[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3404930B2 - Fine processing device and fine processing method - Google Patents

Fine processing device and fine processing method

Info

Publication number
JP3404930B2
JP3404930B2 JP27842894A JP27842894A JP3404930B2 JP 3404930 B2 JP3404930 B2 JP 3404930B2 JP 27842894 A JP27842894 A JP 27842894A JP 27842894 A JP27842894 A JP 27842894A JP 3404930 B2 JP3404930 B2 JP 3404930B2
Authority
JP
Japan
Prior art keywords
processed
charged
processing
charged particles
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27842894A
Other languages
Japanese (ja)
Other versions
JPH08118046A (en
Inventor
淳士 大原
吉孝 後藤
雅夫 永久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP27842894A priority Critical patent/JP3404930B2/en
Publication of JPH08118046A publication Critical patent/JPH08118046A/en
Application granted granted Critical
Publication of JP3404930B2 publication Critical patent/JP3404930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Laser Beam Processing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微細加工技術に関し、微
細トレンチ孔等を高アスペクト比に形成する技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine processing technique, and more particularly to a technique for forming fine trench holes and the like with a high aspect ratio.

【0002】[0002]

【従来の技術】従来、微細加工装置・方法には集束イオ
ンビーム(Focused Ion Beam,FIB)による微細加工装置
(塩川,精密工学会誌55/2/1989,P32-36)(以下、FI
B装置と記す)や微細放電加工機などがある。これらは
微細なトレンチ孔を形成するのに優れた方法である。F
IB装置では、サブμmレベルの加工を実現している。
しかしながら、FIB装置はイオンによって加工するた
め種々の問題が存在する。また、微細放電加工の場合
は、加工対象が導電性のものに限られる。いずれも加工
時に発生する残渣が中性物のため、この残渣を加工部位
から取り除くためには気流や液体流を利用しなければな
らないが、加工孔の径が小さければその除去は困難にな
る。FIB装置は真空中であるので流体を利用しての除
去は困難で再付着してしまい、これらの制約が加工の限
度となっている問題があった。
2. Description of the Related Art Conventionally, a fine processing apparatus / method is a fine processing apparatus using a focused ion beam (FIB) (Shiokawa, Journal of Precision Engineering 55/2/1989, P32-36) (hereinafter FI
B machine) and a fine electric discharge machine. These are excellent methods for forming fine trench holes. F
The IB device realizes sub-μm level processing.
However, since the FIB device is processed by ions, there are various problems. Further, in the case of fine electric discharge machining, the machining target is limited to a conductive object. In both cases, since the residue generated during processing is a neutral substance, it is necessary to use an air flow or a liquid flow to remove this residue from the processing site, but if the diameter of the processing hole is small, it will be difficult to remove it. Since the FIB device is in a vacuum, it is difficult to remove it using a fluid and redeposition occurs, and there is a problem that these restrictions limit the processing.

【0003】そこで発明者らのグループは、特開平6-68
4 号公報、特願平5-120816号(特開平6-310473公報)で
示すような手法で、上記の問題点を解決した提案を行っ
た。この提案により、従来よりも高アスペクト比な微細
孔を穿つことができるようになった。
Therefore, the group of the inventors is set forth in JP-A-6-68.
A proposal was made to solve the above-mentioned problems by the methods as shown in Japanese Patent Application No. 4 and Japanese Patent Application No. 5-120816 (Japanese Patent Application Laid-Open No. 6-310473). With this proposal, it has become possible to form fine holes having a higher aspect ratio than ever before.

【0004】その提案の概要は次のようである。負圧程
度以上の真空槽中の被加工材料の加工したい所定箇所
に、集光レンズで極細のビームとしたレーザを石英窓を
通して照射し、同時に、被加工材料に、対向電極に電圧
を印加して表面を帯電させる。すると、レーザを照射さ
れた被加工材料はレーザアブレーションを生じて加工部
位から原子、イオン、電子が飛び出す。この領域にはレ
ーザビーム方向と同じ方向に電界が掛かっているので、
この飛び出してきた帯電粒子がクーロン力を受けて、電
界強度、荷電量、粒子質量などによって決まる運動を
し、加工部位から迅速に移動する。中性で飛び出してき
た原子は、やはり飛び出してきた電子と衝突するためイ
オン化され移動除去される。なおこれは、排気コンダク
タンスを高めてやると言うことを意味している。
The outline of the proposal is as follows. A laser beam made into an ultra-fine beam by a condenser lens is radiated through a quartz window to a predetermined place in the vacuum chamber where negative pressure or more is to be processed, and at the same time, a voltage is applied to the counter electrode to the work material. To charge the surface. Then, the material to be processed irradiated with the laser causes laser ablation, and atoms, ions, and electrons fly out from the processed portion. Since an electric field is applied to this area in the same direction as the laser beam direction,
Upon receiving the Coulomb force, the charged particles that have jumped out make a motion that is determined by the electric field strength, the amount of charge, the particle mass, and the like, and quickly move from the processing site. The atoms that have jumped out in neutrality are also ionized and moved away because they collide with the electrons that have jumped out. This means that the exhaust conductance is increased.

【0005】その結果、加工部位に加工残渣が残らない
のでレーザビームの届く範囲まで加工が深く形成でき、
導電性の無い材料でも高アスペクト比の孔を形成するた
めの加工対象とすることができた。原則として他の物質
でエッチングする訳ではないので汚染の心配がなく、ま
たパルス動作で加工と残渣除去が交互に行われるので効
率よく加工が進むという利点がある。
As a result, since no processing residue remains on the processed portion, the processing can be deeply formed within the reach of the laser beam,
Even a non-conductive material could be processed to form a high aspect ratio hole. As a general rule, there is no concern of contamination because etching is not performed with other substances, and there is an advantage that processing is efficiently performed because processing and residue removal are performed alternately by pulse operation.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うにして形成される高アスペクト比の孔は、貫通穴でな
い限り、穴深さの観測が困難であり、たとえモニタカメ
ラを設置したとしても、加工中の穴の底を検出すること
は不可能であり、加工空間の状態は全く把握できない状
況であると言わざるを得ない。そこで従来では、予め加
工の程度を決めておくという条件出しを行ってから実際
の加工を実施している。加工の場所は一か所とは限ら
ず、全ての場所についてその条件出しを行っておく必要
がある。そのようなことから加工のために非常に手間が
かかり、製造スループットという面からは大きな問題が
ある。
However, it is difficult to observe the hole depth of the high aspect ratio hole thus formed unless it is a through hole, and even if a monitor camera is installed, it is difficult to process the hole. It is impossible to detect the bottom of the inner hole, and it must be said that the condition of the machining space cannot be grasped at all. Therefore, conventionally, the actual processing is performed after the condition is set such that the degree of processing is determined in advance. The processing location is not limited to one, and it is necessary to determine the conditions for all locations. For that reason, it takes a lot of time and labor for processing, and there is a big problem in terms of manufacturing throughput.

【0007】従って本発明の目的は、レーザアブレーシ
ョンを用いる微細加工において、加工部位のモニタが可
能で、加工制御が実施できる微細加工装置を提供するこ
とである。
Therefore, an object of the present invention is to provide a microfabrication apparatus capable of monitoring a machining site and performing machining control in micromachining using laser ablation.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め本発明の構成は、被加工材料を真空槽内に設置し、前
記被加工材料に対してレーザ入射方向に電界を印加し、
レーザアブレーションでプラスに帯電させた前記被加工
材料の飛散粒子を、対向電極に印加した電界により強制
排除しつつ、前記被加工材料を加工する微細加工装置に
おいて、前記帯電粒子の種類を判別する帯電粒子種類判
別手段と、前記帯電粒子の飛散方向を制御すると共に、
飛散する前記帯電粒子を前記帯電粒子種類判別手段に導
く粒子飛散制御手段を備え、前記帯電粒子種類判別手段
で、加工中の加工部位の状態を常時モニタすることによ
り、前記レーザアブレーションを制御することである。
また関連発明の構成は、前記粒子飛散制御手段が、前記
レーザ入射方向と直角方向に印加した磁場であることを
特徴とし、あるいはまた、前記粒子飛散制御手段が、前
記レーザ入射方向と平行、かつ前記対向電極の上に同軸
で、かつ反対向きに電界印加された電場であることを特
徴とする。
In order to solve the above problems, the structure of the present invention is such that a material to be processed is placed in a vacuum chamber and an electric field is applied to the material to be processed in a laser incident direction,
In a microfabrication apparatus for processing the material to be processed while forcibly excluding scattered particles of the material to be processed positively charged by laser ablation by an electric field applied to a counter electrode, a charge for discriminating the type of the charged particles. Particle type discrimination means, and controlling the scattering direction of the charged particles,
Controlling the laser ablation by providing a particle scattering control unit that guides the scattered charged particles to the charged particle type determination unit, and the charged particle type determination unit constantly monitors the state of the processing site during processing. Is.
The configuration of the related invention is characterized in that the particle scattering control means is a magnetic field applied in a direction perpendicular to the laser incident direction, or alternatively, the particle scattering control means is parallel to the laser incident direction, and It is characterized in that an electric field is applied on the counter electrode coaxially and in the opposite direction.

【0009】また上記の加工を実現する方法発明の構成
は、被加工材料を真空槽内に設置し、前記被加工材料に
対してレーザ入射方向に電界を印加し、レーザアブレー
ションでプラスに帯電させた前記被加工材料の飛散粒子
を、対向電極に印加した電界により強制排除しつつ、前
記被加工材料を加工する微細加工方法において、粒子飛
散制御手段により、前記帯電粒子の飛散方向を制御する
と共に、飛散する前記帯電粒子を帯電粒子種類判別手段
に導き、前記帯電粒子種類判別手段により前記帯電粒子
の種類を判別して前記レーザアブレーションを制御する
ことである。その関連発明の構成は、前記粒子飛散制御
手段が、一組の電極対による静電界印加、もしくは磁場
発生手段による静磁場印加、もしくは前記静電界印加か
つ前記静磁場印加、のいずれかによることである。ある
いはまた、前記レーザアブレーションのレーザ照射をパ
ルス駆動することを特徴としている。
Further, in the structure of the method for realizing the above processing, the material to be processed is placed in a vacuum chamber, an electric field is applied to the material to be processed in the laser incident direction, and the material is positively charged by laser ablation. In the fine processing method of processing the processed material while forcibly excluding the scattered particles of the processed material by the electric field applied to the counter electrode, while controlling the scattering direction of the charged particles by the particle scattering control means, That is, the scattered charged particles are guided to a charged particle type discriminating means, the type of the charged particles is discriminated by the charged particle type discriminating means, and the laser ablation is controlled. The configuration of the related invention is that the particle scattering control means is one of electrostatic field application by a pair of electrode pairs, static magnetic field application by magnetic field generation means, or electrostatic field application and static magnetic field application. is there. Alternatively, the laser irradiation of the laser ablation is pulse-driven.

【0010】[0010]

【作用】レーザアブレーション時に排気コンダクタンス
を高めて加工孔の底からイオンを積極的に排出させる際
に、電場や磁場等の粒子飛散制御手段を用いて、一部の
帯電粒子を質量分析器などの帯電粒子検出手段に導き、
加工中に放出されている帯電粒子が、被加工材料のどの
領域のものか検知する。それにより加工程度、もしくは
加工深さが判明し、レーザ照射の制御を行うことができ
る。請求項2の構成では、粒子飛散制御手段として磁場
を用いており、ローレンツ力により帯電粒子を対物レン
ズ側に向かわせずに帯電粒子検出手段側へ導くことが出
来る。また請求項3の構成では、電場で偏向させるの
で、やはり同様に帯電粒子検出手段へ導くことができ
る。また請求項4の方法によれば、上記のような加工部
位の状態がモニタできて加工制御が容易にできる。そし
て請求項5の方法によれば、帯電粒子の発生が間欠的に
なり、帯電粒子が残渣として加工部に残留しない。
[Function] When the exhaust conductance is increased during laser ablation to actively eject ions from the bottom of the processing hole, a part of charged particles such as an electric field or a magnetic field is used to control some charged particles in a mass analyzer or the like. Guide to charged particle detection means,
Detects which region of the material to be processed the charged particles emitted during processing belong to. As a result, the degree of processing or the processing depth is known, and the laser irradiation can be controlled. In the configuration of claim 2, the magnetic field is used as the particle scattering control means, and the charged particles can be guided to the charged particle detection means side without being directed to the objective lens side by the Lorentz force. Further, in the structure of the third aspect, since it is deflected by the electric field, it can be similarly guided to the charged particle detecting means. Further, according to the method of claim 4, the state of the processed portion as described above can be monitored, and the processing control can be facilitated. According to the method of claim 5, the charged particles are generated intermittently, and the charged particles do not remain as a residue in the processed portion.

【0011】[0011]

【発明の効果】本発明は、レーザ加工中の状態がモニタ
できて、加工位置に対する予めの条件出しを必要とせず
加工が実施でき、大幅に工程が短縮されるという効果が
ある。請求項2の構成では、強力な磁場を永久磁石等で
形成することが容易なので、容易に帯電粒子検出手段へ
帯電粒子を導くことができ、このような微細加工の実現
が容易であるという効果を有する。請求項3の構成で
は、電界印加を容易に制御できるので、帯電粒子検出手
段への導入の微調整等が容易である利点を持つ。また従
来どおりパルス動作で加工と残渣除去を交互に行なうこ
とができるので効率よく加工が進む。
The present invention has the effect that the state during laser processing can be monitored and that processing can be performed without the need for preconditioning for the processing position, and the number of steps is greatly shortened. According to the configuration of claim 2, since it is easy to form a strong magnetic field with a permanent magnet or the like, the charged particles can be easily guided to the charged particle detection means, and such fine processing can be easily realized. Have. According to the third aspect of the invention, since the electric field application can be easily controlled, there is an advantage that fine adjustment of the introduction to the charged particle detection means is easy. Further, as in the prior art, it is possible to perform the machining and the residue removal alternately by the pulse operation, so the machining proceeds efficiently.

【0012】[0012]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は本発明を実施する真空槽(真空チャン
バ)1の模式断面図で、被加工材料である試料4は、図
示しない真空ポンプで減圧された真空槽1内の対向電極
2、3の間に設置される。なお、下の対向電極を下部電
極2、上の対向電極を上部第一電極3と呼ぶことにす
る。試料4の表面に垂直に加工孔を形成するよう、レー
ザビーム5(以下レーザ光と記す)が石英等の透過窓7
を通して、対物レンズ6によって2μm以下に集光され
て照射される。その照射中心線が光軸10である。レー
ザ光5は、波長193nm の ArFエキシマレーザ装置(図示
しない)を用い、試料4にレーザアブレーションを生じ
させている。またレーザ光5は、所定の加工部位に照射
できるように水平方向に移動可能となっている。対向電
極2、3は高圧電源(図示しない)によって、試料4に
対して加工方向である垂直方向に電界がかかるように配
置され、透過窓7を透過したレーザ光5は上部第一電極
3に設けられた開口部より試料4に照射される。
EXAMPLES The present invention will be described below based on specific examples. FIG. 1 is a schematic cross-sectional view of a vacuum chamber (vacuum chamber) 1 for carrying out the present invention, in which a sample 4 as a material to be processed is placed between opposing electrodes 2 and 3 in the vacuum chamber 1 whose pressure is reduced by a vacuum pump (not shown). Is installed in. The lower counter electrode is called the lower electrode 2 and the upper counter electrode is called the upper first electrode 3. A laser beam 5 (hereinafter referred to as a laser beam) is transmitted through a transmission window 7 made of quartz or the like so as to form a processing hole perpendicularly to the surface of the sample 4.
Through the objective lens 6 and condensed to 2 μm or less for irradiation. The irradiation center line is the optical axis 10. The laser light 5 uses an ArF excimer laser device (not shown) having a wavelength of 193 nm to cause laser ablation on the sample 4. Further, the laser light 5 is movable in the horizontal direction so that it can irradiate a predetermined processing site. The counter electrodes 2 and 3 are arranged by a high-voltage power supply (not shown) so that an electric field is applied to the sample 4 in a vertical direction which is a processing direction, and the laser light 5 transmitted through the transmission window 7 is transmitted to the upper first electrode 3. The sample 4 is irradiated through the provided opening.

【0013】そして、対向電極の上に設けられた静磁場
11によって光軸方向10と垂直方向に磁界がかけられ
るようになっており、試料4から飛び出した帯電粒子
(飛散粒子群)8は静磁場11と光軸10とに対してほ
ぼ直角方向に向かい、そのあたりに設置されている帯電
粒子種類分析手段である質量分析器9に導入される。な
お図1で、静磁場11を発生させる磁場コイル12を矩
形の点線で範囲を示してあるが、実際に磁場コイル12
や静磁場11が矩形状である必要はなく、図1は模式図
にすぎない。
A static magnetic field 11 provided on the counter electrode is adapted to apply a magnetic field in a direction perpendicular to the optical axis direction 10, and the charged particles (scattered particle group) 8 jumping out from the sample 4 are statically moved. The magnetic field 11 is directed in a direction substantially perpendicular to the optical axis 10 and is introduced into a mass analyzer 9, which is a charged particle type analyzing means installed around the direction. In FIG. 1, the range of the magnetic field coil 12 for generating the static magnetic field 11 is shown by a rectangular dotted line.
The static magnetic field 11 does not need to be rectangular, and FIG. 1 is only a schematic diagram.

【0014】さらに、帯電粒子8の速度が大きくて質量
分析器9に導入することができない場合も考慮して、飛
び出してきた帯電粒子を減速させるように逆向きの減速
電界14を印加するための第2電極13が上の対向電極
3の上側に設けられていて、帯電粒子8の速度を減速さ
せる。この第2電極13に印加する電圧が調整し易いの
で、静磁場強度を調節しなくても、この第2電極13の
電圧調整によって、質量分析器9に導入させることがで
きる。
Further, in consideration of the case where the charged particles 8 cannot be introduced into the mass analyzer 9 due to a high velocity, the reverse deceleration electric field 14 is applied so as to decelerate the ejected charged particles. The second electrode 13 is provided on the upper side of the upper counter electrode 3 and reduces the speed of the charged particles 8. Since the voltage applied to the second electrode 13 is easy to adjust, it can be introduced into the mass spectrometer 9 by adjusting the voltage of the second electrode 13 without adjusting the static magnetic field strength.

【0015】帯電粒子種類分析手段である質量分析器9
は、四重極(四極子電極)を用いる方式が小型軽量であ
り便利である。この質量分析器9の原理や作用は従来公
知であるので詳しい説明は省略する。
Mass spectrometer 9 as means for analyzing charged particle type
The method using a quadrupole (quadrupole electrode) is small and lightweight and convenient. Since the principle and operation of the mass spectrometer 9 are conventionally known, detailed description thereof will be omitted.

【0016】質量分析器9の設置は、帯電粒子の進行方
向にあたる部位ならどこでも良い。例えば、質量分析器
9の検出部をレーザ光軸10に直交する平面内で光軸方
向に向けて設置し、静磁場11の磁場を、3000 Gauss、
その領域が1cm 径とした場合、減速電界14の値を調整
して、この電界14の出口、即ち静磁場11の入口でイ
オンの並進運動エネルギーが10eV程度になるようにす
る。このとき、各々のイオンの旋回半径は、そのイオン
の種類によっても違うが、およそ5mm 〜1cm になって、
静磁場11の領域内で90°程度その進路を曲げられ、検
出部に導入されると考えられる。同時にこの作用によっ
て、イオン化した帯電粒子は進路を曲げられるため透過
窓7に飛来して、そこに付着することはなくなる。従
来、帯電粒子がこの透過窓7に付着して一種の蒸着膜が
形成されて入射レーザ光の強度が低下していたことが抑
制される。
The mass spectrometer 9 may be installed at any position corresponding to the traveling direction of the charged particles. For example, the detector of the mass spectrometer 9 is installed in the plane orthogonal to the laser optical axis 10 in the optical axis direction, and the magnetic field of the static magnetic field 11 is 3000 Gauss,
When the area has a diameter of 1 cm, the value of the deceleration electric field 14 is adjusted so that the translational kinetic energy of the ions becomes about 10 eV at the exit of the electric field 14, that is, the entrance of the static magnetic field 11. At this time, the turning radius of each ion is about 5 mm to 1 cm, though it depends on the type of ion.
It is considered that the course of the static magnetic field 11 is bent by about 90 ° and is introduced into the detection unit. At the same time, due to this action, the ionized charged particles are prevented from coming to the transmission window 7 and adhering thereto because the course of the ionization is bent. Conventionally, it is possible to prevent the charged particles from adhering to the transmission window 7 and forming a kind of vapor deposition film, thereby lowering the intensity of the incident laser light.

【0017】なお、質量分析器9によって検知されるの
は帯電粒子8の種類であり、加工部位に含まれる元素が
検出、同定される。従ってモニタ手段として加工部位の
状況を知るためには、その部位の材料が何であるのか
は、予め判っていることが必要である。その材料データ
を基にして質量分析器9から得られる元素同定データを
見て加工部位の状況が判断でき、加工を制御できる。
It is to be noted that what is detected by the mass spectrometer 9 is the type of the charged particles 8, and the element contained in the processed portion is detected and identified. Therefore, in order to know the condition of the processed part as the monitor means, it is necessary to know in advance what the material of the processed part is. Based on the material data, the element identification data obtained from the mass spectrometer 9 can be checked to determine the condition of the processed portion, and the processing can be controlled.

【0018】(第二実施例)図2は、ローレンツ力で帯
電粒子に与える静磁場11の代わりに、飛び出してきた
帯電粒子8に対して直角方向に電界をかける偏向電界を
印加するための偏向電極板15が設けてあるもので、静
磁場11の場合程、強く帯電粒子を偏向させることがで
きないので、質量分析器9を対物レンズ6の横に斜め
に、ちょうど帯電粒子8が飛行してくる方向に向けて位
置させている。帯電粒子8は試料4から飛び出したの
ち、上の対向電極3の上方に飛び出し、そこで偏向電極
の電界からクーロン力を受けて、対物レンズ6へ向かう
方向からずれて、質量分析器9へ導入される。そのた
め、透過窓7は帯電粒子8が直接当たることがなく、透
過窓7を曇らせて加工を鈍らせてしまうこともなくな
る。すなわち帯電粒子が透過窓7に当たらないように電
磁的に排除される排除手段の代わりともなる。
(Second Embodiment) FIG. 2 shows a deflection for applying a deflection electric field which applies an electric field in a direction perpendicular to the protruding charged particles 8 instead of the static magnetic field 11 given to the charged particles by Lorentz force. Since the electrode plate 15 is provided and the charged particles cannot be deflected as strongly as in the case of the static magnetic field 11, the charged particles 8 just fly in the mass analyzer 9 to the side of the objective lens 6. It is located toward the direction of coming. The charged particles 8 jump out from the sample 4 and then above the counter electrode 3 above, where they are subjected to Coulomb force from the electric field of the deflecting electrode, are deviated from the direction toward the objective lens 6, and are introduced into the mass spectrometer 9. It Therefore, the transparent window 7 is not directly contacted with the charged particles 8, and the transparent window 7 is not clouded to slow down the processing. That is, it also serves as an alternative to the excluding means for electromagnetically excluding the charged particles from hitting the transmission window 7.

【0019】例えば、帯電粒子8の運動エネルギーが10
0eV 、偏向電極板15の極板間距離が10mm、極板長さが
10mmだったとすると、この極板間に20V の電位差を印加
すれば、その進路は30°程曲げられる。この先に質量分
析器9の検出部を設置すれば良い。
For example, the kinetic energy of the charged particles 8 is 10
0eV, the distance between the plates of the deflection electrode plate 15 is 10mm, and the plate length is
If it is 10 mm, if a potential difference of 20 V is applied between the plates, the path can be bent by 30 °. The detector of the mass spectrometer 9 may be installed ahead of this.

【0020】以上のように、質量分析器9を用いたモニ
タ手段によって、帯電粒子8の種類が判別されるので、
加工状況が把握でき、必要な深さに至った時点で加工を
停止、あるいは加工部位の変更を行う。従って加工部位
を予め調べて加工時間調整をとる必要がなく、また直接
加工状況から加工対象の現状を判断でき、誤差などに対
応してきめ細かな加工ができる。
As described above, since the type of the charged particles 8 is discriminated by the monitor means using the mass spectrometer 9,
When the machining status can be grasped and the required depth is reached, the machining is stopped or the machining site is changed. Therefore, it is not necessary to check the processing site in advance and adjust the processing time, and it is possible to directly judge the current state of the processing target from the processing situation and perform fine processing corresponding to errors.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一実施例の微細加工を実施する真空槽の模式
的構成断面図。
FIG. 1 is a schematic configuration cross-sectional view of a vacuum chamber for performing microfabrication according to the first embodiment.

【図2】第二実施例の微細加工を実施する真空槽の模式
的構成断面図。
FIG. 2 is a schematic configuration cross-sectional view of a vacuum chamber for performing fine processing according to a second embodiment.

【符号の説明】[Explanation of symbols]

1 真空チャンバ 2 対向電極 3 上の対向電極 4 試料(被加工材料) 5 レーザ光 7 透過窓 8 帯電粒子 9 質量分析器(帯電粒子検出手段) 10 光軸 11 静磁場 13 第2電極 15 偏向電極板 1 vacuum chamber 2 Counter electrode Counter electrode on 3 4 sample (workpiece material) 5 laser light 7 transparent window 8 charged particles 9 Mass spectrometer (charged particle detection means) 10 optical axes 11 static magnetic field 13 Second electrode 15 Deflection electrode plate

フロントページの続き (56)参考文献 特開 平1−103840(JP,A) 特開 平4−225513(JP,A) 特開 昭63−224233(JP,A) 特開 昭63−128632(JP,A) 特開 昭63−64024(JP,A) 特開 昭53−128097(JP,A) 特開 昭48−29096(JP,A) 特開 昭51−17096(JP,A) 特開 平3−253586(JP,A) 特開 昭60−240394(JP,A) 特開 昭51−145294(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23K 26/00 - 26/42 H01L 21/302 Continuation of front page (56) Reference JP-A-1-103840 (JP, A) JP-A-4-225513 (JP, A) JP-A-63-224233 (JP, A) JP-A-63-128632 (JP , A) JP-A 63-64024 (JP, A) JP-A 53-128097 (JP, A) JP-A 48-29096 (JP, A) JP-A 51-17096 (JP, A) JP-A 3-253586 (JP, A) JP 60-240394 (JP, A) JP 51-145294 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B23K 26/00 -26/42 H01L 21/302

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被加工材料を真空槽内に設置し、前記被加
工材料に対してレーザ入射方向に電界を印加し、レーザ
アブレーションでプラスに帯電させた前記被加工材料の
飛散粒子を、対向電極に印加した電界により強制排除し
つつ、前記被加工材料を加工する微細加工装置におい
て、 前記帯電粒子の種類を判別する帯電粒子種類判別手段
と、 前記帯電粒子の飛散方向を制御すると共に、飛散する前
記帯電粒子を前記帯電粒子種類判別手段に導く粒子飛散
制御手段とを備え、 前記帯電粒子種類判別手段で、加工中の加工部位の状態
を常時モニタすることにより、前記レーザアブレーショ
ンを制御することを特徴とする微細加工装置。
1. A material to be processed is placed in a vacuum chamber, an electric field is applied to the material to be processed in a laser incident direction, and scattered particles of the material to be processed which are positively charged by laser ablation are opposed to each other. In a microfabrication device for processing the material to be processed while forcibly excluding it by an electric field applied to an electrode, a charged particle type determination unit that determines the type of the charged particles, and a scattering direction while controlling the scattering direction of the charged particles. Controlling the laser ablation by means of particle scattering control means for guiding the charged particles to the charged particle type discriminating means, wherein the charged particle type discriminating means constantly monitors the state of the processing site during processing. A microfabrication device.
【請求項2】前記粒子飛散制御手段が、前記レーザ入射
方向と直角方向に印加した磁場であることを特徴とする
請求項1に記載の微細加工装置。
2. The microfabrication device according to claim 1, wherein the particle scattering control means is a magnetic field applied in a direction perpendicular to the laser incident direction.
【請求項3】前記粒子飛散制御手段が、前記レーザ入射
方向と平行、かつ前記対向電極の上に同軸で、かつ反対
向きに電界印加された電場であることを特徴とする請求
項1に記載の微細加工装置。
3. The particle scattering control means is an electric field in which an electric field is applied in parallel with the laser incident direction, coaxially with the counter electrode, and in the opposite direction. Fine processing equipment.
【請求項4】被加工材料を真空槽内に設置し、前記被加
工材料に対してレーザ入射方向に電界を印加し、レーザ
アブレーションでプラスに帯電させた前記被加工材料の
飛散粒子を、対向電極に印加した電界により強制排除し
つつ、前記被加工材料を加工する微細加工方法におい
て、 粒子飛散制御手段により、前記帯電粒子の飛散方向を制
御すると共に、飛散する前記帯電粒子を帯電粒子種類判
別手段に導き、 前記帯電粒子種類判別手段により前記帯電粒子の種類を
判別して前記レーザアブレーションを制御することを特
徴とする微細加工方法。
4. A material to be processed is placed in a vacuum chamber, an electric field is applied to the material to be processed in a laser incident direction, and scattered particles of the material to be processed which are positively charged by laser ablation are opposed to each other. In a microfabrication method for processing the material to be processed while forcibly excluding it by an electric field applied to an electrode, the scattering direction of the charged particles is controlled by a particle scattering control means, and the scattered charged particles are discriminated by the charged particle type. A microfabrication method, wherein the laser ablation is controlled by determining the type of the charged particles by the charged particle type determination means.
【請求項5】前記粒子飛散制御手段が、一組の電極対に
よる静電界印加、もしくは磁場発生手段による静磁場印
加、もしくは前記静電界印加かつ前記静磁場印加、のい
ずれかによることを特徴とする請求項4記載の微細加工
方法。
5. The particle scattering control means is based on either electrostatic field application by a pair of electrode pairs, static magnetic field application by magnetic field generation means, or electrostatic field application and static magnetic field application. The fine processing method according to claim 4.
【請求項6】前記レーザアブレーションのレーザ照射を
パルス駆動することを特徴とする請求項4又は5記載の
微細加工方法。
6. The fine processing method according to claim 4, wherein the laser irradiation of the laser ablation is pulse-driven.
JP27842894A 1994-10-17 1994-10-17 Fine processing device and fine processing method Expired - Fee Related JP3404930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27842894A JP3404930B2 (en) 1994-10-17 1994-10-17 Fine processing device and fine processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27842894A JP3404930B2 (en) 1994-10-17 1994-10-17 Fine processing device and fine processing method

Publications (2)

Publication Number Publication Date
JPH08118046A JPH08118046A (en) 1996-05-14
JP3404930B2 true JP3404930B2 (en) 2003-05-12

Family

ID=17597215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27842894A Expired - Fee Related JP3404930B2 (en) 1994-10-17 1994-10-17 Fine processing device and fine processing method

Country Status (1)

Country Link
JP (1) JP3404930B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6843927B2 (en) * 2002-08-27 2005-01-18 Kla-Tencor Technologies Corporation Method and apparatus for endpoint detection in electron beam assisted etching
US20170246709A1 (en) * 2014-09-19 2017-08-31 Moog Inc. Control of laser ablation condensate products within additive manufacturing systems
JP2020171939A (en) * 2019-04-10 2020-10-22 株式会社ブイ・テクノロジー Laser repair method and laser repair equipment
CN113909742B (en) * 2021-09-30 2023-10-31 北京博清科技有限公司 welding device
CN115488505A (en) * 2022-09-27 2022-12-20 哈尔滨工业大学(威海) Electromagnetic device and method for solving problem of energy shielding of magnesium alloy negative-pressure laser welding

Also Published As

Publication number Publication date
JPH08118046A (en) 1996-05-14

Similar Documents

Publication Publication Date Title
US7598495B2 (en) Methods and systems for trapping ion beam particles and focusing an ion beam
US8431891B2 (en) Dual beam apparatus with tilting sample stage
US7078712B2 (en) In-situ monitoring on an ion implanter
EP1981059B1 (en) Ion implanation apparatus
JP4176159B2 (en) Environmentally controlled SEM using magnetic field for improved secondary electron detection
KR970008344A (en) Method and apparatus for removing contaminants on the inner surface of an ion beam injector
US20140124367A1 (en) Sample preparation apparatus, sample preparation method, and charged particle beam apparatus using the same
JP3404930B2 (en) Fine processing device and fine processing method
US7235795B2 (en) Semiconductor device manufacturing apparatus and a method of controlling a semiconductor device manufacturing process
JPS63211551A (en) Charged particle beam device
EP3002775A1 (en) Chicane blanker assemblies for charged particle beam systems and methods of using the same
JPH06310473A (en) Fine machining device and method therefor
KR101757215B1 (en) Particle beam mass analyzer having a second electronic controller
JPWO2020110276A1 (en) Charged particle beam device
JP2001216933A (en) Field-ion microscope for atom probe
JPH0727771A (en) Scanning probe microscope
EP4030235A1 (en) A contamination reduction system
JPH0636721A (en) Slip gap width automatic adjusting method for objective slit plate of ion beam analyzer
JPH08222168A (en) Ion beam device
JPH0590145A (en) Alignment equipment of multi charged beam aligner
JP2002043293A (en) Method and device for dry etching
JPH10261378A (en) Ion irradiation apparatus
JP2735192B2 (en) Energy beam processing method and apparatus
JP2016537785A (en) Multi-step location specific process for substrate edge profile correction for GCIB systems
JPH01128341A (en) Mass analyzer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees