[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3407555B2 - Light irradiation device - Google Patents

Light irradiation device

Info

Publication number
JP3407555B2
JP3407555B2 JP21329796A JP21329796A JP3407555B2 JP 3407555 B2 JP3407555 B2 JP 3407555B2 JP 21329796 A JP21329796 A JP 21329796A JP 21329796 A JP21329796 A JP 21329796A JP 3407555 B2 JP3407555 B2 JP 3407555B2
Authority
JP
Japan
Prior art keywords
tube
closed
reflecting mirror
conductive
closed tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21329796A
Other languages
Japanese (ja)
Other versions
JPH1040869A (en
Inventor
啓介 大久保
満 池内
博光 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP21329796A priority Critical patent/JP3407555B2/en
Publication of JPH1040869A publication Critical patent/JPH1040869A/en
Application granted granted Critical
Publication of JP3407555B2 publication Critical patent/JP3407555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ショートアークラ
ンプと凹面反射鏡からなる光照射装置に関するものであ
る。 【0002】 【従来の技術】キセノンランプやメタルハライドランプ
などのショートアークランプは、光源が小さくて点光源
にきわめて近いので、ショートアークランプのアーク輝
点を凹面反射鏡の焦点位置に配置して集光する光照射装
置が各分野において幅広く利用されている。 【0003】ショートアークランプは、石英ガラス製の
放電容器中央の球状や楕円球状をした発光管内に一対の
電極が数mmの間隔で対向配置され、水銀などの発光金
属、放電用ガスなどが封入される。そして、発光管の両
端に筒状の閉塞管が連設され、電極棒と外部リード棒が
この閉塞管で電気的に接続された状態で閉塞されるが、
モリブデンからなる電極棒と石英ガラス製の閉塞管は熱
膨張率が大きく異なるために閉塞管を電極棒に直接溶着
して閉塞することができない。このため従来は、閉塞管
は段繋ぎ法や箔シール法などで閉塞されていた。 【0004】 【発明が解決しようとする課題】段繋ぎ法は、熱膨張率
が石英ガラスの熱膨張率からタングステンの熱膨張率に
順次近づく数種類の中間ガラス管を用意し、これらの中
間ガラス管を放電容器の閉塞管の端部から順次溶着して
閉塞管を延長し、タングステンの熱膨張率に最も近い端
部のガラス管を電極棒に溶着するものである。この中間
ガラス管の数を少なくすると、隣接する中間ガラス管の
熱膨張率の差が大きくなり、接合部分の機械的強度が弱
く、また熱ショックにも弱くて信頼性が低下するので、
中間ガラス管の数を多くする必要がある。また、タング
ステン棒とガラスの端部は空気に接触しているので、点
灯時に400℃以上の高温になるとタングステンが酸化
し、リークや破損のおそれがある。従って、閉塞管の軸
方向の長さが長くなり、かつ接合部が多くなり、それだ
け信頼性が低下する。 【0005】箔シール法は、厚さが数十μmのモリブデ
ン箔の両端に電極棒と外部リード棒の端部を溶接し、こ
のモリブデン箔を石英ガラスの間に挾み込み、モリブデ
ン箔の中央部分に石英ガラス製の閉塞管を溶着するもの
である。この箔シール法は、外部リード棒が溶接された
モリブデン箔の端部は空気に接触しているので、点灯時
に350℃以上の高温になるとモリブデン箔が酸化し、
酸化による膨張によってシール部が剥離してリークした
り、破損することがある。つまり、閉塞管端部のシール
部は温度上昇を抑制する必要があるので、閉塞管を長く
して点灯時に高温になる発光管とシール部の距離を長く
する必要がある。 【0006】図5は、箔シール法により閉塞した定格電
力が3kWのキセノンショートアークランプを示すが、
放電容器10の発光管11内には陽極20と陰極30が
対向配置されている。そして、発光管11の両端に閉塞
管12,13が連設されており、閉塞管12,13の端
部に口金41,42がそれぞれ取り付けられている。そ
して、陽極20の芯棒21と陰極30の芯棒31の端部
は、口金41,42で覆われた部分において図示略の段
繋ぎガラスを用いてタングステン棒に接続されている。
つまり、口金41,42で覆われた部分がシール部であ
り、発光管11とシール部の距離が長くなっている。因
みに、アーク輝点から陰極側の口金41端部までの距離
1 は165mmであり、アーク輝点から陽極側の口金
42端部までの距離L2 は185mmである。 【0007】また、水銀蒸気を利用するショートアーク
ランプの場合は、発光管とシール部の距離を長くする
と、電極芯棒根元の管壁温度が低くなるので、つまり、
最冷点温度が低くなりすぎて水銀が十分に蒸発しない。
このため、電極芯棒根元の管壁の外部に保温膜を形成し
て保温することが必要になるが、光がこの保温膜によっ
て遮られ、光の利用効率が低下する問題点がある。 【0008】このように、段繋ぎ法や箔シール法によれ
ば、ショートアークランプの閉塞管は軸方向に長くなる
が、図6に示すように、ショートアークランプ1の一方
の閉塞管12を凹面反射鏡9の中央開口91に嵌め込ん
で取り付け、他方の閉塞管13が凹面反射鏡9の光軸方
向に延びるように配置し、反射光を所定位置に集光させ
るようにした光照射装置においては、凹面反射鏡9の光
軸方向に延びる閉塞管13が長いために、凹面反射鏡9
の反射光の一部がこの閉塞部13に入射して遮られるた
めに、実際に利用する凹面反射鏡9の反射面の面積が少
なくなり、光の利用効率が低下する問題点がある。 【0009】そこで本発明は、光の利用効率が高く、シ
ョートアークランプの閉塞部分の信頼性も高い光照射装
置を提供することを目的とする。 【0010】 【課題を解決するための手段】かかる目的を達成するた
めに、請求項1の発明は、非導電性の材料からなる放電
容器の中央に形成された球状や楕円球状などの発光管内
に一対の電極が対向配置されるとともに放電用ガスが封
入され、発光管の両端に筒状の閉塞管が形成されたショ
ートアークランプと、中央開口を有する凹面反射鏡とか
らなり、ショートアークランプの一方の閉塞管が凹面反
射鏡の中央開口に嵌め込まれ、他方の閉塞管が凹面反射
鏡の開放端側に延びた光照射装置において、前記閉塞管
のうち、前記反射鏡の開放端側の前記他方の閉塞管のみ
を放電容器と同材質の非導電性粉末と導電性粉末とを
軸方向に連続的または段階的に異なる比率で混合して成
形し、一端側を非導電性とし、他端側を導電性とした傾
斜機能材料からなる閉塞体で閉塞することにより、該他
方の閉塞管を前記一方の閉塞管より短くし、これによっ
て光の利用効率を向上させる。 【0011】 【0012】 【発明の実施の形態】以下に、図面に基づいて本発明の
実施の形態を具体的に説明する。図1は、本発明の光照
射装置に使用するショートアークランプを示すが、この
ショートアークランプは、例えば定格電力が3kWであ
り直流点灯されるキセノンショートアークランプであ
る。ショートアークランプはキセノンショートアークラ
ンプに限られるものではなく、ショートアークタイプの
水銀ランプやメタルハライドランプなどであってもよ
い。また、交流点灯されるものであってもよい。 【0013】図1において、石英ガラス製の放電容器1
0の発光管11は球状や楕円球状をしており、その内部
には、タングステンからなる陽極20と陰極30が、例
えば5mm間隔で対向配置されている。また、放電用ガ
スとしてキセノンガスが所定圧力で封入されている。そ
して、発光管11の両端に閉塞管12,13が連設され
ているが、陰極側の閉塞管12は、図5に示す従来例の
ランプと同じ長さであり、その端部に口金41が取り付
けられている。そして、陰極30の芯棒31はタングス
テン棒からなり、その端部は、口金41で覆われた部分
において図示略のタングステン棒に接続されており、段
繋ぎ法でシールされている。 【0014】陽極側の閉塞管13は陰極側の閉塞管12
よりも短くなっており、閉塞管13の端部は傾斜機能材
料からなる閉塞体50で閉塞されている。ここで使用す
る傾斜機能材料は、放電容器と同じ材質の粉末と導電性
粉末との混合体、例えば、放電容器が石英ガラスの場合
は、シリカ粉末とモリブデン粉末を焼結したものであ
り、その混合比率を長さ方向で連続的にまたは段階的に
異ならしめ、一端側を非導電性とし、他端側を導電性と
したものてある。その一例として、閉塞体50の非導電
性の端面51はほぼ100%のシリカからなり、導電側
の端面52はSiO2 50%+Mo50%の組成からな
るものであるが、その組成比率は必ずしもこれに限られ
るものではない。 【0015】そして、図2に示すように、閉塞体50
は、非導電性の端面51が発光管11方向になるよう
に、閉塞管13内に嵌め込まれ、この端面51の部分で
石英ガラス製の閉塞管13に溶着される。陽極20の芯
棒21はモリブデン棒からなり、閉塞体50に形成され
た軸方向の貫通孔53に挿通されている。そして、閉塞
体50の導電性の端面52において金属蝋54や熱膨張
率がモリブデンに近い封着ガラスにより気密に固定され
ている。閉塞体50の導電性の端面52の熱膨張率はモ
リブデン製の芯棒21の熱膨張率に近く、芯棒21と閉
塞体50は確実に固定することができる。閉塞体50か
ら突出した芯棒21の端部には、図1に示すように、耐
酸化性の大きな金属、例えばモリブデンからなる接点4
3が取り付けられ、接点43には撚り線からなる耐熱性
のリード線44が接続されている。 【0016】或いは、図3に示すように、閉塞体50の
両端面51,52からそれぞれ、電気電導性を有する部
分まで孔をあけ、それぞれの孔に芯棒21と外部リード
棒22を挿入して固定してもよい。これによって、芯棒
21と外部リード棒22は電気的に接続されるととも
に、気密性をより確実にすることができる。芯棒21と
外部リード棒22を閉塞体50に確実に固定するため
に、閉塞体50を高温で本焼成する前の仮焼成後に芯棒
21と外部リード棒22を閉塞体50の孔に挿入し、本
焼成によって焼締めるのがよい。 【0017】ここで、使用する傾斜機能材料は、一方の
端面から他方の端面に向けてSiO2 などの非導電性粉
末とMoなどの導電性粉末の割合が連続的に、または階
段的に変化するものであるので、閉塞体50の軸方向の
長さが短くても、一方の端面と他方の端面のSiO2
Moの割合を大きく変化させることができる。つまり、
短い閉塞体50で、一方の端面の熱膨張率を石英ガラス
の熱膨張率に近くし、他方の端面の熱膨張率をモリブデ
ンの熱膨張率に近くできるので、短い閉塞体50で閉塞
管13を閉塞することができる。また、シリカ粉末とモ
リブデン粉末を焼結して成形した傾斜機能材料からなる
閉塞体50は熱ショックにも強いので、前述の箔シール
法のように、シール部である閉塞体50を点灯時に高温
になる発光管11から大きく離す必要がない。従って、
閉塞管13の長さを従来の段繋ぎ法や箔シール法に比べ
てずっと短くできる。因みに、アーク輝点から陰極側の
口金41端部までの距離L1 は従来例と同じく165m
mであるが、アーク輝点から陽極側の閉塞体50の端部
までの距離L2 は80mmである。 【0018】また、シリカ粉末とモリブデン粉末を焼結
して成形した閉塞体50は機械的強度も強く、しかも溶
着個所が2ヵ所のみであるので、従来の箔シール構造に
比べて製造工程が簡単であり、かつ信頼性が極めて高い
ランプとすることができる。また、傾斜機能材料の非導
電性粉末としては、前述のシリカ粉末以外に、放電容器
がセラミック製の場合は該セラミック粉末を用いるな
ど、放電容器と同材質であればよく、更に、導電性粉末
としてもモリブデン粉末以外に、ニッケル、タングステ
ンなど適宜の金属導電物質粉末を使用できることは勿論
である。 【0019】かかるショートアークランプ1を、図4に
示すように、凹面反射鏡9と組み合わせて光照射装置と
する。つまり、陰極側の閉塞管12を凹面反射鏡9の中
央開口91に嵌め込んで固定し、ショートアークランプ
1のアーク輝点を凹面反射鏡9の焦点位置に配置して集
光するが、凹面反射鏡9の開放端側に延びる陽極側の閉
塞管13を従来例よりもずっと短くできるので、凹面反
射鏡9で反射した光が閉塞管13に入射する割合が極め
て少なくなり、光の利用率を著しく向上することができ
る。 【0020】 【発明の効果】以上説明したように、本発明の光照射装
置は、ショートアークランプの凹面反射鏡の開放端側の
閉塞管のみを、シリカなどの非導電性粉末とモリブデン
などの導電性粉末で成形された傾斜機能材料からなる閉
塞体で閉塞することにより、凹面反射鏡の開放端側に延
びたショートアークランプの閉塞管を凹面反射鏡の中央
開口に嵌め込まれた側の閉塞管より短くするので、光の
利用率が高く、ショートアークランプの閉塞部分の信頼
性も高い光照射装置とすることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light irradiation device comprising a short arc lamp and a concave reflecting mirror. A short arc lamp such as a xenon lamp or a metal halide lamp has a small light source and is very close to a point light source. Therefore, the arc luminescent spot of the short arc lamp is arranged at the focal position of a concave reflecting mirror. Light emitting devices that emit light are widely used in various fields. In a short arc lamp, a pair of electrodes are arranged opposite to each other at intervals of several mm in a spherical or elliptical arc tube at the center of a quartz glass discharge vessel, and a luminous metal such as mercury and a discharge gas are sealed therein. Is done. Then, a cylindrical closed tube is continuously provided at both ends of the arc tube, and the electrode rod and the external lead rod are closed in a state where they are electrically connected by the closed tube.
Since the electrode rod made of molybdenum and the closed tube made of quartz glass have greatly different coefficients of thermal expansion, the closed tube cannot be closed by welding directly to the electrode bar. For this reason, conventionally, the closed pipe has been closed by a step connection method, a foil sealing method, or the like. [0004] In the step joining method, several kinds of intermediate glass tubes whose coefficient of thermal expansion sequentially approaches the coefficient of thermal expansion of tungsten from the coefficient of thermal expansion of quartz glass are prepared, and these intermediate glass tubes are prepared. Are sequentially welded from the end of the closed tube of the discharge vessel to extend the closed tube, and the glass tube at the end closest to the coefficient of thermal expansion of tungsten is welded to the electrode rod. When the number of the intermediate glass tubes is reduced, the difference in the coefficient of thermal expansion between adjacent intermediate glass tubes increases, and the mechanical strength of the joint portion is weak.
It is necessary to increase the number of intermediate glass tubes. Further, since the tungsten rod and the end of the glass are in contact with the air, if the temperature becomes higher than 400 ° C. during lighting, the tungsten is oxidized, and there is a risk of leakage or breakage. Therefore, the length of the occlusion tube in the axial direction is increased, and the number of joints is increased. In the foil sealing method, the ends of an electrode rod and an external lead rod are welded to both ends of a molybdenum foil having a thickness of several tens of μm, the molybdenum foil is sandwiched between quartz glasses, and the center of the molybdenum foil is sandwiched. A quartz glass closing tube is welded to the portion. In this foil sealing method, since the end of the molybdenum foil to which the external lead rod is welded is in contact with air, the molybdenum foil is oxidized when the temperature rises to 350 ° C. or more during lighting,
The seal portion may peel off due to expansion due to oxidation, leak or break. That is, since it is necessary to suppress a rise in temperature of the seal portion at the end of the closed tube, it is necessary to lengthen the closed tube to increase the distance between the arc tube and the seal portion, which becomes hot during lighting. FIG. 5 shows a xenon short arc lamp having a rated power of 3 kW closed by a foil sealing method.
An anode 20 and a cathode 30 are arranged in the arc tube 11 of the discharge vessel 10 to face each other. Blocking tubes 12 and 13 are connected to both ends of the arc tube 11, and caps 41 and 42 are attached to ends of the blocking tubes 12 and 13, respectively. The ends of the core rod 21 of the anode 20 and the core rod 31 of the cathode 30 are connected to the tungsten rods at the portions covered with the bases 41 and 42 by using step connection glass (not shown).
That is, the portion covered by the bases 41 and 42 is the seal portion, and the distance between the arc tube 11 and the seal portion is long. Incidentally, the distance L 1 from the arc bright spot to the mouthpiece 41 the end of the cathode side is 165mm, the distance L 2 from the arc bright spot to the mouthpiece 42 the end of the anode side is 185 mm. In the case of a short arc lamp using mercury vapor, if the distance between the arc tube and the seal portion is increased, the temperature of the tube wall at the base of the electrode core becomes low.
The coldest point temperature becomes too low and mercury does not evaporate sufficiently.
For this reason, it is necessary to form a heat insulating film on the outside of the tube wall at the base of the electrode core rod to keep the temperature. However, there is a problem that light is blocked by the heat insulating film and the light use efficiency is reduced. As described above, according to the step joining method or the foil sealing method, the closing pipe of the short arc lamp is elongated in the axial direction. However, as shown in FIG. A light irradiating device that is fitted and attached to the central opening 91 of the concave reflecting mirror 9, arranged so that the other closed tube 13 extends in the optical axis direction of the concave reflecting mirror 9, and condenses reflected light at a predetermined position. , The closed tube 13 extending in the optical axis direction of the concave reflecting mirror 9 is long.
A part of the reflected light enters the closed portion 13 and is blocked, so that the area of the reflecting surface of the concave reflecting mirror 9 actually used is reduced, and there is a problem that the light use efficiency is reduced. SUMMARY OF THE INVENTION It is an object of the present invention to provide a light irradiating device having a high light utilization efficiency and a high reliability of a closed portion of a short arc lamp. [0010] In order to achieve the above object, an invention according to claim 1 is directed to a spherical or elliptical arc tube formed at the center of a discharge vessel made of a non-conductive material. A short arc lamp having a pair of electrodes opposed to each other and a discharge gas sealed therein, and a cylindrical closed tube formed at each end of the arc tube, and a concave reflecting mirror having a central opening. One of the closed tubes is fitted into the central opening of the concave reflecting mirror, and the other closed tube extends toward the open end of the concave reflecting mirror. non-conductive powder and the conductive powder tube closed tube only discharge vessel of the same material of the other
The mixture is molded continuously and stepwise in different ratios in the axial direction and molded, one end is made non-conductive, and the other end is closed by a closing body made of a functionally graded material made conductive, thereby forming the other end. The occlusion tube is shorter than the one occlusion tube, thereby improving light use efficiency. Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 shows a short arc lamp used in the light irradiation device of the present invention. The short arc lamp is, for example, a xenon short arc lamp whose rated power is 3 kW and is DC-lit. The short arc lamp is not limited to the xenon short arc lamp, but may be a short arc type mercury lamp, a metal halide lamp, or the like. Alternatively, the light may be lit by alternating current. In FIG. 1, a discharge vessel 1 made of quartz glass is shown.
The 0 arc tube 11 has a spherical shape or an elliptical spherical shape, and an anode 20 and a cathode 30 made of tungsten are disposed inside the arc tube 11 at an interval of, for example, 5 mm. Xenon gas is sealed at a predetermined pressure as a discharge gas. Blocking tubes 12 and 13 are continuously provided at both ends of the arc tube 11. The closing tube 12 on the cathode side has the same length as the conventional lamp shown in FIG. Is attached. The core rod 31 of the cathode 30 is made of a tungsten rod, and its end is connected to a tungsten rod (not shown) in a portion covered with the base 41 and is sealed by a step connection method. The anode side closing tube 13 is connected to the cathode side closing tube 12.
The end of the closed tube 13 is closed by a closed body 50 made of a functionally graded material. The functionally graded material used here is a mixture of a powder of the same material as the discharge vessel and a conductive powder, for example, when the discharge vessel is quartz glass, a material obtained by sintering silica powder and molybdenum powder. The mixing ratio is varied continuously or stepwise in the longitudinal direction, one end is made non-conductive and the other end is made conductive. As an example, the non-conductive end face 51 of the closing body 50 is made of almost 100% silica, and the conductive side end face 52 is made of a composition of 50% SiO 2 + 50% Mo. It is not limited to. Then, as shown in FIG.
Is fitted into the closed tube 13 so that the non-conductive end face 51 faces the arc tube 11, and the end face 51 is welded to the quartz glass closed tube 13. The core rod 21 of the anode 20 is made of a molybdenum rod, and is inserted into an axial through hole 53 formed in the closing body 50. The metal wax 54 and the coefficient of thermal expansion are hermetically fixed on the conductive end face 52 of the closing body 50 by sealing glass having a coefficient of thermal expansion close to that of molybdenum. The coefficient of thermal expansion of the conductive end surface 52 of the closing body 50 is close to that of the core rod 21 made of molybdenum, and the core rod 21 and the closing body 50 can be securely fixed. As shown in FIG. 1, a contact 4 made of a metal having high oxidation resistance, for example, molybdenum is provided on the end of the core rod 21 protruding from the closing body 50.
The contact 43 is connected to a heat-resistant lead wire 44 made of a stranded wire. Alternatively, as shown in FIG. 3, holes are made from both end surfaces 51 and 52 of the closing body 50 to portions having electric conductivity, and a core rod 21 and an external lead rod 22 are inserted into each hole. May be fixed. Thereby, the core rod 21 and the external lead rod 22 are electrically connected, and the airtightness can be further ensured. In order to securely fix the core rod 21 and the external lead rod 22 to the closing body 50, the core rod 21 and the external lead rod 22 are inserted into the holes of the closing body 50 after the preliminary firing before the main firing of the closing body 50 at a high temperature. Then, it is preferable to harden by firing. Here, the gradient functional material used is such that the ratio of a non-conductive powder such as SiO 2 and a conductive powder such as Mo changes continuously or stepwise from one end face to the other end face. Therefore, even if the length of the closing body 50 in the axial direction is short, the ratio of SiO 2 and Mo on one end surface and the other end surface can be largely changed. That is,
With the short plug 50, the thermal expansion coefficient of one end face can be close to that of quartz glass and the thermal expansion coefficient of the other end face can be close to that of molybdenum. Can be closed. Further, since the closing body 50 made of the functionally gradient material formed by sintering the silica powder and the molybdenum powder is resistant to heat shock, the closing body 50 as the sealing portion is heated to a high temperature as in the case of the above-mentioned foil sealing method. It is not necessary to be largely separated from the arc tube 11. Therefore,
The length of the closing tube 13 can be made much shorter than the conventional step joining method or foil sealing method. Incidentally, the distance L 1 from the arc bright spot to the mouthpiece 41 the end of the cathode side as in the conventional example 165m
is a m, the distance L 2 from the arc bright spot to the end of the closure 50 on the anode side is 80 mm. Further, the closing body 50 formed by sintering the silica powder and the molybdenum powder has a high mechanical strength and has only two welding points, so that the manufacturing process is simpler than the conventional foil sealing structure. And a highly reliable lamp can be obtained. In addition, as the non-conductive powder of the functionally graded material, other than the above-mentioned silica powder, if the discharge vessel is made of ceramic, the ceramic powder may be used, and the same material as the discharge vessel may be used. Of course, other than the molybdenum powder, it is a matter of course that an appropriate metal conductive material powder such as nickel and tungsten can be used. As shown in FIG. 4, the short arc lamp 1 is combined with a concave reflecting mirror 9 to form a light irradiation device. That is, the cathode-side closing tube 12 is fitted and fixed in the central opening 91 of the concave reflecting mirror 9, and the arc luminescent spot of the short arc lamp 1 is arranged at the focal position of the concave reflecting mirror 9 to collect light. Since the anode-side closing tube 13 extending to the open end side of the reflecting mirror 9 can be made much shorter than in the conventional example, the ratio of light reflected by the concave reflecting mirror 9 to the closing tube 13 is extremely small, and the light utilization rate is reduced. Can be significantly improved. As described above, according to the light irradiation apparatus of the present invention, only the closed tube on the open end side of the concave reflecting mirror of the short arc lamp is connected to the non-conductive powder such as silica and the molybdenum or the like. By closing with a closing body made of a functionally graded material formed of conductive powder, the closing pipe of the short arc lamp extending to the open end side of the concave reflecting mirror is closed on the side fitted into the central opening of the concave reflecting mirror. Since the length is shorter than the tube, the light irradiating device can have a high light utilization rate and a high reliability of the closed portion of the short arc lamp.

【図面の簡単な説明】 【図1】本発明の光照射装置に使用するショートアーク
ランプの説明図である。 【図2】ショートアークランプの閉塞部分の説明図であ
る。 【図3】ショートアークランプの閉塞部分の他の実施例
の説明図である。 【図4】本発明の光照射装置の光の利用効率の説明図で
ある。 【図5】従来のショートアークランプの説明図である。 【図6】従来の光照射装置の光の利用効率の説明図であ
る。 【符号の説明】 1 ショートアークランプ 10 放電容器 11 発光管 12 陰極側の閉塞管 13 陽極側の閉塞管 20 陽極 21 陽極の芯棒 30 陰極 31 陰極の芯棒 41,42 口金 43 接点 44 リード線 50 閉塞体 9 凹面反射鏡 91 凹面反射鏡の中央開口
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of a short arc lamp used in a light irradiation device of the present invention. FIG. 2 is an explanatory diagram of a closed portion of a short arc lamp. FIG. 3 is an explanatory view of another embodiment of a closed portion of a short arc lamp. FIG. 4 is an explanatory diagram of light use efficiency of the light irradiation device of the present invention. FIG. 5 is an explanatory view of a conventional short arc lamp. FIG. 6 is an explanatory diagram of light use efficiency of a conventional light irradiation device. DESCRIPTION OF THE SYMBOLS 1 Short arc lamp 10 Discharge vessel 11 Emission tube 12 Cathode side closing tube 13 Anode side closing tube 20 Anode 21 Anode core rod 30 Cathode 31 Cathode core rod 41, 42 Cap 43 Contact point 44 Lead wire 50 Closure body 9 Concave reflector 91 Central opening of concave reflector

フロントページの続き (56)参考文献 特開 昭63−241850(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01J 61/36 F21V 31/00 G02B 5/10 Continuation of the front page (56) References JP-A-63-241850 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01J 61/36 F21V 31/00 G02B 5/10

Claims (1)

(57)【特許請求の範囲】 【請求項1】 非導電性の材料からなる放電容器の中央
に形成された球状や楕円球状などの発光管内に一対の電
極が対向配置されるとともに放電用ガスが封入され、発
光管の両端に筒状の閉塞管が形成されたショートアーク
ランプと、中央開口を有する凹面反射鏡とからなり、シ
ョートアークランプの一方の閉塞管が凹面反射鏡の中央
開口に嵌め込まれ、他方の閉塞管が凹面反射鏡の開放端
側に延びた光照射装置において、 前記閉塞管のうち、前記反射鏡の開放端側の前記他方の
閉塞管のみを、放電容器と同材質の非導電性粉末と導電
性粉末とを管軸方向に連続的または段階的に異なる比率
で混合して成形し、一端側を非導電性とし、他端側を導
電性とした傾斜機能材料からなる閉塞体で閉塞すること
により、該他方の閉塞管を前記一方の閉塞管より短くし
たことを特徴とする光照射装置。
(57) Claims 1. A pair of electrodes are opposed to each other in a spherical or elliptical arc tube formed in the center of a discharge vessel made of a non-conductive material, and a discharge gas is provided. Is enclosed, and comprises a short arc lamp in which cylindrical occlusion tubes are formed at both ends of the arc tube, and a concave reflecting mirror having a central opening, and one occlusion tube of the short arc lamp is provided at the central opening of the concave reflecting mirror. In the light irradiation device in which the other closed tube is fitted and the other closed tube extends to the open end side of the concave reflecting mirror, of the closed tube, only the other closed tube on the open end side of the reflecting mirror is made of the same material as a discharge vessel. A non-conductive powder and a conductive powder are continuously or stepwise mixed at different ratios in the tube axis direction and molded, and one end is made non-conductive and the other end is made of a functionally graded material made conductive. By closing with the closing body A light irradiation device, wherein the closed tube is shorter than the one closed tube.
JP21329796A 1996-07-25 1996-07-25 Light irradiation device Expired - Lifetime JP3407555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21329796A JP3407555B2 (en) 1996-07-25 1996-07-25 Light irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21329796A JP3407555B2 (en) 1996-07-25 1996-07-25 Light irradiation device

Publications (2)

Publication Number Publication Date
JPH1040869A JPH1040869A (en) 1998-02-13
JP3407555B2 true JP3407555B2 (en) 2003-05-19

Family

ID=16636798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21329796A Expired - Lifetime JP3407555B2 (en) 1996-07-25 1996-07-25 Light irradiation device

Country Status (1)

Country Link
JP (1) JP3407555B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271627B1 (en) 1997-04-11 2001-08-07 Ushiodenki Kabushiki Kaisha Sealing body having a shielding layer for hermetically sealing a tube lamp
JP3993667B2 (en) * 1997-06-30 2007-10-17 ウシオ電機株式会社 Tube occlusion structure
GB2414340A (en) * 2004-05-19 2005-11-23 Heraeus Noblelight Ltd Quartz glass lamp and method for forming a quart glass lamp

Also Published As

Publication number Publication date
JPH1040869A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
EP0443964B1 (en) Low watt metal halide lamp
CA1111483A (en) High pressure metal vapor discharge lamp of improved efficacy
US5138228A (en) Bulb geometry for low power metal halide lamp
JP3670025B2 (en) High pressure gas discharge lamp
JPH0850881A (en) Bulb
JP4568989B2 (en) High pressure discharge lamp and lighting device
US5932969A (en) Discharge lamp
US5986403A (en) Method for making a capped electric lamp by using reduced internal pressure to collapse glass
JP2802683B2 (en) Metal halide discharge lamp
JP3407555B2 (en) Light irradiation device
JPH07240184A (en) Ceramic discharge lamp, projector device using this lamp, and manufacture of ceramic discharge lamp
JP5010919B2 (en) Discharge lamp
EP2149146B1 (en) High pressure sodium lamp
JPH1040867A (en) Discharge lamp
US20080093963A1 (en) Lamp
JP4379552B2 (en) High pressure discharge lamp and lighting device
JP3911924B2 (en) Tube
JPH09274890A (en) Ceramic discharge lamp
JPH10284002A (en) Ceramics discharge lamp, lamp device and illuminator
JPH02199763A (en) Arc discharge lamp
JPH1021882A (en) High pressure discharge lamp, irradiation device, lighting system, and exposure device
JPH11111240A (en) Sealing metallic foil, tubular bulb and luminaire
JPH0582093A (en) Ceramic discharge lamp
JP3239837B2 (en) Sealed lamp with functionally graded material
JPS59180955A (en) High pressure metal vapor discharge lamp

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term