[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3489945B2 - Method for manufacturing mirror-oriented unidirectional electrical steel sheet - Google Patents

Method for manufacturing mirror-oriented unidirectional electrical steel sheet

Info

Publication number
JP3489945B2
JP3489945B2 JP28494496A JP28494496A JP3489945B2 JP 3489945 B2 JP3489945 B2 JP 3489945B2 JP 28494496 A JP28494496 A JP 28494496A JP 28494496 A JP28494496 A JP 28494496A JP 3489945 B2 JP3489945 B2 JP 3489945B2
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
electrical steel
mirror
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28494496A
Other languages
Japanese (ja)
Other versions
JPH10130727A (en
Inventor
宣憲 藤井
収 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP28494496A priority Critical patent/JP3489945B2/en
Publication of JPH10130727A publication Critical patent/JPH10130727A/en
Application granted granted Critical
Publication of JP3489945B2 publication Critical patent/JP3489945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は主として変圧器その
他の電気機器等の鉄心として利用される方向性電磁鋼板
の製造方法に関するものである。特に、{110}<0
01>方位すなわちゴス方位を高度に発達させたBi添
加高磁束密度一方向性電磁鋼板の製造方法とその表面の
鏡面化手段、及び磁区細分化手段を効果的に導入するこ
とにより、鉄損特性の向上を工業的に低コストで達成す
る製造方法を開示するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a method for producing a grain-oriented electrical steel sheet used as an iron core of a transformer or other electric equipment. In particular, {110} <0
01> orientation, that is, the Goss orientation is highly developed, by effectively introducing a method for producing a Bi-added high magnetic flux density unidirectional electrical steel sheet and a means for mirroring the surface thereof, and a magnetic domain subdividing means, Disclosed is a manufacturing method that achieves industrial improvement at low cost.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、軟磁性材料として
主にトランスその他の電気機器の鉄心材料に使用されて
いるもので、磁気特性としては励磁特性と鉄損特性が良
好でなくてはならない。この励磁特性を表す指標とし
て、通常は磁束密度B8 (磁場の強さ800A/mにお
ける磁束密度)が用いられ、鉄損特性を表す指標とし
て、W17/50 (50Hzで1.7Tまで磁化させたときの
単位重量あたりの鉄損)が用いられる。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as a soft magnetic material for iron core materials of transformers and other electric equipment, and their magnetic characteristics must be good in excitation characteristics and iron loss characteristics. I won't. A magnetic flux density B 8 (magnetic flux density at a magnetic field strength of 800 A / m) is usually used as an index showing this excitation characteristic, and W 17/50 (magnetization up to 1.7 T at 50 Hz is used as an index showing iron loss characteristics. The iron loss per unit weight when made) is used.

【0003】一方向性電磁鋼板は、Siを0.8〜4.
8%含有し、製造工程の最終段階の900℃以上の温度
での仕上焼鈍工程で二次再結晶を起こさせ、鋼板面に
{110}面、圧延方向に<001>軸をもったいわゆ
るゴス組織を発達させることによって得られる。そのな
かでも、磁束密度B8 が1.88T以上の優れた励磁特
性をもつものは高磁束密度一方向性電磁鋼板とよばれて
いる。高磁束密度電磁鋼板の代表的製造方法としては、
特公昭40−15644号公報、特公昭51−1346
9号公報等があげられる。現在世界的規模で生産されて
いる高磁束密度一方向性電磁鋼板は、上記2特許を基本
として生産されていると云える。しかし上記特許に基ず
く製品の磁束密度B8 は1.88Tから高々1.95T
程度であり、例えば3%Si鋼の飽和磁束密度2.03
Tの95%程度の値を示しているに過ぎない。そして、
近年省エネルギー、省資源への社会的要求は益々厳しく
なり、一方向性電磁鋼板の鉄損低減、磁化特性改善への
要求も熾烈になってきている。
The unidirectional electrical steel sheet contains Si in an amount of 0.8-4.
A so-called goss containing 8% and causing secondary recrystallization in the final annealing step at a temperature of 900 ° C. or higher in the final stage of the manufacturing process, having a {110} plane on the steel plate surface and a <001> axis in the rolling direction. Obtained by developing tissue. Among them, a magnetic flux density B 8 having an excellent excitation characteristic of 1.88 T or more is called a high magnetic flux density unidirectional electrical steel sheet. As a typical manufacturing method of high magnetic flux density electrical steel sheet,
Japanese Patent Publication No. 40-15644, Japanese Patent Publication No. 51-1346
No. 9 publication is cited. It can be said that the high magnetic flux density unidirectional electrical steel sheets currently produced on a global scale are produced based on the above two patents. However, the magnetic flux density B 8 of the product based on the above patent is from 1.88T to 1.95T at most.
And the saturation magnetic flux density of 3% Si steel is 2.03.
It only shows a value of about 95% of T. And
In recent years, social demands for energy saving and resource saving have become more and more strict, and demands for reducing iron loss and improving magnetization characteristics of unidirectional electrical steel sheets have also become fierce.

【0004】ところで、一般に磁束密度B8 が高くなる
とともに製品の結晶粒が大きくなる傾向があり、高磁束
密度電磁鋼板によりB8 を高くしても180°磁区巾が
大きくなるために渦電流損が増大し、冶金学的にはこれ
以上ので鉄損改善の期待が望まれない。この観点から技
術的な鉄損低減化の手法としてレーザー照射等を用いた
磁区制御技術が特公昭57−2252号公報、特公昭5
8−5968号公報、特開昭58−26405号公報等
により確立された。また、該方法による鉄損の低減はレ
ーザー照射によって導入された歪に起因するので、トラ
ンスに成形したのちに歪取り焼鈍を必要とする巻鉄心ト
ランス用としては使用することができないため、例えば
特公昭62−53579号公報、特公昭63−4480
4号公報、特公平04−48847号公報等において、
仕上焼鈍後に例えば歯車型ロールにより溝を導入すると
共に、加工歪を加え微細粒を形成させて磁区細分化する
方法が開示されている。しかし、歯車型ロール等の機械
加工によって鋼板表面に溝を形成する方法は、方向性電
磁鋼板の一次皮膜(グラス皮膜)と呼ばれる表面セラミ
ックス層を破砕する必要があるために歯車ロール等の摩
耗が大きく、製造コストに問題を生じる。
By the way, in general, the magnetic flux density B 8 tends to increase and the crystal grains of the product tend to increase. Even if B 8 is increased by a high magnetic flux density electromagnetic steel sheet, the 180 ° magnetic domain width increases, so that eddy current loss occurs. The metallurgical value is higher than this, so expectations for iron loss improvement are not desired. From this point of view, as a technical iron loss reduction method, a magnetic domain control technology using laser irradiation or the like is disclosed in Japanese Patent Publication No. 57-2252 and Japanese Patent Publication No. 5252.
It was established by Japanese Patent Application Laid-Open No. 8-5968, Japanese Patent Application Laid-Open No. 58-26405, and the like. Further, since the reduction of the iron loss by the method is caused by the strain introduced by the laser irradiation, it cannot be used for a wound iron core transformer which requires strain relief annealing after forming into a transformer. Japanese Patent Publication No. 62-53579, Japanese Patent Publication No. 63-4480.
In Japanese Patent No. 4 and Japanese Patent Publication No. 04-48847,
A method is disclosed in which, after finish annealing, a groove is introduced by, for example, a gear type roll, and processing strain is applied to form fine grains to subdivide magnetic domains. However, the method of forming a groove on the surface of a steel sheet by machining such as a gear-type roll requires crushing the surface ceramics layer called the primary coating (glass coating) of grain-oriented electrical steel sheet, which causes wear of the gear roll and the like. It is large and causes a problem in manufacturing cost.

【0005】一方、これら磁区細分化処理を施した鋼板
の磁区の動きを詳細に観察すると、静的には細分化した
磁区のなかには動かない磁区も存在していることが分か
った。方向性電磁鋼板の鉄損値を更に低減させるために
は、上記方法による磁区細分化技術と合わせて磁区の動
きを阻害する要因を排除する技術(磁区の活性化技術)
を導入する必要がある。すなわち、磁区の動きを阻害す
る大きな要因である鋼板表面の一次被膜等を除去し表面
を鏡面化する方法が有効である。その手段として、仕上
焼鈍後に一次被膜を酸洗等により除去した後、化学研磨
或いは電解研磨を行い表面を鏡面化させる方法が、例え
ば特開昭64−83620号公報に開示されている。し
かしながら、化学研磨・電解研磨等の方法は、研究室レ
ベルでの少試料の材料を加工することは可能であるが、
工業的規模で行うには薬液の濃度管理、温度管理、公害
設備の付与等の点で大きな問題があり、更にこのような
工程を付加することにより製造コストが高くなってしま
うために、いまだ実用化されるに至っていない。
On the other hand, when the movement of the magnetic domains of the steel sheet subjected to the magnetic domain subdivision processing was observed in detail, it was found that some of the statically subdivided magnetic domains did not move. In order to further reduce the iron loss value of grain-oriented electrical steel sheet, a technology to eliminate the factors that obstruct the movement of the magnetic domain together with the magnetic domain subdivision technology by the above method (magnetic domain activation technology)
Need to be introduced. That is, it is effective to remove the primary coating or the like on the surface of the steel sheet, which is a major factor that obstructs the movement of magnetic domains, to make the surface mirror-finished. As a means for this, a method of removing the primary coating by pickling after finishing annealing and then performing chemical polishing or electrolytic polishing to make the surface mirror-finished is disclosed in, for example, JP-A-64-83620. However, chemical polishing, electrolytic polishing, etc. can process a small amount of material at the laboratory level,
There are major problems in terms of concentration control of chemicals, temperature control, provision of pollution equipment, etc. when carried out on an industrial scale.Addition of such steps further increases the manufacturing cost, so it is still practical. It hasn't been realized.

【0006】これに対して本出願人は、工業的規模で安
価に鋼板表面を鏡面化する方法を開発した(例えば特開
平5−222489号公報、特開平5−299228号
公報、特開平5−320770号公報)。これらは、脱
炭焼鈍後の鋼板表面にLi,K,Na,Ba,Ca,M
g,Zn,Fe,Zr,Sn,Sr,Al等の塩化物、
炭酸塩、硝酸塩、硫酸塩、硫化物の中から選ばれる1種
または2種以上を2〜30重量部で添加した焼鈍分離剤
を塗布し二次再結晶仕上焼鈍を行うことにより二次再結
晶仕上焼鈍前段で鋼板表面に適度の薄い一次皮膜が形成
され二次再結晶に必要なインヒビターの変質を防止す
る。次いで一次皮膜の形成抑制と追加酸化が防止され、
昇温後段に皮膜層中のFeのエッチング反応により一次
皮膜を分解し、その後の高温焼鈍で表面をサーマルエッ
チングし表面化する方法である。すなわち、鋼板表面の
鏡面化と高磁束密度の二次再結晶形成を両立させるもの
である。これらの技術は、磁区細分化処理のために鋼板
表面に機械加工を加える際に歯車ロール等の磨耗が少な
いため、主に巻鉄心トランス用の磁区制御材製造の低コ
ストに適している。
On the other hand, the present applicant has developed a method of mirror-finishing the surface of a steel sheet at a low cost on an industrial scale (for example, JP-A-5-222489, JP-A-5-299228, and JP-A-5-229228). No. 320770). These are Li, K, Na, Ba, Ca, M on the steel plate surface after decarburization annealing.
chlorides such as g, Zn, Fe, Zr, Sn, Sr and Al,
Secondary recrystallization by applying an annealing separator containing 2 to 30 parts by weight of one or more selected from carbonates, nitrates, sulfates, and sulfides and performing secondary recrystallization finish annealing. A moderately thin primary film is formed on the surface of the steel sheet before the finish annealing to prevent the deterioration of the inhibitor necessary for secondary recrystallization. Next, suppression of primary film formation and additional oxidation are prevented,
This is a method in which the primary coating is decomposed by an etching reaction of Fe in the coating layer after the temperature is raised, and then the surface is subjected to thermal etching by high temperature annealing to make the surface. That is, the mirror surface of the steel sheet and the secondary recrystallization of high magnetic flux density are formed at the same time. These techniques are suitable for low cost mainly for manufacturing a magnetic domain control material for a wound core transformer because wear of a gear roll or the like is small when machining a steel plate surface for magnetic domain subdivision processing.

【0007】しかるに、これら磁区制御、鏡面化等の周
辺技術の成熟に伴い、高磁束密度電磁鋼板を用いた低鉄
損化が容易となるとともに、超低鉄損電磁鋼板を狙うに
は更なる高磁束密度を有する素材が必須条件として期待
されてきている。これに対して本発明者らは、一方向性
電磁鋼板の溶鋼中にBiを含有させることにより、工業
的手段により磁束密度を従来の高磁束密度一方向性電磁
鋼板レベルから超高磁束密度一方向性電磁鋼板レベルま
で高める方法を特開平6−8814号公報、特開平6−
88173号公報等で提案した。この方法により初めて
磁束密度B8 が1.96Tを越える超高磁束密度一方向
性電磁鋼板が工場規模で生産できるようになったが、従
来の一次皮膜を形成する条件のなかで工場実験を繰り返
した結果、コイルの全域に渡って安定に超高磁束密度を
得ることは困難であった。一般に一次皮膜形成条件が磁
気特性に大きな影響を及ぼすことは知られているが、B
i添加材の場合はその影響が顕著であることが想定され
た。そこで、このBi添加による超磁束密度化と一次皮
膜を形成しない鏡面化技術を効果的に組み合わせること
により、超磁束密度一方向性電磁鋼板を工場規模でより
安定的に製造し、さらに磁区制御技術を組み合わせるこ
とにより従来にない超低鉄損一方向電磁鋼板を製造する
ことが、本発明の狙いである。
However, with the maturation of peripheral technologies such as magnetic domain control and mirror finishing, it becomes easier to reduce iron loss using a high magnetic flux density electromagnetic steel sheet, and it is further necessary to aim at an ultra-low iron loss electromagnetic steel sheet. A material having a high magnetic flux density has been expected as an essential condition. On the other hand, the inventors of the present invention include Bi in the molten steel of the unidirectional electrical steel sheet to increase the magnetic flux density from the conventional high magnetic flux density unidirectional electrical steel sheet level to ultrahigh magnetic flux density by industrial means. A method of increasing the grain size of the grain-oriented electrical steel sheet is disclosed in JP-A-6-8814 and JP-A-6-
It was proposed in Japanese Patent No. 88173. With this method, it became possible for the first time to produce ultra-high magnetic flux density grain-oriented electrical steel sheets with a magnetic flux density B 8 exceeding 1.96 T on a factory scale. However, factory experiments were repeated under the conventional conditions for forming a primary coating. As a result, it was difficult to stably obtain an ultrahigh magnetic flux density over the entire area of the coil. It is generally known that the conditions for forming the primary coating have a great influence on the magnetic properties.
It was assumed that the effect was significant in the case of the i-added material. Therefore, by effectively combining the super-flux density increasing by adding Bi with the mirror-finishing technology that does not form the primary coating, the super-flux density unidirectional electrical steel sheet can be manufactured more stably at the factory scale and the magnetic domain control technology It is an object of the present invention to produce an unprecedented ultra-low iron loss unidirectional electrical steel sheet by combining the above.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来のBi
添加技術と鏡面化技術とを有機的に組み合わせることに
より極めて磁束密度の高い超高磁束密度一方向性鏡面電
磁鋼板素材を工場的規模で安定に製造することを可能と
し、さらに磁区制御技術を組み合わせることにより極め
て鉄損の低い超低鉄損一鏡面方向性電磁鋼板を低コスト
で製造することを目的とする。
The present invention is based on the conventional Bi method.
By organically combining the addition technology and the mirroring technology, it is possible to stably manufacture ultra-high magnetic flux density unidirectional specular electromagnetic steel sheet material with extremely high magnetic flux density on a factory scale, and combine magnetic domain control technology. Thus, an object is to manufacture an ultra-low iron loss-mirror-oriented electrical steel sheet with extremely low iron loss at low cost.

【0009】[0009]

【課題を解決するための手段】本発明の特徴とする処
は、以下のとおりである。 (1)重量%で、C:0.02〜0.1%、Si:2.
0〜4.8%、酸可溶性Al:0.012〜0.050
%、N:0.0030〜0.0150%、Bi:0.0
005〜0.03%を基本成分とし、残部はFeおよび
不可避的不純物をからなる溶鋼を鋳造し、熱間圧延し、
65〜95%の最終強冷延を含む1回あるいは中間焼鈍
を介入する2回以上の冷間圧延により最終板厚とし、一
次再結晶を兼ねた脱炭焼鈍を施し、二次再結晶仕上焼鈍
を行う工程からなる一方向性電磁鋼板の製造方法におい
て、鋼板表面に、MgO100重量部に対し、Li,
K,Na,Ba,Ca,Mg,Zn,Fe,Zr,S
n,Sr,Alの塩化物、炭酸塩、硝酸塩、硫酸塩、硫
化物の中から選ばれる1種または2種以上を2〜30重
量部で添加した焼鈍分離剤を塗布し、二次再結晶仕上焼
鈍することを特徴とする鏡面一方向性電磁鋼板の製造方
The features of the present invention are as follows. (1) C: 0.02 to 0.1% by weight, Si: 2.
0-4.8%, acid-soluble Al: 0.012-0.050
%, N: 0.0030 to 0.0150%, Bi: 0.0
Casting molten steel consisting of 005 to 0.03% as a basic component and the balance Fe and unavoidable impurities, hot rolling,
A final strip thickness is obtained by cold rolling at least once, including final strong cold rolling of 65 to 95%, or by intervening intermediate annealing, and then subjected to decarburization annealing that also serves as primary recrystallization, and secondary recrystallization finish annealing. In the method for producing a grain-oriented electrical steel sheet, which comprises the steps of:
K, Na, Ba, Ca, Mg, Zn, Fe, Zr, S
Secondary recrystallization by applying an annealing separator containing 2 to 30 parts by weight of one or more selected from chlorides, carbonates, nitrates, sulfates, and sulfides of n, Sr, Al. Manufacturing method of mirror-oriented unidirectional electrical steel sheet characterized by finish annealing
Law .

【0010】 (2)脱炭焼鈍における鋼板酸素目付量
が900ppm 以下で、且つ酸化膜中のFeO/SiO2
が0.20以下であることを特徴とする(1)記載の
面一方向性電磁鋼板の製造方法。 (3)焼鈍分離剤に使用するMgOの物性が、粒子径が
10μm以下のものを30%以上含み、クエン酸活性度
CAA値が50〜300秒(30℃測定)、水和水分が
5%以下であることを特徴とする(1)記載の鏡面一方
向性電磁鋼板の製造方法
(2) The oxygen basis weight of the steel sheet in decarburization annealing is 900 ppm or less, and FeO / SiO 2 in the oxide film
Is 0.20 or less, the mirror described in (1).
Method for manufacturing plane-oriented electrical steel sheet . (3) The physical properties of MgO used for the annealing separator include 30% or more of particles having a particle diameter of 10 μm or less, a citric acid activity CAA value of 50 to 300 seconds (measured at 30 ° C.), and a hydrated water content of 5%. One of the mirror surface described in (1), characterized in that
Method for manufacturing tropic electrical steel sheet .

【0011】 (4)二次再結晶仕上焼鈍の条件とし
て、二次再結晶完了までの昇温時における雰囲気をN2
の比率が30%以上のN2 +H2 雰囲気あることを特徴
とする(1)記載の磁束密度の高い鏡面一方向性電磁鋼
板の製造方法。 (5)(1)記載の鋼板に局部的な歪みを導入すること
により、磁区細分化処理を施すことを特徴とする鏡面一
方向性電磁鋼板の製造方法
(4) As a condition of the secondary recrystallization finish annealing, the atmosphere during the temperature rise until the completion of the secondary recrystallization is N 2
Is a N 2 + H 2 atmosphere having a ratio of 30% or more. (1) The method for producing a specular grain-oriented electrical steel sheet having a high magnetic flux density according to (1). (5) A mirror surface characterized by performing a magnetic domain refining process by introducing a local strain to the steel sheet described in (1).
Method for manufacturing grain-oriented electrical steel sheet .

【0012】 (6)(1)記載の鋼板にコーティング
処理による張力皮膜を形成した後、局部的な歪みを導入
することにより、磁区細分化処理を施すことを特徴とす
鏡面一方向性電磁鋼板の製造方法。 (7)(1)記載の鋼板に圧延方向に対して直角もしく
は直角から45度の範囲内で間隔2〜10mmで幅10〜
300μm、深さ5〜50μmの範囲で連続的、不連続
または点状の溝あるいは局部的な溝を形成し、併せてコ
ーティング処理による張力皮膜を形成することにより磁
区細分化させることを特徴とする鏡面一方向性電磁鋼板
の製造方法。 (8)脱炭焼鈍から二次再結晶仕上焼鈍の工程間で窒化
処理を行うことを特徴とする(1)〜(7)のいずれか
に記載の鏡面一方向性電磁鋼板の製造方法。
(6) A mirror surface unidirectional electromagnetic steel sheet characterized by performing a magnetic domain refinement treatment by forming a tension film by a coating treatment on the steel sheet according to (1) and then introducing a local strain. Manufacturing method . (7) The steel sheet according to (1) has a width of 10 to 10 mm at an interval of 2 to 10 mm within a range perpendicular to the rolling direction or within 45 degrees from the right angle.
Characterized by forming continuous, discontinuous or dot-like grooves or local grooves in a range of 300 μm and a depth of 5 to 50 μm, and forming a tension film by a coating process to subdivide magnetic domains. Mirror surface unidirectional electrical steel sheet
Manufacturing method . (8) Nitriding between the steps of decarburization annealing and secondary recrystallization finish annealing
Any one of (1) to (7) characterized by performing processing
The method for producing a mirror-oriented unidirectional electrical steel sheet according to.

【0013】[0013]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明者らは、特開平6−8814号公報、特開平6−
88173号公報等に示しているとおり、実験室での実
験により、窒化アルミニウムを主インヒビターとする一
方向性電磁鋼板用の素材に、Biを添加含有せしめるこ
とにより、現在市販されている高磁束密度電磁鋼板のB
8 =1.93T程度をはるかに超える1.95T以上、
2Tにおよぶ超高磁束密度一方向性電磁鋼板を得た。超
磁束密度を得る機構はまだ明らかではないが、Biは鋼
中の拡散定数が極めて小さいため、熱的に安定なインヒ
ビター強化元素として機能していると推定している。す
なわち、超高磁束密度を実現するためには一定量以上の
鋼中Bi含有量が必要である一方、二次再結晶の進行中
に適度にインヒビター強度を弱める必要があり、鋼中B
iを鋼板表面から徐々に気化させて除去する必要があ
る。これに関して、実験室規模の板状の小試験片の場合
は板間のガス通気性が良好であるため、二次再結晶仕上
焼鈍中にBiを除去することは容易である。しかし、工
場的規模で製造する場合、コイル状に巻いた鋼板を箱形
焼鈍炉で焼鈍することが前提となるので、特にコイル内
部においてはガスの通気性が悪いため、Bi蒸気が鋼板
間に滞在し鋼中Biの除去が困難となる。そのため超高
磁束密度が得られ難く、またBiが一次皮膜と地鉄の界
面で濃化しBiCl3 等を形成し一次皮膜が剥離される
ことも推定される。逆にコイル端部では比較的ガスの通
気性が良好なのでBi蒸気も濃化せず、超高磁束密度が
得られ易いと推定される。すなわち、工場的規模におけ
るコイルフォームでの焼鈍では、特にコイル中心部とエ
ッジにおけるガス通気性の制御が困難であり、コイル全
域で安定して超高磁束密度が得られにくい可能性があっ
た。そこで、本発明者らは、Bi添加による二次再結晶
仕上焼鈍中における板間のガス通気性の影響を定量的に
把握するため次の実験を行った。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The inventors of the present invention have disclosed that Japanese Patent Laid-Open Nos. 6-8814 and 6-
As shown in Japanese Patent No. 88173, etc., a high magnetic flux density which is commercially available at present is obtained by adding Bi to a material for unidirectional electrical steel sheet having aluminum nitride as a main inhibitor by experiment in a laboratory. Magnetic steel sheet B
8 = 1.93T or more, far exceeding 1.93T,
Ultra-high magnetic flux density unidirectional electrical steel sheet of 2T was obtained. Although the mechanism for obtaining the super magnetic flux density is not yet clear, it is presumed that Bi functions as a thermally stable inhibitor-strengthening element because the diffusion constant in steel is extremely small. That is, in order to realize an ultra-high magnetic flux density, a certain amount of Bi content in steel is necessary, while it is necessary to appropriately weaken the inhibitor strength during the progress of secondary recrystallization.
It is necessary to gradually vaporize and remove i from the steel plate surface. In this regard, it is easy to remove Bi during the secondary recrystallization finish annealing because the gas permeability between the plates is good in the case of a laboratory-scale plate-shaped small test piece. However, in the case of manufacturing on a factory scale, since it is premised that a coiled steel sheet is annealed in a box-type annealing furnace, gas vapor permeability is particularly poor inside the coil. It becomes difficult to remove Bi in steel by staying. Therefore, it is presumed that it is difficult to obtain an ultra-high magnetic flux density, and Bi is concentrated at the interface between the primary coating and the base metal to form BiCl 3, etc., and the primary coating is peeled off. On the contrary, since it is relatively good in gas permeability at the coil end, it is presumed that the Bi vapor is not concentrated and the ultra-high magnetic flux density is easily obtained. That is, in the case of annealing with a coil form on a factory scale, it is difficult to control gas permeability particularly at the center and the edge of the coil, and there is a possibility that a stable ultra-high magnetic flux density cannot be obtained throughout the coil. Therefore, the present inventors conducted the following experiment in order to quantitatively understand the influence of gas permeability between the plates during the secondary recrystallization finish annealing by adding Bi.

【0014】C:0.05%、Si:3.25%、M
n:0.10%、S:0.007%、P:0.025
%、酸可溶性Al:0.029%、N:0.007%、
Cr:0.12%を含有する珪素鋼を溶製し、Bi含有
量を0,0.007%、0.013%、0.025%と
し、それぞれ鋳片に分注鋳造後、1150℃に加熱し、
抽出後直ちに2.3mm板厚まで熱延し、熱延後水冷し5
50℃で保定した。その後熱延板を1120℃の温度で
30秒、引き続き900℃で90秒焼鈍し、750℃ま
で空冷後80℃の水中に焼き入れた。次いで酸洗し0.
23mmまで途中で250℃での時効処理を5回はさんで
冷延した。引き続き、窒素と水素の混合ガスにおいて酸
化度が0.40(PH2 O/PH2 )になるように導入
水蒸気を調整し、脱炭・一次再結晶焼鈍を行い、引き続
いてNH3 雰囲気でN含有量が200ppm になるよう窒
化焼鈍を行った。通常のMgOを主成分とする焼鈍分離
剤を塗布後、二次再結晶仕上焼鈍を行った。板間のガス
通気性の影響をみるため、100mm×500mmの鋼板を
約50枚積層した試料を鉄薄膜で梱包し炉内に挿入した
のち、N2 を50%としたN2 +H2 湿雰囲気ガスを導
入し、その流量を1,5,10,15Nm3 /分としなが
ら1200℃まで15℃/hrで中で昇温し、引き続い
て乾水素雰囲気中で1200℃で20時間の純化焼鈍を
行った。このときの焼鈍炉の炉内容積は0.06m3
あった。炉内導入ガス流量と得られた鋼板の酸素量およ
び磁束密度B8 との関係を図1に示す。鋼板の酸素量は
一義的には一次皮膜の生成量を示し、酸素量が低いもの
は一次皮膜の剥離または弱体化が観察された。
C: 0.05%, Si: 3.25%, M
n: 0.10%, S: 0.007%, P: 0.025
%, Acid-soluble Al: 0.029%, N: 0.007%,
Cr: 0.12% containing silicon steel was melted and the Bi content was set to 0, 0.007%, 0.013%, 0.025%, and the temperature was adjusted to 1150 ° C. after dispensing casting into slabs. Heat
Immediately after extraction, hot-rolled to a thickness of 2.3 mm, hot-rolled and water-cooled 5
It was held at 50 ° C. Thereafter, the hot-rolled sheet was annealed at a temperature of 1120 ° C. for 30 seconds and subsequently at 900 ° C. for 90 seconds, air-cooled to 750 ° C., and then quenched in water at 80 ° C. Then, it is pickled.
The product was cold rolled by aging treatment at 250 ° C for 5 times with a gap of 23 mm. Subsequently, in a mixed gas of nitrogen and hydrogen, the introduced steam was adjusted so that the degree of oxidation would be 0.40 (PH 2 O / PH 2 ), decarburization and primary recrystallization annealing were performed, and then N 3 atmosphere was applied. Nitriding annealing was performed so that the content was 200 ppm. After applying an ordinary annealing separator containing MgO as a main component, secondary recrystallization finish annealing was performed. In order to check the effect of gas permeability between the plates, a sample in which about 50 100 mm x 500 mm steel plates were stacked was packed in an iron thin film and inserted into the furnace, and then N 2 was set to 50% in a N 2 + H 2 wet atmosphere. A gas was introduced and the flow rate was increased to 1,5,10,15 Nm 3 / min, and the temperature was raised up to 1200 ° C. at 15 ° C./hr, followed by purification annealing at 1200 ° C. for 20 hours in a dry hydrogen atmosphere. went. At this time, the internal volume of the annealing furnace was 0.06 m 3 . FIG. 1 shows the relationship between the flow rate of gas introduced into the furnace and the oxygen content and magnetic flux density B 8 of the obtained steel sheet. The amount of oxygen in the steel sheet uniquely indicates the amount of the primary coating formed, and in the case where the amount of oxygen was low, peeling or weakening of the primary coating was observed.

【0015】その結果、Biを添加した超高磁束密度一
方向性電磁鋼板は、従来の窒化アルミニウムを主インヒ
ビターとする高磁束密度一方向性電磁鋼板に比較して、
仕上げ焼鈍中のガスの通気性が悪い場合は磁束密度がば
らつき、安定して高磁束密度が得られ難いという上述の
仮定を示唆する結論が得られた。この工場生産上の問題
を解決するためには、例えば工場の焼鈍炉の導入ガス流
量を増加せしめればよいが、工場規模の箱形焼鈍設備の
炉内容積は通常約30m3 であり、単純に計算しても蒸
気の実験室焼鈍炉の導入ガス流量の500倍の導入ガス
が必要である。これは設備費を圧迫し、原単位等のコス
トの観点からも困難であるため、Bi添加により超高磁
束密度一方向性電磁鋼板を工業規模で安定して製造する
ためには、一次皮膜形成に頼らない鏡面化技術の適用が
有効である可能性を見出した。
As a result, the Bi-added ultra-high magnetic flux density unidirectional electrical steel sheet is superior to the conventional high magnetic flux density unidirectional electrical steel sheet in which aluminum nitride is the main inhibitor.
It was concluded that when the gas permeability during finish annealing is poor, the magnetic flux density varies and it is difficult to obtain a stable high magnetic flux density. In order to solve this factory production problem, for example, the flow rate of gas introduced into the factory annealing furnace may be increased, but the furnace volume of a factory-scale box annealing equipment is usually about 30 m 3 , Even if the calculation is performed, the introduction gas flow rate of 500 times the introduction gas flow rate of the steam laboratory annealing furnace is required. This imposes pressure on equipment costs and is difficult from the viewpoint of costs such as unit consumption. Therefore, in order to stably manufacture an ultra-high magnetic flux density unidirectional electrical steel sheet on an industrial scale by adding Bi, the primary film formation is required. It has been found that the application of mirror finishing technology that does not rely on is effective.

【0016】以下に本発明に至った実験結果について説
明する。本発明者らは、Bi添加技術に鏡面化技術を適
用した場合について、二次再結晶仕上焼鈍中の炉内導入
ガス流量が磁束密度B8 と鏡面状態におよぼす影響を定
量的に把握するため、次の実験を行った。すなわち、上
述の実験と同じ成分の素材を窒化焼鈍まで同一の工程条
件で処理を行ったのち、MgO100重量部に対しCa
Cl2 を10重量部を添加した焼鈍分離剤を塗布後、二
次再結晶仕上焼鈍を行った。そして上記の実験と同様
に、100mm×500mmの鋼板を約50枚積層した試料
を鉄薄膜で梱包し炉内に挿入し、N2 を50%としたN
2 +H2 湿雰囲気を炉内に導入し、その流量を1,5,
10,15Nm3 /分としながら1200℃まで15℃/
hrで昇温し、引き続いて水素雰囲気中で1200℃で2
0時間の純化焼鈍を行った。炉内導入ガス流量と得られ
た鋼板の酸素量および磁束密度B8 の関係を図2に示
す。鋼板の酸素量はすべて200ppm 以下であり、一次
皮膜が無い良好な鏡面状態を呈していた。
The experimental results of the present invention will be described below. In order to quantitatively understand the influence of the flow rate of the gas introduced into the furnace during the secondary recrystallization finish annealing on the magnetic flux density B 8 and the mirror-finished state when the mirror-finishing technique is applied to the Bi addition technique. , The following experiment was conducted. That is, after the material having the same composition as in the above-mentioned experiment was processed under the same process conditions until nitriding annealing, 100 parts by weight of MgO was added to Ca.
After applying an annealing separator containing 10 parts by weight of Cl 2 , secondary recrystallization finish annealing was performed. Then, similar to the above experiment, a sample in which about 50 sheets of 100 mm × 500 mm steel sheets were laminated was packed with an iron thin film and inserted into the furnace, and N 2 was set to 50%.
2 + H 2 Wet atmosphere was introduced into the furnace and its flow rate was set to 1, 5,
15 ℃ / up to 1200 ℃ with 10,15Nm 3 / min
The temperature is raised for 1 hour, and subsequently at 1200 ° C. for 2 in a hydrogen atmosphere.
Purification annealing was performed for 0 hours. FIG. 2 shows the relationship between the flow rate of gas introduced into the furnace and the oxygen content and magnetic flux density B 8 of the obtained steel sheet. The oxygen content of all the steel sheets was 200 ppm or less, and a good mirror-like state without a primary coating was exhibited.

【0017】図2で明らかなように、鏡面化技術を適用
することにより、磁束密度は仕上げ焼鈍中のガス流量に
影響されず、Bi添加による磁束密度向上の効果が安定
して得られた。このように仕上げ焼鈍中のガス流量に影
響されないことは、コイル内位置におけるガス通気性の
バラツキに二次再結晶過程が影響されにくいことから、
工場規模のコイルフォームでの二次再結晶仕上焼鈍によ
る製造に有利であることを示している。また、図2でB
i添加量とともに鏡面化鋼板表面に微量に付着した酸素
が減少していることから、Bi添加は鏡面化を促進させ
る作用があることが期待される。
As is apparent from FIG. 2, by applying the mirror finishing technique, the magnetic flux density was not affected by the gas flow rate during the finish annealing, and the effect of improving the magnetic flux density by adding Bi was stably obtained. In this way, not being affected by the gas flow rate during finish annealing, since the secondary recrystallization process is less likely to be affected by the variation in gas permeability at the position inside the coil,
It is shown to be advantageous for manufacturing by secondary recrystallization finish annealing in factory-scale coil foam. Also, in FIG.
Since a small amount of oxygen attached to the surface of the mirror-finished steel sheet decreases with the amount of i added, it is expected that the addition of Bi has an action of promoting mirror finish.

【0018】さらに本発明者らは、図2で得られた試料
を850℃の温度で2時間の歪み取り焼鈍を行ったの
ち、圧延方向と直角方向に5mm間隔でレーザー照射処理
を行い、磁区制御を試みた。得られた試料についての素
材(磁区制御前)に磁束密度B 8 と1.0kgf /mm2
張力下で測定した磁区制御後の鉄損W17/50 の関係を図
3に示す。
Furthermore, the present inventors have found that the sample obtained in FIG.
Was subjected to strain relief annealing at a temperature of 850 ° C. for 2 hours
Then, laser irradiation processing at 5 mm intervals in the direction perpendicular to the rolling direction
Then, the magnetic domain control was tried. Element of the obtained sample
Material (before domain control) magnetic flux density B 8And 1.0 kgf / mm2of
Iron loss W after magnetic domain control measured under tension17/50Diagram of the relationship
3 shows.

【0019】図3から次のことが判る。まず、Bi添加
を行い0.007%から0.025%にBi含有量を調
整すれば、磁束密度B8 が1.96T以上の超高磁束密
度一方向性電磁鋼板が発現し、また磁区制御との組み合
わせで超低鉄損電磁鋼板が得られる。また、B8 とW
17/50 の関係を示す直線はBi添加とともに下がってお
り、Bi添加材の鉄損は磁束密度の向上から期待される
鉄損よりも更に改善されていることがわかる。これは、
図2で説明したように、Bi添加は鏡面化を促進させる
作用のためであると推定される。本発明は従来のBi添
加法とによる超高磁束密度一方向性電磁鋼板製造方法と
鏡面化技術による低鉄損一方向性電磁鋼板製造法の単な
る組み合わせでなく、前者の工業化における欠点と後者
の安定促進化を極めて効果的に解決する方法を提供する
ものである。
The following can be seen from FIG. First, by adding Bi and adjusting the Bi content from 0.007% to 0.025%, an ultrahigh magnetic flux density unidirectional electrical steel sheet having a magnetic flux density B 8 of 1.96 T or more is developed, and magnetic domain control is performed. Ultra low iron loss electrical steel sheet can be obtained in combination with. Also, B 8 and W
The straight line showing the relationship of 17/50 decreases with Bi addition, and it can be seen that the iron loss of the Bi-added material is further improved than the iron loss expected from the improvement of the magnetic flux density. this is,
As described with reference to FIG. 2, it is presumed that the addition of Bi is due to the action of promoting the mirroring. The present invention is not a simple combination of the conventional method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet by the Bi addition method and the low iron loss unidirectional electrical steel sheet production method by the mirroring technique. It is intended to provide a method for solving stabilization promotion extremely effectively.

【0020】次に、本発明に必要な構成要素とその限定
理由について述べる。本発明において、素材が含有する
成分は、重量で、C:0.02〜0.1%、Si:2.
0〜4.8%、酸可溶性Al:0.012〜0.050
%、N:0.0030〜0.0150%,Bi:0.0
005〜0.03%、残部Fe及び不可避的不純物であ
り、これらを必須成分としてそれ以外は限定しない。
Next, the components necessary for the present invention and the reasons for limiting them will be described. In the present invention, the components contained in the raw material are C: 0.02 to 0.1% and Si: 2.
0-4.8%, acid-soluble Al: 0.012-0.050
%, N: 0.0030 to 0.0150%, Bi: 0.0
005 to 0.03%, the balance being Fe and unavoidable impurities, and these are essential components, and the others are not limited.

【0021】基本的な製造法としては、小松等による
(Al,Si)Nを主インヒビターとして用いる製造法
(例えば特公昭62−45285号公報)、または田口
・坂倉等によるAlNとMnSを主インヒビターとして
用いる製造法(例えば特公昭40−15644号公報)
を適用すれば良い。Cはγ域開放型元素であり、熱間圧
延から脱炭焼鈍の工程でα→γ変態、または固溶Cの存
在により二次再結晶に有利な集合組織を形成する重要な
元素である。Cが0.02%以下ではα→γ変態が生じ
ないので好ましくない。また、0.1%を超えると脱炭
焼鈍工程に負荷がかかり、コストアップとなるため好ま
しくない。
As a basic manufacturing method, a manufacturing method using (Al, Si) N as a main inhibitor by Komatsu et al. (For example, Japanese Patent Publication No. 62-45285) or AlN and MnS by Taguchi / Sakakura etc. Manufacturing method used as (for example, Japanese Patent Publication No. 40-15644)
Should be applied. C is an element that is open to the γ region, and is an important element that forms an texture that is advantageous for secondary recrystallization due to the α → γ transformation or the presence of solute C in the steps from hot rolling to decarburization annealing. When C is 0.02% or less, α → γ transformation does not occur, which is not preferable. On the other hand, if it exceeds 0.1%, the decarburization annealing process is burdened with an increase in cost, which is not preferable.

【0022】Siは電気抵抗を高め、鉄損を下げる上で
重要な元素である。含有量が4.8%を超えると、冷間
圧延時に材料が割れ易くなり、圧延不可能となる。一
方、2.0%未満では製品の渦電流損が増大するととも
に、仕上げ焼鈍時に、α→γ変態を生じ、結晶の方向性
が損なわれる。酸可溶性AlはNと結合してAlNを形
成し、高磁束密度一方向性電磁鋼板製造のための主イン
ヒビター構成元素である。0.012%未満では量的に
不足し、インヒビター強度が不足する。一方、0.05
0%を超えるとAlNが粗大化し、結果としてインヒビ
ター強度を低下させるので二次再結晶が起こらなくな
る。
Si is an important element for increasing electric resistance and reducing iron loss. If the content exceeds 4.8%, the material is likely to crack during cold rolling, making rolling impossible. On the other hand, if it is less than 2.0%, the eddy current loss of the product increases, and at the time of finish annealing, the α → γ transformation occurs and the crystal orientation is impaired. Acid-soluble Al combines with N to form AlN and is a main inhibitor constituent element for producing a high magnetic flux density unidirectional electrical steel sheet. If it is less than 0.012%, the amount is insufficient and the inhibitor strength is insufficient. On the other hand, 0.05
If it exceeds 0%, AlN is coarsened and, as a result, the inhibitor strength is lowered, so that secondary recrystallization does not occur.

【0023】素材に含有するNはSi,Al等の窒化物
を形成し、低温スラブ加熱を前提とする場合は特に一次
再結晶のインヒビターとして影響する。N含有量は一次
再結晶粒径を制御する観点から工程の熱履歴や必要な一
次再結晶焼鈍温度から決定される。一方、高温スラブ加
熱により前段階でAlNを微細分散させる場合は二次再
結晶焼鈍の雰囲気条件等を考慮する必要がある。0.0
030%未満では脱窒のため溶製段階のコストアップと
なり、0.0150%超ではブリスターと呼ばれる欠陥
が発生するので0.0030〜0.0150%の範囲と
した。
N contained in the material forms nitrides of Si, Al, etc., and particularly acts as an inhibitor of primary recrystallization when low temperature slab heating is assumed. The N content is determined from the thermal history of the process and the required primary recrystallization annealing temperature from the viewpoint of controlling the primary recrystallization grain size. On the other hand, when AlN is finely dispersed in the previous stage by high temperature slab heating, it is necessary to consider the atmospheric conditions of the secondary recrystallization annealing. 0.0
If it is less than 030%, the cost at the melting stage increases due to denitrification, and if it exceeds 0.0150%, defects called blisters occur, so the range was made 0.0030 to 0.0150%.

【0024】その他のインヒビター構成元素として、M
n,S,Se,V,N,B,Nb,Sn,Cu,Ti,
Zr,Ta,Mo,Sn等を複合して添加することがで
きる。Biは超高速密度を得るための必須元素であり、
添加含有量は、0.0005〜0.03%の範囲が有効
である。0.0005%未満では効果がわずかであり、
また0.03%超では磁束密度向上の効果が飽和すると
ともに熱延板の端部に割れが発生するので上限を0.0
3%に限定する。
As other inhibitor constituent elements, M
n, S, Se, V, N, B, Nb, Sn, Cu, Ti,
Zr, Ta, Mo, Sn, etc. can be added in combination. Bi is an essential element for obtaining ultra-high-speed density,
The effective addition content is 0.0005 to 0.03%. If less than 0.0005%, the effect is slight,
On the other hand, if it exceeds 0.03%, the effect of improving the magnetic flux density is saturated and cracks occur at the ends of the hot-rolled sheet, so the upper limit is 0.0.
Limited to 3%.

【0025】次に、製造プロセス条件について説明す
る。上記のごとく成分を調整した超高磁束密度一方向性
電磁鋼板用素材は通常の如何なる溶解法、造塊法を用い
た場合でも本願発明の素材とすることが出来る。次いで
この電磁鋼板用素材は通常の熱間圧延により熱延コイル
に圧延される。小松等による(Al,Si)Nを主イン
ヒビターとして用いる製造法(例えば特公昭62−45
285号公報)では、熱間圧延時の温度確保の観点より
1100℃以上、またAlNの完全溶体化しない128
0℃以下の温度で加熱を行った後に熱間圧延を行う。ま
た、田口・坂倉等によるAlNとMnSを主インヒビタ
ーとして用いる製造法(例えば特公昭40−15644
号公報)では完全溶体化する1300℃以上の温度で加
熱した後に熱延を行えば良い。
Next, the manufacturing process conditions will be described. The material for ultra-high magnetic flux density unidirectional electrical steel sheet having the components adjusted as described above can be used as the material of the present invention even when any ordinary melting method or ingot making method is used. Next, this raw material for electromagnetic steel sheets is rolled into a hot rolled coil by ordinary hot rolling. A production method using (Al, Si) N as a main inhibitor by Komatsu et al.
No. 285), from the viewpoint of ensuring the temperature during hot rolling, the temperature is 1100 ° C. or higher, and AlN is not completely dissolved 128.
After heating at a temperature of 0 ° C. or less, hot rolling is performed. Further, a production method using AlN and MnS as main inhibitors by Taguchi, Sakakura, etc. (see, for example, Japanese Patent Publication No. 40-15644).
In Japanese Patent Laid-Open Publication No. JP-A-2003-187, hot rolling may be performed after heating at a temperature of 1300 ° C. or higher at which a complete solution is formed.

【0026】引き続いて1ステージの冷間圧延または中
間焼鈍を含む複数ステージの冷間圧延によって最終板厚
とするが、磁束密度が高い一方向性電磁鋼板を得ること
から最終冷延の圧延率(1ステージの冷間圧延の場合は
その圧延率)は65〜95%の強圧下が好ましい。最終
圧延以外のステージの圧延率は特に規定しなくてもよ
い。また、AlNを強化するため、最終冷延前に焼鈍お
よび冷却を行ってもよい。焼鈍は750〜1200℃の
温度域で30秒〜30分間行われ、この焼鈍は製品の磁
気特性を高めるために有効である。望む製品の特性レベ
ルとコストを勘案して採否を決めるとよい。
Subsequently, the final strip thickness is obtained by one-stage cold rolling or multiple-stage cold rolling including intermediate annealing, but since a unidirectional electrical steel sheet having a high magnetic flux density is obtained, the final cold rolling reduction ratio ( In the case of one-stage cold rolling, the rolling ratio is preferably 65 to 95% under strong reduction. The rolling ratio of the stages other than the final rolling need not be specified. Further, in order to strengthen AlN, annealing and cooling may be performed before the final cold rolling. Annealing is performed in the temperature range of 750 to 1200 ° C. for 30 seconds to 30 minutes, and this annealing is effective to enhance the magnetic properties of the product. It is advisable to decide whether to accept or reject the product considering the characteristic level and cost of the desired product.

【0027】最終製品厚に圧延した冷延板は、一次再結
晶焼鈍と鋼中に含まれる炭素を除去する目的で湿潤な水
素または水素と窒素の混合雰囲気中で、750〜900
℃の温度範囲で30秒〜30分間脱炭焼鈍を行う。この
脱炭焼鈍は良好な一次皮膜を形成するための公知技術を
適用することができる。本発明における脱炭焼鈍は、鋼
板の酸素目付量が900ppm 以下、且つFeO/SiO
2 が0.20以下に限定される。ここでFeOはファイ
ヤライト(Fe2 SiO4 )中のFeOである。酸素目
付量が900ppm 超では、必然的に酸化膜層中のSiO
2 とFeO量が多くなり酸化膜の厚みも増すため、二次
再結晶仕上焼鈍中での一時皮膜分解反応を行うに際して
不利となる。すなわち表面直下にSiO2 が残留し、完
全に鏡面的な表面状態が得られないばかりでなく、磁性
劣化の原因となる。さらに、過剰のSiO2 の形成は二
次再結晶開始以前に鋼中の(Al,Si)Nインヒビタ
ーの分解を促進するため、超高磁束密度が得られにくく
なるという問題がある。しかし極端に酸化量を抑制しよ
うとすると、脱炭時間が長くなるという問題があり生産
性を阻害する。好ましい範囲は400〜700ppm であ
る。また、酸化量中のFeO/SiO2 は0.20を超
えると二次再結晶仕上焼鈍前半での一次皮膜形成反応が
極端に増加し、一次皮膜形成量が増大するため、後の一
次皮膜分解段階で十分に反応が進行しない。FeO/S
iO2 ≦0.20であればMgOへの添加物等の効果に
よって二次再結晶仕上焼鈍でほぼ完全に一次皮膜が分解
される。一方、脱炭焼鈍温度は主に最適な一次再結晶粒
径を得る観点から決定される。
The cold-rolled sheet rolled to the final product thickness has a thickness of 750 to 900 in wet hydrogen or a mixed atmosphere of hydrogen and nitrogen for the purpose of primary recrystallization annealing and removal of carbon contained in steel.
Decarburization annealing is performed for 30 seconds to 30 minutes in the temperature range of ° C. For this decarburization annealing, known techniques for forming a good primary coating can be applied. In the decarburization annealing of the present invention, the oxygen basis weight of the steel sheet is 900 ppm or less, and FeO / SiO
2 is limited to 0.20 or less. Here, FeO is FeO in firelite (Fe 2 SiO 4 ). If the oxygen basis weight exceeds 900ppm, the SiO in the oxide film layer will inevitably occur.
2 and the amount of FeO increase and the thickness of the oxide film increases, which is disadvantageous in performing the temporary film decomposition reaction during the secondary recrystallization finish annealing. That is, SiO 2 remains just below the surface, and not only a perfect mirror-like surface state cannot be obtained, but it also causes deterioration of magnetism. Furthermore, the formation of excessive SiO 2 accelerates the decomposition of the (Al, Si) N inhibitor in the steel before the start of secondary recrystallization, which makes it difficult to obtain an ultrahigh magnetic flux density. However, if the amount of oxidation is extremely suppressed, there is a problem that the decarburization time becomes long, which hinders productivity. The preferred range is 400 to 700 ppm. Further, when FeO / SiO 2 in the amount of oxidation exceeds 0.20, the reaction of forming the primary film in the first half of the secondary recrystallization finish annealing extremely increases, and the amount of forming the primary film increases. Reaction does not proceed sufficiently in stages. FeO / S
If iO 2 ≦ 0.20, the primary coating is almost completely decomposed by the secondary recrystallization finish annealing due to the effect of the additive to MgO. On the other hand, the decarburization annealing temperature is mainly determined from the viewpoint of obtaining the optimum primary recrystallized grain size.

【0028】この脱炭焼鈍板の(Al,Si)Nインヒ
ビターを強化する必要がある場合、または(Al,S
i)Nを主インヒビターとして用いる製造法(例えば特
公昭62−45285号公報)においては、脱炭焼鈍か
ら二次再結晶仕上焼鈍の工程間で窒化処理を施す。この
窒化処理の方法は特に限定するものではなく、アンモニ
ア等の窒化能のある雰囲気ガス中で行う方法等がある。
量的には0.005%以上、望ましくは全窒素量として
鋼中のAl当量以上窒化すれば良い。
When it is necessary to strengthen the (Al, Si) N inhibitor of this decarburized annealed plate, or (Al, S)
i) In the manufacturing method using N as a main inhibitor (for example, Japanese Patent Publication No. 62-45285), a nitriding treatment is performed between the steps of decarburization annealing and secondary recrystallization finish annealing. The method of this nitriding treatment is not particularly limited, and there is a method of performing it in an atmosphere gas having a nitriding ability such as ammonia.
Quantitatively, 0.005% or more, preferably, the total nitrogen content may be nitrided by Al equivalent or more in the steel.

【0029】次に焼鈍分離剤に使用するMgOは粒子
径、CAA値、水和水分等が制限される。本発明の技術
では、鏡面化は二次再結晶仕上焼鈍の昇温前段で形成し
た適度の一次皮膜を昇温時後段で化学反応により分解除
去することにより行われる。すなわち二次再結晶仕上焼
鈍前段の二次再結晶開始までのインヒビターの安定化の
ためには、この時期における適度な量の一次皮膜による
追加酸化、窒化等の抑制効果を利用する必要があり、磁
気特性の優れた鏡面製品を得るために常用である。この
ためには、焼鈍分離剤のベースとなるMgO自体が適度
の反応性を有していることが重要である。すなわちMg
Oの反応性が極端に悪いと、二次再結晶仕上焼鈍前段の
一次皮膜形成反応が進行せず、皮膜による雰囲気シール
効果が得られない。このような場合は、二次再結晶が生
じても極端に結晶方位が悪くなったり、追加酸化により
鋼板表面直下に残留SiO2 、Al2 3 或いはこれら
のスピネルが生じて鉄損の劣化をもたらす。このため、
MgOの粒径は10μm以下のものが30%以上である
ように制限される。これが30%未満では極端に反応性
が悪くなって前期効果を発揮できない。またMgOのC
AA値は50〜300秒に規定する。この値が50秒未
満では工業的に使用する細に極端に水和の進行が速くな
って、水和水分の制御が困難になり、300秒を超える
とMgO粒子の反応性が極端に低下して、二次再結晶仕
上焼鈍前段での一次被舞う形成が生じなくなる。またM
gOの水和水分は5%以下に制限される。これが5%を
超えると鋼板間の露点が高くなって、昇温時前段で追加
酸化を生じ均一な鏡面状態を得ることが困難になり、極
端な場合にはインヒビターにまで影響を与えて二次再結
晶不良が生じる。
Next, the particle size, CAA value, hydration water content, etc. of MgO used as an annealing separator are limited. In the technique of the present invention, the mirror-finishing is performed by decomposing and removing an appropriate primary coating film formed before the temperature rise of the secondary recrystallization finish annealing by a chemical reaction after the temperature rise. That is, in order to stabilize the inhibitor until the start of secondary recrystallization before the secondary recrystallization finish annealing, it is necessary to utilize the effect of suppressing the additional oxidation, nitriding, etc. by the appropriate amount of the primary coating at this time, It is commonly used to obtain mirror-finished products with excellent magnetic properties. For this purpose, it is important that MgO itself, which is the base of the annealing separator, has an appropriate reactivity. Ie Mg
If the reactivity of O is extremely poor, the reaction of forming the primary film in the stage before the secondary recrystallization finish annealing does not proceed, and the atmosphere sealing effect of the film cannot be obtained. In such a case, even if secondary recrystallization occurs, the crystal orientation is extremely deteriorated, and additional oxidation causes residual SiO 2 , Al 2 O 3 or a spinel of these to occur immediately below the surface of the steel sheet to deteriorate iron loss. Bring For this reason,
The grain size of MgO is limited so that the grain size of 10 μm or less is 30% or more. If it is less than 30%, the reactivity is extremely deteriorated and the previous period effect cannot be exhibited. C of MgO
The AA value is specified to be 50 to 300 seconds. If this value is less than 50 seconds, the hydration progresses extremely rapidly for industrial use, and it becomes difficult to control the water content of hydration. If it exceeds 300 seconds, the reactivity of MgO particles is extremely lowered. As a result, the formation of the primary re-formation before the secondary recrystallization finish annealing does not occur. Also M
The hydrated water content of gO is limited to 5% or less. If it exceeds 5%, the dew point between the steel sheets becomes high, making it difficult to obtain a uniform mirror-like state due to additional oxidation in the former stage during temperature rise. Recrystallization failure occurs.

【0030】焼鈍分離剤MgOへの添加物としては、L
i,K,Na,Ba,Ca,Mg,Zn,Fe,Zr,
Sn,Sr,Al等の塩化物、炭酸塩、硝酸塩、硫酸
塩、硫化物の中から選ばれる1種または2種以上がMg
O100重量部に対して2〜30重量部配合される。こ
れらの化合物の添加により、まず二次再結晶仕上焼鈍の
昇温前段で鋼板表面に適度の薄い一次皮膜が形成され、
次いで一次皮膜の形成抑制と追加酸化が防止され、昇温
後段に皮膜層中のFeのエッチング反応により一次皮膜
が分解され、その後の高温焼鈍で表面をサーマルエッチ
ングし表面化する。これらの化合物の添加量が2重量部
未満では前段で形成した一次皮膜の分解反応が十分に進
行せず、一次皮膜が残存するためこのましくない。一方
30重量部を超えると添加剤中の成分元素が鋼板中に拡
散進入して粒界エッチングを起こしたり、インヒビター
に影響を与えたり、後の純化処理に影響を与えるため好
ましくない。最も好ましい範囲は5〜15重量部であ
る。
As an additive to the annealing separator MgO, L
i, K, Na, Ba, Ca, Mg, Zn, Fe, Zr,
One or more selected from chlorides such as Sn, Sr and Al, carbonates, nitrates, sulfates and sulfides are Mg.
2 to 30 parts by weight is mixed with 100 parts by weight of O. By the addition of these compounds, firstly a moderately thin primary coating is formed on the surface of the steel sheet before the temperature rise of the secondary recrystallization finish annealing,
Then, the formation of the primary coating is suppressed and additional oxidation is prevented, the primary coating is decomposed by the etching reaction of Fe in the coating layer after the temperature is raised, and then the surface is thermally etched and surfaced by high temperature annealing. If the addition amount of these compounds is less than 2 parts by weight, the decomposition reaction of the primary coating formed in the previous stage does not proceed sufficiently and the primary coating remains, which is not desirable. On the other hand, if it exceeds 30 parts by weight, the component elements in the additive diffuse and penetrate into the steel sheet to cause grain boundary etching, affect the inhibitor, and affect the subsequent purification treatment, which is not preferable. The most preferred range is 5 to 15 parts by weight.

【0031】二次再結晶仕上焼鈍条件は、本発明のよう
に焼鈍過程で一次皮膜の適度な形成と分解を行う場合は
重要である。通常、二次再結晶仕上焼鈍における雰囲気
ガスはN2 ,H2 或いはこれらの混合ガスが用いられる
が、表面の酸化制御の観点からはN2 +H2 が有利であ
る。本発明の場合、一次皮膜の分解反応の過程でインヒ
ビターの強度を制御するため、昇温中の雰囲気ガスとし
て少なくともN2 30%以上のN2 ,H2 及び他の不活
性ガスからなる雰囲気が用いられる。N2 分圧が30%
未満では、鏡面化の過程で(Al,Si)Nの弱体化が
起こらず、超高磁束密度材が安定して得られる。特にN
2 20%以下の場合は磁気特性の劣化をもたらす。しか
し、N2 100%のような場合は、MgOの物性値によ
っては鋼板間の酸化度が上昇し酸化のため鋼板の表面に
むらが生じることがある。好ましくはN2 30〜90%
の範囲である。N2 30%以上のガス使用にあたって昇
温全体をこの雰囲気中で焼鈍しても良いが、MgOの条
件等によっては追加酸化が生じることがあり、(Al,
Si)Nの安定化に最も効果的な温度である700℃以
降に切り替えるのが好ましい。二次再結晶仕上焼鈍にお
ける均熱温度は1180〜1200℃とするのが有利で
ある。本発明においては二次再結晶仕上焼鈍の均熱に達
した時点で一次皮膜の分解が完了しており、純化焼鈍中
に熱的なエッチングによって鋼板表面の鏡面化が得られ
る。均熱温度が1180℃未満ではこの効果が弱く、ま
た、純化に対して不利となる。一方1250℃を超える
とコイル形状が悪化したり、エッジ部分の焼き付きが発
生することがある。また、特開平2−258929号公
報に開示される様に一定の温度で保持したり昇温速度を
制御する手段により二次再結晶を所定の温度域で行うこ
とは磁束密度を上げるうえで有効である。
The secondary recrystallization finish annealing conditions are important when proper formation and decomposition of the primary coating are carried out in the annealing process as in the present invention. Usually, the atmosphere gas in the secondary recrystallization finish annealing is N 2, H 2 or is a mixed gas is used, from the viewpoint of the oxidation control of the surface is advantageously N 2 + H 2. For the present invention, for controlling the strength of the inhibitor during the course of the decomposition reaction of the primary coating, an atmosphere composed of at least N 2 30% or more N 2, H 2 and other inert gas as the atmosphere gas NoboriAtsushichu Used. N 2 partial pressure is 30%
When it is less than the above value, weakening of (Al, Si) N does not occur in the process of mirror-finishing, and an ultrahigh magnetic flux density material can be stably obtained. Especially N
For 2 to 20% results in a deterioration of the magnetic properties. However, in the case of N 2 100%, the degree of oxidation between steel sheets may increase depending on the physical property value of MgO, and unevenness may occur on the surface of the steel sheet due to oxidation. Preferably N 2 30 to 90%
Is the range. The entire temperature rise may be annealed in this atmosphere when using a gas of N 2 of 30% or more, but additional oxidation may occur depending on the conditions of MgO (Al,
It is preferable to switch to 700 ° C. or higher, which is the most effective temperature for stabilizing Si) N. It is advantageous that the soaking temperature in the secondary recrystallization finish annealing is 1180 to 1200 ° C. In the present invention, the decomposition of the primary coating is completed when the soaking of the secondary recrystallization finish annealing is reached, and the steel sheet surface is mirror-finished by thermal etching during the purification annealing. If the soaking temperature is lower than 1180 ° C., this effect is weak and it is disadvantageous for purification. On the other hand, if the temperature exceeds 1250 ° C., the coil shape may be deteriorated or seizure of the edge portion may occur. Further, as disclosed in JP-A-2-258929, it is effective to increase the magnetic flux density by carrying out secondary recrystallization within a predetermined temperature range by maintaining a constant temperature or controlling the temperature rising rate. Is.

【0032】一方、図2でBi添加量とともに鏡面化鋼
板表面に微量に付着した酸素が減少しているように、B
i添加は鏡面化を促進させる作用があることが期待され
る。この原因についてはまだ明らかではないが、製鋼段
階で添加した鋼中のBiが鋼板表面から気化されるとき
に、一次皮膜の剥離やその後のサーマルエッチングに対
し有利に作用しているものと推定している。また、鋼中
に微細に析出したBiは補足的にインヒビターの熱的安
定化をもたらすため、本鏡面化技術のような(Al,S
i)Nの不安定化に懸念がある場合には、二次再結晶発
現に有利な作用をもたらすと推定される。一方、Biの
超磁束密度化効果をコイルフォームの工場製造において
安定して引き出すためには、従来の一次皮膜を形成させ
る技術では限界があり、鏡面化技術が最も適している。
さらに、Bi添加技術は超磁束密度化に伴い結晶粒径が
粗大化するため磁区細分化処理が前提となり、特に機械
的に局部溝を形成する方法を用いる場合は金型のコスト
の観点から鏡面材が適切である。すなわち、本発明は従
来のBi添加法による超高磁束密度化と鏡面化、磁区細
分化技術による低鉄損化を極めて効果的に組み合わせた
ものである。
On the other hand, as shown in FIG. 2, the amount of oxygen adhering to the surface of the mirror-finished steel sheet decreases with the addition amount of Bi.
It is expected that the addition of i will have the effect of promoting the mirroring. The reason for this is not clear yet, but it is presumed that when Bi in the steel added in the steelmaking stage is vaporized from the steel sheet surface, it has an advantageous effect on the peeling of the primary coating and the subsequent thermal etching. ing. In addition, Bi finely precipitated in steel complementarily thermally stabilizes the inhibitor, so that Bi (Al, S
i) When there is a concern about destabilization of N, it is presumed to bring about a beneficial effect on the expression of secondary recrystallization. On the other hand, in order to stably bring out the effect of increasing the super-flux density of Bi in the factory manufacturing of coil foam, the conventional technique for forming a primary coating has a limit, and the mirror-finishing technique is most suitable.
In addition, the Bi addition technology is premised on the magnetic domain refinement processing because the crystal grain size becomes coarse with the super-flux density increase. Especially, when the method of mechanically forming the local groove is used, the mirror surface is taken into consideration from the viewpoint of the die cost. The material is appropriate. That is, the present invention is an extremely effective combination of the ultra-high magnetic flux density achieved by the conventional Bi addition method, the mirror finish, and the low iron loss achieved by the domain refinement technique.

【0033】二次再結晶仕上焼鈍後引き続き余分の焼鈍
分離剤を除去後、コイル巻きぐせ等を矯正するための連
続張力焼鈍を行い、同時に絶縁皮膜コーティングを塗
布、焼き付けする。このとき必要に応じて、該鋼板にレ
ーザー照射、機械的溝形成、張力被膜コーティング等の
磁区細分化処理を施す。本発明はBi添加により超高磁
束密度化を行うと同時に二次再結晶粒径を大きくするも
のであるため、鉄損特性を改善する意味から磁区細分化
処理は有効である。磁区細分化の方法は特に限定する必
要はない。
After the secondary recrystallization finish annealing, the excess annealing separating agent is subsequently removed, and then continuous tension annealing for correcting coil winding and the like is performed, and at the same time, an insulating film coating is applied and baked. At this time, if necessary, the steel sheet is subjected to magnetic domain subdivision processing such as laser irradiation, mechanical groove formation, and tension film coating. In the present invention, the addition of Bi increases the magnetic flux density and simultaneously increases the secondary recrystallized grain size. Therefore, the magnetic domain refining treatment is effective from the viewpoint of improving the iron loss characteristics. The method of subdividing the magnetic domains is not particularly limited.

【0034】局部的な歪みを導入することで磁区細分化
を行う場合、例えば特公昭57−2252号公報等に記
載されるレーザー光照射を行う方法や、特開昭62−1
51511号公報、特公平6−45824号公報等に記
載されるプラズマ炎照射を行う方法等を用いれば良い。
局部的な溝を形成することで磁区細分化を行う場合、歯
車ロール法(例えば特公平4−48847号公報)や金
型プレス法(例えば特公平6−63037号公報)等の
機械的な塑性加工による方法、フォトエッチング法(例
えば特公平5−69284号公報)やレジストインキエ
ッチング法(特公平2−46673号公報、特公平3−
69968号公報)等の化学エッチングや電解エッチン
グを用いる方法などを採用すればよい。鋼板に形成する
溝は圧延方向に対して直角もしくは直角から45度の範
囲内でその間隔は2〜10mmが鉄損低下の観点から好ま
しい。溝の形状は連続的、不連続または点状のいずれで
も良い。溝の幅、及び深さはそれぞれ10〜300μ
m、5〜50μmの範囲が鉄損低下の観点から好まし
い。溝の幅を狭くすると曲率半径の小さな曲げ加工を施
す際に折れの起点となりやすい。また溝の幅を広くする
と磁束密度が低下してしまう。溝の深さも同様にあまり
深くすると磁束密度が低下してしまう。また、このよう
な局部的な溝を形成する工程は、冷延以降の工程であれ
ばいずれの工程でも良い。
When the magnetic domain is subdivided by introducing a local strain, for example, a method of irradiating a laser beam described in Japanese Patent Publication No. 57-2252, or JP-A-62-1 is used.
The method of performing plasma flame irradiation described in Japanese Patent Publication No. 51511, Japanese Patent Publication No. 6-45824, etc. may be used.
When magnetic domains are subdivided by forming local grooves, mechanical plasticity such as a gear roll method (for example, Japanese Patent Publication No. 4-48847) or a die pressing method (for example, Japanese Patent Publication No. 6-63037) A processing method, a photo-etching method (for example, Japanese Patent Publication No. 5-69284) and a resist ink etching method (Japanese Patent Publication No. 2-46673, Japanese Patent Publication 3-).
69968), a method using chemical etching or electrolytic etching, or the like may be adopted. The grooves formed in the steel sheet are preferably at right angles to the rolling direction or within a range of 45 degrees from the right angles, and the intervals are preferably 2 to 10 mm from the viewpoint of reducing iron loss. The shape of the groove may be continuous, discontinuous, or dot-shaped. The width and depth of the groove are 10 to 300μ, respectively
The range of m and 5 to 50 μm is preferable from the viewpoint of reducing iron loss. If the width of the groove is narrowed, it tends to be a starting point of bending when performing bending with a small radius of curvature. If the width of the groove is widened, the magnetic flux density will decrease. Similarly, if the depth of the groove is too deep, the magnetic flux density will decrease. The step of forming such a local groove may be any step as long as it is a step after cold rolling.

【0035】張力コーティングとしては、例えば特開昭
48−39338号公報によるコロイド状シリカとリン
酸アルミニウムを主体とするコーティング液、特開昭5
0−79442号公報によるコロイド状シリカとリン酸
マグネシウムを主体とするコーティング液、または特開
平4−222849号公報によるアルミナ・ゾルとホウ
酸を主成分とするコーティング液を焼き付ける方法等を
採用すればよい。
As the tension coating, for example, a coating liquid mainly composed of colloidal silica and aluminum phosphate according to Japanese Patent Laid-Open No. 48-39338, Japanese Patent Laid-Open Publication No.
If a method of baking a coating solution mainly composed of colloidal silica and magnesium phosphate according to JP-A 0-79442 or a coating solution mainly composed of alumina sol and boric acid according to JP-A-4-222849 is adopted, Good.

【0036】[0036]

【実施例】【Example】

(実施例1)重量%で、C:0.05%、Si:3.3
%、Mn:0.1%、S:0.01%、酸可溶性Al:
0.03%、N:0.008%、を基本成分とし、
(A:Bi添加)Bi:0.01%と(B:従来法)B
i:0%の2水準の珪素鋼を溶製し、それぞれ鋳片に分
注鋳造後、1200℃に加熱し、抽出後直ちに2.3mm
板厚まで熱間圧延した。その後、酸洗し0.23mmまで
冷延した。この冷延板を窒素と水素の混合ガス中におい
て酸化度0.4で840℃の温度で100秒焼鈍し一次
再結晶させた。次いでアンモニア雰囲気中で焼鈍するこ
とにより、窒素量を0.02%に増加して、インヒビタ
ーの強化を行った。
(Example 1) C: 0.05% and Si: 3.3 by weight%
%, Mn: 0.1%, S: 0.01%, acid-soluble Al:
0.03%, N: 0.008% as a basic component,
(A: Bi added) Bi: 0.01% and (B: conventional method) B
i: 2% silicon steel of 0% was melted, dispensed and cast into slabs, respectively, and heated to 1200 ° C., and 2.3 mm immediately after extraction
It was hot rolled to the plate thickness. Then, it was pickled and cold rolled to 0.23 mm. This cold-rolled sheet was annealed in a mixed gas of nitrogen and hydrogen at a temperature of 840 ° C. for 100 seconds at an oxidation degree of 0.4 to perform primary recrystallization. Then, by annealing in an ammonia atmosphere, the amount of nitrogen was increased to 0.02% to strengthen the inhibitor.

【0037】これらの鋼板をその後、(C:鏡面化)M
gO+K2 S(7重量部)、及び(D:従来法)MgO
の水スラリーを塗布した後鋼板を積層し、低いガス流量
のもとでN分圧40%で二次再結晶仕上焼鈍を施した。
これらの試料に歯車ロールで圧延方向と直角方向から1
0度の方向で、幅50μm、深さ15μmの溝を形成し
た後、コロイド状シリカとリン酸塩を主成分とするコー
ティング液を塗布して850℃で2分間焼き付けた。こ
れらの試料の磁気特性を測定した後、更に800℃で4
時間の歪取り焼鈍を行った。得られた製品の磁気特性を
表1に示す。
These steel plates were then (C: mirror-finished) M
gO + K 2 S (7 parts by weight), and (D: conventional method) MgO
After applying the water slurry of No. 2, the steel sheets were laminated and subjected to secondary recrystallization finish annealing at a N partial pressure of 40% under a low gas flow rate.
Apply 1 to each of these samples with a gear roll from the direction perpendicular to the rolling direction.
After forming a groove having a width of 50 μm and a depth of 15 μm in the direction of 0 °, a coating liquid containing colloidal silica and phosphate as a main component was applied and baked at 850 ° C. for 2 minutes. After measuring the magnetic properties of these samples,
Strain relief annealing was performed for a period of time. The magnetic properties of the obtained product are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】(実施例2)重量%で、Si:3.3%、
Mn:0.1%、C:0.05%、S:0.007%、
酸可溶性Al:0.03%、N:0.008%、Sn:
0.05%を基本成分とし、(A:Bi添加)Bi:
0.01%と(B:従来法)Bi:0%の2水準の珪素
鋼を溶製し、それぞれ鋳片に分注鋳造後、1200℃に
加熱し、抽出後直ちに2.3mm板厚まで熱間圧延した。
酸洗し、1.4mmまで冷延した冷延板を1120℃の温
度で30秒900℃で90秒焼鈍し、750℃まで空冷
後80℃の水中に急冷し後、最終板厚0.15mmに冷延
した。この冷延板を窒素と水素の混合ガス中において酸
化度0.5で830℃の温度で70秒焼鈍し一次再結晶
させた。次いでアンモニア雰囲気中で焼鈍することによ
り、窒素量を0.025%に増加して、インヒビターの
強化を行った。
(Example 2) Si: 3.3% by weight,
Mn: 0.1%, C: 0.05%, S: 0.007%,
Acid-soluble Al: 0.03%, N: 0.008%, Sn:
0.05% as a basic component (A: Bi added) Bi:
0.01% and (B: conventional method) Bi: 0%, two levels of silicon steel are melted, dispensed and cast into slabs, respectively, and heated to 1200 ° C. Immediately after extraction, up to 2.3 mm plate thickness It was hot rolled.
The cold-rolled sheet, which has been pickled and cold-rolled to 1.4 mm, is annealed at a temperature of 1120 ° C. for 30 seconds at 900 ° C. for 90 seconds, air-cooled to 750 ° C., and then rapidly cooled in water at 80 ° C. to obtain a final sheet thickness of 0.15 mm. Cold rolled. This cold-rolled sheet was annealed at a temperature of 830 ° C. for 70 seconds at a degree of oxidation of 0.5 in a mixed gas of nitrogen and hydrogen for primary recrystallization. Then, by annealing in an ammonia atmosphere, the amount of nitrogen was increased to 0.025% to strengthen the inhibitor.

【0040】これらの鋼板をその後、(C:鏡面化)M
gO+SnCl2 (10重量部)、及び(D:従来法)
MgOの水スラリーを塗布した後鋼板を積層し、低いガ
ス流量のもとでN2 の50%分圧で二次再結晶仕上焼鈍
を施した。これら仕上焼鈍後の試料に圧延方向と直角方
向に、幅30μm、深さ10μmの溝をフォトエッチン
グ法で形成した後、アルミナ・ゾルとホウ酸を主成分と
するコーティング液を塗布して870℃で2分間焼き付
けた。これらの試料の磁気特性を測定した後、更に80
0℃で4時間の歪取り焼鈍を行った。得られた製品の磁
気特性を表2に示す。
These steel sheets were then subjected to (C: mirror surface) M
gO + SnCl 2 (10 parts by weight), and (D: conventional method)
After applying a water slurry of MgO, steel sheets were laminated and subjected to secondary recrystallization finish annealing at a low gas flow rate at a partial pressure of N 2 of 50%. Grooves having a width of 30 μm and a depth of 10 μm were formed in the sample after the finish annealing in a direction perpendicular to the rolling direction by a photoetching method, and then a coating liquid containing alumina sol and boric acid as a main component was applied to the sample at 870 ° C. Baked for 2 minutes. After measuring the magnetic properties of these samples, an additional 80
Strain relief annealing was performed at 0 ° C. for 4 hours. The magnetic properties of the obtained product are shown in Table 2.

【0041】[0041]

【表2】 [Table 2]

【0042】(実施例3)重量%で、Si:3.3%、
Mn:0.07%、C:0.07%、Se:0.025
%、酸可溶性Al:0.028%、N:0.008%、
Sb:0.1%を基本成分とし、(A:Bi添加)B
i:0.01%と(B:従来法)Bi:0%の2水準の
珪素鋼を溶製し、それぞれ鋳片に分注鋳造後、1350
℃に加熱し、抽出後直ちに2.3mm板厚まで熱間圧延
し、直ちに室温まで水冷した。この熱延板を1100℃
で2分間焼鈍した後酸洗し、最終板厚0.27mmまで途
中で250℃での時効処理を5回挟んで冷延した。この
冷延板を窒素と水素の混合ガス中において酸化度0.6
で850℃の温度で120秒焼鈍し一次再結晶させた。
(Example 3) Si: 3.3% by weight,
Mn: 0.07%, C: 0.07%, Se: 0.025
%, Acid-soluble Al: 0.028%, N: 0.008%,
Sb: 0.1% as a basic component (A: Bi added) B
i: 0.01% and (B: conventional method) Bi: 0%, two levels of silicon steel were melted, and each was cast by casting into a slab and then cast at 1350.
Immediately after extraction, the product was hot-rolled to a plate thickness of 2.3 mm, and immediately cooled to room temperature with water. This hot rolled sheet is 1100 ° C
It was annealed for 2 minutes at 0.25 ° C., then pickled, and then cold rolled by aging treatment at 250 ° C. five times until it reached a final plate thickness of 0.27 mm. This cold-rolled sheet was oxidized to a degree of oxidation of 0.6 in a mixed gas of nitrogen and hydrogen.
At 120 ° C. for 120 seconds for primary recrystallization.

【0043】これらの鋼板をその後、(C:鏡面化)M
gO+K2 CO3 (15重量部)及び(D:従来法)M
gOの水スラリーを塗布した後、鋼板を積層し厚み方向
に20kg/mm2 で加圧した後、低いガス流量のもとでN
2 の75%分圧で二次再結晶仕上焼鈍を施した。これら
の試料に、コロイド状シリカとリン酸塩を主成分とする
コーティング液を塗布して850℃で2分間焼き付け
た。その後、鋼板表面に圧延方向と直角方向に5mm間隔
でレーザー照射を行った。得られた製品の磁気特性を表
3に示す。
These steel sheets are then (C: mirror-finished) M
gO + K 2 CO 3 (15 parts by weight) and (D: conventional method) M
After applying gO water slurry, steel plates were laminated and pressed in the thickness direction at 20 kg / mm 2 , and then N was applied under a low gas flow rate.
It was subjected to secondary recrystallization finish annealing at 2 75% partial pressure. A coating liquid containing colloidal silica and phosphate as main components was applied to these samples and baked at 850 ° C. for 2 minutes. After that, laser irradiation was performed on the surface of the steel sheet at intervals of 5 mm in the direction perpendicular to the rolling direction. Table 3 shows the magnetic properties of the obtained product.

【0044】[0044]

【表3】 [Table 3]

【0045】(実施例4)重量%で、C:0.05%、
Si:3.25%、Mn:0.10%、S:0.007
%、P:0.025%、酸可溶性Al:0.029%、
N:0.007%、Bi:0.007%、Cr:0.1
2%を含有する珪素鋼を溶製し、スラブに鋳造後、11
50℃に加熱し、抽出後直ちに2.3mm板厚まで熱延
し、熱延後水冷し550℃で巻き取った。その後熱延板
を1120℃の温度で30秒900℃で90秒焼鈍し、
750℃まで空冷後80℃の水中に急冷した。次いで酸
洗後、0.23mmまで5パスの圧延を行い、途中200
℃以上で5分以上の時効処理を行った。引き続き脱炭・
一次再結晶焼鈍を窒素と、水素の混合ガス中において酸
化度0.5の雰囲気とし、850℃の温度で100秒行
い、引き続いてNH3 雰囲気でN含有量が200ppm に
なるよう窒化焼鈍を行った。MgOを主成分とする焼鈍
分離剤にMgO100重量部に対しCaCl2 を5重量
部添加した水スラリーを鋼板表面に塗布後して巻いた5
Tのコイルを、ボックスタイプの焼鈍炉で二次再結晶仕
上焼鈍を行った。炉内に窒素分圧を50%とした水素混
合ガスを流しながら1200℃まで15℃/hrで昇温
し、引き続いて水素を流しながら1200℃で75時間
の純化焼鈍を行った。その後、コイルを連続焼鈍ライン
で展開しながら、圧延方向からと直角方向から10度傾
いた、幅50μm、深さ11μmの溝を形成した歯型の
金型をプレスで溝を形成した後、コロイド状シリカとリ
ン酸塩を主成分とするコーティング液を塗布して860
℃で2分間焼き付けた。得られたコイルの5箇所でサン
プリングし、測定した800℃で2時間焼鈍後のエプス
タイン値は、磁区制御前の磁束密度B8 で平均1.96
T、鉄損W17/50で0.69W/kgであった。
(Example 4) C: 0.05% by weight,
Si: 3.25%, Mn: 0.10%, S: 0.007
%, P: 0.025%, acid-soluble Al: 0.029%,
N: 0.007%, Bi: 0.007%, Cr: 0.1
After melting silicon steel containing 2% and casting into slab,
It was heated to 50 ° C., hot-rolled immediately after extraction to a plate thickness of 2.3 mm, hot-rolled and then water-cooled and wound at 550 ° C. Then, the hot rolled sheet is annealed at a temperature of 1120 ° C. for 30 seconds and 900 ° C. for 90 seconds,
After air cooling to 750 ° C., it was rapidly cooled to 80 ° C. in water. Then, after pickling, rolling 5 passes up to 0.23 mm, 200
The aging treatment was performed at 5 ° C. or higher for 5 minutes or longer. Continue to decarburize
The primary recrystallization annealing is performed in a mixed gas of nitrogen and hydrogen in an atmosphere with an oxidation degree of 0.5, at a temperature of 850 ° C. for 100 seconds, and then in a NH 3 atmosphere, nitriding annealing is performed so that the N content becomes 200 ppm. It was An annealing slurry containing MgO as a main component was added with 5 parts by weight of CaCl 2 with respect to 100 parts by weight of MgO, and the resulting water slurry was applied to the surface of the steel sheet and rolled.
The T coil was subjected to secondary recrystallization finish annealing in a box type annealing furnace. The temperature was raised to 1200 ° C. at 15 ° C./hr while flowing a hydrogen mixed gas with a nitrogen partial pressure of 50% in the furnace, and subsequently, purification annealing was performed at 1200 ° C. for 75 hours while flowing hydrogen. Then, while rolling the coil on a continuous annealing line, a tooth mold having a groove with a width of 50 μm and a depth of 11 μm, which is tilted 10 degrees from the direction perpendicular to the rolling direction, was formed with a press, and then colloidal. 860 by applying a coating liquid containing silica and phosphate as main components
Bake for 2 minutes at ° C. The Epstein value after annealing at 800 ° C. for 2 hours, which was sampled at 5 points of the obtained coil, was 1.96 on average in the magnetic flux density B 8 before domain control.
The T and iron loss were W 17/50 and 0.69 W / kg.

【0046】[0046]

【発明の効果】本発明は、従来のBi添加法とによる超
高磁束密度化にLi,K,Na,Ba,Ca,Mg,Z
n,Fe,Zr,Sn,Sr,Al等の塩化物、炭酸
塩、硝酸塩、硫酸塩、硫化物の中から選ばれる1種また
は2種以上がMgO100重量部に対して2〜30重量
部配合されるMgOスラリーを塗布する鏡面化技術を極
めて効果的に組み合わせることにより、工業生産におい
て極めて安定的に安価な超磁束密度低一方向性電磁鋼板
が得られるとともに、磁区細分化処理後の鉄損特性も極
めて優れており、工業的に非常に価値が高いものと云え
る。
According to the present invention, Li, K, Na, Ba, Ca, Mg, Z can be used to obtain an ultrahigh magnetic flux density by the conventional Bi addition method.
2 to 30 parts by weight of one or more selected from chlorides, carbonates, nitrates, sulfates, sulfides of n, Fe, Zr, Sn, Sr, Al, etc., based on 100 parts by weight of MgO. It is possible to obtain a very stable and inexpensive superflux density low unidirectional electrical steel sheet that is extremely stable in industrial production by using a very effective combination of the mirror-finishing technology for applying the MgO slurry described above, and also to the iron loss after the magnetic domain refinement treatment. It has extremely excellent characteristics and can be said to be very valuable industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】一次皮膜形成法(従来のマグネシア焼鈍分離
剤)における、各Bi含有量での仕上げ焼鈍中のガス導
入量と磁束密度B8 および鋼板の酸素量の関係を示す図
で、〔A〕は各Bi含有量での仕上げ焼鈍中のガス導入
量と磁束密度B8 の関係を示す図で、〔B〕は各Bi含
有量での仕上げ焼鈍中のガス導入量と鋼板の酸素量の関
係を示す図。
FIG. 1 is a diagram showing the relationship between the amount of gas introduced during finish annealing and the magnetic flux density B 8 and the amount of oxygen in a steel sheet during finish annealing at each Bi content in the primary coating forming method (conventional magnesia annealing separator). ] Is a diagram showing the relationship between the amount of gas introduced during finish annealing and the magnetic flux density B 8 at each Bi content, and [B] is the amount of gas introduced during finish annealing at each Bi content and the oxygen content of the steel sheet. The figure which shows a relationship.

【図2】鏡面化法(塩化カルシウムを含有するマグネシ
ア焼鈍分離剤)における、各Bi含有量での仕上げ焼鈍
中のガス導入量と磁束密度B8 および鋼板の酸素量の関
係を示す図で、〔A〕は各Bi含有量での仕上げ焼鈍中
のガス導入量と磁束密度B8 の関係を示す図で、〔B〕
は各Bi含有量での仕上げ焼鈍中のガス導入量と鋼板の
酸素量の関係を示す図。
FIG. 2 is a diagram showing the relationship between the amount of gas introduced during finish annealing and the magnetic flux density B 8 and the amount of oxygen of a steel sheet during mirror annealing (magnesia annealing separator containing calcium chloride) at each Bi content. [A] is a diagram showing the relationship between the gas introduction amount and the magnetic flux density B 8 during finish annealing at each Bi content.
FIG. 4 is a diagram showing the relationship between the amount of gas introduced during finish annealing and the amount of oxygen in a steel sheet at each Bi content.

【図3】図2で得られた試料をレーザー照射により磁区
細分化処理を行ったときの素材の磁束密度(磁区細分化
前)B8 と磁区細分化後の鉄損W17/50 の関係を示す
図。
FIG. 3 shows the relationship between the magnetic flux density (before magnetic domain refinement) B 8 and the iron loss W 17/50 after magnetic domain refinement when the sample obtained in FIG. 2 was subjected to magnetic domain refinement treatment by laser irradiation. FIG.

フロントページの続き (56)参考文献 特開 平5−222489(JP,A) 特開 平5−299228(JP,A) 特開 平5−320770(JP,A) 特開 平6−8814(JP,A) 特開 平6−88173(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C21D 9/46 501 C22C 38/00 303 C22C 38/06 H01F 1/16 Continuation of the front page (56) Reference JP-A-5-222489 (JP, A) JP-A-5-299228 (JP, A) JP-A-5-320770 (JP, A) JP-A-6-8814 (JP , A) JP-A-6-88173 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 8/12 C21D 9/46 501 C22C 38/00 303 C22C 38/06 H01F 1 / 16

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.02〜0.1%、S
i:2.0〜4.8%、酸可溶性Al:0.012〜
0.050%、N:0.0030〜0.0150%、B
i:0.0005〜0.03%を基本成分とし、残部は
Feおよび不可避的不純物をからなる溶鋼を鋳造し、熱
間圧延し、65〜95%の最終強冷延を含む1回あるい
は中間焼鈍を介入する2回以上の冷間圧延により最終板
厚とし、一次再結晶を兼ねた脱炭焼鈍を施し、二次再結
晶仕上焼鈍を行う工程からなる一方向性電磁鋼板の製造
方法において、鋼板表面に、MgO100重量部に対
し、Li,K,Na,Ba,Ca,Mg,Zn,Fe,
Zr,Sn,Sr,Alの塩化物、炭酸塩、硝酸塩、硫
酸塩、硫化物の中から選ばれる1種または2種以上を2
〜30重量部で添加した焼鈍分離剤を塗布し、二次再結
晶仕上焼鈍することを特徴とする鏡面一方向性電磁鋼板
の製造方法
1. C: 0.02 to 0.1% by weight, S
i: 2.0 to 4.8%, acid-soluble Al: 0.012
0.050%, N: 0.0030 to 0.0150%, B
i: 0.0005 to 0.03% as a basic component, the balance being a molten steel consisting of Fe and unavoidable impurities, hot-rolled, and once or in the middle including 65 to 95% final strong cold rolling. In a method for producing a unidirectional electrical steel sheet, which comprises a step of performing decarburization annealing that also serves as primary recrystallization to a final sheet thickness by cold rolling two or more times with an intervention of annealing, and performing secondary recrystallization finish annealing, On the surface of the steel sheet, Li, K, Na, Ba, Ca, Mg, Zn, Fe,
One or more selected from Zr, Sn, Sr, and Al chlorides, carbonates, nitrates, sulfates, and sulfides.
The annealing separating agent was added to 30 parts by weight was coated, mirror-oriented electrical steel sheet characterized by annealing finishing secondary recrystallization
Manufacturing method .
【請求項2】 脱炭焼鈍における鋼板酸素目付量が90
0ppm 以下で、且つ酸化膜中のFeO/SiO2 が0.
20以下であることを特徴とする請求項1記載の鏡面一
方向性電磁鋼板の製造方法
2. The oxygen basis weight of the steel sheet during decarburization annealing is 90.
FeO / SiO 2 in the oxide film is less than 0 ppm.
The mirror surface according to claim 1, wherein the mirror surface is 20 or less.
Method for manufacturing grain-oriented electrical steel sheet .
【請求項3】 焼鈍分離剤に使用するMgOの物性が、
粒子径が10μm以下のものを30%以上含み、クエン
酸活性度CAA値が50〜300秒(30℃測定)、水
和水分が5%以下であることを特徴とする請求項1記載
鏡面一方向性電磁鋼板の製造方法
3. The physical properties of MgO used as an annealing separator are
The mirror surface according to claim 1, which comprises 30% or more of particles having a particle size of 10 μm or less, a citric acid activity CAA value of 50 to 300 seconds (measured at 30 ° C.), and a hydrated water content of 5% or less. Manufacturing method of unidirectional electrical steel sheet .
【請求項4】 二次再結晶仕上焼鈍の条件として、二次
再結晶完了までの昇温時における雰囲気をN2の比率が
30%以上のN2+H2雰囲気であることを特徴とする請
求項1記載の鏡面一方向性電磁鋼板の製造方法
4. The condition for the secondary recrystallization finish annealing is that the atmosphere during the temperature rise until the secondary recrystallization is completed is an N 2 + H 2 atmosphere in which the ratio of N 2 is 30% or more. Item 1. A method for producing a mirror-oriented unidirectional electrical steel sheet according to Item 1.
【請求項5】 請求項1記載の鋼板に局部的な歪みを導
入することにより、磁区細分化処理を施すことを特徴と
する鏡面一方向性電磁鋼板の製造方法
5. A method for producing a mirror-oriented unidirectional electrical steel sheet, which comprises subjecting the steel sheet according to claim 1 to local strain to carry out a magnetic domain refining treatment.
【請求項6】 請求項1記載の鋼板にコーティング処理
による張力皮膜を形成した後、局部的な歪みを導入する
ことにより、磁区細分化処理を施すことを特徴とする
面一方向性電磁鋼板の製造方法
6. A mirror characterized in that after forming a tension film on the steel sheet according to claim 1 by a coating process, a local strain is introduced to perform a magnetic domain refining process.
Method for manufacturing plane-oriented electrical steel sheet .
【請求項7】 請求項1記載の鋼板に圧延方向に対して
直角もしくは直角から45度の範囲内で間隔2〜10mm
で幅10〜300μm、深さ5〜50μmの範囲で連続
的、不連続または点状の溝あるいは局部的な溝を形成
し、併せてコーティング処理による張力皮膜を形成する
ことにより磁区細分化させることを特徴とする鏡面一方
向性電磁鋼板の製造方法
7. The steel sheet according to claim 1 having a distance of 2 to 10 mm at right angles to the rolling direction or within a range of 45 degrees from right angles.
To form continuous, discontinuous or dot-like grooves or local grooves in the range of 10 to 300 μm in width and 5 to 50 μm in depth, and to form a tension film by coating treatment to subdivide magnetic domains. Mirror surface characterized by
Method for manufacturing tropic electrical steel sheet .
【請求項8】 脱炭焼鈍から二次再結晶仕上焼鈍の工程
間で窒化処理を行うことを特徴とする請求項1ないし7
のいずれかに記載の鏡面一方向性電磁鋼板の製造方法。
8. A process from decarburization annealing to secondary recrystallization finish annealing.
Nitriding treatment is performed between the two.
A method for manufacturing a mirror-oriented unidirectional electrical steel sheet according to any one of 1.
JP28494496A 1996-10-28 1996-10-28 Method for manufacturing mirror-oriented unidirectional electrical steel sheet Expired - Lifetime JP3489945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28494496A JP3489945B2 (en) 1996-10-28 1996-10-28 Method for manufacturing mirror-oriented unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28494496A JP3489945B2 (en) 1996-10-28 1996-10-28 Method for manufacturing mirror-oriented unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH10130727A JPH10130727A (en) 1998-05-19
JP3489945B2 true JP3489945B2 (en) 2004-01-26

Family

ID=17685096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28494496A Expired - Lifetime JP3489945B2 (en) 1996-10-28 1996-10-28 Method for manufacturing mirror-oriented unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3489945B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368235B1 (en) * 1998-12-18 2003-04-21 주식회사 포스코 Manufacturing method of oriented electrical steel sheet
JP3387914B1 (en) * 2001-09-21 2003-03-17 新日本製鐵株式会社 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with excellent film properties and high magnetic field iron loss
JP3388239B2 (en) * 2001-07-16 2003-03-17 新日本製鐵株式会社 Manufacturing method of ultra-high magnetic flux density unidirectional electrical steel sheet with high magnetic field iron loss and excellent film properties
KR100586440B1 (en) 2001-07-16 2006-06-08 신닛뽄세이테쯔 카부시키카이샤 Ultra-high magnetic flux density unidirectional electrical sheet excellent in high magnetic field iron loss and coating characteristics and production method therefor
JP4184755B2 (en) * 2002-11-01 2008-11-19 新日本製鐵株式会社 Unidirectional electrical steel sheet
US20220090246A1 (en) * 2019-01-16 2022-03-24 Nippon Steel Corporation Method for producing grain oriented electrical steel sheet
WO2020149346A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
CN113302318B (en) * 2019-01-16 2024-01-09 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet
CN114395663B (en) * 2021-12-31 2024-06-14 重庆望变电气(集团)股份有限公司 Annealing isolating agent, preparation method of annealing isolating agent suspension and preparation method of non-bottom-layer low-temperature high-magnetic induction oriented silicon steel
CN114854960B (en) * 2022-03-30 2023-09-05 武汉钢铁有限公司 Annealing isolating agent for reducing surface defects of oriented silicon steel and use method thereof

Also Published As

Publication number Publication date
JPH10130727A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
JP2003096520A (en) Method of producing high magnetic flux density grain oriented silicon steel sheet having excellent film property and high magnetic field core loss
JP3496067B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3489945B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JP2680987B2 (en) Method for producing grain-oriented silicon steel sheet with low iron loss
JP4331886B2 (en) Method for producing grain-oriented silicon steel sheet
JP2674917B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JP2663229B2 (en) Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties
JP3154935B2 (en) Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density
JPH09279247A (en) Production of grain-oriented silicon steel sheet high in density of magnetic flux
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2706020B2 (en) Method for producing grain-oriented silicon steel sheet
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS633008B2 (en)
JPH0730396B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic and film properties
JP2674916B2 (en) Method for manufacturing mirror-finished high magnetic flux density grain-oriented silicon steel sheet
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH11152517A (en) Production of grain-oriented silicon steel sheet having uniform surface property in coil
JP2716916B2 (en) Method for producing grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term