JP3408598B2 - Metal powder composition for metallizing, metallized substrate and method for producing the same - Google Patents
Metal powder composition for metallizing, metallized substrate and method for producing the sameInfo
- Publication number
- JP3408598B2 JP3408598B2 JP29472193A JP29472193A JP3408598B2 JP 3408598 B2 JP3408598 B2 JP 3408598B2 JP 29472193 A JP29472193 A JP 29472193A JP 29472193 A JP29472193 A JP 29472193A JP 3408598 B2 JP3408598 B2 JP 3408598B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- paste
- powder
- substrate
- metallizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000843 powder Substances 0.000 title claims description 47
- 239000000758 substrate Substances 0.000 title claims description 27
- 229910052751 metal Inorganic materials 0.000 title claims description 24
- 239000002184 metal Substances 0.000 title claims description 24
- 239000000203 mixture Substances 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 150000004678 hydrides Chemical class 0.000 claims description 7
- 229910052987 metal hydride Inorganic materials 0.000 claims description 7
- 150000004681 metal hydrides Chemical class 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 238000010304 firing Methods 0.000 claims description 5
- 150000002736 metal compounds Chemical class 0.000 claims description 5
- 238000001465 metallisation Methods 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 3
- -1 hydrogen compound Chemical class 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 2
- 239000011104 metalized film Substances 0.000 description 24
- 239000010949 copper Substances 0.000 description 15
- 239000010955 niobium Substances 0.000 description 15
- 239000000919 ceramic Substances 0.000 description 14
- 239000004020 conductor Substances 0.000 description 13
- 239000000853 adhesive Substances 0.000 description 11
- 230000001070 adhesive effect Effects 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 239000010931 gold Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910017945 Cu—Ti Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000011224 oxide ceramic Substances 0.000 description 2
- 229910052574 oxide ceramic Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241001422033 Thestylus Species 0.000 description 1
- 238000007718 adhesive strength test Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
Landscapes
- Ceramic Products (AREA)
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、厚膜電子回路の導体層
形成およびセラミクス基板上に実装された電子機器用素
子、部品等が動作することによって発生する熱を拡散す
る機能を持つ銅、銀、金およびそれらの合金回路を形成
するためのメタライズ用金属および金属化合物粉末組成
物およびメタライズ基板に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper having a function of diffusing heat generated by forming a conductor layer of a thick film electronic circuit and operating an electronic device element, component, etc. mounted on a ceramics substrate, TECHNICAL FIELD The present invention relates to a metallizing metal and metal compound powder composition for forming silver, gold and alloy circuits thereof, and a metallized substrate.
【0002】[0002]
【従来の技術】一般に、電子回路用基板としては、高い
絶縁性、一定の機械強度が確保されていること、他の素
子を劣化させないこと、金属導体と容易に接合体を形成
できること、熱伝導率が大きい等の性質が要求されてい
る。そして、これらの要求特性を満足する材料として、
アルミナ(Al2O3)等の酸化物セラミクスや窒化アル
ミニウム(AlN)を代表とする窒化物セラミクスがあ
る。しかし、トランジスタ、ダイオード、IC、LS
I、その他各種の電子部品をこれらのセラミクスに直接
実装することはできない。そのため、セラミクス表面に
金属化膜を導体として使用するか、または金属化膜を介
して導体金属と接合することにより電子回路を構成して
いる。2. Description of the Related Art In general, as an electronic circuit board, high insulation, a certain mechanical strength are ensured, other elements are not deteriorated, a bonded body can be easily formed with a metal conductor, and heat conduction is improved. Properties such as high rate are required. And as a material that satisfies these required characteristics,
There are oxide ceramics such as alumina (Al 2 O 3 ) and nitride ceramics represented by aluminum nitride (AlN). However, transistors, diodes, ICs, LS
I and other various electronic components cannot be directly mounted on these ceramics. Therefore, an electronic circuit is formed by using a metallized film as a conductor on the surface of the ceramics or by joining the metallized film to a conductor metal through the metallized film.
【0003】この場合、導体層または導体金属として
は、電気抵抗が小さなものがよく、一般に銅が用いられ
ており、ものによっては銀、金およびそれらの合金が用
いられている。そして、セラミクス基板上への金属化膜
の形成は、セラミクス基板へ金属導体ペーストを10−
30μm程度の厚みにスクリーン印刷し、乾燥した後に
焼成を行って回路形成している。In this case, the conductor layer or the conductor metal preferably has a low electric resistance, and copper is generally used, and silver, gold and alloys thereof are used depending on the conductor. Then, the formation of the metallized film on the ceramics substrate is performed by applying the metal conductor paste 10- to the ceramics substrate.
Screen printing is performed to a thickness of about 30 μm, and after drying, firing is performed to form a circuit.
【0004】[0004]
【発明が解決しようとする課題】上記の方法によりセラ
ミクス基板への金属化膜として、従来、ガラスフリット
入りの銅導体ペーストが用いられているが、セラミクス
と金属化膜との接合強度が、一辺が2mmの正方形パッ
ドの垂直引っ張り試験で2Kg程度に過ぎず、更に15
0℃の高温エージング試験で100時間前後放置する
と、初期値の半分以下に低下してしまう。特に、窒化物
セラミクス用の導体ペーストは、現在、接着強度、電導
度等の諸性能および信頼性の高いものが得られていな
い。According to the method described above, a copper conductor paste containing glass frit is conventionally used as a metallized film on a ceramics substrate. However, the bonding strength between the ceramics and the metallized film is one side. Is only about 2 kg in the vertical tensile test of a 2 mm square pad.
When left in a high temperature aging test at 0 ° C. for about 100 hours, the value drops to less than half the initial value. In particular, as a conductor paste for nitride ceramics, a paste having high performance such as adhesive strength and electric conductivity and high reliability has not been obtained at present.
【0005】そこで、その改善法として、特願平3−6
9382号にて、Cuが70−95重量%、Tiが5−
30重量%の組成の金属粉末ペーストを提案した。又、
特願平4−282869号にて、Cuが95−99.5
重量%、Tiが0.5−5重量%の金属粉末ペーストを
提案した。それらにおいては一定の接合強度をもたらす
が、高Ti含有のため導体抵抗が増加するという難点が
あった。又、後者においては、接合強度を若干犠牲にし
て、Ti含有量を減少させたが、導体抵抗は期待したほ
ど低下しなかった。即ち、セラミクス/金属化膜界面の
接合強度と導体抵抗のバランスした金属化膜が得難い問
題を有していた。Therefore, as an improvement method, Japanese Patent Application No. 3-6
No. 9382, Cu is 70-95 wt% and Ti is 5-
A metal powder paste with a composition of 30% by weight was proposed. or,
In Japanese Patent Application No. 4-282869, Cu is 95-99.5.
A metal powder paste was proposed in which the weight percentage is 0.5 to 5 wt% Ti. Although they provide a certain bonding strength, they have the drawback that the conductor resistance increases due to the high Ti content. Also, in the latter, the Ti content was reduced at the expense of the bonding strength, but the conductor resistance did not decrease as expected. That is, there is a problem that it is difficult to obtain a metallized film in which the bonding strength at the ceramics / metallized film interface and the conductor resistance are balanced.
【0006】更に、メタライズ基板への電子部品の実装
上、平滑な金属化膜が要求されているが、従来のペース
トを用いた方法では、十分に平滑な金属化膜は得られな
かった。Further, although a smooth metallized film is required for mounting electronic parts on a metallized substrate, a sufficiently smooth metallized film cannot be obtained by the conventional method using a paste.
【0007】そこで、本発明の技術課題は、一定の電導
度を有しながら接着強度の高く、表面が平滑で、かつ使
用環境において十分な信頼性を持つ金属化膜が得られる
メタライズ用金属粉末組成物、メタライズ基板およびそ
の製造方法を提供することにある。Therefore, a technical object of the present invention is to provide a metallized metal powder having a certain electric conductivity, a high adhesive strength, a smooth surface, and a metallized film having sufficient reliability in a use environment. It is intended to provide a composition, a metallized substrate and a method for producing the same.
【0008】[0008]
【課題を解決するための手段】上記の課題を解決するた
め、金属化膜の組織観察を行い、それに基づく若干の金
属組織学的考察を加えた結果、以下のことが分かった。In order to solve the above-mentioned problems, the structure of the metallized film was observed, and some metallographical considerations were made based on the result.
【0009】即ち、Cu−Ti粉末ペーストを印刷した
後の焼成過程で、金属粉末の焼結緻密化とともに、Ti
の金属層/セラミクス界面への移動がおこり、所要の界
面強度が得られる。しかし、これらの反応過程で、原料
Tiが粗粒であること、および粗粒Cu−Ti化合物相
の生成に起因して金属化層および界面層に大きな空隙を
生成せしめること、およびTi酸化物が金属化層に残留
すること等の望ましくない反応が随伴され、界面結合強
度および電導度の低下がもたらされることが分かった。
更に、金属化層の平滑度は原料粉末の粒度に依存し、特
にTi粉末を微細化できないのがネックであることも分
かった。That is, in the firing process after printing the Cu-Ti powder paste, the metal powder is sintered and densified, and Ti
To the metal layer / ceramics interface to obtain the required interface strength. However, in these reaction processes, the raw material Ti is coarse particles, and large voids are generated in the metallized layer and the interfacial layer due to the formation of the coarse particle Cu—Ti compound phase. It has been found that undesired reactions, such as residuals in the metallization layer, are accompanied by a reduction in interfacial bond strength and conductivity.
Further, it was also found that the smoothness of the metallized layer depends on the particle size of the raw material powder, and in particular, the Ti powder cannot be made finer.
【0010】以上の知見に基づき、種々検討した結果、
Cu,Ag,AuおよびAg−Pdから選ばれた少なく
とも1種の良電導性金属粉末に対し、0.5−30重量
%のNb,V,Hf水素化物粉末から選ばれた少なくと
も1種の金属水素化物粉末を含むメタライズ用組成物を
発明するに至った。また、前記のメタライズ用組成物を
主成分とするメタライズ用ペーストを基板に塗布し、真
空中、不活性ガスまたは窒素雰囲気で焼成することによ
り、一定の電導度を有しながら接着強度が高く、表面が
平滑な金属化膜を形成した優れたメタライズ基板が得ら
れた。As a result of various studies based on the above findings,
At least one metal selected from 0.5 to 30% by weight of Nb, V, and Hf hydride powder with respect to at least one highly conductive metal powder selected from Cu, Ag, Au, and Ag-Pd. The inventors have invented a metallizing composition containing a hydride powder. In addition, a metallizing paste containing the metallizing composition as a main component is applied to a substrate and baked in a vacuum, in an inert gas atmosphere or a nitrogen atmosphere, so that the adhesive strength is high while having a constant electric conductivity, An excellent metallized substrate having a metallized film with a smooth surface was obtained.
【0011】つまり、従来のペーストの技術的障害であ
ったTi粉末の難粉砕性、あるいは強引に粉砕した場
合、Tiの酸化が激しく、所望の特性の金属化膜が得ら
れない問題は、Ti粉末に代えて上記金属水素化物を用
いることにより、解決することができた。これは、金属
水素化物の被粉砕性が優れていること、水素化物を微粒
子に粉砕しても表面酸化は抑制できること、およびこれ
らの化合物粉末と良電導性粉末の混合ペーストを印刷
後、焼成する過程で粗粒の金属間化合物の生成が抑制で
きることによる。その結果、残留空隙径の小さい、しか
も酸化物量の少ない金属化膜が得られ、界面結合強度、
電導度、表面平滑度の特性の改善が確認された。That is, when the Ti powder is difficult to grind, which is a technical obstacle of the conventional paste, or when the Ti powder is grinded forcibly, the problem that the metallized film with desired characteristics cannot be obtained due to the severe oxidation of Ti is caused. The problem could be solved by using the above metal hydride instead of the powder. This is because the pulverizability of the metal hydride is excellent, the surface oxidation can be suppressed even if the hydride is pulverized into fine particles, and the mixed paste of these compound powders and the highly conductive powder is printed and then fired. This is because generation of coarse intermetallic compounds can be suppressed in the process. As a result, a metallized film having a small residual void diameter and a small amount of oxide can be obtained, and the interfacial bond strength,
It was confirmed that the electrical conductivity and surface smoothness were improved.
【0012】[0012]
【作用】本発明によれば、Cu,Ag,AuおよびAg
−Pdから選ばれた良導性金属粉末に、Nb,V,H
f,Ta水素化物から選ばれた金属水素化物粉末を混合
粉砕することにより、微細で、しかも酸素含有量の少な
いメタライズ用粉末ペーストが得られる。さらに、本ペ
ーストを基板に塗布後、焼結過程で金属水素化物から水
素が離脱して微細な金属粉が生成するとともに、焼結が
進行し、残留空隙径が小さく、しかも酸化物含有量の少
ない、ひいては界面結合強度が高く、電導度、表面平滑
度の優れたメタライズ基板が得られる。According to the present invention, Cu, Ag, Au and Ag
Nb, V, H in the good conductive metal powder selected from -Pd
By mixing and pulverizing the metal hydride powder selected from f and Ta hydrides, a fine powder paste for metallization having a small oxygen content can be obtained. Further, after the paste is applied to the substrate, hydrogen is released from the metal hydride during the sintering process to generate fine metal powder, and the sintering proceeds, the residual void diameter is small, and the oxide content is small. It is possible to obtain a metallized substrate having a small amount, and thus a high interfacial bond strength, and excellent electric conductivity and surface smoothness.
【0013】[0013]
【実施例】以下に、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.
【0014】(実施例1)平均粒径10μm以下の銅
(Cu)粉と粒径44μm以下の水素化ニオブ(NbH
x)粉を所定の組成になるよう秤量混合後、一般に用い
られるアクリル系樹脂をバインダー成分とするビヒクル
を添加し、微粉砕機を用いて十分に混練分散を行って、
スクリーン印刷に適したペーストを得た。なお、ペース
トから樹脂成分を除去して粉末粒度を測定したところ、
平均粒系約7μmであり、このことから、NbHx粉は
混練分散工程で微粉砕されたことがわかる。Example 1 Copper (Cu) powder having an average particle size of 10 μm or less and niobium hydride (NbH) having a particle size of 44 μm or less.
x) After weighing and mixing the powder to a predetermined composition, a vehicle having a commonly used acrylic resin as a binder component is added, and sufficiently kneaded and dispersed by using a fine pulverizer,
A paste suitable for screen printing was obtained. When the resin component was removed from the paste and the powder particle size was measured,
The average particle size was about 7 μm, which indicates that the NbHx powder was finely pulverized in the kneading and dispersing step.
【0015】本発明のペーストを窒化アルミニウムセラ
ミクス基板に印刷し、真空焼成してメタライズ基板を得
た。図1に、一辺が2mmの正方形パッドの垂直引張り
試験による接着強度の結果を示した。比較例として、従
来、窒化アルミニウムセラミクス基板に使用されている
ガラスフリット入り銅ペーストを用いた結果と、Cu−
Nb混合物を用いたペーストによる結果を示した。本実
施例によると、全体的にCuにNbを添加することによ
り、従来のペーストに比べて高接着強度が得られ、Cu
−Nb混合粉ペーストを用いたメタライズ基板の接着強
度は、高Nb含有ペーストで高強度を示すが、Nb<3
wt%での接着強度の劣化が著しい。一方、Cu−Nb
Hx系ペーストにおいては、Nb<0.2wt%でも実
用強度を有することが分かる。The paste of the present invention was printed on an aluminum nitride ceramic substrate and vacuum-fired to obtain a metallized substrate. FIG. 1 shows the result of the adhesive strength of a square pad having a side of 2 mm in a vertical tensile test. As a comparative example, the results using a copper paste containing glass frit, which has been conventionally used for an aluminum nitride ceramic substrate, and Cu-
The results with the paste using the Nb mixture are shown. According to the present embodiment, by adding Nb to Cu as a whole, a high adhesive strength can be obtained as compared with the conventional paste.
The adhesive strength of the metallized substrate using the -Nb mixed powder paste is high with the high Nb-containing paste, but Nb <3.
The deterioration of the adhesive strength in wt% is remarkable. On the other hand, Cu-Nb
It can be seen that the Hx paste has a practical strength even when Nb <0.2 wt%.
【0016】図2は、本実施例で得られた金属化膜の体
積抵抗率を示す。特に、Cu−NbHx系ペーストを用
いることにより、低抵抗化が図れることが分かる。ちな
みに、Cu−2wt%Nbペーストによる金属化膜とC
u−2wt%NbHxペーストによる金属化膜の酸素含
有量を分析したところ、表1に示したように、後者の酸
素含有量が著しく減少していることが分かる。このこと
から、Nbに代えてNbHxを用いることで体積抵抗が
低下している要因は、NbHxが工程で酸化しにくいこ
とであると推定された。FIG. 2 shows the volume resistivity of the metallized film obtained in this example. In particular, it can be seen that the resistance can be reduced by using the Cu-NbHx based paste. By the way, a metallized film made of Cu-2 wt% Nb paste and C
Analysis of the oxygen content of the metallized film with the u-2 wt% NbHx paste shows that, as shown in Table 1, the latter oxygen content is significantly reduced. From this, it was estimated that the reason why NbHx is used instead of Nb to reduce the volume resistance is that NbHx is not easily oxidized in the process.
【0017】[0017]
【表1】 [Table 1]
【0018】(実施例2)金属粉末原料として、Cu粉
とNb,V,Hf,およびTa水素化物粉末を用い、水
素化物粉末混合量を0.5wt%として実施例1と同様
の方法でメタライズ基板を作製した。それらの接着強度
および体積抵抗率を表2に示した。図1および図2と比
較して、いずれのCu−水素化物系ペーストにおいて
も、十分な接着強度、および低抵抗金属化膜が得られる
ことが分かった。(Example 2) Cu powder and Nb, V, Hf, and Ta hydride powders were used as metal powder raw materials, and the amount of hydride powder mixed was 0.5 wt%. A substrate was produced. The adhesive strength and volume resistivity thereof are shown in Table 2. As compared with FIGS. 1 and 2, it was found that sufficient adhesive strength and low resistance metallized film were obtained with any of the Cu-hydride pastes.
【0019】[0019]
【表2】 [Table 2]
【0020】(実施例3)NbHx粉末にそれぞれA
g,Ag−Pd,Au粉末を混合したペーストを用い
て、実施例1と同様の方法でメタライズ基板を得た。そ
れらの接着強度および体積抵抗率を表3に示した。比較
例として、従来用いられている各ペーストによる結果を
示した。(Embodiment 3) NbHx powders each having A
A metallized substrate was obtained in the same manner as in Example 1 using a paste obtained by mixing g, Ag-Pd and Au powders. The adhesive strength and volume resistivity thereof are shown in Table 3. As a comparative example, the results of each of the pastes that have been conventionally used are shown.
【0021】[0021]
【表3】 [Table 3]
【0022】(実施例4)原料銅粉を篩分けし、粒径5
μm以下の銅微粉を得た。一方、粒径44μm以下のN
bHx粉を粉砕し、平均粒径10,5.5および3μm
のNbHx粉を得た。これらを混合分散し、実施例1と
同様の方法でメタライズ基板を得た。金属化膜の表面粗
さを触針法で測定した。比較例として、同一銅微粉に平
均粒径5.5μmのNb粉を混合したペーストによるメ
タライズ基板の表面粗さを測定し、それらの結果を表4
に示した。NbHxを用いた場合、原料粉末粒径が同じ
でも、金属化膜の表面が平滑になることが分かった。(Example 4) The raw material copper powder was sieved to obtain a particle size of 5
Copper fine powder having a particle size of not more than μm was obtained. On the other hand, N with a particle size of 44 μm or less
bHx powder is crushed to have an average particle size of 10, 5.5 and 3 μm
NbHx powder was obtained. These were mixed and dispersed, and a metallized substrate was obtained in the same manner as in Example 1. The surface roughness of the metallized film was measured by the stylus method. As a comparative example, the surface roughness of a metallized substrate made of a paste prepared by mixing the same copper fine powder with Nb powder having an average particle size of 5.5 μm was measured.
It was shown to. It was found that when NbHx was used, the surface of the metallized film was smooth even if the raw material powder particle size was the same.
【0023】[0023]
【表4】 [Table 4]
【0024】(実施例5)実施例1と同様に、Cu−N
bHxペーストを用い、酸化アルミニウムセラミクスに
印刷して焼成し、メタライズ基板を得た。比較例とし
て、従来のガラスフリット入り銅ペーストによるメタラ
イズ基板を作製した。それらの接着強度試験結果を表5
に示した。窒化アルミニウムと同様に、酸化アルミニウ
ム(Al2O3)のメタライズにも金属水素化物粉末混合
の効果が顕著であることが分かる。(Embodiment 5) As in Embodiment 1, Cu-N
A bHx paste was used to print on aluminum oxide ceramics and fired to obtain a metallized substrate. As a comparative example, a metallized substrate was prepared using a conventional copper paste containing glass frit. The results of the adhesive strength test are shown in Table 5.
It was shown to. As with aluminum nitride, it can be seen that the effect of mixing the metal hydride powder is remarkable for the metallization of aluminum oxide (Al 2 O 3 ).
【0025】[0025]
【表5】 [Table 5]
【0026】[0026]
【発明の効果】本発明によれば、電導性金属粉にNb,
V,Hf,Taから選ばれた金属水素化物粉末を加え
て、ペーストを用いることにより、セラミクス基板に対
する接着性が優れ、しかも電導度の高い金属化膜を形成
することができた。According to the present invention, conductive metal powder containing Nb,
By adding a metal hydride powder selected from V, Hf, and Ta and using the paste, a metallized film having excellent adhesion to the ceramic substrate and high conductivity could be formed.
【図1】本発明によって作製された金属化膜の垂直引張
り試験によるNb添加量と接着強度との関係を示す特性
図。FIG. 1 is a characteristic diagram showing the relationship between the amount of Nb added and the adhesive strength in a vertical tensile test of a metallized film produced according to the present invention.
【図2】本発明によって作製された金属化膜のNb添加
量と体積抵抗率との関係を示す特性図。FIG. 2 is a characteristic diagram showing the relationship between the amount of Nb added and the volume resistivity of the metallized film produced according to the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 9/00 C22C 9/00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C22C 9/00 C22C 9/00
Claims (4)
選ばれた少なくとも1種の金属粉末と金属水素化合物粉
末とを主成分とするメタライズ用金属粉末組成物であっ
て、前記金属水素化合物がNb,V,HfおよびTaの
水素化物から選ばれた少なくとも1種であることを特徴
とするメタライズ用金属および金属化合物粉末組成物。1. A metallization metal powder composition for metallization, comprising at least one metal powder selected from Cu, Ag, Au and Ag—Pd and a metal hydrogen compound powder as main components, wherein the metal hydrogen compound is A metallizing metal and metal compound powder composition, which is at least one selected from hydrides of Nb, V, Hf and Ta.
0.5〜30重量%であることを特徴とするメタライズ
用金属および金属化合物粉末組成物。2. A metallizing metal and metal compound powder composition, wherein the content of the metal hydride according to claim 1 is 0.5 to 30% by weight.
化合物粉末組成物を主成分とするメタライズ用ペースト
を基板に塗布し、焼成して得たことを特徴とするメタラ
イズ基板。3. A metallized substrate obtained by applying a metallizing paste containing the metal and metal compound powder composition according to claim 1 or 2 as a main component to a substrate and firing the paste.
化合物粉末組成物を主成分とするメタライズ用ペースト
を基板に塗布し焼成する工程において、真空中、不活性
ガスまたは窒素雰囲気で焼成することを特徴とするメタ
ライズ基板の製造方法。4. In the step of applying a metallizing paste containing the metal and metal compound powder composition according to claim 1 or 2 as a main component to a substrate and firing the same, firing in a vacuum in an inert gas or nitrogen atmosphere. And a method for manufacturing a metallized substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29472193A JP3408598B2 (en) | 1993-10-28 | 1993-10-28 | Metal powder composition for metallizing, metallized substrate and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29472193A JP3408598B2 (en) | 1993-10-28 | 1993-10-28 | Metal powder composition for metallizing, metallized substrate and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07126701A JPH07126701A (en) | 1995-05-16 |
JP3408598B2 true JP3408598B2 (en) | 2003-05-19 |
Family
ID=17811456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29472193A Expired - Fee Related JP3408598B2 (en) | 1993-10-28 | 1993-10-28 | Metal powder composition for metallizing, metallized substrate and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3408598B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101336902B1 (en) | 2009-03-30 | 2013-12-04 | 가부시끼가이샤 도꾸야마 | Process for producing metallized substrate and metallized substrate |
KR20130002980A (en) | 2010-03-02 | 2013-01-08 | 가부시끼가이샤 도꾸야마 | Method for manufacturing a metallized substrate |
-
1993
- 1993-10-28 JP JP29472193A patent/JP3408598B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07126701A (en) | 1995-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0470839B1 (en) | Ceramic substrate having wiring incorporating silver | |
JPH06206772A (en) | Aluminum nitride sintered compact and ceramic circuit substrate | |
JP3408598B2 (en) | Metal powder composition for metallizing, metallized substrate and method for producing the same | |
JPS61270262A (en) | High heat conductive aluminum nitride sintered body | |
EP1434750B1 (en) | Thick film conductor compositions for use on aluminum nitride substrates | |
JPH0323512B2 (en) | ||
JPH05238857A (en) | Method for metallizing substrate of aluminum nitride | |
JP7317397B2 (en) | COPPER OXIDE PASTE AND METHOD FOR MANUFACTURING ELECTRONIC COMPONENT | |
JPH05226515A (en) | Aluminum nitride substrate having metallized layer and the metallizing method thereof | |
JPH06196831A (en) | Manufacture of conductive pattern for aln substrate | |
JPH1179872A (en) | Metallized silicon nitride-based ceramic, its production and metallizing composition used for the production | |
JP3411140B2 (en) | Metallized composition and method for manufacturing wiring board using the same | |
JP3150932B2 (en) | Conductive paste for ceramic multilayer circuit board | |
WO1994009182A1 (en) | Metal powder composition for metallization and metallized substrate | |
JPH05221759A (en) | Aluminum nitride substrate with metallizing layer and metallizing method | |
JP2910415B2 (en) | Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device | |
JP3433260B2 (en) | Metallized substrate and manufacturing method thereof | |
JP3505659B2 (en) | Method for manufacturing metallized substrate with conductive film | |
JPH05195004A (en) | Powdery metal composition for metallizing and metallized substrate | |
KR102728555B1 (en) | Method for manufacturing copper oxide paste and electronic components | |
JP4352311B2 (en) | Thick film circuit board | |
JP2842032B2 (en) | Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device | |
JP2910414B2 (en) | Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device | |
JPS61281074A (en) | High heat conductivity aluminum nitride sintered body | |
JP2616951B2 (en) | Aluminum nitride sintered body having metallized surface and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |