なくして
行なわれうる。さらに発展させると、乳房を切開して肉
眼で検分しなくても、腫瘍を切除、吸引または何らかの
その他の方法で破壊する小カテーテルを挿入することに
より、侵襲をはるかに少なくして腫瘍を取り除くことが
可能になるかもしれない。これによって乳房の形状が変
形または変化する可能性は著しく減少することになる。
もうひとつの重要な臨床学的利点は、腫瘍の位置特定の
精度が高められて、より正確な手術が可能になることで
ある。前記3Dトラッキングシステムの理論精度は20μm
である。実際には、この3D空間精度は1mm未満であり、
この値は外形変形誤差によって2mmまで増大しうる。こ
れは、ワイヤ挿入技術または従来の定位台を用いて現在
得られうる精度より依然として高いことは明らかであ
る。このように精度が向上することによって、より大掛
かりかつ根治的な乳腺腫瘤摘出術を用いなくても腫瘍切
除成功率が高められることになる。さらにまた他の臨床
学的利点は、前記手順が、生検と切開手術または侵襲を
最小限に抑えた完全非切開手術とのいずれにも容易に適
用されうることである。前記手順は、乳房内部の腫瘍に
接近するリアルタイムのユーザ補助手段となり、しかも
従来の定位装置よりはるかに低費用である。The method offers numerous advantages and overcomes the current limitations of stereotactic surgery based on a fixed coordinate system. With regard to clinical benefit, breast surgery can be performed much less invasively. A further development would be to remove the tumor with much less invasion by inserting a small catheter that excises, aspirates or otherwise destroys the tumor without having to dissect and visually inspect the breast. May be possible. This will significantly reduce the possibility of deforming or changing the shape of the breast.
Another important clinical advantage is the increased accuracy of tumor localization, which allows for more accurate surgery. The theoretical accuracy of the 3D tracking system is 20 μm
Is. In reality, this 3D spatial accuracy is less than 1mm,
This value can increase up to 2 mm due to contour deformation errors. It is clear that this is still higher than the precision currently available using wire insertion techniques or conventional stereotactic pedestals. This improvement in accuracy will increase the success rate of tumor resection without the need for a more radical and radical lumpectomy. Yet another clinical advantage is that the procedure can be readily applied to both biopsies and open surgery or completely non-open surgery with minimal invasiveness. The procedure provides a real-time user aid to access the tumor inside the breast and is far less expensive than conventional stereotactic devices.
本発明のまた他の実施例によれば、本発明を用いて腫
瘍部位に器具を配置することもできる。図7に、腫瘍14
を有する肝臓60が示されている。肝臓60の3次元基準フ
レームは、複数個の基準変換器90を肝臓60の外表面に取
り付けることによって確立される。この点に関しては、
変換器90は、腹腔鏡により誘導されて取り付けられう
る。次に、腫瘍14の位置が、2D超音波画像面112を作り
出す誘導2次元超音波装置110を用いて判断される。2D
超音波画像面は、3D基準フレーム内に表示されて、3D画
面表示が形成される。腫瘍14が超音波画像面112と交差
するときに、ユーザは、3D画面表示内においてカーソル
・マークを配置して、腫瘍14の中心を識別する。3Dトラ
ッキングおよびイメージングシステムは、変換器90によ
り確立された3D基準フレームに対して、前記3D画面表示
内における腫瘍14の3D座標を判断する。変換器90は肝臓
60に固定されるため、腫瘍14の位置は、たとえ肝臓60そ
のものが操作されて肝臓60の変形が起こっても、3D基準
フレームに対して固定されたままになることが理解され
よう。According to yet another embodiment of the present invention, the present invention can also be used to place a device at a tumor site. In Figure 7, the tumor 14
A liver 60 with is shown. The three-dimensional reference frame of the liver 60 is established by attaching a plurality of reference transducers 90 to the outer surface of the liver 60. In this regard,
The transducer 90 may be laparoscopically guided and attached. The location of the tumor 14 is then determined using a guided two-dimensional ultrasound system 110 that produces a 2D ultrasound image plane 112. 2D
The ultrasound image plane is displayed within the 3D reference frame to form a 3D screen display. When the tumor 14 intersects the ultrasound image plane 112, the user places a cursor mark within the 3D screen display to identify the center of the tumor 14. The 3D tracking and imaging system determines the 3D coordinates of the tumor 14 within the 3D screen display relative to the 3D reference frame established by the transducer 90. Transducer 90 is the liver
As it is fixed at 60, it will be appreciated that the location of the tumor 14 will remain fixed relative to the 3D frame of reference, even if the liver 60 itself is manipulated and the liver 60 deforms.
次に、図9および10を参照すると、凍結プローブ100
(またはその他の器具)が腫瘍14に配置される。この点
に関しては、超音波的に位置特定可能なシース状付属装
置70が肝臓60内に挿入されて、該シース状付属装置の端
部が腫瘍14の位置に対応するように配置される。シース
状付属装置70は、変換器80が取り付けられた中空剛性ス
リーブまたは管体の形態をとることが好ましい。好まし
いシース状付属装置70は、1997年3月7日出願の「トラ
ッキングデータ生成用シース」と題する同時係属米国出
願第 号に詳細に説明されており、この出願は、
本明細書に援用される。変換器80により、前記3Dトラッ
キングおよびイメージングシステムを用いてシース状付
属装置70の位置を追跡することができる。9 and 10, a cryoprobe 100
(Or other device) is placed in the tumor 14. In this regard, an ultrasonically positionable sheath appendage 70 is inserted into the liver 60 and the end of the sheath appendage is positioned to correspond to the location of the tumor 14. The sheath attachment 70 preferably takes the form of a hollow rigid sleeve or tube with the transducer 80 attached. A preferred sheath attachment 70 is described in detail in co-pending US Application No. “Sheath for Tracking Data Generation” filed March 7, 1997.
Incorporated herein. The transducer 80 allows the position of the sheath appendage 70 to be tracked using the 3D tracking and imaging system.
一旦シース状付属装置70が腫瘍14の部位に配置される
と、凍結プローブ100を該シース状付属装置70内に挿入
して、該凍結プローブをシースの口部で停止させるよう
にする。このため、凍結プローブ100を腫瘍14の部位に
配置するために物理的に改変する必要はない。次に、シ
ース状付属装置70を凍結プローブ100の軸に沿って引き
戻す。その後、凍結プローブ100を付勢して、腫瘍14を
周知の方法で切除する。Once the sheath attachment 70 is placed at the site of the tumor 14, the cryoprobe 100 is inserted into the sheath attachment 70 to stop the cryoprobe at the mouth of the sheath. Thus, the cryoprobe 100 does not need to be physically modified to be placed at the site of the tumor 14. Next, the sheath-like accessory device 70 is pulled back along the axis of the cryoprobe 100. Thereafter, the cryoprobe 100 is activated to excise the tumor 14 by a known method.
これに代わる方法として、前記手順は、超音波変換器
が取り付けられた追跡可能な鈍端案内具を挿入し、該案
内具を腫瘍の部位に配置することによって行なわれう
る。次に、管体またはスリーブが、該管体を前記案内具
の上に配置することにより、腫瘍の部位に配置される。
その後、案内具を除去して、スリーブだけを残す。次
に、凍結プローブ(またはその他の器具)を前記スリー
ブを介して挿入して、以って凍結プローブを腫瘍の部位
に配置する。Alternatively, the procedure can be performed by inserting a trackable blunt tip guide fitted with an ultrasonic transducer and placing the guide at the site of the tumor. A tube or sleeve is then placed at the site of the tumor by placing the tube over the guide.
Then the guide is removed, leaving only the sleeve. A cryoprobe (or other instrument) is then inserted through the sleeve, thereby placing the cryoprobe at the site of the tumor.
本発明は、好ましい実施例を参照して説明された。本
明細書を読み、かつ理解すると、改変および変更が考え
られうることは明らかである。このような全ての改変お
よび変更は、それらが添付の請求の範囲内または本発明
の均等物の範囲内にある限りは、本発明に含まれるもの
とする。The invention has been described with reference to the preferred embodiments. Obviously, upon reading and understanding this specification, modifications and changes may be considered. All such modifications and variations are intended to be included in the present invention as long as they come within the scope of the appended claims or the equivalents of the invention.
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) A61B 19/00 502 A61B 6/12 A61B 10/00 103 A61B 17/22 A61B 17/32 Front page continued (58) Fields surveyed (Int.Cl. 7 , DB name) A61B 19/00 502 A61B 6/12 A61B 10/00 103 A61B 17/22 A61B 17/32
Claims (8)
て、基準フレームを提供する複数個の基準超音波変換手
段(20)と、身体構造のテンプレートイメージを得る手
段(1014)と、前記基準フレームを前記テンプレートイ
メージとともに登録して、3次元画面表示を得る登録手
段(1016)と、前記身体構造の前記3次元画面表示を表
示する表示手段(1022)とからなっており、前記身体構
造内の腫瘍に関して生検または切除を目的として外科的
処置を行なうシステムにおいて、 前記腫瘍の位置を識別するために、ビーコン超音波変換
手段(30)の位置を腫瘍の部位に固定するための第1の
器具手段(40)と、 前記腫瘍の部位において外科的処置を行なうための第2
の器具手段(1030)であって、該第2の器具手段の位置
を前記基準フレームと前記ビーコン超音波変換手段の位
置とに対して指示するための超音波変換手段(1032)を
有する第2の器具手段とを含み、 前記登録手段が、前記第2の器具手段の位置を登録し、
前記表示手段が、前記第2の器具手段を取り巻く身体構
造の3D画像と共に、前記位置を表示することを特徴とす
る、身体構造内の腫瘍に関して生検または切除の目的と
して外科的処置を行なうシステム。1. A plurality of reference ultrasonic conversion means (20) arranged at a fixed position on a body structure to provide a reference frame, a means (1014) for obtaining a template image of the body structure, and the reference frame. A registration means (1016) for registering with the template image to obtain a three-dimensional screen display and a display means (1022) for displaying the three-dimensional screen display of the body structure. In a system for performing a surgical procedure on a tumor for biopsy or excision, a first instrument for fixing the position of a beacon ultrasonic transducer (30) to a site of a tumor in order to identify the position of the tumor. Means (40) and a second means for performing a surgical procedure at the site of said tumor
Second instrument means (1030) having ultrasonic converting means (1032) for indicating the position of the second instrument means to the reference frame and the position of the beacon ultrasonic converting means. Instrument means of, wherein the registration means registers the position of the second instrument means,
System for performing a surgical procedure on a tumor in a anatomy for the purpose of biopsy or excision, characterized in that the display means displays the position together with a 3D image of the anatomy surrounding the second instrument means. .
の範囲第1項に記載のシステム。2. The system of claim 1, wherein the fixed location is on the surface of the breast.
る請求の範囲第1項に記載のシステム。3. The system of claim 1, wherein the fixed location is on the outer surface of a solid organ.
ある請求の範囲第1項に記載のシステム。4. The system according to claim 1, wherein the template image is a mammogram.
請求の範囲第1項に記載のシステム。5. The system according to claim 1, wherein the template image is an X-ray image.
手段を前記第1の器具手段から分離させる手段を含む請
求の範囲第1項に記載のシステム。6. The system of claim 1 wherein said first instrument means includes means for decoupling said beacon converting means from said first instrument means.
は、 変換装置と、 前記変換装置を支持しており、前記変換装置を前記身体
構造上において前記固定位置に固定する接着材と、音響
結合のためのゲル(26)とを含む支持手段(24)と を備えている請求の範囲第1項に記載のシステム。7. Each of the plurality of reference conversion means (20) includes: a conversion device; and an adhesive material that supports the conversion device and fixes the conversion device to the fixed position on the body structure. A support means (24) comprising a gel (26) for acoustic coupling, and a system according to claim 1.
第7項に記載のシステム。8. The system of claim 7, wherein the transducer comprises a piezoelectric material.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/815,141 US5868673A (en) | 1995-03-28 | 1997-03-11 | System for carrying out surgery, biopsy and ablation of a tumor or other physical anomaly |
US08/815,141 | 1997-03-11 | ||
PCT/IB1998/000731 WO1998040026A1 (en) | 1997-03-11 | 1998-03-11 | System for carrying out surgery, biopsy and ablation of a tumor or other physical anomaly |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000512189A JP2000512189A (en) | 2000-09-19 |
JP3415164B2 true JP3415164B2 (en) | 2003-06-09 |
Family
ID=25216983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53939298A Expired - Fee Related JP3415164B2 (en) | 1997-03-11 | 1998-03-11 | System for surgery, biopsy and resection of tumors or other physical abnormalities |
Country Status (8)
Country | Link |
---|---|
US (1) | US5868673A (en) |
EP (2) | EP0998238B1 (en) |
JP (1) | JP3415164B2 (en) |
AT (2) | ATE309757T1 (en) |
AU (1) | AU7072898A (en) |
DE (2) | DE69832425T2 (en) |
ES (1) | ES2256598T3 (en) |
WO (1) | WO1998040026A1 (en) |
Families Citing this family (282)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6983179B2 (en) | 1993-07-20 | 2006-01-03 | Biosense, Inc. | Method for mapping a heart using catheters having ultrasonic position sensors |
US6285898B1 (en) | 1993-07-20 | 2001-09-04 | Biosense, Inc. | Cardiac electromechanics |
US6246898B1 (en) * | 1995-03-28 | 2001-06-12 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
US5868673A (en) | 1995-03-28 | 1999-02-09 | Sonometrics Corporation | System for carrying out surgery, biopsy and ablation of a tumor or other physical anomaly |
US6256529B1 (en) | 1995-07-26 | 2001-07-03 | Burdette Medical Systems, Inc. | Virtual reality 3D visualization for surgical procedures |
US6915149B2 (en) | 1996-01-08 | 2005-07-05 | Biosense, Inc. | Method of pacing a heart using implantable device |
WO1997036192A1 (en) * | 1996-03-27 | 1997-10-02 | Paul Scherrer Institut | Device and process for determining position |
USRE40176E1 (en) * | 1996-05-15 | 2008-03-25 | Northwestern University | Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy |
US5799055A (en) * | 1996-05-15 | 1998-08-25 | Northwestern University | Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy |
US6167296A (en) * | 1996-06-28 | 2000-12-26 | The Board Of Trustees Of The Leland Stanford Junior University | Method for volumetric image navigation |
DK1491139T3 (en) * | 1997-01-03 | 2008-01-02 | Biosense Webster Inc | Bend sensitive catheter |
US6314310B1 (en) * | 1997-02-14 | 2001-11-06 | Biosense, Inc. | X-ray guided surgical location system with extended mapping volume |
US6731966B1 (en) * | 1997-03-04 | 2004-05-04 | Zachary S. Spigelman | Systems and methods for targeting a lesion |
US6490474B1 (en) * | 1997-08-01 | 2002-12-03 | Cardiac Pathways Corporation | System and method for electrode localization using ultrasound |
US6027451A (en) | 1997-09-26 | 2000-02-22 | Ep Technologies, Inc. | Method and apparatus for fixing the anatomical orientation of a displayed ultrasound generated image |
US6246899B1 (en) * | 1997-10-20 | 2001-06-12 | Irvine Biomedical, Inc. | Ultrasound locating system having ablation capabilities |
US6259941B1 (en) * | 1997-10-20 | 2001-07-10 | Irvine Biomedical, Inc. | Intravascular ultrasound locating system |
US6233477B1 (en) * | 1997-10-20 | 2001-05-15 | Irvine Biomedical, Inc. | Catheter system having controllable ultrasound locating means |
CA2333583C (en) * | 1997-11-24 | 2005-11-08 | Everette C. Burdette | Real time brachytherapy spatial registration and visualization system |
US6129670A (en) * | 1997-11-24 | 2000-10-10 | Burdette Medical Systems | Real time brachytherapy spatial registration and visualization system |
US20030036746A1 (en) * | 2001-08-16 | 2003-02-20 | Avi Penner | Devices for intrabody delivery of molecules and systems and methods utilizing same |
US6175760B1 (en) * | 1998-02-17 | 2001-01-16 | University Of Iowa Research Foundation | Lesion localizer for nuclear medicine |
US6360116B1 (en) | 1998-02-27 | 2002-03-19 | Varian Medical Systems, Inc. | Brachytherapy system for prostate cancer treatment with computer implemented systems and processes to facilitate pre-operative planning and post-operative evaluations |
US6327490B1 (en) | 1998-02-27 | 2001-12-04 | Varian Medical Systems, Inc. | Brachytherapy system for prostate cancer treatment with computer implemented systems and processes to facilitate pre-implantation planning and post-implantation evaluations with storage of multiple plan variations for a single patient |
GB2335744A (en) * | 1998-03-27 | 1999-09-29 | Intravascular Res Ltd | Medical ultrasonic imaging |
US6363940B1 (en) * | 1998-05-14 | 2002-04-02 | Calypso Medical Technologies, Inc. | System and method for bracketing and removing tissue |
US6129669A (en) * | 1998-05-22 | 2000-10-10 | Scimed Life Systems, Inc. | Systems and methods for assessing stability of an ablation electrode in contact with heart tissue |
US6950689B1 (en) * | 1998-08-03 | 2005-09-27 | Boston Scientific Scimed, Inc. | Dynamically alterable three-dimensional graphical model of a body region |
US7517348B2 (en) * | 1998-09-03 | 2009-04-14 | Rubicor Medical, Inc. | Devices and methods for performing procedures on a breast |
US6214018B1 (en) * | 1998-11-04 | 2001-04-10 | Trex Medical Corporation | Method and apparatus for removing tissue from a region of interest using stereotactic radiographic guidance |
US6122542A (en) | 1998-11-25 | 2000-09-19 | Rubicor Medical, Inc. | Breast stabilization devices and imaging and interventional methods using the same |
US7590441B2 (en) * | 1999-03-11 | 2009-09-15 | Biosense, Inc. | Invasive medical device with position sensing and display |
US7558616B2 (en) * | 1999-03-11 | 2009-07-07 | Biosense, Inc. | Guidance of invasive medical procedures using implantable tags |
US7174201B2 (en) * | 1999-03-11 | 2007-02-06 | Biosense, Inc. | Position sensing system with integral location pad and position display |
US7549960B2 (en) * | 1999-03-11 | 2009-06-23 | Biosense, Inc. | Implantable and insertable passive tags |
US7575550B1 (en) | 1999-03-11 | 2009-08-18 | Biosense, Inc. | Position sensing based on ultrasound emission |
US6144875A (en) * | 1999-03-16 | 2000-11-07 | Accuray Incorporated | Apparatus and method for compensating for respiratory and patient motion during treatment |
AU5561400A (en) * | 1999-07-02 | 2001-01-22 | Ultra-Guide Ltd. | Apparatus and methods for medical interventions |
US6574498B1 (en) | 1999-09-16 | 2003-06-03 | Super Dimension Ltd. | Linking of an intra-body tracking system to external reference coordinates |
DE19956814B4 (en) * | 1999-11-25 | 2004-07-15 | Brainlab Ag | Shape detection of treatment devices |
US6515657B1 (en) | 2000-02-11 | 2003-02-04 | Claudio I. Zanelli | Ultrasonic imager |
AU2001240413A1 (en) * | 2000-04-10 | 2001-10-23 | 2C3D S.A. | Medical device for positioning data on intraoperative images |
US6351660B1 (en) * | 2000-04-18 | 2002-02-26 | Litton Systems, Inc. | Enhanced visualization of in-vivo breast biopsy location for medical documentation |
US20030135102A1 (en) * | 2000-05-18 | 2003-07-17 | Burdette Everette C. | Method and system for registration and guidance of intravascular treatment |
US6494844B1 (en) * | 2000-06-21 | 2002-12-17 | Sanarus Medical, Inc. | Device for biopsy and treatment of breast tumors |
AU2001283703B2 (en) | 2000-08-23 | 2006-05-25 | Avent, Inc. | Catheter locator apparatus and method of use |
US6540694B1 (en) | 2000-10-16 | 2003-04-01 | Sanarus Medical, Inc. | Device for biopsy tumors |
BR0114716A (en) * | 2000-10-16 | 2004-01-20 | Sanarus Medical Inc | Tumor biopsy device |
US7024248B2 (en) * | 2000-10-16 | 2006-04-04 | Remon Medical Technologies Ltd | Systems and methods for communicating with implantable devices |
WO2002034153A1 (en) * | 2000-10-23 | 2002-05-02 | Deutsches Krebsforschungszentrum Stiffung D. Öffentl. Rechts | Method and device for navigation during medical interventions or for localising a non-osseous structure |
AU2002215822A1 (en) * | 2000-10-23 | 2002-05-06 | Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts | Method, device and navigation aid for navigation during medical interventions |
ATE456332T1 (en) * | 2000-11-17 | 2010-02-15 | Calypso Medical Inc | SYSTEM FOR LOCALIZING AND DEFINING A TARGET POSITION IN A HUMAN BODY |
US7594917B2 (en) * | 2001-03-13 | 2009-09-29 | Ethicon, Inc. | Method and apparatus for fixing a graft in a bone tunnel |
US7195642B2 (en) | 2001-03-13 | 2007-03-27 | Mckernan Daniel J | Method and apparatus for fixing a graft in a bone tunnel |
US6517546B2 (en) * | 2001-03-13 | 2003-02-11 | Gregory R. Whittaker | Method and apparatus for fixing a graft in a bone tunnel |
US20020193685A1 (en) * | 2001-06-08 | 2002-12-19 | Calypso Medical, Inc. | Guided Radiation Therapy System |
US20030026758A1 (en) * | 2001-07-27 | 2003-02-06 | Baker Gregg S. | Method and device for monitoring real-time position of an area targeted by a radiosurgery system |
US7135978B2 (en) * | 2001-09-14 | 2006-11-14 | Calypso Medical Technologies, Inc. | Miniature resonating marker assembly |
WO2003026719A2 (en) * | 2001-09-27 | 2003-04-03 | Galil Medical Ltd. | Cryoplasty apparatus and method |
AU2002341359A1 (en) * | 2001-09-27 | 2003-04-07 | Galil Medical Ltd. | Apparatus and method for cryosurgical treatment of tumors of the breast |
US6546279B1 (en) * | 2001-10-12 | 2003-04-08 | University Of Florida | Computer controlled guidance of a biopsy needle |
US20030093007A1 (en) * | 2001-10-17 | 2003-05-15 | The Government Of The U.S.A., As Represented By The Secretary, Department Of Health And Human Serv | Biopsy apparatus with radio frequency cauterization and methods for its use |
FR2831743B1 (en) * | 2001-10-25 | 2004-01-30 | Cit Alcatel | IS-IS FAULT TOLERANT ROUTING SYSTEM AND CORRESPONDING METHOD |
EP1460938A4 (en) | 2001-11-05 | 2006-07-26 | Computerized Med Syst Inc | Apparatus and method for registration, guidance, and targeting of external beam radiation therapy |
US6785572B2 (en) * | 2001-11-21 | 2004-08-31 | Koninklijke Philips Electronics, N.V. | Tactile feedback and display in a CT image guided robotic system for interventional procedures |
US6812842B2 (en) | 2001-12-20 | 2004-11-02 | Calypso Medical Technologies, Inc. | System for excitation of a leadless miniature marker |
US6838990B2 (en) | 2001-12-20 | 2005-01-04 | Calypso Medical Technologies, Inc. | System for excitation leadless miniature marker |
US6822570B2 (en) | 2001-12-20 | 2004-11-23 | Calypso Medical Technologies, Inc. | System for spatially adjustable excitation of leadless miniature marker |
US6780179B2 (en) * | 2002-05-22 | 2004-08-24 | Rubicor Medical, Inc. | Methods and systems for in situ tissue marking and orientation stabilization |
US9682253B2 (en) * | 2002-06-05 | 2017-06-20 | Varian Medical Systems, Inc. | Integrated radiation therapy systems and methods for treating a target in a patient |
US7187800B2 (en) * | 2002-08-02 | 2007-03-06 | Computerized Medical Systems, Inc. | Method and apparatus for image segmentation using Jensen-Shannon divergence and Jensen-Renyi divergence |
WO2004019799A2 (en) * | 2002-08-29 | 2004-03-11 | Computerized Medical Systems, Inc. | Methods and systems for localizing of a medical imaging probe and of a biopsy needle |
US7926491B2 (en) * | 2002-12-31 | 2011-04-19 | Calypso Medical Technologies, Inc. | Method and apparatus for sensing field strength signals to estimate location of a wireless implantable marker |
US7912529B2 (en) * | 2002-12-30 | 2011-03-22 | Calypso Medical Technologies, Inc. | Panel-type sensor/source array assembly |
US7289839B2 (en) * | 2002-12-30 | 2007-10-30 | Calypso Medical Technologies, Inc. | Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices |
US6889833B2 (en) * | 2002-12-30 | 2005-05-10 | Calypso Medical Technologies, Inc. | Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems |
US9248003B2 (en) * | 2002-12-30 | 2016-02-02 | Varian Medical Systems, Inc. | Receiver used in marker localization sensing system and tunable to marker frequency |
US7247160B2 (en) * | 2002-12-30 | 2007-07-24 | Calypso Medical Technologies, Inc. | Apparatuses and methods for percutaneously implanting objects in patients |
US7343030B2 (en) * | 2003-08-05 | 2008-03-11 | Imquant, Inc. | Dynamic tumor treatment system |
US8055323B2 (en) * | 2003-08-05 | 2011-11-08 | Imquant, Inc. | Stereotactic system and method for defining a tumor treatment region |
US8150495B2 (en) | 2003-08-11 | 2012-04-03 | Veran Medical Technologies, Inc. | Bodily sealants and methods and apparatus for image-guided delivery of same |
US7398116B2 (en) * | 2003-08-11 | 2008-07-08 | Veran Medical Technologies, Inc. | Methods, apparatuses, and systems useful in conducting image guided interventions |
US7001341B2 (en) * | 2003-08-13 | 2006-02-21 | Scimed Life Systems, Inc. | Marking biopsy sites |
US6923801B2 (en) * | 2003-09-11 | 2005-08-02 | Endocare, Inc. | Ablation device placement spacer |
US7908690B2 (en) * | 2003-09-30 | 2011-03-22 | Sentinelle Medical, Inc. | Supine patient support for medical imaging |
US7970452B2 (en) * | 2003-09-30 | 2011-06-28 | Hologic, Inc. | Open architecture imaging apparatus and coil system for magnetic resonance imaging |
US20080077005A1 (en) * | 2004-08-12 | 2008-03-27 | Piron Cameron A | System and Method for Multimodality Breast Imaging |
US7379769B2 (en) | 2003-09-30 | 2008-05-27 | Sunnybrook Health Sciences Center | Hybrid imaging method to monitor medical device delivery and patient support for use in the method |
US7275547B2 (en) * | 2003-10-08 | 2007-10-02 | Boston Scientific Scimed, Inc. | Method and system for determining the location of a medical probe using a reference transducer array |
US8196589B2 (en) * | 2003-12-24 | 2012-06-12 | Calypso Medical Technologies, Inc. | Implantable marker with wireless signal transmitter |
US7966058B2 (en) * | 2003-12-31 | 2011-06-21 | General Electric Company | System and method for registering an image with a representation of a probe |
US20050154279A1 (en) * | 2003-12-31 | 2005-07-14 | Wenguang Li | System and method for registering an image with a representation of a probe |
US20050154284A1 (en) * | 2003-12-31 | 2005-07-14 | Wright J. N. | Method and system for calibration of a marker localization sensing array |
US7684849B2 (en) * | 2003-12-31 | 2010-03-23 | Calypso Medical Technologies, Inc. | Marker localization sensing system synchronized with radiation source |
US20050154282A1 (en) * | 2003-12-31 | 2005-07-14 | Wenguang Li | System and method for registering an image with a representation of a probe |
US20050154280A1 (en) * | 2003-12-31 | 2005-07-14 | Wright J. N. | Receiver used in marker localization sensing system |
US20050154285A1 (en) * | 2004-01-02 | 2005-07-14 | Neason Curtis G. | System and method for receiving and displaying information pertaining to a patient |
US20050154286A1 (en) * | 2004-01-02 | 2005-07-14 | Neason Curtis G. | System and method for receiving and displaying information pertaining to a patient |
US9623208B2 (en) * | 2004-01-12 | 2017-04-18 | Varian Medical Systems, Inc. | Instruments with location markers and methods for tracking instruments through anatomical passageways |
EP1711119A1 (en) * | 2004-01-23 | 2006-10-18 | Traxyz Medical, Inc. | Methods and apparatus for performing procedures on target locations in the body |
US20060036162A1 (en) * | 2004-02-02 | 2006-02-16 | Ramin Shahidi | Method and apparatus for guiding a medical instrument to a subsurface target site in a patient |
US7402140B2 (en) * | 2004-02-12 | 2008-07-22 | Sanarus Medical, Inc. | Rotational core biopsy device with liquid cryogen adhesion probe |
EP1715788B1 (en) * | 2004-02-17 | 2011-09-07 | Philips Electronics LTD | Method and apparatus for registration, verification, and referencing of internal organs |
US7311714B1 (en) * | 2004-03-02 | 2007-12-25 | Wascher Thomas M | Marking catheter for placement using frameless stereotaxy and use thereof |
US20050209524A1 (en) * | 2004-03-10 | 2005-09-22 | General Electric Company | System and method for receiving and storing information pertaining to a patient |
US20050228251A1 (en) * | 2004-03-30 | 2005-10-13 | General Electric Company | System and method for displaying a three-dimensional image of an organ or structure inside the body |
US20050228252A1 (en) * | 2004-04-02 | 2005-10-13 | General Electric Company | Electrophysiology system and method |
US20050222509A1 (en) * | 2004-04-02 | 2005-10-06 | General Electric Company | Electrophysiology system and method |
US20070244369A1 (en) * | 2004-05-17 | 2007-10-18 | Olivier Gerard | Medical Imaging System for Mapping a Structure in a Patient's Body |
US20050261571A1 (en) * | 2004-05-21 | 2005-11-24 | Willis Nathaniel P | 3-D ultrasound navigation during radio-frequency ablation |
US10195464B2 (en) | 2004-06-24 | 2019-02-05 | Varian Medical Systems, Inc. | Systems and methods for treating a lung of a patient using guided radiation therapy or surgery |
EP1771223A4 (en) * | 2004-07-23 | 2009-04-22 | Calypso Med Technologies Inc | Apparatuses and methods for percutaneously implanting objects in patients |
US7899513B2 (en) * | 2004-07-23 | 2011-03-01 | Calypso Medical Technologies, Inc. | Modular software system for guided radiation therapy |
US8095203B2 (en) * | 2004-07-23 | 2012-01-10 | Varian Medical Systems, Inc. | Data processing for real-time tracking of a target in radiation therapy |
US8437449B2 (en) * | 2004-07-23 | 2013-05-07 | Varian Medical Systems, Inc. | Dynamic/adaptive treatment planning for radiation therapy |
US9586059B2 (en) * | 2004-07-23 | 2017-03-07 | Varian Medical Systems, Inc. | User interface for guided radiation therapy |
EP1778086A4 (en) * | 2004-07-23 | 2009-03-18 | Calypso Med Technologies Inc | Systems and methods for real time tracking of targets in radiation therapy and other medical applications |
US8271093B2 (en) | 2004-09-17 | 2012-09-18 | Cardiac Pacemakers, Inc. | Systems and methods for deriving relative physiologic measurements using a backend computing system |
US7452357B2 (en) * | 2004-10-22 | 2008-11-18 | Ethicon Endo-Surgery, Inc. | System and method for planning treatment of tissue |
US7833221B2 (en) * | 2004-10-22 | 2010-11-16 | Ethicon Endo-Surgery, Inc. | System and method for treatment of tissue using the tissue as a fiducial |
US20060089626A1 (en) * | 2004-10-22 | 2006-04-27 | Vlegele James W | Surgical device guide for use with an imaging system |
ATE455499T1 (en) * | 2004-11-05 | 2010-02-15 | Us Gov Health & Human Serv | ACCESS SYSTEM |
US7751868B2 (en) * | 2004-11-12 | 2010-07-06 | Philips Electronics Ltd | Integrated skin-mounted multifunction device for use in image-guided surgery |
US7805269B2 (en) * | 2004-11-12 | 2010-09-28 | Philips Electronics Ltd | Device and method for ensuring the accuracy of a tracking device in a volume |
US7813808B1 (en) | 2004-11-24 | 2010-10-12 | Remon Medical Technologies Ltd | Implanted sensor system with optimized operational and sensing parameters |
JP5122743B2 (en) * | 2004-12-20 | 2013-01-16 | ゼネラル・エレクトリック・カンパニイ | System for aligning 3D images within an interventional system |
US7976518B2 (en) | 2005-01-13 | 2011-07-12 | Corpak Medsystems, Inc. | Tubing assembly and signal generator placement control device and method for use with catheter guidance systems |
US8611983B2 (en) * | 2005-01-18 | 2013-12-17 | Philips Electronics Ltd | Method and apparatus for guiding an instrument to a target in the lung |
JP2008528197A (en) * | 2005-01-28 | 2008-07-31 | マサチユセツツ・ジエネラル・ホスピタル | Guide and insertion system |
US8788019B2 (en) * | 2005-02-28 | 2014-07-22 | Robarts Research Institute | System and method for performing a biopsy of a target volume and a computing device for planning the same |
US7942873B2 (en) * | 2005-03-25 | 2011-05-17 | Angiodynamics, Inc. | Cavity ablation apparatus and method |
JP4766902B2 (en) * | 2005-03-31 | 2011-09-07 | オリンパスメディカルシステムズ株式会社 | Surgery support device |
ATE492214T1 (en) | 2005-06-21 | 2011-01-15 | Traxtal Inc | APPARATUS AND METHOD FOR TRACKABLE ULTRASOUND |
US8632461B2 (en) * | 2005-06-21 | 2014-01-21 | Koninklijke Philips N.V. | System, method and apparatus for navigated therapy and diagnosis |
EP1922113A1 (en) * | 2005-08-11 | 2008-05-21 | Navotek Medical Ltd. | Medical treatment system and method using radioactivity based position sensor |
US20070055173A1 (en) * | 2005-08-23 | 2007-03-08 | Sanarus Medical, Inc. | Rotational core biopsy device with liquid cryogen adhesion probe |
US8784336B2 (en) | 2005-08-24 | 2014-07-22 | C. R. Bard, Inc. | Stylet apparatuses and methods of manufacture |
US7742815B2 (en) * | 2005-09-09 | 2010-06-22 | Cardiac Pacemakers, Inc. | Using implanted sensors for feedback control of implanted medical devices |
EP3492008B1 (en) | 2005-09-13 | 2021-06-02 | Veran Medical Technologies, Inc. | Apparatus and method for image guided accuracy verification |
US20070066881A1 (en) * | 2005-09-13 | 2007-03-22 | Edwards Jerome R | Apparatus and method for image guided accuracy verification |
EP1926520B1 (en) | 2005-09-19 | 2015-11-11 | Varian Medical Systems, Inc. | Apparatus and methods for implanting objects, such as bronchoscopically implanting markers in the lung of patients |
WO2007061890A2 (en) | 2005-11-17 | 2007-05-31 | Calypso Medical Technologies, Inc. | Apparatus and methods for using an electromagnetic transponder in orthopedic procedures |
EP1973461A2 (en) * | 2005-12-16 | 2008-10-01 | Galil Medical Ltd | Apparatus and method for thermal ablation of uterine fibroids |
JP5738507B2 (en) * | 2006-01-19 | 2015-06-24 | 東芝メディカルシステムズ株式会社 | Ultrasonic probe trajectory expression device and ultrasonic diagnostic device |
US9084556B2 (en) * | 2006-01-19 | 2015-07-21 | Toshiba Medical Systems Corporation | Apparatus for indicating locus of an ultrasonic probe, ultrasonic diagnostic apparatus |
US7955268B2 (en) * | 2006-07-21 | 2011-06-07 | Cardiac Pacemakers, Inc. | Multiple sensor deployment |
US8565853B2 (en) | 2006-08-11 | 2013-10-22 | DePuy Synthes Products, LLC | Simulated bone or tissue manipulation |
US8197494B2 (en) | 2006-09-08 | 2012-06-12 | Corpak Medsystems, Inc. | Medical device position guidance system with wireless connectivity between a noninvasive device and an invasive device |
DE602007010807D1 (en) * | 2006-09-08 | 2011-01-05 | Arbel Medical Ltd | DEVICE FOR COMBINED TREATMENT |
US20080086051A1 (en) * | 2006-09-20 | 2008-04-10 | Ethicon Endo-Surgery, Inc. | System, storage medium for a computer program, and method for displaying medical images |
US20080077440A1 (en) * | 2006-09-26 | 2008-03-27 | Remon Medical Technologies, Ltd | Drug dispenser responsive to physiological parameters |
US7794407B2 (en) | 2006-10-23 | 2010-09-14 | Bard Access Systems, Inc. | Method of locating the tip of a central venous catheter |
US8388546B2 (en) | 2006-10-23 | 2013-03-05 | Bard Access Systems, Inc. | Method of locating the tip of a central venous catheter |
WO2008087649A1 (en) * | 2007-01-19 | 2008-07-24 | Arbel Medical Ltd. | Thermally insulated needles for dermatological applications |
US8457718B2 (en) * | 2007-03-21 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Recognizing a real world fiducial in a patient image data |
US8155728B2 (en) * | 2007-08-22 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Medical system, method, and storage medium concerning a natural orifice transluminal medical procedure |
US20080319307A1 (en) * | 2007-06-19 | 2008-12-25 | Ethicon Endo-Surgery, Inc. | Method for medical imaging using fluorescent nanoparticles |
US20080221434A1 (en) * | 2007-03-09 | 2008-09-11 | Voegele James W | Displaying an internal image of a body lumen of a patient |
US20080234544A1 (en) * | 2007-03-20 | 2008-09-25 | Ethicon Endo-Sugery, Inc. | Displaying images interior and exterior to a body lumen of a patient |
US8081810B2 (en) * | 2007-03-22 | 2011-12-20 | Ethicon Endo-Surgery, Inc. | Recognizing a real world fiducial in image data of a patient |
EP1987774A1 (en) * | 2007-05-03 | 2008-11-05 | BrainLAB AG | Measurement of sonographic acoustic velocity using a marker device |
JP2010530769A (en) * | 2007-06-14 | 2010-09-16 | カーディアック ペースメイカーズ, インコーポレイテッド | Body pressure measuring device and method |
US20100162730A1 (en) * | 2007-06-14 | 2010-07-01 | Arbel Medical Ltd. | Siphon for delivery of liquid cryogen from dewar flask |
US9883818B2 (en) | 2007-06-19 | 2018-02-06 | Accuray Incorporated | Fiducial localization |
US20090003528A1 (en) | 2007-06-19 | 2009-01-01 | Sankaralingam Ramraj | Target location by tracking of imaging device |
DE102008026635B4 (en) * | 2007-06-26 | 2010-10-28 | Erbe Elektromedizin Gmbh | Kryobiopsiesonde |
WO2009007963A1 (en) * | 2007-07-09 | 2009-01-15 | Arbel Medical Ltd. | Cryosheath |
WO2009066292A1 (en) * | 2007-11-21 | 2009-05-28 | Arbel Medical Ltd. | Pumping unit for delivery of liquid medium from a vessel |
US8290569B2 (en) | 2007-11-23 | 2012-10-16 | Hologic, Inc. | Open architecture tabletop patient support and coil system |
US10449330B2 (en) | 2007-11-26 | 2019-10-22 | C. R. Bard, Inc. | Magnetic element-equipped needle assemblies |
US8781555B2 (en) | 2007-11-26 | 2014-07-15 | C. R. Bard, Inc. | System for placement of a catheter including a signal-generating stylet |
US10524691B2 (en) | 2007-11-26 | 2020-01-07 | C. R. Bard, Inc. | Needle assembly including an aligned magnetic element |
US9521961B2 (en) | 2007-11-26 | 2016-12-20 | C. R. Bard, Inc. | Systems and methods for guiding a medical instrument |
US9649048B2 (en) * | 2007-11-26 | 2017-05-16 | C. R. Bard, Inc. | Systems and methods for breaching a sterile field for intravascular placement of a catheter |
ES2465915T3 (en) | 2007-11-26 | 2014-06-09 | C.R. Bard, Inc. | Integrated system for intravascular catheter placement |
US10751509B2 (en) | 2007-11-26 | 2020-08-25 | C. R. Bard, Inc. | Iconic representations for guidance of an indwelling medical device |
US8849382B2 (en) | 2007-11-26 | 2014-09-30 | C. R. Bard, Inc. | Apparatus and display methods relating to intravascular placement of a catheter |
US20110015624A1 (en) * | 2008-01-15 | 2011-01-20 | Icecure Medical Ltd. | Cryosurgical instrument insulating system |
US20090287089A1 (en) * | 2008-01-31 | 2009-11-19 | The University Of Vermont And State Agriculture College | Methods, devices and apparatus for imaging for reconstructing a 3-D image of an area of interest |
US8478382B2 (en) | 2008-02-11 | 2013-07-02 | C. R. Bard, Inc. | Systems and methods for positioning a catheter |
WO2009102613A2 (en) * | 2008-02-11 | 2009-08-20 | Cardiac Pacemakers, Inc. | Methods of monitoring hemodynamic status for ryhthm discrimination within the heart |
WO2009102640A1 (en) * | 2008-02-12 | 2009-08-20 | Cardiac Pacemakers, Inc. | Systems and methods for controlling wireless signal transfers between ultrasound-enabled medical devices |
WO2009122273A2 (en) | 2008-04-03 | 2009-10-08 | Superdimension, Ltd. | Magnetic interference detection system and method |
EP2303168A1 (en) | 2008-04-16 | 2011-04-06 | Arbel Medical Ltd. | Cryosurgical instrument with enhanced heat exchange |
WO2009147671A1 (en) | 2008-06-03 | 2009-12-10 | Superdimension Ltd. | Feature-based registration method |
US9237860B2 (en) | 2008-06-05 | 2016-01-19 | Varian Medical Systems, Inc. | Motion compensation for medical imaging and associated systems and methods |
US8218847B2 (en) | 2008-06-06 | 2012-07-10 | Superdimension, Ltd. | Hybrid registration method |
US8845627B2 (en) * | 2008-08-22 | 2014-09-30 | Boston Scientific Scimed, Inc. | Regulating pressure to lower temperature in a cryotherapy balloon catheter |
ES2525525T3 (en) * | 2008-08-22 | 2014-12-26 | C.R. Bard, Inc. | Catheter assembly that includes ECG and magnetic sensor assemblies |
US8200313B1 (en) * | 2008-10-01 | 2012-06-12 | Bioquantetics, Inc. | Application of image-based dynamic ultrasound spectrography in assisting three dimensional intra-body navigation of diagnostic and therapeutic devices |
US8437833B2 (en) | 2008-10-07 | 2013-05-07 | Bard Access Systems, Inc. | Percutaneous magnetic gastrostomy |
US8591423B2 (en) * | 2008-10-10 | 2013-11-26 | Cardiac Pacemakers, Inc. | Systems and methods for determining cardiac output using pulmonary artery pressure measurements |
US20100281917A1 (en) * | 2008-11-05 | 2010-11-11 | Alexander Levin | Apparatus and Method for Condensing Contaminants for a Cryogenic System |
WO2010059291A1 (en) * | 2008-11-19 | 2010-05-27 | Cardiac Pacemakers, Inc. | Assessment of pulmonary vascular resistance via pulmonary artery pressure |
US8942342B2 (en) * | 2008-12-29 | 2015-01-27 | Analogic Corporation | Multi-modality image acquisition |
US9943704B1 (en) | 2009-01-21 | 2018-04-17 | Varian Medical Systems, Inc. | Method and system for fiducials contained in removable device for radiation therapy |
US7967814B2 (en) | 2009-02-05 | 2011-06-28 | Icecure Medical Ltd. | Cryoprobe with vibrating mechanism |
WO2010105158A1 (en) * | 2009-03-12 | 2010-09-16 | Icecure Medical Ltd. | Combined cryotherapy and brachytherapy device and method |
US20100305439A1 (en) * | 2009-05-27 | 2010-12-02 | Eyal Shai | Device and Method for Three-Dimensional Guidance and Three-Dimensional Monitoring of Cryoablation |
EP3542713A1 (en) | 2009-06-12 | 2019-09-25 | Bard Access Systems, Inc. | Adapter for a catheter tip positioning device |
US9532724B2 (en) | 2009-06-12 | 2017-01-03 | Bard Access Systems, Inc. | Apparatus and method for catheter navigation using endovascular energy mapping |
US20100324378A1 (en) * | 2009-06-17 | 2010-12-23 | Tran Binh C | Physiologic signal monitoring using ultrasound signals from implanted devices |
WO2010148503A1 (en) * | 2009-06-23 | 2010-12-29 | Sentinelle Medical Inc. | Variable angle guide holder for a biopsy guide plug |
EP2464407A4 (en) | 2009-08-10 | 2014-04-02 | Bard Access Systems Inc | Devices and methods for endovascular electrography |
WO2011041450A1 (en) | 2009-09-29 | 2011-04-07 | C. R. Bard, Inc. | Stylets for use with apparatus for intravascular placement of a catheter |
US11103213B2 (en) * | 2009-10-08 | 2021-08-31 | C. R. Bard, Inc. | Spacers for use with an ultrasound probe |
US8376938B2 (en) * | 2009-11-20 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Discrete flexion head for single port device |
US8517932B2 (en) * | 2009-12-11 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Methods and devices for providing access through tissue to a surgical site |
US8435174B2 (en) * | 2009-12-11 | 2013-05-07 | Ethicon Endo-Surgery, Inc. | Methods and devices for accessing a body cavity |
US8231570B2 (en) * | 2009-12-11 | 2012-07-31 | Ethicon Endo-Surgery, Inc. | Inverted conical expandable retractor |
US8357088B2 (en) * | 2009-12-11 | 2013-01-22 | Ethicon Endo-Surgery, Inc. | Methods and devices for providing access into a body cavity |
US8414483B2 (en) * | 2009-12-11 | 2013-04-09 | Ethicon Endo-Surgery, Inc. | Methods and devices for providing access into a body cavity |
US8460186B2 (en) * | 2009-12-11 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Methods and devices for providing access through tissue to a surgical site |
US8353873B2 (en) * | 2009-12-11 | 2013-01-15 | Ethicon Endo-Surgery, Inc. | Methods and devices for providing access through tissue to a surgical site |
US8500633B2 (en) * | 2009-12-11 | 2013-08-06 | Ethicon Endo-Surgery, Inc. | Methods and devices for providing surgical access through tissue to a surgical site |
US8282546B2 (en) * | 2009-12-11 | 2012-10-09 | Ethicon Endo-Surgery, Inc. | Inverted conical expandable retractor with coil spring |
US8444557B2 (en) * | 2009-12-11 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Methods and devices for providing access through tissue to a surgical site |
KR101810255B1 (en) * | 2010-01-06 | 2017-12-18 | 씨브이코 메디컬 인스트루먼츠 컴퍼니, 인코포레이티드 | Active marker device for use in electromagnetic tracking system |
WO2011097312A1 (en) | 2010-02-02 | 2011-08-11 | C.R. Bard, Inc. | Apparatus and method for catheter navigation and tip location |
US7967815B1 (en) | 2010-03-25 | 2011-06-28 | Icecure Medical Ltd. | Cryosurgical instrument with enhanced heat transfer |
US8529466B2 (en) | 2010-03-30 | 2013-09-10 | Siteselect Medical Technologies, Inc. | Tissue excision device with rotating stylet blades |
WO2012169990A2 (en) | 2010-05-04 | 2012-12-13 | Pathfinder Therapeutics, Inc. | System and method for abdominal surface matching using pseudo-features |
US7938822B1 (en) | 2010-05-12 | 2011-05-10 | Icecure Medical Ltd. | Heating and cooling of cryosurgical instrument using a single cryogen |
EP2575611B1 (en) | 2010-05-28 | 2021-03-03 | C. R. Bard, Inc. | Apparatus for use with needle insertion guidance system |
CA2800810C (en) | 2010-05-28 | 2019-11-05 | C.R. Bard, Inc. | Insertion guidance system for needles and medical components |
US8080005B1 (en) | 2010-06-10 | 2011-12-20 | Icecure Medical Ltd. | Closed loop cryosurgical pressure and flow regulated system |
AU2011289513B2 (en) | 2010-08-09 | 2014-05-29 | C.R. Bard, Inc. | Support and cover structures for an ultrasound probe head |
EP2605693B1 (en) | 2010-08-20 | 2019-11-06 | Veran Medical Technologies, Inc. | Apparatus for four dimensional soft tissue navigation |
US20120046562A1 (en) | 2010-08-20 | 2012-02-23 | C. R. Bard, Inc. | Reconfirmation of ecg-assisted catheter tip placement |
JP6160000B2 (en) | 2010-10-01 | 2017-07-12 | ヴァリアン メディカル システムズ インコーポレイテッド | Delivery catheter for delivering grafts, for example for bronchoscopic implantation of markers in the lung |
US8603078B2 (en) | 2010-10-13 | 2013-12-10 | Ethicon Endo-Surgery, Inc. | Methods and devices for guiding and supporting surgical instruments |
US8801693B2 (en) | 2010-10-29 | 2014-08-12 | C. R. Bard, Inc. | Bioimpedance-assisted placement of a medical device |
EP2640267A1 (en) | 2010-11-16 | 2013-09-25 | Analogic Corporation | Multi-modality image acquisition |
US9332926B2 (en) | 2010-11-25 | 2016-05-10 | Invivo Corporation | MRI imaging probe |
US10362963B2 (en) | 2011-04-14 | 2019-07-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Correction of shift and drift in impedance-based medical device navigation using magnetic field information |
US9901303B2 (en) | 2011-04-14 | 2018-02-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for registration of multiple navigation systems to a common coordinate frame |
US10918307B2 (en) | 2011-09-13 | 2021-02-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter navigation using impedance and magnetic field measurements |
BR112013030348A2 (en) | 2011-07-06 | 2017-08-01 | Bard Inc C R | method for determining a length of a medical component for use with an ultrasound imaging system including a probe; method for determining a needle length by a needle guidance system; and needle length determination system for an ultrasound imaging device including an ultrasound probe |
USD724745S1 (en) | 2011-08-09 | 2015-03-17 | C. R. Bard, Inc. | Cap for an ultrasound probe |
USD699359S1 (en) | 2011-08-09 | 2014-02-11 | C. R. Bard, Inc. | Ultrasound probe head |
US8617176B2 (en) | 2011-08-24 | 2013-12-31 | Depuy Mitek, Llc | Cross pinning guide devices and methods |
WO2013036772A1 (en) | 2011-09-08 | 2013-03-14 | Corpak Medsystems, Inc. | Apparatus and method used with guidance system for feeding and suctioning |
US9211107B2 (en) | 2011-11-07 | 2015-12-15 | C. R. Bard, Inc. | Ruggedized ultrasound hydrogel insert |
US10460437B2 (en) | 2012-02-22 | 2019-10-29 | Veran Medical Technologies, Inc. | Method for placing a localization element in an organ of a patient for four dimensional soft tissue navigation |
WO2013134782A1 (en) | 2012-03-09 | 2013-09-12 | The Johns Hopkins University | Photoacoustic tracking and registration in interventional ultrasound |
CN104837413B (en) | 2012-06-15 | 2018-09-11 | C·R·巴德股份有限公司 | Detect the device and method of removable cap on ultrasonic detector |
CN102920509A (en) * | 2012-10-30 | 2013-02-13 | 华南理工大学 | Real-time wireless surgical navigation device based on ultrasonic |
CA2905730C (en) | 2013-03-15 | 2022-06-21 | Hologic, Inc. | System and method for reviewing and analyzing cytological specimens |
US11304621B2 (en) * | 2013-07-09 | 2022-04-19 | Biosense Webster (Israel) Ltd. | Radiation-free position calibration of a fluoroscope |
WO2015030157A1 (en) * | 2013-08-29 | 2015-03-05 | 国立大学法人京都大学 | Surgery support system and surgery support device |
WO2015120256A2 (en) | 2014-02-06 | 2015-08-13 | C.R. Bard, Inc. | Systems and methods for guidance and placement of an intravascular device |
US20150305650A1 (en) | 2014-04-23 | 2015-10-29 | Mark Hunter | Apparatuses and methods for endobronchial navigation to and confirmation of the location of a target tissue and percutaneous interception of the target tissue |
US20150305612A1 (en) | 2014-04-23 | 2015-10-29 | Mark Hunter | Apparatuses and methods for registering a real-time image feed from an imaging device to a steerable catheter |
US9919165B2 (en) | 2014-05-07 | 2018-03-20 | Varian Medical Systems, Inc. | Systems and methods for fiducial to plan association |
US10043284B2 (en) | 2014-05-07 | 2018-08-07 | Varian Medical Systems, Inc. | Systems and methods for real-time tumor tracking |
EP3811891A3 (en) * | 2014-05-14 | 2021-05-05 | Stryker European Holdings I, LLC | Navigation system and processor arrangement for tracking the position of a work target |
US10973584B2 (en) | 2015-01-19 | 2021-04-13 | Bard Access Systems, Inc. | Device and method for vascular access |
US10806346B2 (en) | 2015-02-09 | 2020-10-20 | The Johns Hopkins University | Photoacoustic tracking and registration in interventional ultrasound |
US10349890B2 (en) | 2015-06-26 | 2019-07-16 | C. R. Bard, Inc. | Connector interface for ECG-based catheter positioning system |
CN107835672B (en) * | 2015-07-06 | 2021-12-24 | 赫墨斯创新有限公司 | Surgical system and method of use |
US11116582B2 (en) | 2015-08-28 | 2021-09-14 | Koninklijke Philips N.V. | Apparatus for determining a motion relation |
EP3376957A1 (en) | 2015-11-20 | 2018-09-26 | Stichting Het Nederlands Kanker Instituut- Antoni van Leeuwenhoek Ziekenhuis | Method and system of providing visual information about a location of a tumour under a body surface of a human or animal body, computer program, and computer program product |
US11000207B2 (en) | 2016-01-29 | 2021-05-11 | C. R. Bard, Inc. | Multiple coil system for tracking a medical device |
US10418705B2 (en) | 2016-10-28 | 2019-09-17 | Covidien Lp | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same |
US10792106B2 (en) | 2016-10-28 | 2020-10-06 | Covidien Lp | System for calibrating an electromagnetic navigation system |
US10751126B2 (en) | 2016-10-28 | 2020-08-25 | Covidien Lp | System and method for generating a map for electromagnetic navigation |
US10615500B2 (en) | 2016-10-28 | 2020-04-07 | Covidien Lp | System and method for designing electromagnetic navigation antenna assemblies |
US10722311B2 (en) | 2016-10-28 | 2020-07-28 | Covidien Lp | System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map |
US10446931B2 (en) | 2016-10-28 | 2019-10-15 | Covidien Lp | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same |
US10517505B2 (en) | 2016-10-28 | 2019-12-31 | Covidien Lp | Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system |
US10638952B2 (en) | 2016-10-28 | 2020-05-05 | Covidien Lp | Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system |
US10980509B2 (en) * | 2017-05-11 | 2021-04-20 | Siemens Medical Solutions Usa, Inc. | Deformable registration of preoperative volumes and intraoperative ultrasound images from a tracked transducer |
JP2020520745A (en) | 2017-05-25 | 2020-07-16 | コヴィディエン リミテッド パートナーシップ | Robotic surgical system with automatic guidance |
DE102018215475A1 (en) * | 2018-09-12 | 2020-03-12 | B. Braun Melsungen Ag | Method for determining the position of a medical invasive component and medical system for executing such a method |
CN109009438B (en) * | 2018-09-13 | 2021-06-01 | 上海逸动医学科技有限公司 | Flexible noninvasive positioning device and application and system thereof in intraoperative surgical path planning |
CN109091229A (en) * | 2018-09-13 | 2018-12-28 | 上海逸动医学科技有限公司 | The flexible positioning device and air navigation aid to navigate suitable for robotic surgery under X-ray |
US10992079B2 (en) | 2018-10-16 | 2021-04-27 | Bard Access Systems, Inc. | Safety-equipped connection systems and methods thereof for establishing electrical connections |
US11766298B2 (en) | 2019-05-03 | 2023-09-26 | Neil Glossop | Systems, methods, and devices for registering and tracking organs during interventional procedures |
US12089902B2 (en) | 2019-07-30 | 2024-09-17 | Coviden Lp | Cone beam and 3D fluoroscope lung navigation |
US11633224B2 (en) | 2020-02-10 | 2023-04-25 | Icecure Medical Ltd. | Cryogen pump |
CN111700678A (en) * | 2020-06-23 | 2020-09-25 | 南京诺源医疗器械有限公司 | Control method of microwave ablation treatment dosage for liver tumor |
EP4319677A1 (en) * | 2021-04-08 | 2024-02-14 | Mazor Robotics Ltd. | Tracking soft tissue changes intraoperatively |
Family Cites Families (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4173228A (en) * | 1977-05-16 | 1979-11-06 | Applied Medical Devices | Catheter locating device |
US4304239A (en) * | 1980-03-07 | 1981-12-08 | The Kendall Company | Esophageal probe with balloon electrode |
US4431005A (en) * | 1981-05-07 | 1984-02-14 | Mccormick Laboratories, Inc. | Method of and apparatus for determining very accurately the position of a device inside biological tissue |
US4444195A (en) * | 1981-11-02 | 1984-04-24 | Cordis Corporation | Cardiac lead having multiple ring electrodes |
US4499493A (en) * | 1983-02-22 | 1985-02-12 | The Board Of Trustees Of The Leland Stanford Junior University | Multiple measurement noise reducing system using artifact edge identification and selective signal processing |
US4613866A (en) * | 1983-05-13 | 1986-09-23 | Mcdonnell Douglas Corporation | Three dimensional digitizer with electromagnetic coupling |
US4812976A (en) * | 1983-07-22 | 1989-03-14 | Lundy Research Laboratories, Inc. | Method and apparatus for characterizing the unknown state of a physical system |
US4522212A (en) * | 1983-11-14 | 1985-06-11 | Mansfield Scientific, Inc. | Endocardial electrode |
DE3581545D1 (en) * | 1984-02-21 | 1991-03-07 | Travenol Gmbh | METHOD AND DEVICE FOR MEASURING THE LOCATION OF SEVERAL MEASURING POINTS WITH THE AID OF ULTRASOUND IMPULSES. |
US4573473A (en) * | 1984-04-13 | 1986-03-04 | Cordis Corporation | Cardiac mapping probe |
US4697595A (en) * | 1984-07-24 | 1987-10-06 | Telectronics N.V. | Ultrasonically marked cardiac catheters |
YU132884A (en) * | 1984-07-26 | 1987-12-31 | Branko Breyer | Electrode cateter with ultrasonic marking |
US4628937A (en) * | 1984-08-02 | 1986-12-16 | Cordis Corporation | Mapping electrode assembly |
US4649924A (en) * | 1984-08-14 | 1987-03-17 | Consiglio Nazionale Delle Ricerche | Method for the detection of intracardiac electrical potential fields |
US4699147A (en) * | 1985-09-25 | 1987-10-13 | Cordis Corporation | Intraventricular multielectrode cardial mapping probe and method for using same |
US4821731A (en) * | 1986-04-25 | 1989-04-18 | Intra-Sonix, Inc. | Acoustic image system and method |
US4945305A (en) * | 1986-10-09 | 1990-07-31 | Ascension Technology Corporation | Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields |
US4940064A (en) * | 1986-11-14 | 1990-07-10 | Desai Jawahar M | Catheter for mapping and ablation and method therefor |
US4922912A (en) * | 1987-10-21 | 1990-05-08 | Hideto Watanabe | MAP catheter |
FR2622098B1 (en) * | 1987-10-27 | 1990-03-16 | Glace Christian | METHOD AND AZIMUTAL PROBE FOR LOCATING THE EMERGENCY POINT OF VENTRICULAR TACHYCARDIES |
US4932414A (en) * | 1987-11-02 | 1990-06-12 | Cornell Research Foundation, Inc. | System of therapeutic ultrasound and real-time ultrasonic scanning |
US4777955A (en) * | 1987-11-02 | 1988-10-18 | Cordis Corporation | Left ventricle mapping probe |
GB2212267B (en) * | 1987-11-11 | 1992-07-29 | Circulation Res Ltd | Methods and apparatus for the examination and treatment of internal organs |
US4899750A (en) * | 1988-04-19 | 1990-02-13 | Siemens-Pacesetter, Inc. | Lead impedance scanning system for pacemakers |
US5000190A (en) * | 1988-06-22 | 1991-03-19 | The Cleveland Clinic Foundation | Continuous cardiac output by impedance measurements in the heart |
US5054496A (en) * | 1988-07-15 | 1991-10-08 | China-Japan Friendship Hospital | Method and apparatus for recording and analyzing body surface electrocardiographic peak maps |
US5025786A (en) * | 1988-07-21 | 1991-06-25 | Siegel Sharon B | Intracardiac catheter and method for detecting and diagnosing myocardial ischemia |
CA1292572C (en) * | 1988-10-25 | 1991-11-26 | Fernando C. Lebron | Cardiac mapping system simulator |
DE3904914A1 (en) * | 1989-02-17 | 1990-08-23 | Wolfgang Brunner | Method and device for error reduction in the measurement of three-dimensional movement of measurement points, by means of ultrasound signals |
US5016173A (en) * | 1989-04-13 | 1991-05-14 | Vanguard Imaging Ltd. | Apparatus and method for monitoring visually accessible surfaces of the body |
US5056517A (en) * | 1989-07-24 | 1991-10-15 | Consiglio Nazionale Delle Ricerche | Biomagnetically localizable multipurpose catheter and method for magnetocardiographic guided intracardiac mapping, biopsy and ablation of cardiac arrhythmias |
US5104393A (en) * | 1989-08-30 | 1992-04-14 | Angelase, Inc. | Catheter |
US5220924A (en) * | 1989-09-28 | 1993-06-22 | Frazin Leon J | Doppler-guided retrograde catheterization using transducer equipped guide wire |
EP0419729A1 (en) * | 1989-09-29 | 1991-04-03 | Siemens Aktiengesellschaft | Position finding of a catheter by means of non-ionising fields |
US5012814A (en) * | 1989-11-09 | 1991-05-07 | Instromedix, Inc. | Implantable-defibrillator pulse detection-triggered ECG monitoring method and apparatus |
US5154501A (en) * | 1990-10-19 | 1992-10-13 | Angelase, Inc. | Process for identification of an active site of ventricular tachycardia and for electrode attachment of an endocardial defibrilator |
US5172699A (en) * | 1990-10-19 | 1992-12-22 | Angelase, Inc. | Process of identification of a ventricular tachycardia (VT) active site and an ablation catheter system |
US5054492A (en) * | 1990-12-17 | 1991-10-08 | Cardiovascular Imaging Systems, Inc. | Ultrasonic imaging catheter having rotational image correlation |
US5662111A (en) * | 1991-01-28 | 1997-09-02 | Cosman; Eric R. | Process of stereotactic optical navigation |
US5156151A (en) * | 1991-02-15 | 1992-10-20 | Cardiac Pathways Corporation | Endocardial mapping and ablation system and catheter probe |
JP2994062B2 (en) * | 1991-03-12 | 1999-12-27 | フクダ電子株式会社 | Puncture needle for ultrasonic diagnostic equipment |
US5161536A (en) * | 1991-03-22 | 1992-11-10 | Catheter Technology | Ultrasonic position indicating apparatus and methods |
DE4119150A1 (en) * | 1991-06-11 | 1992-12-17 | Brunner Wolfgang | Gait analyser for measuring human body movement - uses ultrasonic transmitters and receivers activated at different times, arranged on two sides of human body |
US5251645A (en) * | 1991-06-26 | 1993-10-12 | Massachusetts Institute Of Technology | Adaptive nulling hyperthermia array |
US5246016A (en) * | 1991-11-08 | 1993-09-21 | Baxter International Inc. | Transport catheter and multiple probe analysis method |
US5222501A (en) * | 1992-01-31 | 1993-06-29 | Duke University | Methods for the diagnosis and ablation treatment of ventricular tachycardia |
US5389101A (en) * | 1992-04-21 | 1995-02-14 | University Of Utah | Apparatus and method for photogrammetric surgical localization |
US5295484A (en) * | 1992-05-19 | 1994-03-22 | Arizona Board Of Regents For And On Behalf Of The University Of Arizona | Apparatus and method for intra-cardiac ablation of arrhythmias |
US5341807A (en) * | 1992-06-30 | 1994-08-30 | American Cardiac Ablation Co., Inc. | Ablation catheter positioning system |
US5260985A (en) * | 1992-08-14 | 1993-11-09 | Mosby Richard A | Conforming localization/biopsy grid and control apparatus |
US5469847A (en) * | 1992-09-09 | 1995-11-28 | Izi Corporation | Radiographic multi-modality skin markers |
US5297549A (en) * | 1992-09-23 | 1994-03-29 | Endocardial Therapeutics, Inc. | Endocardial mapping system |
US5550726A (en) * | 1992-10-08 | 1996-08-27 | Ushio U-Tech Inc. | Automatic control system for lighting projector |
US5357956A (en) * | 1992-11-13 | 1994-10-25 | American Cardiac Ablation Co., Inc. | Apparatus and method for monitoring endocardial signal during ablation |
US5517990A (en) * | 1992-11-30 | 1996-05-21 | The Cleveland Clinic Foundation | Stereotaxy wand and tool guide |
US5309913A (en) * | 1992-11-30 | 1994-05-10 | The Cleveland Clinic Foundation | Frameless stereotaxy system |
JPH08509144A (en) * | 1993-04-22 | 1996-10-01 | ピクシス,インコーポレイテッド | System to locate relative position of objects |
US5433202A (en) * | 1993-06-07 | 1995-07-18 | Westinghouse Electric Corporation | High resolution and high contrast ultrasound mammography system with heart monitor and boundary array scanner providing electronic scanning |
US5391199A (en) * | 1993-07-20 | 1995-02-21 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias |
US5558091A (en) * | 1993-10-06 | 1996-09-24 | Biosense, Inc. | Magnetic determination of position and orientation |
WO1995013758A1 (en) * | 1993-11-15 | 1995-05-26 | Urso Paul Steven D | Surgical procedures |
JP3482690B2 (en) * | 1994-05-31 | 2003-12-22 | 株式会社島津製作所 | Surgical instrument position display device |
US5672172A (en) * | 1994-06-23 | 1997-09-30 | Vros Corporation | Surgical instrument with ultrasound pulse generator |
ATE188108T1 (en) * | 1994-08-19 | 2000-01-15 | Biosense Inc | MEDICAL DIAGNOSIS, TREATMENT AND DISPLAY SYSTEM |
JPH10508504A (en) * | 1994-09-16 | 1998-08-25 | バイオプシス メディカル インコーポレイテッド | Method and apparatus for identifying and marking tissue |
NO943696D0 (en) * | 1994-10-04 | 1994-10-04 | Vingmed Sound As | Method of ultrasound imaging |
DE4442608C1 (en) * | 1994-11-30 | 1996-08-08 | Siemens Ag | Stereotactic additional device for carrying out biopsy guided by pattern |
US5499989A (en) * | 1994-12-22 | 1996-03-19 | Labash; Stephen S. | Breast biopsy apparatus and method of use |
US5682890A (en) * | 1995-01-26 | 1997-11-04 | Picker International, Inc. | Magnetic resonance stereotactic surgery with exoskeleton tissue stabilization |
US5868673A (en) | 1995-03-28 | 1999-02-09 | Sonometrics Corporation | System for carrying out surgery, biopsy and ablation of a tumor or other physical anomaly |
US5515853A (en) * | 1995-03-28 | 1996-05-14 | Sonometrics Corporation | Three-dimensional digital ultrasound tracking system |
US5577502A (en) * | 1995-04-03 | 1996-11-26 | General Electric Company | Imaging of interventional devices during medical procedures |
US5730129A (en) * | 1995-04-03 | 1998-03-24 | General Electric Company | Imaging of interventional devices in a non-stationary subject |
US5673697A (en) * | 1996-04-24 | 1997-10-07 | Raytheon Company | High-resolution three, dimensional ultrasound imaging device |
US5782765A (en) * | 1996-04-25 | 1998-07-21 | Medtronic, Inc. | Medical positioning system |
-
1997
- 1997-03-11 US US08/815,141 patent/US5868673A/en not_active Expired - Fee Related
-
1998
- 1998-03-11 AT AT03001438T patent/ATE309757T1/en not_active IP Right Cessation
- 1998-03-11 JP JP53939298A patent/JP3415164B2/en not_active Expired - Fee Related
- 1998-03-11 ES ES03001438T patent/ES2256598T3/en not_active Expired - Lifetime
- 1998-03-11 AU AU70728/98A patent/AU7072898A/en not_active Abandoned
- 1998-03-11 WO PCT/IB1998/000731 patent/WO1998040026A1/en active IP Right Grant
- 1998-03-11 DE DE69832425T patent/DE69832425T2/en not_active Expired - Lifetime
- 1998-03-11 AT AT98917521T patent/ATE251424T1/en not_active IP Right Cessation
- 1998-03-11 DE DE69818828T patent/DE69818828T2/en not_active Expired - Lifetime
- 1998-03-11 EP EP98917521A patent/EP0998238B1/en not_active Expired - Lifetime
- 1998-03-11 EP EP03001438A patent/EP1306060B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE69818828D1 (en) | 2003-11-13 |
US5868673A (en) | 1999-02-09 |
ATE309757T1 (en) | 2005-12-15 |
DE69832425D1 (en) | 2005-12-22 |
ATE251424T1 (en) | 2003-10-15 |
ES2256598T3 (en) | 2006-07-16 |
EP0998238B1 (en) | 2003-10-08 |
DE69818828T2 (en) | 2004-07-29 |
DE69832425T2 (en) | 2006-07-27 |
WO1998040026A1 (en) | 1998-09-17 |
EP1306060A1 (en) | 2003-05-02 |
AU7072898A (en) | 1998-09-29 |
JP2000512189A (en) | 2000-09-19 |
EP1306060B1 (en) | 2005-11-16 |
EP0998238A1 (en) | 2000-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3415164B2 (en) | System for surgery, biopsy and resection of tumors or other physical abnormalities | |
US8989844B2 (en) | Imaging system for following a surgical tool in an operation field | |
US20040106869A1 (en) | Ultrasound tracking device, system and method for intrabody guiding procedures | |
CN1764849B (en) | Guidance of invasive medical devices by wide view three dimensional ultrasonic imaging | |
US6019724A (en) | Method for ultrasound guidance during clinical procedures | |
US5797849A (en) | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system | |
US6585651B2 (en) | Method and device for percutaneous determination of points associated with the surface of an organ | |
US6106464A (en) | Apparatus and method for bone surface-based registration of physical space with tomographic images and for guiding an instrument relative to anatomical sites in the image | |
RU2519300C2 (en) | Electromagnetic tracking method and system in medical procedure | |
JP4443672B2 (en) | Ultrasonic diagnostic equipment | |
US20050085717A1 (en) | Systems and methods for intraoperative targetting | |
US20050085718A1 (en) | Systems and methods for intraoperative targetting | |
WO1996025882A1 (en) | Method for ultrasound guidance during clinical procedures | |
AU2004216658A1 (en) | Hybrid imaging method to monitor medical device delivery | |
WO2005039391A2 (en) | Systems and methods for intraoperative targetting | |
JPH06254172A (en) | Method to determine position of organ of patient at least about two image pickup devices | |
WO2002060316A2 (en) | Medical instrument guidance using stereo radiolocation | |
JP2006523115A (en) | Method for guiding an invasive medical device using a combined three-dimensional ultrasound imaging system | |
CN107049370B (en) | A kind of prostate biopsy external member | |
US20090287089A1 (en) | Methods, devices and apparatus for imaging for reconstructing a 3-D image of an area of interest | |
US11071518B2 (en) | Imaging apparatus for biopsy or brachytherapy | |
EP3570756B1 (en) | System for imaging and tracking interventional devices | |
WO2019243896A2 (en) | Apparatus, system, and method for increasing object visibility | |
CN115334963A (en) | System and method for generating tissue image biomarkers | |
CN207855725U (en) | A kind of prostate biopsy external member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090404 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100404 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110404 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |