[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3414045B2 - Hybrid fuel cell power generator - Google Patents

Hybrid fuel cell power generator

Info

Publication number
JP3414045B2
JP3414045B2 JP10552795A JP10552795A JP3414045B2 JP 3414045 B2 JP3414045 B2 JP 3414045B2 JP 10552795 A JP10552795 A JP 10552795A JP 10552795 A JP10552795 A JP 10552795A JP 3414045 B2 JP3414045 B2 JP 3414045B2
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
electrode
carbon monoxide
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10552795A
Other languages
Japanese (ja)
Other versions
JPH08306369A (en
Inventor
龍太 近藤
智倫 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14410070&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3414045(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP10552795A priority Critical patent/JP3414045B2/en
Publication of JPH08306369A publication Critical patent/JPH08306369A/en
Application granted granted Critical
Publication of JP3414045B2 publication Critical patent/JP3414045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • H01M8/2495Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies of fuel cells of different types
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体高分子電解質を有す
る固体高分子型燃料電池と、固体電解質を有する固体電
解質型燃料電池などの水素と一酸化炭素の両方を燃料と
して発電する燃料電池とを併設したハイブリッド燃料電
池発電装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer fuel cell having a solid polymer electrolyte, and a fuel cell for producing electricity using both hydrogen and carbon monoxide as fuel, such as a solid electrolyte fuel cell having a solid electrolyte. The present invention relates to a hybrid fuel cell power generator equipped with.

【0002】[0002]

【従来の技術】従来、リン酸電解質を有するリン酸型燃
料電池発電装置においては、そのシステム構成を図4に
示すように、単位セルの積層体からなる燃料電池スタッ
ク1の燃料極2側に燃料改質装置3から水素リッチな燃
料ガスを供給し、酸化剤極4側には酸化剤としての空気
を供給し、運転温度を190℃程度に保持することによ
り、一対の電極間で電気化学反応に基づき発電が行われ
る。ところで、燃料改質装置3として、LNG、LP
G、ナフサ等の炭化水素系やメタノール等のアルコール
系の原燃料を水蒸気改質などにより水素リッチな改質ガ
スを生成するものが知られているが、改質ガス中の一酸
化炭素が燃料極2中の白金触媒に触媒毒として作用し劣
化させるという問題があり、上記運転温度の場合、改質
ガス中の一酸化炭素濃度を1%程度に低減する必要があ
る。
2. Description of the Related Art Conventionally, in a phosphoric acid fuel cell power generator having a phosphoric acid electrolyte, as shown in FIG. 4, the system configuration is such that a fuel cell stack 1 composed of a unit cell stack is provided on the fuel electrode 2 side. Hydrogen-rich fuel gas is supplied from the fuel reformer 3, air as an oxidant is supplied to the oxidizer electrode 4 side, and the operating temperature is maintained at about 190 ° C. Power is generated based on the reaction. By the way, as the fuel reformer 3, LNG, LP
It is known that hydrocarbon-based raw fuels such as G and naphtha and alcohol-based raw fuels such as methanol produce a hydrogen-rich reformed gas by steam reforming, but carbon monoxide in the reformed gas is a fuel. There is a problem that the platinum catalyst in the electrode 2 acts as a catalyst poison and deteriorates. At the operating temperature, it is necessary to reduce the carbon monoxide concentration in the reformed gas to about 1%.

【0003】そこで、燃料改質装置3では改質器5の後
段に一酸化炭素変成器6を連結し一酸化炭素変成触媒の
作用で次式に表される反応 CO+H2O→CO2+H2 により改質ガス中の一酸化炭素濃度を1%程度に低減し
たものが知られている。
Therefore, in the fuel reformer 3, a carbon monoxide shift converter 6 is connected to the rear stage of the reformer 5 and the reaction of CO + H2O → CO2 + H2 in the reformed gas is caused by the action of the carbon monoxide shift catalyst. It is known that the concentration of carbon monoxide is reduced to about 1%.

【0004】ところが、固体高分子型燃料電池を用いた
燃料電池発電装置においては、燃料電池の運転温度が8
0℃程度と低いために、白金触媒の被毒を防ぐための一
酸化炭素濃度を10ppm程度以下まで大幅に低減する
必要がある。
However, in the fuel cell power generator using the polymer electrolyte fuel cell, the operating temperature of the fuel cell is 8
Since it is as low as about 0 ° C., it is necessary to significantly reduce the carbon monoxide concentration to about 10 ppm or less in order to prevent poisoning of the platinum catalyst.

【0005】図5は改善された従来の固体高分子型燃料
電池発電装置の要部を示すシステム構成図であり、原燃
料を改質する改質器5の後段には一酸化炭素変成器6を
設けて一酸化炭素濃度を低減し、さらにその後段に一酸
化炭素燃焼器7を設け、改質ガスに数%以下の空気を混
入して白金等の触媒と接触させて一酸化炭素を選択的に
燃焼させ、 2CO+O2→2CO2 で表される化学反応に基づいて一酸化炭素COを無害な
二酸化炭素CO2に変化させ、一酸化炭素を数ppmオ
ーダーに低減するというような、例えば特開平5−20
1702号公報のようなものが提案されている。また、
パラジウムなどの分離膜を用いて一酸化炭素を除去しよ
うとするものや、COと水中のOH-イオンを電気化学
的に 2H2O→2H++2OH- CO+2OH-→CO2+H2O+2e- のように反応させ一酸化炭素を低減させる例えば特開平
2−311302号公報のようなもの(図示せず)、あ
るいは一酸化炭素吸着塔を用いたもの等も知られてい
る。
FIG. 5 is a system configuration diagram showing an essential part of an improved conventional polymer electrolyte fuel cell power generator. A carbon monoxide shift converter 6 is provided at a stage subsequent to the reformer 5 for reforming raw fuel. Is provided to reduce the carbon monoxide concentration, and further, a carbon monoxide combustor 7 is provided at the subsequent stage, and air of several% or less is mixed into the reformed gas and brought into contact with a catalyst such as platinum to select carbon monoxide. For example, the carbon monoxide CO is converted into harmless carbon dioxide CO2 based on a chemical reaction represented by 2CO + O2 → 2CO2, and the carbon monoxide is reduced to several ppm order. 20
There is a proposal such as Japanese Patent No. 1702. Also,
Carbon monoxide, which is intended to remove carbon monoxide using a separation membrane such as palladium, or which causes an electrochemical reaction of CO and OH-ions in water like 2H2O → 2H ++ 2OH- CO + 2OH- → CO2 + H2O + 2e-. For example, a device (not shown) as disclosed in Japanese Patent Laid-Open No. 2-311302, or a device using a carbon monoxide adsorption tower is known.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の一酸化炭素燃焼器を設けた構成では、混入空気量の厳
密な制御が必要であり、さらに分離膜や一酸化炭素吸着
塔を用いたものは高圧にするための大きな動力を必要と
し、電気化学的な方法も電力を消費してしまい、このた
めシステム効率が著しく低下してしまうという課題があ
った。
However, in the above-mentioned configuration in which the carbon monoxide combustor is provided, it is necessary to strictly control the amount of mixed air, and in the one using the separation membrane or the carbon monoxide adsorption tower, There is a problem in that a large amount of power is required to make the pressure high, and the electrochemical method also consumes electric power, resulting in a significant decrease in system efficiency.

【0007】また、上記の燃料電池発電装置における改
質器5にて改質されたガスに含まれる一酸化炭素はエネ
ルギーレベルが高い。しかしながら上記従来の構成で
は、一酸化炭素変成器といずれの方法との組み合わせを
用いても、装置が複雑になるとともに、エネルギーレベ
ルの高い一酸化炭素を有効に利用することなく二酸化炭
素に変成したり、分離排気してしまうのでシステム効率
が低下してしまうという課題もあった。
Further, carbon monoxide contained in the gas reformed by the reformer 5 in the above fuel cell power generator has a high energy level. However, in the above-mentioned conventional configuration, even if a combination of a carbon monoxide converter and any method is used, the device becomes complicated and carbon monoxide having a high energy level is converted to carbon dioxide without effectively utilizing it. There is also a problem that the system efficiency is lowered due to separate exhaust.

【0008】一方、固体高分子型燃料電池においては電
解質である固体高分子膜を飽和含水させることにより膜
の比抵抗が下がり、プロトン伝導性電解質として機能す
るものであるから、固体高分子型燃料電池の発電を維持
するためには、固体高分子電解質膜中の水分が蒸発せず
飽和含水状態を保つために種々の加湿装置が提案されて
おり、上記従来の固体高分子型燃料電池を用いた燃料電
池発電装置では、こういった加湿装置も必要となり、装
置が複雑になってしまうという課題もあった。
On the other hand, in the polymer electrolyte fuel cell, when the polymer electrolyte membrane, which is the electrolyte, is saturated with water, the specific resistance of the membrane is lowered and the polymer electrolyte fuel cell functions as a proton conductive electrolyte. In order to maintain the power generation of the battery, various humidifiers have been proposed to keep the saturated water content without evaporating the water in the solid polymer electrolyte membrane. The conventional fuel cell power generation device also requires such a humidifying device, which causes a problem that the device becomes complicated.

【0009】本発明は上記従来の課題を解決するもの
で、改質器からの改質ガスに含まれるエネルギーの高い
一酸化炭素を有効利用しながら、安全かつ大きな動力を
必要とせずに一酸化炭素を除去して白金触媒の被毒を防
ぎ、加湿装置も不要にできる燃料電池発電装置を提供す
ることを目的とする。
The present invention solves the above-mentioned conventional problems by effectively utilizing carbon monoxide having a high energy contained in the reformed gas from the reformer and without requiring safe and large power. An object of the present invention is to provide a fuel cell power generation device capable of removing carbon to prevent poisoning of a platinum catalyst and eliminating the need for a humidifying device.

【0010】[0010]

【課題を解決するための手段】本発明は上記課題を解決
するために以下の構成より成る。
In order to solve the above problems, the present invention has the following constitution.

【0011】すなわち、炭化水素系またはアルコール系
の原燃料を水素と一酸化炭素含むガスに改質する改質器
と、空気中の酸素等を酸化剤ガスとして供給される第一
の酸化剤極と第一の燃料極とを有する第一の燃料電池
と、空気中の酸素等を酸化剤ガスとして供給される第二
の酸化剤極と第二の燃料極とを有する固体高分子型燃料
電池とを備え、改質器で改質されたガスが第一の燃料極
供給され水素と一酸化炭素の両方を燃料として発電し
生成水を排出する第一の燃料電池と、第一の燃料極から
生成水を含む排出ガスが燃料ガスとして第二の燃料極
供給される固体高分子型燃料電池とを接続したもので
ある。
That is, a reformer for reforming a hydrocarbon-based or alcohol-based raw fuel into a gas containing hydrogen and carbon monoxide, and oxygen supplied from the air as an oxidant gas
Fuel cell having an oxidizer electrode and a first fuel electrode
And oxygen in the air is supplied as an oxidant gas
Polymer fuel having an oxidant electrode and a second fuel electrode
With the battery, the gas reformed by the reformer is the first fuel electrode.
Both the supplied hydrogen and carbon monoxide and the first fuel cell for discharging the generated water and power generation as a fuel, from the first fuel electrode
The exhaust gas containing the generated water is used as the fuel gas for the second fuel electrode.
It is obtained by connecting the polymer electrolyte fuel cell which is supplied to.

【0012】また、第一の燃料電池の第一の燃料極排出
ガスを再度第一の燃料電池の第一の燃料極に供給し、利
用されずに通り抜けた排出ガス中の一酸化炭素を再供給
して除去するためのリターン流路を備え、固体高分子型
燃料電池の燃料ガスの一酸化炭素濃度検知手段と、一酸
化炭素濃度検知手段の出力信号に基づいてリターン流路
の流量を可変する流量制御手段を備えたものである。
[0012] supplied to the first fuel electrode of the first fuel electrode exhaust gas again first fuel cell of the first fuel cell, the carbon monoxide in the exhaust gas passed through without being utilized again Equipped with a return flow path for supply and removal, the carbon monoxide concentration detection means of the fuel gas of the polymer electrolyte fuel cell, and the flow rate of the return flow path is variable based on the output signal of the carbon monoxide concentration detection means. It is equipped with a flow rate control means.

【0013】[0013]

【作用】本発明は上記構成により以下の作用を有するも
のである。
The present invention has the following functions due to the above construction.

【0014】すなわち、原燃料を改質する改質器と、改
質器の改質ガスが第一の燃料極に供給され発電し生成水
を排出する第一の燃料電池と、第一の燃料電池の第一の
燃料極からの生成水を含む排出ガスが第二の燃料極に
給される固体高分子型燃料電池とを備えた構成により、
改質器を通った原燃料は水素と一酸化炭素を含む改質ガ
スとして第一の燃料電池の第一の燃料極に供給され、他
方の第一の酸化剤極に供給された空気中の酸素等の酸化
剤ガスにより電池反応を生じて発電し、改質ガス中に含
まれた一酸化炭素は第一の燃料電池の燃料として消費さ
れ二酸化炭素に変わる。また、改質ガス中の水素の一部
も酸化剤ガスと反応して水H2Oが生成される。そして
この生成水と、電池反応に寄与しない水素および一酸化
炭素が変成された二酸化炭素が第一の燃料極から排出さ
れ固体高分子型燃料電池の第二の燃料極に供給され、固
体高分子型燃料電池で他方の第二の酸化剤極に供給され
た空気中の酸素等の酸化剤ガスにより発電するものであ
る。したがって、第一の燃料電池で一酸化炭素のもつ高
いエネルギーを利用しながらこれを除去でき、また生成
水により加湿装置がなくとも固体高分子型燃料電池を運
転し、発電できる。
That is, a reformer for reforming raw fuel, a first fuel cell for supplying reformed gas from the reformer to a first fuel electrode to generate power and discharge produced water, and a first fuel Battery first
With a configuration including a solid polymer fuel cell in which exhaust gas containing generated water from the fuel electrode is supplied to the second fuel electrode ,
The raw fuel that has passed through the reformer is supplied to the first fuel electrode of the first fuel cell as a reformed gas containing hydrogen and carbon monoxide, and is supplied to the other first oxidant electrode in the air. A cell reaction is caused by an oxidant gas such as oxygen to generate electricity, and carbon monoxide contained in the reformed gas is consumed as a fuel of the first fuel cell and converted into carbon dioxide. Further, a part of hydrogen in the reformed gas also reacts with the oxidant gas to generate water H2O. Then, this produced water and carbon dioxide in which hydrogen and carbon monoxide that have not contributed to the cell reaction have been denatured are discharged from the first fuel electrode and supplied to the second fuel electrode of the polymer electrolyte fuel cell . Type fuel cell supplies the other second oxidant electrode
Electric power is generated by an oxidizing gas such as oxygen in the air . Therefore, the high energy of carbon monoxide can be removed in the first fuel cell, and the produced polymer can operate the solid polymer fuel cell to generate electricity without a humidifier.

【0015】また、第一の燃料電池の第一の燃料極排出
ガスの一酸化炭素を除去するためのリターン流路を備え
た構成により、第一の燃料電池排出ガス中の第一の燃料
電池を通り抜けた一酸化炭素を第一の燃料電池に再供給
して、より完全に除去したり、さらに固体高分子型燃料
電池の燃料ガスの一酸化炭素濃度検知手段と、リターン
流路の流量を可変する流量制御手段を備えた構成によ
り、装置の運転条件が変化しても一酸化炭素濃度検知手
段の出力信号に基づいてリターン流路の流量を可変し
て、第一の燃料電池の第一の燃料極排出ガスを再度第一
の燃料電池へ供給する再供給量を調節できるので、一酸
化炭素濃度を固体高分子型燃料電池の白金触媒被毒制限
値以下まで確実に除去するものである。
Further, the first fuel cell in the first fuel cell exhaust gas is constituted by the structure provided with the return passage for removing carbon monoxide of the first fuel electrode exhaust gas of the first fuel cell. The carbon monoxide that has passed through is re-supplied to the first fuel cell for more complete removal, and the carbon monoxide concentration detection means for the fuel gas of the polymer electrolyte fuel cell and the flow rate in the return flow path are adjusted. the arrangement with a variable flow control means, by varying the flow rate of the return flow path based on the output signal of the carbon monoxide density detecting means also operating conditions are changed in the device, first the first fuel cell It is possible to adjust the re-supply amount of the fuel electrode exhaust gas to be supplied to the first fuel cell again, so that the carbon monoxide concentration is reliably removed to below the platinum catalyst poisoning limit value of the polymer electrolyte fuel cell. .

【0016】[0016]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の一実施例によるハイブリッ
ド燃料電池発電装置の要部を示すシステム構成図であ
り、LNG、LPG、ナフサ等の炭化水素系やメタノー
ル等のアルコール系の原燃料を水素と一酸化炭素を含む
ガスに改質する改質器1の後段に、約1000℃で酸化
物イオン伝導性をもつ安定化ジルコニア系の固体電解質
2aとこれを挟持する第一の燃料極2bおよび第一の酸
化剤極2cからなる第一の燃料電池としての固体電解質
型燃料電池2を設け、改質器1と第一の燃料極2bを連
結する改質ガス流路3を通って、改質ガスが固体電解質
型燃料電池2の 一の燃料極2bに供給されるように構
成されている。さらに固体電解質型燃料電池2の後段に
は、プロトン伝導性をもつ固体高分子電解質4aとこれ
を挟持する第二の燃料極4bおよび第二の酸化剤極4c
からなる固体高分子型燃料電池4が設けられている。そ
して固体電解質型燃料電池2の第一の燃料極2bからの
排出ガスは、固体高分子型燃料電池4の第二の燃料極4
に接続され、途中に分岐部5および給湯用水入口6と
給湯用水出口7を有する熱交換部8、一酸化炭素濃度検
知手段9を備えた接続流路10を通って固体高分子型燃
料電池4の第二の燃料極4bに供給される構成になって
いる。さらに接続流路10の分岐部5からは、一酸化炭
素濃度検知手段9と電気的に接続された流量制御手段1
1および加圧装置12を通って固体電解質型燃料電池2
第一の燃料極2bに接続されたリターン流路13を設
けた構成となっている。
FIG. 1 is a system configuration diagram showing a main part of a hybrid fuel cell power generator according to an embodiment of the present invention, in which a hydrocarbon-based raw fuel such as LNG, LPG, naphtha or an alcohol-based raw fuel such as methanol is hydrogenated. In the subsequent stage of the reformer 1 for reforming into a gas containing carbon monoxide, a stabilized zirconia-based solid electrolyte 2a having oxide ion conductivity at about 1000 ° C., a first fuel electrode 2b sandwiching the solid electrolyte 2a, and Primary acid
A solid oxide fuel cell 2 as a first fuel cell including an agent electrode 2c is provided, and a reformed gas is passed through a reformed gas passage 3 connecting the reformer 1 and the first fuel electrode 2b. It is configured to be supplied to the first fuel electrode 2b of the solid oxide fuel cell 2. Further, in the subsequent stage of the solid oxide fuel cell 2, a solid polymer electrolyte 4a having proton conductivity, a second fuel electrode 4b and a second oxidant electrode 4c sandwiching the solid polymer electrolyte 4a are sandwiched .
The polymer electrolyte fuel cell 4 is provided. The exhaust gas from the first fuel electrode 2b of the solid oxide fuel cell 2 is the second fuel electrode 4 of the solid polymer fuel cell 4 .
b , a heat exchange part 8 having a branch part 5, a hot water supply water inlet 6 and a hot water supply water outlet 7 in the middle, and a connection flow path 10 equipped with a carbon monoxide concentration detection means 9 The second fuel electrode 4b of No. 4 is supplied. Furthermore, the flow rate control means 1 electrically connected to the carbon monoxide concentration detection means 9 from the branch portion 5 of the connection flow path 10.
1 through the pressurizing device 12 and the solid oxide fuel cell 2
The return flow path 13 connected to the first fuel electrode 2b is provided.

【0018】上記構成により、改質器1を通った原燃料
は水素と一酸化炭素を含む改質ガスとして、改質ガス流
路3を通り固体電解質型燃料電池2の第一の燃料極2b
に供給され、他方の第一の酸化剤極2cに供給された空
気等の酸化剤ガスにより電池反応を生じて発電する。こ
の際、第一の酸化剤極2c側で空気中の酸素が酸化物イ
オンO2-となり、これが固体電解質2aを通って第一の
燃料極2b内の水素および一酸化炭素と次式に表される
反応をする。
With the above structure, the raw fuel that has passed through the reformer 1 passes through the reformed gas flow path 3 as the reformed gas containing hydrogen and carbon monoxide, and the first fuel electrode 2b of the solid oxide fuel cell 2 is formed .
And an oxidant gas such as air supplied to the other first oxidant electrode 2c causes a cell reaction to generate power. At this time, oxygen in the air on the side of the first oxidant electrode 2c becomes an oxide ion O2-, which passes through the solid electrolyte 2a and becomes the first ion.
It reacts with hydrogen and carbon monoxide in the fuel electrode 2b as represented by the following equation.

【0019】CO+O2-→CO2+2e- H2+O2-→H2O+2e- 上記電池反応により、改質ガス中に含まれた一酸化炭素
COは固体電解質型燃料電池2の燃料として第一の燃料
極2bで消費され二酸化炭素CO2に変わる。また、改
質ガス中の水素の一部も酸化剤ガスと反応して水H2O
となり、電池反応に寄与しない水素および一酸化炭素が
変成された二酸化炭素とともに第一の燃料極2bから排
出される。
CO + O2-> CO2 + 2e- H2 + O2-> H2O + 2e- Due to the above-mentioned cell reaction, carbon monoxide CO contained in the reformed gas is used as a fuel for the solid oxide fuel cell 2 as the first fuel.
It is consumed at pole 2b and converted to carbon dioxide CO2. In addition, part of the hydrogen in the reformed gas also reacts with the oxidant gas to produce water H2O.
And hydrogen and carbon monoxide that do not contribute to the cell reaction are discharged from the first fuel electrode 2b together with the modified carbon dioxide.

【0020】第一の燃料極2bから排出された排出ガス
は、電池反応に寄与しなかった水素と生成された水およ
び二酸化炭素からなり、接続流路10を通って熱交換部
8に入る。熱交換部8では、給湯用水入口6から入って
きた水が高温の固体電解質型燃料電池2の排出ガスと熱
交換し、温水となって給湯用水出口7から出ていく。そ
の後、固体電解質型燃料電池2の高温の排出ガスは熱交
換により80℃程度である固体高分子型燃料電池4の運
転温度まで下がり、固体高分子型燃料電池4に供給され
る。これにより、高温の排出ガスがもつ熱は給湯用温水
に利用できるので、システム効率の向上を図ることがで
きる。
The exhaust gas discharged from the first fuel electrode 2b consists of hydrogen that has not contributed to the cell reaction, water generated and carbon dioxide, and enters the heat exchange section 8 through the connection flow passage 10. In the heat exchange section 8, the water that has entered from the hot water supply water inlet 6 exchanges heat with the exhaust gas of the high-temperature solid oxide fuel cell 2, and becomes hot water and exits from the hot water supply water outlet 7. After that, the high-temperature exhaust gas of the solid oxide fuel cell 2 is lowered to the operating temperature of the solid polymer electrolyte fuel cell 4, which is about 80 ° C., by heat exchange and is supplied to the solid polymer electrolyte fuel cell 4. As a result, the heat of the high-temperature exhaust gas can be used for hot water for hot water supply, so that the system efficiency can be improved.

【0021】固体高分子型燃料電池4の固体高分子電解
質4aには、スルホン酸基をもつポリスチレン系の陽イ
オン交換膜や、パーフロロカーボンスルホン酸膜(米
国、デュポン社、商品名ナフィオン)などの分子中にプ
ロトン交換基をもつ膜が使用されており、固体電解質型
燃料電池2で生成された排出ガス中の水分により含水さ
せてプロトン伝導性電解質として機能させることが可能
となっている。
The solid polymer electrolyte 4a of the solid polymer electrolyte fuel cell 4 is formed of a cation exchange membrane of polystyrene type having a sulfonic acid group, a perfluorocarbon sulfonic acid membrane (Nafion, trade name of DuPont, USA), or the like. A membrane having a proton exchange group in its molecule is used, and it is possible to make it function as a proton-conducting electrolyte by containing water in the exhaust gas generated in the solid oxide fuel cell 2 to make it hydrate.

【0022】そして、第二の燃料極4bに供給された固
体電解質型燃料電池2の排出ガス中の水素はプロトンH
+になり、固体高分子電解質4a膜を通って、他方の第
二の酸化剤極4cに供給された空気等の酸化剤ガスと電
池反応を生じて発電するのである。このとき第二の燃料
極4bに供給された排出ガス中には、固体電解質型燃料
電池2にて爆発の危険性や大きな動力の必要性、電力消
費もなく一酸化炭素が消費、除去されているので固体高
分子型燃料電池4内の白金触媒(図示せず)を被毒する
ことはなく、そのうえ一酸化炭素のもつ高いエネルギー
を発電として有効利用しているので高いシステム効率が
得られる。さらに、固体電解質型燃料電池2の第一の燃
料極2b排出ガス中に電池反応で生成された水を含むの
で加湿装置が不要となる。なお、ここでは第一の燃料電
池として安定化ジルコニア系の固体電解質型燃料電池を
用いたが、他の固体電解質型燃料電池や炭酸溶融塩型燃
料電池などの水素と一酸化炭素の両方を燃料として発電
する他の燃料電池を用いてもよい。
The hydrogen in the exhaust gas of the solid oxide fuel cell 2 supplied to the second fuel electrode 4b is proton H.
+ Becomes, through the solid polymer electrolyte 4a membrane, the other of the first
Electric power is generated by causing a battery reaction with an oxidant gas such as air supplied to the second oxidant electrode 4c . Second fuel at this time
In the exhaust gas supplied to the electrode 4b , carbon monoxide is consumed and removed in the solid oxide fuel cell 2 without danger of explosion, necessity of large power, and no power consumption. Since the platinum catalyst (not shown) in the fuel cell 4 is not poisoned and the high energy of carbon monoxide is effectively used for power generation, high system efficiency can be obtained. Further, the first fuel of the solid oxide fuel cell 2 is
Since the exhaust gas of the electrode 2b contains water generated by the cell reaction, the humidifying device is not required. Although the stabilized zirconia-based solid oxide fuel cell was used as the first fuel cell here, other solid oxide fuel cells and molten carbonate fuel cells, such as other solid oxide fuel cells, use both hydrogen and carbon monoxide as fuel. Other fuel cells that generate electricity may be used.

【0023】一方、固体電解質型燃料電池2の第一の燃
料極2bを出た排出ガスの一部は、接続流路10に設け
られた一酸化炭素濃度検知手段9の出力信号に応じて、
接続流路10途中の分岐部4から流量制御手段11で制
御された所定流量だけリターン流路13を通り、加圧装
置12で加圧されて固体電解質型燃料電池2の第一の燃
料極2bに再度供給される構成になっている。したがっ
て、固体電解質型燃料電池2の第一の燃料極2b排出ガ
ス中の一酸化炭素濃度を完全に除去したり、あるいは燃
料電池発電装置の負荷変動に合わせ原燃料の供給量を変
えるといった改質器1の運転条件変化や、その他の運転
条件変化により固体電解質型燃料電池2の排出ガス中の
一酸化炭素濃度が変化するようなことが生じても、固体
高分子型燃料電池4の白金触媒被毒制限値を超えること
なく被毒制限値以下まで確実に除去することができる。
On the other hand, the first fuel of the solid oxide fuel cell 2 is
A part of the exhaust gas that has exited from the electrode 2b is responsive to the output signal of the carbon monoxide concentration detection means 9 provided in the connection flow path 10,
The first fuel of the solid oxide fuel cell 2 is pressurized from the branch portion 4 in the middle of the connection flow passage 10 through the return flow passage 13 at a predetermined flow rate controlled by the flow control means 11 and is pressurized by the pressurizing device 12.
It is configured to be supplied again to the electrode 2b . Therefore, the reforming is performed such that the carbon monoxide concentration in the exhaust gas of the first fuel electrode 2b of the solid oxide fuel cell 2 is completely removed or the supply amount of the raw fuel is changed according to the load fluctuation of the fuel cell power generator. Even if the carbon monoxide concentration in the exhaust gas of the solid oxide fuel cell 2 changes due to changes in the operating conditions of the reactor 1 and other changes in the operating conditions, the platinum catalyst of the polymer electrolyte fuel cell 4 It is possible to surely remove up to the poisoning limit value or less without exceeding the poisoning limit value.

【0024】図2は本発明の他の実施例によるハイブリ
ッド燃料電池発電装置の要部を示すシステム構成図であ
り、図1と同符号のものは相当する構成要素であり、詳
細な説明は省略する。図において、改質器1と固体電解
質型燃料電池2は隣接一体に構成されるとともに、一体
の両者を加熱昇温する加熱手段としてバーナー14が設
けられ、固体高分子型燃料電池4の第二の燃料極4b
口からバーナー14に至るオフガス流路15が接続され
ている。また、原燃料を直接バーナー14に供給できる
ように閉止弁16を有する導管17も設けられている。
FIG. 2 is a system configuration diagram showing a main part of a hybrid fuel cell power generator according to another embodiment of the present invention. The same reference numerals as those in FIG. 1 are corresponding components, and detailed description thereof will be omitted. To do. In the figure, together with the reformer 1 and the solid oxide fuel cell 2 is constructed adjacent integrally burner 14 is provided as a heating means for heating heating both the integral, the second polymer electrolyte fuel cell 4 An off-gas passage 15 is connected from the outlet of the fuel electrode 4b to the burner 14. A conduit 17 having a shutoff valve 16 is also provided so that the raw fuel can be supplied directly to the burner 14.

【0025】上記構成において、本発明のハイブリッド
燃料電池発電装置の起動時には、導管17の閉止弁16
を開き、原燃料を直接バーナー14に供給して燃焼加熱
できるので、起動時の固体電解質型燃料電池2および改
質器1の素早い昇温ができる。そして、十分に温度が上
がり定常運転になれば、前述の起動時とは逆に導管17
の閉止弁16を閉め、固体高分子型燃料電池4の第二の
燃料極4b出口から排出されたオフガスを、オフガス流
路15を通してバーナー14に供給燃焼させ第一の燃料
電池2に必要な温度を維持する。固体高分子型燃料電池
4内でも電池反応に寄与しなかった一部の水素は、第二
の燃料極4bから排出されるオフガス中に残っているの
で、オフガス中に残る水素のもつエネルギーを燃焼熱と
して有効に利用し、残存水素を完全に消費してしまうの
でシステム効率の向上と安全性の確保が図れる。さら
に、ほぼ等しい温度が必要な改質器1と固体電解質型燃
料電池2を一体構成にしているので、バーナー14によ
り同時加熱するので構成を簡単化でき、改質器1と固体
電解質型燃料電池2間での放熱ロスをなくして、熱の有
効利用によるシステム効率向上が図れる。
In the above structure, when the hybrid fuel cell power generator of the present invention is started, the shutoff valve 16 of the conduit 17 is closed.
Since the raw fuel can be directly supplied to the burner 14 for combustion heating, the solid oxide fuel cell 2 and the reformer 1 can be quickly heated. Then, when the temperature rises sufficiently and becomes the steady operation, the conduit 17
The closed shut-off valve 16, the polymer electrolyte fuel cell 4 second
The off gas discharged from the outlet of the fuel electrode 4b is supplied to the burner 14 through the off gas passage 15 and burned to maintain the temperature required for the first fuel cell 2. Polymer electrolyte fuel cell 4 within any part that has not contributed to cell reaction of hydrogen, the second
Since it remains in the off-gas discharged from the fuel electrode 4b of No. 4, the energy of hydrogen remaining in the off-gas is effectively used as combustion heat, and the remaining hydrogen is completely consumed, thus improving system efficiency and safety. Can be secured. Further, since the reformer 1 and the solid oxide fuel cell 2 which require substantially the same temperature are integrally formed, simultaneous heating by the burner 14 simplifies the configuration, and the reformer 1 and the solid oxide fuel cell 2 are integrated. It is possible to improve the system efficiency by effectively utilizing the heat by eliminating the heat radiation loss between the two.

【0026】図3は本発明の他の実施例によるハイブリ
ッド燃料電池発電装置の要部を示すシステム構成図であ
り、図1および図2と同符号のものは相当する構成要素
であり、詳細な説明は省略する。図において、原燃料に
炭化水素系燃料であるメタンを用い、このメタン燃料が
供給される改質器は部分酸化反応触媒(図示せず)を有
する部分酸化反応器18として構成されている。また、
固体電解質型燃料電池2と固体高分子型燃料電池4の間
に、予熱ガス入口19と予熱ガス出口20および原燃料
入口21と原燃料出口22を有する予熱部23を備えた
構成になっている。さらに固体電解質型燃料電池2と固
体高分子型燃料電池4の間であって予熱部23の後段に
は、熱交換部8が設けられ、さらにその後段には、容器
24内の冷却水25中に開口部26がある燃料ガス入口
27と容器24の上部に位置する燃料ガス出口28、お
よび冷却水入口29と冷却水出口30を有する冷却部3
1が設けられ、燃料ガス出口28は固体高分子型燃料電
池4の第二の燃料極4bに接続されている。
FIG. 3 is a system configuration diagram showing a main part of a hybrid fuel cell power generator according to another embodiment of the present invention, and those having the same reference numerals as those in FIGS. 1 and 2 are the corresponding components and will be described in detail. The description is omitted. In the figure, methane which is a hydrocarbon fuel is used as a raw fuel, and a reformer to which this methane fuel is supplied is configured as a partial oxidation reactor 18 having a partial oxidation reaction catalyst (not shown). Also,
A preheating section 23 having a preheating gas inlet 19, a preheating gas outlet 20, and a raw fuel inlet 21 and a raw fuel outlet 22 is provided between the solid oxide fuel cell 2 and the polymer electrolyte fuel cell 4. . Further, between the solid oxide fuel cell 2 and the solid polymer fuel cell 4, a heat exchange section 8 is provided in the latter stage of the preheating section 23, and further in the latter stage, in the cooling water 25 in the container 24. A cooling unit 3 having a fuel gas inlet 27 with an opening 26 in it, a fuel gas outlet 28 located above the container 24, and a cooling water inlet 29 and a cooling water outlet 30.
1 is provided, and the fuel gas outlet 28 is connected to the second fuel electrode 4b of the polymer electrolyte fuel cell 4.

【0027】上記構成において、原燃料であるメタンは
原燃料入口21から予熱部23に入り、ここで予熱ガス
入口19から入ってきた固体電解質型燃料電池2の第一
の燃料極2b排出ガスとの熱交換により予熱され、原燃
料出口22から改質器である部分酸化反応器18に入
る。予熱され、供給されたメタンは部分酸化反応器18
内で部分酸化反応触媒(図示せず)の作用により 2CH4+O2→2CO+4H2 で表される部分酸化反応を生じ、この反応に伴う反応熱
を利用して固体電解質型燃料電池2の昇温を行う。これ
により、固体電解質型燃料電池2の加熱手段が不要にな
り、構成が簡単化できる。また、メタンの場合では次式 CH4+H2O→CO+3H2 で表されるような、炭化水素系燃料の水蒸気改質法を用
いた場合に比べて、水蒸気発生装置が不要になるので簡
単構成となる。一方、メタンは高温の第一の燃料極2b
排出ガスにより予熱されているので、部分酸化反応器1
8が供給メタンによって冷却されず、改質器での反応に
必要な温度を維持するための熱量が低減され、部分酸化
反応による反応熱を他の有効な部分に利用できるのでシ
ステム効率の向上が図れる。
In the above structure, methane, which is the raw fuel, enters the preheating section 23 from the raw fuel inlet 21, and the first of the solid oxide fuel cell 2 that enters from the preheating gas inlet 19 there .
It is preheated by heat exchange with the exhaust gas of the fuel electrode 2b and enters the partial oxidation reactor 18 which is a reformer from the raw fuel outlet 22. The preheated and supplied methane is the partial oxidation reactor 18
A partial oxidation reaction represented by 2CH4 + O2 → 2CO + 4H2 is generated by the action of a partial oxidation reaction catalyst (not shown), and the heat of reaction associated with this reaction is used to raise the temperature of the solid oxide fuel cell 2. As a result, the heating means of the solid oxide fuel cell 2 becomes unnecessary, and the structure can be simplified. Further, in the case of methane, the steam generator is not necessary as compared with the case of using the steam reforming method of a hydrocarbon fuel, which is represented by the following formula CH4 + H2O → CO + 3H2. On the other hand, methane is the high temperature first fuel electrode 2b.
Since it is preheated by the exhaust gas, the partial oxidation reactor 1
8 is not cooled by the supplied methane, the amount of heat for maintaining the temperature required for the reaction in the reformer is reduced, and the reaction heat from the partial oxidation reaction can be used for other effective parts, thus improving the system efficiency. Can be achieved.

【0028】部分酸化反応器18で改質された改質ガス
は、固体電解質型燃料電池2で発電しながら一酸化炭素
が除去され排出される。高温の排出ガスは予熱ガス入口
19から予熱部23に入り、メタンと熱交換して冷却さ
れ、予熱ガス出口20から排出されて後段の熱交換部8
を通り、さらに後段の冷却部31に入る。
In the reformed gas reformed in the partial oxidation reactor 18, carbon monoxide is removed and discharged while power is generated in the solid oxide fuel cell 2. The high-temperature exhaust gas enters the preheating section 23 from the preheating gas inlet 19, is heat-exchanged with methane to be cooled, and is discharged from the preheating gas outlet 20 to the heat exchange section 8 in the latter stage.
And enters the cooling section 31 at the subsequent stage.

【0029】燃料ガス入口27から入った固体高分子型
燃料電池4の燃料となる排出ガスは、容器24内の冷却
水25と直接接触し、80℃程度である固体高分子型燃
料電池4の運転温度まで冷却されるとともに、冷却水の
蒸発により飽和状態まで加湿されるので、固体高分子型
燃料電池4の電解質4a膜を飽和含水状態に保つために
必要な加湿量の不足があるときには加湿量を補うことが
できる。逆に、排出ガスの加湿量が過剰で、冷却により
水分の凝縮を生じるようなときは凝縮分を容器24に受
容し冷却水出口30から排出することができるので、固
体高分子型燃料電池の運転条件が変化しても厳密な制御
手段なしで対応することができる。なお、ここでは前述
の構成のような冷却部を用いたが、排出ガスと冷却水が
直接接触するものであれば、排出ガス中に水分を噴霧す
る構成(図示せず)などいずれの構成のものを用いても
よい。
The exhaust gas, which enters the fuel gas inlet 27 and serves as a fuel for the polymer electrolyte fuel cell 4, is in direct contact with the cooling water 25 in the container 24 and is about 80 ° C. in the polymer electrolyte fuel cell 4. Since it is cooled to the operating temperature and is humidified to the saturated state by the evaporation of the cooling water, the humidification is performed when the amount of humidification required to keep the electrolyte 4a membrane of the polymer electrolyte fuel cell 4 in the saturated water content is insufficient. The amount can be supplemented. On the contrary, when the amount of humidification of the exhaust gas is excessive and water is condensed due to cooling, the condensed portion can be received in the container 24 and discharged from the cooling water outlet 30, so that the solid polymer fuel cell It is possible to deal with a change in operating conditions without a strict control means. Although the cooling unit having the above-described configuration is used here, if the exhaust gas and the cooling water are in direct contact with each other, any configuration such as a configuration in which moisture is sprayed into the exhaust gas (not shown) is used. You may use the thing.

【0030】[0030]

【発明の効果】以上説明したように本発明のハイブリッ
ド燃料電池発電装置は、以下に述べる効果を有するもの
である。
As described above, the hybrid fuel cell power generator of the present invention has the following effects.

【0031】(1)原燃料を改質する改質器と、改質器
の改質ガスが第一の燃料極に供給され発電し生成水を排
出する第一の燃料電池と、第一の燃料電池の第一の燃料
からの生成水を含む排出ガスが第二の燃料極に供給さ
れる固体高分子型燃料電池とを備えた構成により、改質
器で原燃料から生成された改質ガスは第一の燃料電池内
で電池反応を生じて発電し、改質ガス中に含まれた一酸
化炭素は第一の燃料電池の燃料として消費され、改質ガ
ス中の水素の一部も酸化剤ガスと反応して水H2Oが生
成され、固体高分子型燃料電池に供給されるので、爆発
の危険性や大きな動力の必要性、電力消費もなく一酸化
炭素を除去でき、固体高分子型燃料電池の白金触媒の被
毒を防ぐことができるばかりでなく、一酸化炭素のもつ
高いエネルギーを発電として有効利用するので高いシス
テム効率が得られる。さらに、第一の燃料電池の第一の
燃料極排出ガス中に電池反応で生成された水を含むので
加湿装置がなくとも固体高分子型燃料電池での発電がで
きるので装置の構成を簡素化できる。
(1) A reformer for reforming raw fuel, a first fuel cell for supplying reformed gas from the reformer to a first fuel electrode to generate power and discharge produced water, Primary fuel for fuel cells
The reformed gas generated from the raw fuel in the reformer is the first fuel by the configuration including the polymer electrolyte fuel cell in which the exhaust gas containing the generated water from the electrode is supplied to the second fuel electrode. A cell reaction occurs in the cell to generate electricity, carbon monoxide contained in the reformed gas is consumed as fuel for the first fuel cell, and some hydrogen in the reformed gas also reacts with the oxidant gas. As water H2O is generated and supplied to the polymer electrolyte fuel cell, carbon monoxide can be removed without danger of explosion, necessity of large power, and power consumption, and a platinum catalyst for polymer electrolyte fuel cell. In addition to being able to prevent the poisoning of carbon dioxide, the high energy of carbon monoxide is effectively used for power generation, so high system efficiency can be obtained. Moreover, the first of the first fuel cell
Since the fuel electrode exhaust gas contains water generated by the cell reaction, power generation can be performed by the polymer electrolyte fuel cell without a humidifying device, so that the configuration of the device can be simplified.

【0032】(2)第一の燃料電池の第一の燃料極排出
ガスの一酸化炭素を除去するためのリターン流路を備え
た構成により、第一の燃料電池排出ガス中の第一の燃料
電池を通り抜けた一酸化炭素を第一の燃料電池に再供給
して、より完全に除去できる。
(2) The first fuel in the exhaust gas of the first fuel cell is constituted by the structure provided with the return passage for removing carbon monoxide of the exhaust gas of the first fuel electrode of the first fuel cell. Carbon monoxide that has passed through the cell can be re-supplied to the first fuel cell for more complete removal.

【0033】(3)固体高分子型燃料電池の燃料ガスの
一酸化炭素濃度検知手段と、リターン流路の流量を可変
する流量制御手段を備えた構成により、排出ガス中の一
酸化炭素を完全に除去したり、装置の運転条件が変化し
ても一酸化炭素濃度検知手段の出力信号に基づいてリタ
ーン流路の流量を可変して、第一の燃料電池の第一の燃
料極排出ガスを再度第一の燃料電池へ供給する再供給量
を調節できるので、一酸化炭素濃度を固体高分子型燃料
電池の白金触媒被毒制限値以下まで確実に除去するもの
である。
(3) The carbon monoxide concentration in the exhaust gas is completely eliminated by the structure provided with the carbon monoxide concentration detecting means for the fuel gas of the polymer electrolyte fuel cell and the flow rate controlling means for varying the flow rate in the return passage. Even if the fuel is removed or the operating conditions of the device are changed, the flow rate in the return flow path is changed based on the output signal of the carbon monoxide concentration detection means, and the first fuel of the first fuel cell is changed .
Since the re-supply amount of the electrode exhaust gas to be supplied to the first fuel cell again can be adjusted, the carbon monoxide concentration can be reliably removed to the platinum catalyst poisoning limit value of the polymer electrolyte fuel cell or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるハイブリッド燃料電池
発電装置の要部を示す構成図
FIG. 1 is a configuration diagram showing a main part of a hybrid fuel cell power generator according to an embodiment of the present invention.

【図2】本発明の他の実施例によるハイブリッド燃料電
池発電装置の要部を示す構成図
FIG. 2 is a configuration diagram showing a main part of a hybrid fuel cell power generator according to another embodiment of the present invention.

【図3】本発明の他の実施例によるハイブリッド燃料電
池発電装置の要部を示す構成図
FIG. 3 is a configuration diagram showing a main part of a hybrid fuel cell power generator according to another embodiment of the present invention.

【図4】従来のリン酸型燃料電池発電装置の要部を示す
構成図
FIG. 4 is a configuration diagram showing a main part of a conventional phosphoric acid fuel cell power generator.

【図5】従来の固体高分子型燃料電池発電装置の要部を
示す構成図
FIG. 5 is a configuration diagram showing a main part of a conventional polymer electrolyte fuel cell power generator.

【符号の説明】[Explanation of symbols]

1 改質器 2 固体電解質型燃料電池2b 第一の燃料極 2c 第一の酸化剤極 4 固体高分子型燃料電池4b 第二の燃料極 4c 第二の酸化剤極 1 reformer 2 solid oxide fuel cell 2b first fuel electrode 2c first oxidant electrode 4 solid polymer fuel cell 4b second fuel electrode 4c second oxidant electrode

フロントページの続き (56)参考文献 特開 平6−89735(JP,A) 特開 平3−149761(JP,A) 特開 平2−160602(JP,A) 特開 昭62−274560(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/00 - 8/24 Continuation of the front page (56) Reference JP-A-6-89735 (JP, A) JP-A-3-149761 (JP, A) JP-A-2-160602 (JP, A) JP-A-62-274560 (JP , A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 8/00-8/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭化水素系またはアルコール系の原燃料を
水素と一酸化炭素を含むガスに改質する改質器と、空気
中の酸素等を酸化剤ガスとして供給される第一の酸化剤
極と第一の燃料極とを有する第一の燃料電池と、空気中
の酸素等を酸化剤ガスとして供給される第二の酸化剤極
と第二の燃料極とを有する固体高分子型燃料電池とを備
え、前記改質器で改質されたガスが前記第一の燃料極に
供給され水素と一酸化炭素の両方を燃料として発電し生
成水を排出する前記第一の燃料電池と、前記第一の燃料
極からの生成水を含む排出ガスが燃料ガスとして前記第
二の燃料極に供給される前記固体高分子型燃料電池とを
接続したハイブリッド燃料電池発電装置。
1. A reformer for reforming a hydrocarbon-based or alcohol-based raw fuel into a gas containing hydrogen and carbon monoxide, and air.
The first oxidant that is supplied as oxygen gas in the atmosphere
A first fuel cell having a pole and a first fuel pole, and in air
Second oxidant electrode supplied with oxygen and other oxygen as oxidant gas
And a polymer electrolyte fuel cell having a second fuel electrode
For example, said first fuel cells to discharge the power to generate water both said gas reformed in the reformer is <br/> supplied to the first fuel electrode hydrogen and carbon monoxide as a fuel , The first fuel
The exhaust gas containing the generated water from the electrode is used as the fuel gas .
And the solid polymer electrolyte fuel cell which is supplied to the second fuel electrode
Connected hybrid fuel cell power generator.
【請求項2】第一の燃料電池の第一の燃料極排出ガスを
再度前記第一の燃料電池の第一の燃料極に供給し、利用
されずに通り抜けた排出ガスを再供給して一酸化炭素を
除去するためのリターン流路を備えた請求項1記載のハ
イブリッド燃料電池発電装置。
2. The first fuel electrode exhaust gas of the first fuel cell is supplied again to the first fuel electrode of the first fuel cell, and the exhaust gas that has passed through without being used is supplied again. The hybrid fuel cell power generator according to claim 1, further comprising a return channel for removing carbon oxide.
【請求項3】固体高分子型燃料電池の燃料ガスの一酸化
炭素濃度検知手段と、前記一酸化炭素濃度検知手段の出
力信号に基づいてリターン流路の流量を可変する流量制
御手段を備えた請求項2記載のハイブリッド燃料電池発
電装置。
3. A carbon monoxide concentration detecting means for a fuel gas of a polymer electrolyte fuel cell, and a flow rate controlling means for varying a flow rate of a return channel based on an output signal of the carbon monoxide concentration detecting means. The hybrid fuel cell power generator according to claim 2.
JP10552795A 1995-04-28 1995-04-28 Hybrid fuel cell power generator Expired - Fee Related JP3414045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10552795A JP3414045B2 (en) 1995-04-28 1995-04-28 Hybrid fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10552795A JP3414045B2 (en) 1995-04-28 1995-04-28 Hybrid fuel cell power generator

Publications (2)

Publication Number Publication Date
JPH08306369A JPH08306369A (en) 1996-11-22
JP3414045B2 true JP3414045B2 (en) 2003-06-09

Family

ID=14410070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10552795A Expired - Fee Related JP3414045B2 (en) 1995-04-28 1995-04-28 Hybrid fuel cell power generator

Country Status (1)

Country Link
JP (1) JP3414045B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19857398B4 (en) * 1998-12-12 2010-07-08 GM Global Technology Operations, Inc., Detroit Fuel cell system, in particular for electric motor driven vehicles
FR2829296B1 (en) * 2001-09-05 2005-05-27 Renault DEVICE AND METHOD FOR SUPPLYING A FUEL CELL WITH HYDROGEN AND USE FOR ELECTRIC TRACTION OF A VEHICLE
JP4450623B2 (en) * 2001-11-01 2010-04-14 大阪瓦斯株式会社 Fuel cell system
JP2004311168A (en) * 2003-04-04 2004-11-04 Central Res Inst Of Electric Power Ind Power generation method by fuel cell and fuel cell power generation system
JP4568486B2 (en) * 2003-07-25 2010-10-27 関西電力株式会社 Hybrid fuel cell system
KR101117631B1 (en) * 2004-10-04 2012-02-29 삼성에스디아이 주식회사 Fuel cell system
JP4859375B2 (en) * 2005-03-04 2012-01-25 新光電気工業株式会社 Fuel cell power generation system
JP2008282677A (en) * 2007-05-10 2008-11-20 Kawamura Electric Inc Fuel cell power generating facility
JP5341624B2 (en) * 2009-06-10 2013-11-13 本田技研工業株式会社 Fuel cell system
JP5939501B2 (en) * 2011-10-14 2016-06-22 住友電気工業株式会社 Gas decomposition apparatus, gas decomposition method, and gas decomposition power generation apparatus
KR101411543B1 (en) * 2012-08-31 2014-06-24 삼성중공업 주식회사 Fuel cell system and operating method there of
US10256496B2 (en) * 2014-07-01 2019-04-09 General Electric Company Power generation systems and methods utilizing cascaded fuel cells

Also Published As

Publication number Publication date
JPH08306369A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
JP3870455B2 (en) Carbon monoxide concentration reducing device and method, and fuel cell power generator
US6630260B2 (en) Water vapor transfer device for a fuel cell power plant
US7846599B2 (en) Method for high temperature fuel cell system start up and shutdown
JP3658866B2 (en) Fuel cell power generator
US6926748B2 (en) Staged lean combustion for rapid start of a fuel processor
EP1276163B1 (en) Solid polymer fuel cell
WO2007014128A2 (en) Fuel cell system with electrochemical anode exhaust recycling
CA2323125A1 (en) Cold start-up of a pem fuel cell
US20090208785A1 (en) SOFC electrochemical anode tail gas oxidizer
JP3414045B2 (en) Hybrid fuel cell power generator
US8158287B2 (en) Fuel cell
US20020098397A1 (en) Catalytic humidifier and heater for the fuel stream of a fuel cell
US20100221620A1 (en) Fuel cell system and operation method thereof
JP2003132923A (en) Fuel cell system
CA2518419A1 (en) Fuel cell system, method of starting fuel cell system
JP5002220B2 (en) Fuel cell system
JP3906083B2 (en) Solid polymer fuel cell power generator
KR101295237B1 (en) Fuel cell system
US7666537B2 (en) Fuel cell system for preventing hydrogen permeable metal layer degradation
JP4466049B2 (en) Water flow control method for reforming steam
KR102548739B1 (en) Fuel cell system having high thermal efficiency
US7201983B2 (en) Hydrogen generation apparatus and method and fuel cell system
JP2002083607A (en) Polyeletrolyte type fuel cell cogeneration system
JP2004213979A (en) Starting method of fuel cell system, and fuel cell system
JP2002241108A (en) Fuel reforming apparatus and fuel cell power generation apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees