JP3490871B2 - Hydrogen storage alloy particles and method for producing the same - Google Patents
Hydrogen storage alloy particles and method for producing the sameInfo
- Publication number
- JP3490871B2 JP3490871B2 JP26322497A JP26322497A JP3490871B2 JP 3490871 B2 JP3490871 B2 JP 3490871B2 JP 26322497 A JP26322497 A JP 26322497A JP 26322497 A JP26322497 A JP 26322497A JP 3490871 B2 JP3490871 B2 JP 3490871B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- hydrogen storage
- storage alloy
- hydrogen
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水素との反応速度
の速い金属間化合物の相を表層部に有する水素吸蔵合金
の粒子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to particles of a hydrogen storage alloy having a surface layer containing an intermetallic compound phase having a high reaction rate with hydrogen.
【0002】[0002]
【従来の技術】水素吸蔵合金は、ニッケル水素電池の電
極材料として使用される他、水素の貯蔵・輸送、蓄熱、
ヒートポンプなどの熱利用システムへ適用されている。
例えばヒートポンプの熱利用システムに水素吸蔵合金を
使用する場合、1時間に数回もの頻度で水素の吸蔵と放
出が繰り返されるから、合金と水素との反応速度は合金
の性能を左右する大きな要因の1つとなる。従って、水
素との反応速度を大きくすることは水素吸蔵合金の特性
向上に大きく寄与する。2. Description of the Related Art Hydrogen storage alloys are used as electrode materials for nickel-hydrogen batteries, as well as for storing and transporting hydrogen, storing heat,
It is applied to heat utilization systems such as heat pumps.
For example, when a hydrogen storage alloy is used for a heat utilization system of a heat pump, hydrogen is repeatedly stored and released several times per hour, and thus the reaction rate between the alloy and hydrogen is a major factor that determines the performance of the alloy. It will be one. Therefore, increasing the reaction rate with hydrogen greatly contributes to improving the characteristics of the hydrogen storage alloy.
【0003】熱利用システムに使用する水素吸蔵合金
は、通常、粉末の形態である。それゆえ、水素吸蔵合金
の水素化反応速度を大きくするには、粒子の表面にコア
部よりも反応速度の速い合金の相を形成させることが有
効である。これまで、水素吸蔵合金の粉体に化学処理を
施すことにより表面を改質したり、メカニカルアロイン
グ処理を施して水素化反応速度の大きな水素化物粉末を
母粒子表面に固着させること等が行われている。Hydrogen storage alloys used in heat utilization systems are usually in powder form. Therefore, in order to increase the hydrogenation reaction rate of the hydrogen storage alloy, it is effective to form an alloy phase having a faster reaction rate than the core portion on the surface of the particles. Until now, the surface of hydrogen storage alloy powder has been modified by chemical treatment, or mechanical alloying treatment has been performed to fix hydride powder with a high hydrogenation reaction rate to the surface of the base particles. It is being appreciated.
【0004】[0004]
【発明が解決しようとする課題】しかし、従来の表面処
理法では、母相とは異なる合金系に水素吸蔵合金を付加
するものであるから、表面状態の制御が困難であり、複
雑な工程を必要とする。また、このようにして作製され
た水素吸蔵合金であっても、水素との反応速度の向上効
果は数%程度にとどまっているのが実状である。However, in the conventional surface treatment method, since the hydrogen storage alloy is added to the alloy system different from the matrix phase, it is difficult to control the surface state and complicated steps are required. I need. Even in the hydrogen storage alloy produced in this manner, the effect of improving the reaction rate with hydrogen is actually only about several percent.
【0005】ところで、水素吸蔵合金の中には、合金自
体に反応速度の速い相が存在することが判っているもの
がある。例えば、LaNi3.5乃至LaNi5などのLa
−Ni系の水素吸蔵合金では、Ce5Co19型結晶構造
を有するLa5Ni19相が存在し、この相は、LaNi3
相、LaNi5相などよりも、水素との反応速度が速い
ことが知られている。本発明者らは、組織の制御を行な
うことにより、La5Ni19相などのCe5Co19型結晶
構造の相を、粒子の表層部に選択的に形成させることが
可能であると考え、本発明を達成するに至った。本発明
の目的は、熱処理による組織制御により、水素との反応
速度の速い相を表層部に形成した水素吸蔵合金の粒子を
提供することである。By the way, some hydrogen storage alloys are known to have a phase having a fast reaction rate in the alloy itself. For example, LaNi such as LaNi 3.5 to LaNi 5
In the —Ni-based hydrogen storage alloy, there is a La 5 Ni 19 phase having a Ce 5 Co 19 type crystal structure, and this phase is LaNi 3
It is known that the reaction rate with hydrogen is higher than that of the phase, the LaNi 5 phase, and the like. The inventors believe that it is possible to selectively form a phase having a Ce 5 Co 19 type crystal structure such as a La 5 Ni 19 phase in the surface layer portion of the grain by controlling the structure, The present invention has been accomplished. An object of the present invention is to provide particles of a hydrogen storage alloy in which a phase having a fast reaction rate with hydrogen is formed in the surface layer portion by controlling the structure by heat treatment.
【0006】[0006]
【課題を解決するための手段】本発明に係る水素吸蔵合
金の粒子は、組成が一般式AB x ( 但し、xは3 . 5〜5 )
で表され、表層部に組成が一般式A 5 B 19 で表されるC
e5Co19型結晶構造の相を有することを特徴とする。
Aは、La、Ce、Nd、Pr、Y、Sm及びGdから
なる群から選択される少なくとも1種の元素、Bは、N
i、Co、Cr、Mn、Al、V、Fe、In、Si、
Ge及びSnからなる群から選択される少なくとも1種
の元素である。組成が一般式A5B19(但し、Aは、L
a、Ce、Nd、Pr、Y、Sm及びGdからなる群か
ら選択される少なくとも1種の元素、Bは、Ni、C
o、Cr、Mn、Al、V、Fe、In、Si、Ge及
びSnからなる群から選択される少なくとも1種の元
素)で表され、Ce5Co19型結晶構造の相を表層部に有
する水素吸蔵合金の粒子は、一般式ABx(但し、xは
3.5〜5)で表される組成の水素吸蔵合金の粉末を、C
e5Co19型結晶構造の相が安定な平衡相として存在し
得る温度に加熱した後、10℃/分以上の冷却速度で冷
却することにより作製することができる。The particles of the hydrogen storage alloy according to the present invention have a composition of the general formula AB x ( where x is 3.5 to 5 ) .
C having the composition represented by the general formula A 5 B 19 in the surface layer portion.
It is characterized by having a phase of an e 5 Co 19 type crystal structure .
A is at least one element selected from the group consisting of La, Ce, Nd, Pr, Y, Sm and Gd, and B is N
i, Co, Cr, Mn, Al, V, Fe, In, Si,
It is at least one element selected from the group consisting of Ge and Sn. The composition is represented by the general formula A 5 B 19 (where A is L
a, Ce, Nd, Pr, Y, Sm and at least one element selected from the group consisting of Gd, B is Ni, C
o, Cr, Mn, Al, V, Fe, In, Si, Ge and Sn) and has a phase of Ce 5 Co 19 type crystal structure in the surface layer portion. The particles of the hydrogen-absorbing alloy are obtained by adding the powder of the hydrogen-absorbing alloy having the composition represented by the general formula AB x (where x is 3.5 to 5) to C
It can be produced by heating to a temperature at which the phase of the e 5 Co 19 type crystal structure can exist as a stable equilibrium phase and then cooling at a cooling rate of 10 ° C./min or more.
【0007】[0007]
【作用】Ce5Co19型結晶構造の相は、AB3型、AB
4型、AB5型などの結晶相と比べて、水素との反応速度
が速いという性質がある。従って、表層部にこのCe5
Co19型結晶構造の相を有する水素吸蔵合金の粒子は水
素との反応が促進される。なお、表面から少なくとも約
50nmまでの部分に、Ce5Co19型結晶構造の相が約
50体積%以上存在すれば、水素化反応の反応促進効果
を享受することができる。Functions: The phases of the Ce 5 Co 19 type crystal structure are AB 3 type and AB type.
Compared with crystal phases such as 4 type and AB 5 type, it has a property that the reaction rate with hydrogen is faster. Therefore, the Ce 5
The particles of the hydrogen storage alloy having the phase of Co 19 type crystal structure promote the reaction with hydrogen. In addition, if the phase of Ce 5 Co 19 type crystal structure is present in an amount of about 50% by volume or more in the portion at least about 50 nm from the surface, the reaction promoting effect of the hydrogenation reaction can be enjoyed.
【0008】[0008]
【発明の実施の形態】まず、本発明に係る水素吸蔵合金
の粒子の作製について説明する。例えば、LaNi4.5
の水素吸蔵合金の場合、この組成近傍にて、900℃〜
1000℃の温度域でLa5Ni19の金属間化合物の相
が存在することが知られている。このLa5Ni19相の
結晶構造を図1に示している。この相は、六方晶系のC
e5Co19型構造であり、底面上に多数の積層欠陥を含
んでおり、この積層欠陥の存在により、水素との反応速
度がLaNi5相よりも速い。BEST MODE FOR CARRYING OUT THE INVENTION First, preparation of particles of a hydrogen storage alloy according to the present invention will be described. For example, LaNi 4.5
In the case of the hydrogen storage alloy of, 900 ° C-
It is known that an intermetallic compound phase of La 5 Ni 19 exists in the temperature range of 1000 ° C. The crystal structure of this La 5 Ni 19 phase is shown in FIG. This phase is hexagonal C
It has an e 5 Co 19 type structure and contains a large number of stacking faults on the bottom surface. Due to the existence of these stacking faults, the reaction rate with hydrogen is faster than that of the LaNi 5 phase.
【0009】前述のLaNi4.5の水素吸蔵合金の場
合、La5Ni19相が存在する温度域は知られている
が、このLa5Ni19相は、最新の平衡状態図にも記載
されていない相である。このため、水素吸蔵合金の種類
によっては、La5Ni19相の存在する温度域が不明な
ものもあり、その場合には、合金の相状態の温度依存性
を把握するため、所望組成の水素吸蔵合金の粉末試料を
作製しておき、熱分析試験を行なう必要がある。熱分析
試験は、数mmg〜数十mmgの合金サンプルと、標準試料で
あるα−Al2O3サンプルをそれぞれ試料容器に入れ、
Arガスなどの不活性ガス中で5℃〜10℃/minの昇
温速度で加熱する。合金サンプルに相転移が生じると、
標準試料との間で温度勾配が生じるため、熱の流れが発
生する。この熱の流れを測定することにより、La5N
i19相の生じる温度を知ることができる。粉末試料を、
熱分析により求めたLa5Ni19相の生成温度に加熱し
た後、10℃/分以上の冷却速度で急冷する熱処理を行
ない、水素化特性を測定する。急冷するのは、ある温度
域で存在するLa5Ni19相を、冷却途中で相変化させ
ることなく常温でもその相状態を保持させるためであ
り、冷却速度はできるだけ速い方が好ましい。水素化特
性はジーベルツ装置を用いて測定し、その測定結果に基
づいてP−C−T特性図を作成する。図2は、LaNi
4.5のP−C−T特性図を示しており、La5Ni19相が
存在する場合、プラトー領域は2段に現われる(線(i)参
照)のに対し、La5Ni19相が存在しないときは、現わ
れるプラトー領域は1段のみである(線(ii)参照)。な
お、線(i)において、がLaNi4.5のプラトー領域で
あり、がLa5Ni19相のプラトー領域である。In the case of the above-mentioned LaNi 4.5 hydrogen storage alloy, the temperature range in which the La 5 Ni 19 phase exists is known, but this La 5 Ni 19 phase is not described in the latest equilibrium diagram. It is a phase. Therefore, depending on the type of hydrogen storage alloy, the temperature range in which the La 5 Ni 19 phase exists may be unknown. In that case, in order to understand the temperature dependence of the phase state of the alloy, hydrogen of the desired composition should be used. It is necessary to prepare a powder sample of the storage alloy and perform a thermal analysis test. In the thermal analysis test, an alloy sample of several mmg to several tens of mmg and an α-Al 2 O 3 sample, which is a standard sample, are placed in a sample container,
Heating is performed at a temperature rising rate of 5 ° C. to 10 ° C./min in an inert gas such as Ar gas. When a phase transition occurs in an alloy sample,
A heat flow occurs due to the temperature gradient between the standard sample. By measuring this heat flow, La 5 N
The temperature at which the i 19 phase occurs can be known. Powder sample,
After heating to the formation temperature of the La 5 Ni 19 phase determined by thermal analysis, a heat treatment of quenching at a cooling rate of 10 ° C./min or more is performed to measure the hydrogenation characteristics. The rapid cooling is performed in order to maintain the La 5 Ni 19 phase existing in a certain temperature range at room temperature without changing the phase during the cooling, and it is preferable that the cooling rate is as fast as possible. The hydrogenation characteristic is measured using a Sibelts apparatus, and a P-C-T characteristic diagram is created based on the measurement result. Figure 2 shows LaNi
FIG. 4 shows a P-C-T characteristic diagram of 4.5 , and when the La 5 Ni 19 phase is present, the plateau region appears in two stages (see line (i)), whereas the La 5 Ni 19 phase is not present. Sometimes, the plateau region that appears is only one stage (see line (ii)). In the line (i), is the plateau region of LaNi 4.5 and is the plateau region of the La 5 Ni 19 phase.
【0010】このように、幾つかの粉末試料について熱
分析試験を行ない、どの試料でLa5Ni19相が形成さ
れたかを調べることにより、La5Ni19相が形成され
る温度域を決定することができる。[0010] In this manner, subjected to thermal analysis for several powder sample, by examining whether La 5 Ni 19 phase is formed in any sample, to determine the temperature range in which La 5 Ni 19 phase is formed be able to.
【0011】水素吸蔵合金粉末を熱処理炉の中に装入
し、La5Ni19相が形成される温度域で加熱し、所定
の冷却速度で冷却することにより、表層部にCe5Co
19型結晶構造を有する水素吸蔵合金粒子が作製される。
熱処理炉は、例えば、内部を真空引きした後不活性ガス
雰囲気を作ることのできる加熱室と、不活性ガス雰囲気
を作ることのできる冷却室と、加熱室と冷却室の間を気
密に連繋する搬送路と、加熱室で加熱された水素吸蔵合
金粉末を加熱室から移送路を通して冷却室へ移動させる
移送手段を具えたものが使用される。The hydrogen-absorbing alloy powder was charged into a heat treatment furnace, heated in a temperature range where the La 5 Ni 19 phase was formed, and cooled at a predetermined cooling rate, so that the surface layer portion was Ce 5 Co.
Hydrogen storage alloy particles having a 19- type crystal structure are produced.
The heat treatment furnace is, for example, a heating chamber capable of creating an inert gas atmosphere after vacuuming the inside, a cooling chamber capable of creating an inert gas atmosphere, and the heating chamber and the cooling chamber are hermetically connected to each other. A transport path and a transfer means for moving the hydrogen storage alloy powder heated in the heating chamber from the heating chamber to the cooling chamber through the transfer path are used.
【0012】水素吸蔵合金粉末は、例えば10-2Torr以
下にまで真空引きした後、水素吸蔵合金に対して不活性
なガス(例えば、Arガス)雰囲気下で昇温し、La5N
i19相が形成される温度域(水素吸蔵合金がLaNi4.5
の場合は900〜1000℃の温度)で所定時間保持す
る。加熱完了した後、水素吸蔵合金粉末は移送手段によ
り、加熱室から搬送路を通って冷却室へ送られる。冷却
室の中は、水素吸蔵合金に対して不活性なガス(例え
ば、Arガス)が、例えば約5m3/分の流量で流されて
おり、不活性ガスは、冷却室に設けられた攪拌ファンに
より水素吸蔵合金粉末に吹き付けられ、水素吸蔵合金粉
末は冷却される。The hydrogen-absorbing alloy powder is evacuated to, for example, 10 -2 Torr or less, and then heated in an atmosphere (for example, Ar gas) inert to the hydrogen-absorbing alloy to obtain La 5 N.
i 19 Phase temperature range (hydrogen storage alloy is LaNi 4.5
In this case, the temperature is kept at 900 to 1000 ° C.) for a predetermined time. After the heating is completed, the hydrogen storage alloy powder is sent from the heating chamber to the cooling chamber through the transfer path by the transfer means. A gas (eg, Ar gas) inert to the hydrogen storage alloy is flown in the cooling chamber at a flow rate of, for example, about 5 m 3 / min, and the inert gas is agitated in the cooling chamber. The hydrogen storage alloy powder is blown by the fan to cool the hydrogen storage alloy powder.
【0013】ガスを水素吸蔵合金粉末に吹き付ける強さ
は、水素吸蔵合金の冷却速度が約10℃/分以上にすれ
ば、粒子の表層部にLa5Ni19相を形成するという目
的を達成することができるが、約50℃/分以上が望ま
しく、約100℃/分以上にすることがより望ましい。
水素吸蔵合金の粒子の大きさは、粒径約100μm程度
のものが好適に使用されるが、約30〜200μmの範
囲内であれば、特に支障はない。The strength at which the gas is blown onto the hydrogen-absorbing alloy powder achieves the purpose of forming the La 5 Ni 19 phase on the surface layer of the particles when the cooling rate of the hydrogen-absorbing alloy is about 10 ° C./min or more. However, about 50 ° C./min or more is preferable, and about 100 ° C./min or more is more preferable.
The particle size of the hydrogen storage alloy is preferably about 100 μm, but there is no particular problem as long as it is within the range of about 30 to 200 μm.
【0014】[0014]
【実施例】発明例1
La:Niの原子比が1:4.5となるように配合した
原料金属粉末をプレス成形した後、アーク炉で溶解し、
その後放冷してLaNi4.5のボタン状インゴットを作
製した。このインゴットを粉砕し、平均粒径約100μ
mの供試粉末を得た。この供試粉末50gを試料容器に
入れて加熱炉の中で加熱し、950℃の温度で8時間保
持した後、冷却室に移送し、該冷却室の中でArガスの
吹付けによる急冷処理を施した。EXAMPLES Inventive Example 1 A raw metal powder compounded to have an atomic ratio of La: Ni of 1: 4.5 was press-molded and then melted in an arc furnace.
Then, it was allowed to cool and a LaNi 4.5 button-shaped ingot was produced. This ingot is crushed and the average particle size is about 100μ.
m test powder was obtained. 50 g of this test powder was placed in a sample container, heated in a heating furnace, held at a temperature of 950 ° C. for 8 hours, then transferred to a cooling chamber, and rapidly cooled by blowing Ar gas in the cooling chamber. Was applied.
【0015】発明例2
La:Niの原子比が1:4.5となるように配合した
原料金属粉末をプレス成形した後、ノズルを具えたルツ
ボ上でアーク溶解により溶融し、ノズルの下方位置で高
速流動しているArガスの中へ溶湯を噴出するガスアト
マイズ法により、平均粒径約100μmの供試粉末を得
た。この供試粉末50gを、発明例1と同様に、試料容
器に入れて加熱炉の中で加熱し、950℃の温度で8時
間保持した後、冷却室に移送し、該冷却室の中でArガ
スの吹付けによる急冷処理を施した。 Inventive Example 2 A raw metal powder compounded to have an atomic ratio of La: Ni of 1: 4.5 was press-molded, then melted by arc melting on a crucible equipped with a nozzle, and positioned below the nozzle. A sample powder having an average particle size of about 100 μm was obtained by the gas atomizing method in which the molten metal was ejected into the Ar gas flowing at high speed. 50 g of this test powder was placed in a sample container and heated in a heating furnace in the same manner as in Inventive Example 1 and held at a temperature of 950 ° C. for 8 hours, and then transferred to a cooling chamber, and in the cooling chamber. A quenching process was performed by spraying Ar gas.
【0016】比較例1
発明例1と同じ要領にて作製した供試粉末50gを、試
料容器に入れて加熱炉の中で加熱し、950℃の温度で
8時間保持した後、そのまま加熱炉の中で炉冷処理を施
した。 Comparative Example 1 50 g of the test powder prepared in the same manner as in Inventive Example 1 was placed in a sample container and heated in a heating furnace and kept at a temperature of 950 ° C. for 8 hours. Furnace cooling treatment was performed therein.
【0017】上記の処理が施された供試粉末について、
電子線マイクロ分析(EPMA)により、粒子の組織状態
を観察した。実施例1及び実施例2の粒子に関して、表
面から約50nmまでの部分は、約85体積%をLa5N
i19相が占めていることが観察された。また、表面から
約100nmまでの部分では約80体積%を、表面から約
150nmの部分では約75体積%を、それぞれLa5N
i19相が占めていることが観察され、コア部では約20
体積%がLa5Ni19相であることが観察された。な
お、比較例1の粒子には、内部に微量のLa5Ni19相
が点在していることはが観察されたものの、実質的には
LaNi5相がほぼ全体を占めていた。Regarding the test powders that have been subjected to the above treatment,
The tissue state of the particles was observed by electron beam microanalysis (EPMA). Regarding the particles of Example 1 and Example 2, about 85% by volume of the portion from the surface to about 50 nm is La 5 N.
It has been observed that i 19 phase is accounted for. Further, about 80% by volume in the portion up to about 100 nm from the surface, about 75% by volume in the portion about 150 nm from the surface, La 5 N respectively.
It is observed that the i 19 phase occupies about 20 in the core part.
It was observed that the volume% was the La 5 Ni 19 phase. In addition, although it was observed that a small amount of La 5 Ni 19 phase was scattered in the particles of Comparative Example 1, the LaNi 5 phase substantially occupied the whole.
【0018】上記の処理が施された供試粉末に対し、ジ
ーベルツ装置を用いて、種々の温度における水素吸収速
度を測定した。これは、容積が既知の圧力容器内での水
素圧力の変化から水素の吸収量を測定するもので、5at
mの圧力で加圧したときの水素吸収速度を求めた。The hydrogen absorption rate at various temperatures was measured for the test powder subjected to the above-mentioned treatment using a Sibelts apparatus. This measures the amount of absorbed hydrogen from the change in hydrogen pressure in a pressure vessel of known volume.
The hydrogen absorption rate when pressurized at a pressure of m was determined.
【0019】測定結果を図3に示している。図3中、横
軸は、測定温度(単位は絶対温度)の逆数に1000を乗
じた数値を示しており、縦軸は、1gの合金が1分間に
吸収する水素ガス量を標準状態(1atm、25℃)に換算
した数値を示している。発明例1は、比較例1と比べ
て、どの温度でも水素吸収速度が約30%程度速くなっ
ていることがわかる。これは、粒子の表層部に、水素と
の反応速度の大きなLa5Ni19相が存在していること
による。また、発明例2は、発明例1よりもさらに約2
0%程度速くなっている。これは、熱処理前における粉
末の結晶粒度の違いによるもので、発明例2のアトマイ
ズ合金粉末は、アーク溶解後に機械粉砕して得られた発
明例1の粉末と比べて、急冷凝固効果により結晶粒が微
細化されているためである。それゆえ、水素吸蔵合金粉
末は、ガスアトマイズ法により作られたものを使用する
ことがより望ましいといえる。The measurement results are shown in FIG. In FIG. 3, the horizontal axis represents the value obtained by multiplying the reciprocal of the measured temperature (unit is absolute temperature) by 1000, and the vertical axis represents the amount of hydrogen gas absorbed by 1 g of the alloy in 1 minute in the standard state (1 atm. , 25 ° C.). It can be seen that the invention example 1 has a hydrogen absorption rate that is about 30% higher at any temperature than the comparative example 1. This is because the La 5 Ni 19 phase, which has a high reaction rate with hydrogen, exists in the surface layer of the particles. Inventive Example 2 is about 2 more than Inventive Example 1.
It is about 0% faster. This is due to the difference in the crystal grain size of the powder before the heat treatment, and the atomized alloy powder of Inventive Example 2 has crystal grains due to the rapid solidification effect as compared with the powder of Inventive Example 1 obtained by mechanical grinding after arc melting. This is because is miniaturized. Therefore, it can be said that it is more desirable to use the hydrogen storage alloy powder prepared by the gas atomization method.
【0020】前述したように、例えばLaNi4.5で
は、約900〜1000℃の温度域でCe5Co19型構
造のLa5Ni19相が存在するから、その温度域にて十
分加熱保持した後、急冷することにより、粒子表面にL
a5Ni19相を形成させることができる。水素吸蔵合金
はLaNi4.5合金に限らず、La:Niは、1:3.5
乃至1:5の範囲内であれば、同様にCe5Co19型構
造のLa5Ni19相を形成することは可能である。ま
た、LaとNiの二元系合金に限らず、Laを、Ce、
Nd、Pr、Y、Sm又はGdと置換し、Niを、C
o、Cr、Mn、Al、V、Fe、In、Si、Ge又
はSnと置換した他の二元系の水素吸蔵合金でもよい。
さらには、二元系合金に限らず、La、Ce、Nd、P
r、Y、Sm及びGdからなる群の中の少なくとも一種
の元素と、Ni、Co、Cr、Mn、Al、V、Fe、
In、Si、Ge及びSnからなる群の少なくとも一種
の元素を、1:3.5乃至1:5の範囲内で含有する三
元系以上の水素吸蔵合金でもよい。As described above, for example, in LaNi 4.5 , since the La 5 Ni 19 phase of Ce 5 Co 19 type structure exists in the temperature range of about 900 to 1000 ° C., after sufficiently heating and holding in that temperature range, By quenching, L on the particle surface
It can be formed a 5 Ni 19 phase. The hydrogen storage alloy is not limited to LaNi 4.5 alloy, but La: Ni is 1: 3.5.
It is possible to form the La 5 Ni 19 phase having the Ce 5 Co 19 type structure in the range of 1: 5 to 1: 5. Further, not only the binary alloy of La and Ni, but La is Ce,
Substitute with Nd, Pr, Y, Sm or Gd, and replace Ni with C
Other binary hydrogen storage alloys substituted with o, Cr, Mn, Al, V, Fe, In, Si, Ge or Sn may be used.
Furthermore, not only binary alloys but also La, Ce, Nd, P
at least one element selected from the group consisting of r, Y, Sm, and Gd, and Ni, Co, Cr, Mn, Al, V, Fe,
A ternary or higher hydrogen storage alloy containing at least one element of the group consisting of In, Si, Ge and Sn in the range of 1: 3.5 to 1: 5 may be used.
【0021】 それゆえ、本発明の水素吸蔵合金は、一
般式ABx(但し、xは3 . 5〜5)で表される組成であっ
て、Ce5Co19型結晶構造の相の組成は一般式A5B19
で表され、Aは、La、Ce、Nd、Pr、Y、Sm及
びGdからなる群から選択される少なくとも1種の元
素、Bは、Ni、Co、Cr、Mn、Al、V、Fe、
In、Si、Ge及びSnからなる群から選択される少
なくとも1種の元素として示すことができる。[0021] Thus, the hydrogen storage alloy of the present invention have the general formula AB x (where, x is from 3.5 to 5) a composition represented by the composition of the phases of Ce 5 Co 19 type crystal structure General formula A 5 B 19
, A is at least one element selected from the group consisting of La, Ce, Nd, Pr, Y, Sm and Gd, B is Ni, Co, Cr, Mn, Al, V, Fe,
It can be shown as at least one element selected from the group consisting of In, Si, Ge, and Sn.
【0022】本発明の水素吸蔵合金の粒子は、表面から
50nmまでの表層部の少なくとも約50体積%以上がC
e5Co19型結晶構造の相であれば、水素との反応促進
効果を達成できる。なお、水素との反応促進効果をより
高めるには、約60体積%以上が好ましく、約70%以
上がより好ましい。In the particles of the hydrogen storage alloy of the present invention, at least about 50% by volume of the surface layer portion up to 50 nm from the surface is C.
The phase having the e 5 Co 19 type crystal structure can achieve the effect of promoting the reaction with hydrogen. In order to further enhance the reaction promoting effect with hydrogen, it is preferably about 60% by volume or more, more preferably about 70% or more.
【0023】[0023]
【発明の効果】本発明の水素吸蔵合金の粒子は、一般式
AB x ( 但し、xは3 . 5〜5 ) で表され、粒子の表層部に
水素との反応速度の大きな一般式A 5 B 19 で表されるC
e5Co19型結晶構造の相を形成したから、水素の吸
収、放出過程における水素との反応速度が速く、ヒート
ポンプのように1時間に数回もの水素吸収放出の頻度で
使用される用途に特に有利である。The particles of the hydrogen storage alloy of the present invention have the general formula
C represented by the general formula A 5 B 19 which is represented by AB x ( where x is 3.5 to 5 ) and has a large reaction rate with hydrogen on the surface layer of the particle .
Since it forms a phase of e 5 Co 19 type crystal structure, it has a fast reaction rate with hydrogen in the absorption and desorption process of hydrogen, and it is used for applications such as heat pumps that absorb and desorb hydrogen several times per hour. It is particularly advantageous.
【図1】La5Ni19相の結晶構造を示す図である。FIG. 1 is a diagram showing a crystal structure of a La 5 Ni 19 phase.
【図2】LaNi4.5合金のP−C−T特性図である。FIG. 2 is a P-C-T characteristic diagram of LaNi 4.5 alloy.
【図3】実施例及び比較例の供試粉末について、温度と
水素吸蔵速度との関係を示すグラフである。FIG. 3 is a graph showing the relationship between temperature and hydrogen storage rate for the test powders of Examples and Comparative Examples.
フロントページの続き (51)Int.Cl.7 識別記号 FI H01M 4/38 H01M 4/38 A (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 - 1/02 H01M 4/24 - 4/26,4/38 Front page continuation (51) Int.Cl. 7 Identification symbol FI H01M 4/38 H01M 4/38 A (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Denki Co., Ltd. ( 58) Fields surveyed (Int.Cl. 7 , DB name) B22F 1/00-1/02 H01M 4/24-4/26, 4/38
Claims (3)
55 )) で表され、表層部に組成が一般式AAnd the composition of the surface layer is represented by the general formula A 5Five BB 1919 で表されるRepresented by
CeCe 5Five CoCo 1919 型結晶構造の相を有する水素吸蔵合金の粒Of hydrogen storage alloy having phase of crystal structure
子であって、Aは、La、Ce、Nd、Pr、Y、SmAs a child, A is La, Ce, Nd, Pr, Y, Sm
及びGdからなる群から選択される少なくとも1種の元And at least one element selected from the group consisting of Gd
素、Bは、Ni、Co、Cr、Mn、Al、V、Fe、Element B is Ni, Co, Cr, Mn, Al, V, Fe,
In、Si、Ge及びSnからなる群から選択される少A small amount selected from the group consisting of In, Si, Ge and Sn.
なくとも1種の元素であることを特徴とする水素吸蔵合Hydrogen storage characterized by being at least one element
金の粒子。Gold particles.
法により調製された粒子である請求項1に記載の水素吸The hydrogen absorbing particles according to claim 1, which are particles prepared by a method.
蔵合金の粒子。Kura alloy particles.
55 )) で表され、表層部に組成が一般式AAnd the composition of the surface layer is represented by the general formula A 5Five BB 1919 で表されるRepresented by
CeCe 5Five CoCo 1919 型結晶構造の相を有する(但し、Aは、LHas a phase of a crystal structure (where A is L
a、Ce、Nd、Pr、Y、Sm及びGdからなる群かIs it a group consisting of a, Ce, Nd, Pr, Y, Sm and Gd?
ら選択される少なくとも1種の元素、Bは、Ni、CAt least one element selected from B, Ni, C
o、Cr、Mn、Al、V、Fe、In、Si、Ge及o, Cr, Mn, Al, V, Fe, In, Si, Ge and
びSnからなる群から選択される少なくとも1種の元And at least one element selected from the group consisting of Sn
素)水素吸蔵合金の粒子からなる粉末を製造する方法でBy the method of producing powder consisting of particles of hydrogen storage alloy
あって、一般式ABYes, the general formula AB xx で表される組成の水素吸蔵合金のOf a hydrogen storage alloy with a composition represented by
粉末を、CePowder to Ce 5Five CoCo 1919 型結晶構造の相が安定な平衡相とEquilibrium phase with stable phase
して存在し得る温度に加熱し、10℃/分以上の冷却速And a cooling rate of 10 ° C / min or more.
度で冷却することを特徴とする、水素吸蔵合金の粒子かParticles of hydrogen storage alloy, characterized by cooling at
らなる粉末を製造する方法。A method for producing a powder consisting of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26322497A JP3490871B2 (en) | 1997-09-29 | 1997-09-29 | Hydrogen storage alloy particles and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26322497A JP3490871B2 (en) | 1997-09-29 | 1997-09-29 | Hydrogen storage alloy particles and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11100601A JPH11100601A (en) | 1999-04-13 |
JP3490871B2 true JP3490871B2 (en) | 2004-01-26 |
Family
ID=17386513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26322497A Expired - Fee Related JP3490871B2 (en) | 1997-09-29 | 1997-09-29 | Hydrogen storage alloy particles and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3490871B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7951326B2 (en) | 2005-08-11 | 2011-05-31 | Gs Yuasa International Ltd. | Hydrogen absorbing alloy, hydrogen absorbing alloy electrode, secondary battery and production method of hydrogen absorbing alloy |
US8343660B2 (en) | 2006-08-09 | 2013-01-01 | Gs Yuasa International Ltd. | Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2897875B1 (en) * | 2006-02-28 | 2008-12-05 | Accumulateurs Fixes | HYDRURABLE ALLOY FOR ALKALINE ACCUMULATOR |
JP2008084649A (en) * | 2006-09-27 | 2008-04-10 | Sanyo Electric Co Ltd | Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method |
CN110317974B (en) * | 2014-08-28 | 2021-02-05 | 包头稀土研究院 | Yttrium-nickel rare earth hydrogen storage alloy |
CN106521382B (en) * | 2016-10-28 | 2018-02-09 | 燕山大学 | A kind of single-phase superlattices A5B19The preparation method of type La Mg Ni base hydrogen-storing alloys |
CN111471910B (en) * | 2020-04-14 | 2021-12-03 | 包头稀土研究院 | AB3Gadolinium-containing hydrogen storage alloy, electrode, battery and preparation method thereof |
DE202022104467U1 (en) | 2022-08-05 | 2022-08-23 | Prabhakar Ramesh Bhandari | Composition to improve the physiological and biochemical properties and to extend the shelf life of glycine max |
-
1997
- 1997-09-29 JP JP26322497A patent/JP3490871B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7951326B2 (en) | 2005-08-11 | 2011-05-31 | Gs Yuasa International Ltd. | Hydrogen absorbing alloy, hydrogen absorbing alloy electrode, secondary battery and production method of hydrogen absorbing alloy |
US8343660B2 (en) | 2006-08-09 | 2013-01-01 | Gs Yuasa International Ltd. | Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy |
US9496550B2 (en) | 2006-08-09 | 2016-11-15 | Gs Yuasa International Ltd. | Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy |
Also Published As
Publication number | Publication date |
---|---|
JPH11100601A (en) | 1999-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101238231B (en) | Hydrogen-storage alloy, hydrogen-storage alloy electrode, secondary cell, and process for producing hydrogen-storage alloy | |
JP3630164B2 (en) | Magnetic alloy material and method for producing the same | |
JP3432873B2 (en) | Hydrogen storage alloy for alkaline storage batteries | |
JP3490871B2 (en) | Hydrogen storage alloy particles and method for producing the same | |
US5470404A (en) | Rare earth metal-nickel hydrogen occlusive alloy ingot | |
JP2835792B2 (en) | Amorphous cold storage material | |
JP4601755B2 (en) | Method for producing hydrogen storage alloy | |
JP4371040B2 (en) | Magnetic alloy material and method for producing the same | |
US4576640A (en) | Hydrogen storage material | |
JP3775639B2 (en) | Method for producing hydrogen storage alloy | |
US6375869B1 (en) | AB5-type rare earth transition intermetallic compounds for the negative electrodes of rechargeable batteries | |
WO2001069700A1 (en) | Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell | |
JP4524384B2 (en) | Quasicrystal-containing titanium alloy and method for producing the same | |
JPH11297319A (en) | Hydrogen storage electrode material, and alkaline storage battery | |
JP3930638B2 (en) | Hydrogen storage alloy and method for producing the same | |
JP2004068049A (en) | Bcc solid solution type hydrogen storage alloy with excellent hydrogen migration capacity, and method for manufacturing the hydrogen storage alloy | |
JPH11124568A (en) | Cold accumulator and preparation thereof | |
JPH05263177A (en) | Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure | |
CN118374719A (en) | Rare earth hydrogen storage alloy and preparation method thereof | |
JP3024402B2 (en) | Manufacturing method of hydrogen storage alloy | |
JPS62205556A (en) | Sputtering target for forming photoelectromagnetic recording medium | |
JP3037916B2 (en) | Method of preventing uranium hydride from pulverization | |
JP3204025B2 (en) | Raw material alloy for manufacturing rare earth magnet powder | |
JPH08143986A (en) | Production of hydrogen storage alloy | |
JPH0817613A (en) | Material alloy for manufacturing rare earth magnet powder and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031014 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081107 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081107 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091107 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101107 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101107 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131107 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees | ||
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |