[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3489441B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JP3489441B2
JP3489441B2 JP15140798A JP15140798A JP3489441B2 JP 3489441 B2 JP3489441 B2 JP 3489441B2 JP 15140798 A JP15140798 A JP 15140798A JP 15140798 A JP15140798 A JP 15140798A JP 3489441 B2 JP3489441 B2 JP 3489441B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
internal combustion
combustion engine
oxygen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15140798A
Other languages
Japanese (ja)
Other versions
JPH11343902A (en
Inventor
仁 石井
立男 佐藤
公良 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15140798A priority Critical patent/JP3489441B2/en
Publication of JPH11343902A publication Critical patent/JPH11343902A/en
Application granted granted Critical
Publication of JP3489441B2 publication Critical patent/JP3489441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の排気中に
含まれるHC(炭化水素成分)を吸着する機能を有する
触媒を備えた内燃機関の空燃比制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control system for an internal combustion engine equipped with a catalyst having a function of adsorbing HC (hydrocarbon component) contained in exhaust gas of the internal combustion engine.

【0002】[0002]

【従来の技術と解決すべき課題】内燃機関の排気通路に
三元触媒とともにその下流側にHC吸着機能を有する触
媒を介装したものが知られている(公知文献としては例
えば特開平7−144119号公報参照)。これは、三
元触媒が活性温度に達していない冷間始動後の運転時に
生じるHCを一時的にHC吸着触媒に吸着しておき、そ
の後三元触媒が活性温度に達したときに空燃比を希薄化
して酸素過剰雰囲気を形成し、温度上昇にともなってH
C吸着触媒から離脱してきたHCを触媒により酸化処理
するというものである。
2. Description of the Related Art There is known an internal combustion engine in which an exhaust passage is provided with a three-way catalyst and a catalyst having an HC adsorbing function downstream of the three-way catalyst. 144,144). This is because the three-way catalyst does not reach the activation temperature, HC generated during operation after cold start is temporarily adsorbed on the HC adsorption catalyst, and then the air-fuel ratio is changed when the three-way catalyst reaches the activation temperature. It is diluted to form an oxygen-excess atmosphere, and H
The HC separated from the C adsorption catalyst is oxidized by the catalyst.

【0003】ところで、三元触媒に適用されるPt,R
h,Pd等の触媒金属層には酸素を保持するストレージ
機能があり、特にこの機能を強化するために酸化セリウ
ム等の酸素ストレージ量の多い助触媒を併用したものに
おいては多量の酸素が触媒内に保持されるので、このス
トレージ酸素の作用により触媒の転化効率がより高めら
れるという特徴がある。この酸素ストレージ量は、酸素
過剰の希薄空燃比の雰囲気で多くなり、酸素不足の濃空
燃比の雰囲気下では減少する特性がある。
By the way, Pt, R applied to a three-way catalyst
The catalytic metal layer such as h and Pd has a storage function of retaining oxygen. Especially, in order to enhance this function, a large amount of oxygen is contained in the catalyst when a cocatalyst with a large amount of oxygen storage such as cerium oxide is used together. Since it is retained in the catalyst, the conversion efficiency of the catalyst is further enhanced by the action of this storage oxygen. This oxygen storage amount has a characteristic that it increases in an atmosphere of lean air-fuel ratio with excess oxygen and decreases in an atmosphere of rich air-fuel ratio with insufficient oxygen.

【0004】しかしながら、このような三元触媒の酸素
ストレージ作用に原因して、運転状態によっては上記H
C吸着触媒が有効に機能しないことがある。冷間始動後
のアイドル運転状態で希薄空燃比を維持すれば三元触媒
の酸素ストレージ量は確保されるわけであるが、HC処
理が完了する以前の暖機過程で運転者の空吹かしや発進
・加速操作等により機関負荷が上昇すると、このときの
空燃比の濃化により三元触媒から酸素が放出されてしま
う。その後に空燃比を希薄化しても上流側に位置する三
元触媒に再び酸素が確保されるまでの間、下流側のHC
吸着触媒が酸素過剰雰囲気になるまでに時間的遅れが生
じ、一時的にHC吸着触媒に十分な酸素を供給できなく
なる。この結果、触媒温度の上昇に伴い脱離したHCを
十分に酸化することができず、それだけ排出HC量が増
えてしまうわけである。この問題を解決するためには負
荷増大時においても希薄空燃比を維持することが考えら
れるが、そうすると出力が確保できず、NOx排出量も
増大してしまうという問題が生じる。
However, due to the oxygen storage action of such a three-way catalyst, the above-mentioned H
The C adsorption catalyst may not function effectively. If the lean air-fuel ratio is maintained in the idle operation state after the cold start, the oxygen storage amount of the three-way catalyst will be secured, but in the warm-up process before the HC treatment is completed, the driver's idling or starting -If the engine load increases due to acceleration or the like, oxygen is released from the three-way catalyst due to the enrichment of the air-fuel ratio at this time. After that, even if the air-fuel ratio is diluted, the HC on the downstream side remains until oxygen is secured again on the three-way catalyst located on the upstream side.
A time delay occurs until the adsorption catalyst becomes an oxygen excess atmosphere, and it becomes temporarily impossible to supply sufficient oxygen to the HC adsorption catalyst. As a result, the desorbed HC cannot be sufficiently oxidized as the catalyst temperature rises, and the amount of discharged HC increases accordingly. In order to solve this problem, it is considered to maintain the lean air-fuel ratio even when the load is increased, but if this is done, the output cannot be secured and the NOx emission amount also increases.

【0005】上記問題を解決するために、請求項1の発
明では、機関排気通路に、三元触媒を、その下流側にH
C吸着材と触媒とを備えた処理装置を、それぞれ介装し
た内燃機関において、機関運転状態を検出する運転状態
検出手段と、三元触媒の酸素ストレージ量を空燃比セン
サで実測した実空燃比と吸入空気量から演算する酸素ス
トレージ量演算手段と、運転状態に基づいて空燃比を制
御する空燃比制御手段とを設け、前記空燃比制御手段
は、HC吸着材のHC脱離開始前の所定の高負荷運転域
にて三元触媒の酸素ストレージ量がその飽和値近傍に
らかじめ定めた目標値となるように空燃比を制御するよ
うに構成したものとする。
In order to solve the above problem, in the invention of claim 1, a three-way catalyst is provided in the engine exhaust passage, and H is provided downstream thereof.
In an internal combustion engine in which a processing device including a C adsorbent and a catalyst are respectively interposed, an operating state detecting unit that detects an engine operating state and an oxygen storage amount of a three-way catalyst are set as an air-fuel ratio sensor
The oxygen storage amount calculation means for calculating from the actual air-fuel ratio and the intake air amount actually measured by the engine, and the air-fuel ratio control means for controlling the air-fuel ratio based on the operating state are provided. HC at desorption start before the predetermined high-load operating region, as the oxygen storage amount of the three-way catalyst is to control the air-fuel ratio so that the Oh <br/> et beforehand target value determined on the saturation value near It should be configured.

【0006】請求項2の発明は、前記請求項1の発明に
おいて、前記酸素ストレージ量の目標値を低くして、前
記高負荷運転域にて濃側ないしは理論空燃比付近の空燃
比で運転できる機会を増やすようにした。
The invention of claim 2 is the same as the invention of claim 1.
In addition, lowering the target value of the oxygen storage amount,
Air fuel near the rich side or near the stoichiometric air-fuel ratio in the high load operating range
I tried to increase the opportunity to drive at a ratio.

【0007】請求項3の発明は、上記請求項1の発明の
空燃比制御手段を、所定の低負荷運転域にて空燃比を理
論空燃比よりも大の希薄空燃比に制御するように構成し
たものとする。
According to a third aspect of the present invention, the air-fuel ratio control means of the first aspect of the invention is configured to control the air-fuel ratio to a lean air-fuel ratio larger than the theoretical air-fuel ratio in a predetermined low load operation range. It is assumed that

【0008】請求項4の発明は、上記請求項3の発明の
三元触媒としてNOx吸蔵材を有するものとする。
According to a fourth aspect of the invention, the three-way catalyst of the third aspect of the invention has a NOx storage material.

【0009】請求項5の発明は、上記請求項1の発明の
空燃比制御手段を、酸素ストレージ量の目標値と演算値
との差に基づき、演算値が目標値に対して小であるほど
空燃比を大に制御するように構成したものとする。
According to a fifth aspect of the present invention, the air-fuel ratio control means of the first aspect of the invention is based on the difference between the target value and the calculated value of the oxygen storage amount, and the calculated value is smaller than the target value. It is assumed that the air-fuel ratio is controlled to be large.

【0010】[0010]

【作用・効果】上記請求項1以下の各発明によれば、H
C脱離前の暖機中に運転者が発進操作等をしたときのよ
うに高負荷運転状態となった場合、三元触媒の目標酸素
ストレージ量を維持するのに必要な限度で空燃比が希薄
側に制御される。酸素ストレージ量が目標値に維持され
ている限りは理論空燃比付近での運転も可能であるの
で、高負荷時の出力性能を損なわず、かつNOxの排出
量を抑制しつつ、爾後のHC処理を有効に行わせること
ができる。
According to the inventions described in claims 1 and below, H
In the case of a high load operation such as when the driver performs a start operation etc. during warm-up before desorption, the air-fuel ratio is limited to the limit necessary to maintain the target oxygen storage amount of the three-way catalyst. It is controlled on the lean side. As long as the oxygen storage amount is maintained at the target value, it is possible to operate near the stoichiometric air-fuel ratio, so output performance at high load is not impaired, and NOx emissions are suppressed while the subsequent HC treatment is performed. Can be effectively performed.

【0011】酸素ストレージ量の目標値を飽和値近傍に
設定することで三元触媒には常に十分な量の酸素ストレ
ージ量を確保することができる。なお請求項2の発明の
ように目標値を低く設定すればそれだけ高負荷時に濃側
ないしは理論空燃比付近の空燃比で運転できる機会が増
えるので出力性能の面では有利となる。
[0011] it is possible to ensure the oxygen storage amount always sufficient quantity target value of the oxygen storage amount in the three-way catalyst by setting the near saturation value. According to the invention of claim 2,
If the target value is set low as described above, the chances of operating at an air-fuel ratio on the rich side or near the stoichiometric air-fuel ratio at the time of high load increase accordingly, which is advantageous in terms of output performance.

【0012】請求項3の発明のように低負荷域で希薄空
燃比運転を行うことにより、三元触媒の酸素ストレージ
量を最大限に確保しておくことが可能になり、これによ
り負荷が増大したときの空燃比希薄化を最小限にできる
ので、出力や排気性能の面で有利となる。なお希薄空燃
比運転ではNOxが排出されるおそれがあるが、アイド
リングでの排出量は微量であるので、むしろ三元触媒の
酸素ストレージ量を確保しておくために希薄空燃比に制
御するほうが得策である。ただし、請求項4の発明のよ
うに三元触媒にNOx吸蔵材を適用することによりこの
ような低負荷での希薄空燃比運転状態でのNOxの排出
を確実に防止することが可能である。
By performing the lean air-fuel ratio operation in the low load range as in the third aspect of the present invention, it becomes possible to secure the maximum oxygen storage amount of the three-way catalyst, which increases the load. Since it is possible to minimize the leaning of the air-fuel ratio at that time, it is advantageous in terms of output and exhaust performance. Note that NOx may be emitted during lean air-fuel ratio operation, but since the amount of emission during idling is very small, it is better to control to lean air-fuel ratio to secure the oxygen storage amount of the three-way catalyst. Is. However, by applying the NOx storage material to the three-way catalyst as in the invention of claim 4, it is possible to reliably prevent the emission of NOx in the lean air-fuel ratio operation state under such a low load.

【0013】請求項5の発明のように、酸素ストレージ
量の目標値と演算値との差に基づき、演算値が目標値に
対して小であるほど空燃比を大に制御するようにすれ
ば、酸素ストレージ量の変化に対して過不足のない適切
な空燃比に制御して、酸素ストレージ量を確実に維持し
つつ良好な機関性能を確保することができる。
According to the fifth aspect of the invention, based on the difference between the target value and the calculated value of the oxygen storage amount, the air-fuel ratio is controlled to be larger as the calculated value is smaller than the target value. By controlling the air-fuel ratio to an appropriate level with respect to changes in the oxygen storage amount, it is possible to ensure good engine performance while reliably maintaining the oxygen storage amount.

【0014】[0014]

【発明の実施の形態】以下本発明の実施形態を図面に基
づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1において、1は火花点火式の内燃機
関、2はその吸気通路、3は排気通路である。4は吸気
通路2の途中に設けられたエアフロメータ、5と6は同
じくスロットル弁とその開度を検出するためのスロット
ル開度センサである。7は吸入ポート部に燃料を噴射供
給する電磁燃料噴射弁、8は点火栓である。
In FIG. 1, 1 is a spark ignition type internal combustion engine, 2 is an intake passage thereof, and 3 is an exhaust passage. Reference numeral 4 is an air flow meter provided in the middle of the intake passage 2, and reference numerals 5 and 6 are similarly throttle valves and throttle opening sensors for detecting the opening thereof. Reference numeral 7 is an electromagnetic fuel injection valve for injecting and supplying fuel to the intake port portion, and 8 is a spark plug.

【0016】9と10はそれぞれ排気通路3の途中に介
装された三元触媒と処理装置としてのHC吸着触媒であ
る。HC吸着触媒10は、ゼオライト等のHC吸着材の
被覆層を触媒担体に形成した三元触媒または酸化触媒か
らなっている。三元触媒9は始動後にできるだけ早期に
活性温度に達するように排気マニホールド3Aの出口付
近に設けらるとともに、HC吸着触媒10は図示したよ
うに三元触媒9の後段側に近接して設けられている。1
1は三元触媒の入口側に設けられた空燃比センサ、12
は触媒温度を検出する温度センサである。13はエアフ
ロメータ4からの吸入空気量信号や図示しないクランク
角センサからの回転信号に基づいて空燃比や点火時期を
制御するコントローラである。
Reference numerals 9 and 10 respectively denote a three-way catalyst and an HC adsorption catalyst as a processing device, which are interposed in the exhaust passage 3. The HC adsorption catalyst 10 comprises a three-way catalyst or an oxidation catalyst in which a coating layer of an HC adsorption material such as zeolite is formed on a catalyst carrier. The three-way catalyst 9 is provided near the outlet of the exhaust manifold 3A so as to reach the activation temperature as soon as possible after starting, and the HC adsorption catalyst 10 is provided near the rear side of the three-way catalyst 9 as shown in the figure. ing. 1
1 is an air-fuel ratio sensor provided on the inlet side of the three-way catalyst, 12
Is a temperature sensor for detecting the catalyst temperature. A controller 13 controls the air-fuel ratio and the ignition timing based on the intake air amount signal from the air flow meter 4 and the rotation signal from a crank angle sensor (not shown).

【0017】本発明の特徴は、このような三元触媒9と
HC吸着触媒10とを備えた内燃機関において、HC脱
離前の暖機過程において負荷が増大した場合において三
元触媒の酸素ストレージ量を保持するのに必要最小限の
希薄空燃比に制御するようにした点にある。次にこの制
御の一例を図2に示した流れ図に沿って説明する。
A feature of the present invention is that in an internal combustion engine equipped with such a three-way catalyst 9 and an HC adsorption catalyst 10, when the load increases in the warm-up process before desorption of HC, the oxygen storage of the three-way catalyst. The point is that the lean air-fuel ratio is controlled to the minimum necessary to maintain the amount. Next, an example of this control will be described with reference to the flow chart shown in FIG.

【0018】図2は上記コントローラ13により周期的
に実行される空燃比制御ルーチンである。この空燃比制
御ではまず、機関始動後に機関回転数、吸入空気量、冷
却水温、触媒温度等の運転状態信号を検出し(ステップ
201)、次に触媒温度Tcをセンサ信号または推定演
算により求めると共に目標当量比TFBYAを設定する
(ステップ202,203)。なお機関が始動完爆する
までは着火性を高めて始動性を良くするために理論空燃
比よりも若干濃い始動空燃比となるように空燃比が制御
されるが、このときに生じる未燃HCはHC吸着触媒1
0のHC吸着層に一時的に吸着され、大気中への放出が
防止される。目標当量比TFBYAは空燃比の逆数に比
例する設定値であり、後述する空燃比制御の目標値とな
るものである。
FIG. 2 shows an air-fuel ratio control routine which is periodically executed by the controller 13. In this air-fuel ratio control, first, after the engine is started, operating state signals such as engine speed, intake air amount, cooling water temperature, catalyst temperature, etc. are detected (step 201), and then the catalyst temperature Tc is obtained by a sensor signal or an estimation calculation. The target equivalent ratio TFBYA is set (steps 202 and 203). The air-fuel ratio is controlled so that the starting air-fuel ratio is slightly higher than the stoichiometric air-fuel ratio in order to improve the ignitability and improve the startability until the engine completes the complete explosion. Is HC adsorption catalyst 1
It is temporarily adsorbed on the HC adsorption layer of 0 and is prevented from being released into the atmosphere. The target equivalence ratio TFBYA is a set value proportional to the reciprocal of the air-fuel ratio, and is a target value for air-fuel ratio control described later.

【0019】次に、触媒温度TcがHC脱離温度Tc1
に達したか否かを検出し、もしTc≧Tc1のときには
次にHC脱離中であるかを判定し、脱離中であればHC
脱離状態に応じた目標当量比TFBYAを設定し、脱離
完了していれば通常時の空燃比制御に移行する(ステッ
プ204,209,210,211)。HCの脱離量は
例えば吸入空気量と触媒温度の関数として推定演算でき
るので、この演算結果に基づいて、前記目標当量比TF
BYAをHCの脱離に必要な最適の空燃比が得られるよ
うな値に設定することができる。また、HCの吸着量
は、例えば燃料噴射量または吸入空気量と既知の吸着効
率の関数として推定できるので、これと前記のようにし
て算出した脱離量とを比較することによりHCの脱離を
完了したか否かを正確に判定することができる。
Next, the catalyst temperature Tc is the HC desorption temperature Tc1.
If Tc ≧ Tc1, it is determined whether HC is being desorbed next, and if it is desorbing, HC is deducted.
The target equivalence ratio TFBYA is set according to the desorption state, and if the desorption is completed, the air-fuel ratio control in the normal state is started (steps 204, 209, 210, 211). Since the desorption amount of HC can be estimated and calculated as a function of, for example, the intake air amount and the catalyst temperature, the target equivalent ratio TF is calculated based on the calculation result.
BYA can be set to a value such that the optimum air-fuel ratio required for desorption of HC can be obtained. Further, since the HC adsorption amount can be estimated as a function of, for example, the fuel injection amount or the intake air amount and a known adsorption efficiency, the desorption amount of HC is compared by comparing this with the desorption amount calculated as described above. It is possible to accurately determine whether or not

【0020】空燃比制御そのものは、エンジン回転数と
吸入空気量とに基づいて定めた基本燃料噴射量(燃料噴
射弁7のパルス幅)を、空燃比センサ11からの空燃比
信号に基づいて上記ステップ203で求めた目標当量比
となるようにフィードバック制御し、または目標当量比
に基づいてオープンループ制御するという既知の手法に
よる。前記通常の空燃比制御とは、例えば定常的な運転
状態では空燃比をストイキ(理論空燃比)に制御して三
元触媒の転化効率を高める一方、加速時等の負荷要求が
高いときには濃空燃比にして出力を確保し、出力が不要
な減速時には燃料カットを行うといった制御である。
In the air-fuel ratio control itself, the basic fuel injection amount (pulse width of the fuel injection valve 7) determined based on the engine speed and the intake air amount is determined based on the air-fuel ratio signal from the air-fuel ratio sensor 11. According to a known method, feedback control is performed so that the target equivalence ratio obtained in step 203 is obtained, or open loop control is performed based on the target equivalence ratio. The normal air-fuel ratio control is, for example, to control the air-fuel ratio to stoichiometric (theoretical air-fuel ratio) in a steady operating state to improve the conversion efficiency of the three-way catalyst, while increasing the rich air when the load demand during acceleration is high. The control is such that a fuel ratio is used to secure an output, and fuel is cut during deceleration where output is unnecessary.

【0021】一方、ステップ204でTc<Tc1であ
ったときには、次に三元触媒9の酸素ストレージ量OS
を空燃比センサ11で実測した実空燃比と吸入空気量の
積算値等から推定演算する(ステップ205)。次に、
燃料噴射量または吸入空気量等に基づいて機関の負荷状
態を判定し、アイドリングを含む所定の低負荷運転域で
あった場合には低負荷時の空燃比設定を行う(ステップ
206,212)。低負荷時の空燃比設定としては例え
ばストイキ(理論空燃比)または若干の希薄空燃比とす
る。希薄空燃比運転ではNOxが排出されるおそれがあ
るが、アイドリングでの排出量は微量であるので、むし
ろ三元触媒9の酸素ストレージ量を飽和値付近に維持し
ておく意味で希薄空燃比に制御するのが好ましい。なお
必要に応じ三元触媒9に酸化バリウム等のNOx吸蔵材
を適用することにより、このような運転条件下でのNO
x排出をも確実に防止することが可能である。
On the other hand, if Tc <Tc1 in step 204, then the oxygen storage amount OS of the three-way catalyst 9 is reached.
Is estimated and calculated from the actual air-fuel ratio actually measured by the air- fuel ratio sensor 11 and the integrated value of the intake air amount (step 205). next,
The load condition of the engine is determined based on the fuel injection amount or the intake air amount, and if the engine is in a predetermined low load operation range including idling, the air-fuel ratio at low load is set (steps 206 and 212). As the air-fuel ratio setting at low load, for example, stoichiometric (theoretical air-fuel ratio) or a slight lean air-fuel ratio is set. Although NOx may be emitted in the lean air-fuel ratio operation, the amount of emission in idling is very small. Therefore, in order to keep the oxygen storage amount of the three-way catalyst 9 near the saturation value, the lean air-fuel ratio is set to the lean air-fuel ratio. It is preferable to control. If necessary, by applying a NOx storage material such as barium oxide to the three-way catalyst 9, NO under such operating conditions can be obtained.
It is possible to reliably prevent x discharge.

【0022】これに対して、ステップ206にて所定負
荷域を超える高負荷運転域であると判定した場合には、
次の式に基づいて当量比補正値DFBYAを算出する。
ただし式中のTOSは三元触媒9の酸素ストレージ量の
目標値、OSは上記ステップ205で算出したその推定
演算値、Kは定数である。
On the other hand, when it is determined in step 206 that the engine is in the high load operation range exceeding the predetermined load range,
The equivalent ratio correction value DFBYA is calculated based on the following equation.
However, in the equation, TOS is a target value of the oxygen storage amount of the three-way catalyst 9, OS is the estimated calculated value calculated in step 205, and K is a constant.

【0023】DFBYA=K(TOS−OS) 次に、この当量比補正値を、理論空燃比に相当する1.
0から減じて目標当量比TFBYAを求める。このと
き、演算による推定実酸素ストレージ量OSが目標値T
OSよりも小さいほど当量比補正値DFBYAは大きく
なるので、それだけ目標当量比TFBYAとしては小、
つまり希薄側に設定されることになる。その反面、OS
がTOSを超えるとTFBYAは濃側に設定される。
DFBYA = K (TOS-OS) Next, this equivalence ratio correction value is set to 1.
The target equivalent ratio TFBYA is obtained by subtracting from 0. At this time, the calculated actual oxygen storage amount OS is the target value T
Since the equivalence ratio correction value DFBYA becomes larger as it is smaller than OS, the target equivalence ratio TFBYA is small accordingly.
In other words, it will be set to the lean side. On the other hand, OS
When exceeds TOS, TFBYA is set to the dark side.

【0024】このような制御の繰り返しにより、高負荷
時においても三元触媒9の酸素ストレージ量が目標値に
維持されると共に、この目標酸素ストレージ量を維持す
るのに必要な限度でのみ空燃比が希薄側に制御されるこ
とになり、すなわち酸素ストレージ量が確保されている
限りは理論空燃比付近での運転も可能であるので、高負
荷時の出力性能を損なわず、かつNOxの排出量を抑制
しつつ、HC脱離時に必要な酸素量を三元触媒9に確保
して爾後のHC処理を効果的に行わせることができる。
By repeating such control, the oxygen storage amount of the three-way catalyst 9 is maintained at the target value even under high load, and the air-fuel ratio is limited only to the extent necessary to maintain this target oxygen storage amount. Is controlled to the lean side, that is, as long as the oxygen storage amount is secured, it is possible to operate near the stoichiometric air-fuel ratio, so the output performance at high load is not impaired and the NOx emission amount is reduced. It is possible to secure the amount of oxygen necessary for desorbing HC in the three-way catalyst 9 while effectively suppressing the subsequent HC treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態の概略構成図。FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.

【図2】上記実施形態の空燃比制御手法の一例を示す流
れ図。
FIG. 2 is a flowchart showing an example of an air-fuel ratio control method of the above embodiment.

【符号の説明】 1 内燃機関 2 吸気通路 3 排気通路 4 エアフロメータ 5 スロットル弁 6 スロットル開度センサ 7 燃料噴射弁 8 点火栓 9 三元触媒 10 HC吸着触媒(処理装置) 11 空燃比センサ 12 温度センサ 13 コントローラ[Explanation of symbols] 1 Internal combustion engine 2 Intake passage 3 exhaust passage 4 Air flow meter 5 Throttle valve 6 Throttle opening sensor 7 Fuel injection valve 8 spark plug 9 three-way catalyst 10 HC adsorption catalyst (treatment device) 11 Air-fuel ratio sensor 12 Temperature sensor 13 Controller

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F01N 3/08 B01D 53/34 117A 3/24 129A 53/36 102H (56)参考文献 特開 平10−61426(JP,A) 特開 平7−279651(JP,A) 特開 平7−144119(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 41/14 310 F01N 3/08 F01N 3/24 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification symbol FI F01N 3/08 B01D 53/34 117A 3/24 129A 53/36 102H (56) Reference JP-A-10-61426 (JP, A) ) JP-A-7-279651 (JP, A) JP-A-7-144119 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F02D 41/14 310 F01N 3/08 F01N 3 /twenty four

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】機関排気通路に、三元触媒を、その下流側
にHC吸着材と触媒とを備えた処理装置を、それぞれ介
装した内燃機関において、 機関運転状態を検出する運転状態検出手段と、 三元触媒の酸素ストレージ量を空燃比センサで実測した
実空燃比と吸入空気量から演算する酸素ストレージ量演
算手段と、 運転状態に基づいて空燃比を制御する空燃比制御手段と
を設け、 空燃比制御手段は、HC吸着材のHC脱離開始前の所定
の高負荷運転域にて三元触媒の酸素ストレージ量がその
飽和値近傍にあらかじめ定めた目標値となるように空燃
比を制御するように構成した内燃機関の空燃比制御装
置。
1. An operating state detecting means for detecting an engine operating state in an internal combustion engine in which a three-way catalyst is provided in an engine exhaust passage and a processing device having an HC adsorbent and a catalyst on the downstream side thereof are respectively interposed. And the oxygen storage amount of the three-way catalyst was measured with an air-fuel ratio sensor.
An oxygen storage amount calculation means for calculating from the actual air-fuel ratio and the intake air amount, and an air-fuel ratio control means for controlling the air-fuel ratio based on the operating state are provided, and the air-fuel ratio control means is provided before starting the HC desorption of the HC adsorbent. the oxygen storage amount of the three-way catalyst at a predetermined high-load operating region is that of the
An air-fuel ratio control device for an internal combustion engine configured to control an air-fuel ratio so as to reach a predetermined target value near a saturation value .
【請求項2】前記酸素ストレージ量の目標値を低くし
て、前記高負荷運転域にて濃側ないしは理論空燃比付近
の空燃比で運転できる機会を増やすことを特徴とする請
求項1記載の内燃機関の空燃比制御装置。
2. The target value of the oxygen storage amount is lowered.
In the high load operating range, on the dark side or near the theoretical air-fuel ratio.
2. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the number of opportunities to operate at the air-fuel ratio of is increased .
【請求項3】空燃比制御手段は、所定の低負荷運転域に
て空燃比を理論空燃比よりも大の希薄空燃比に制御する
ように構成したことを特徴とする請求項1記載の内燃機
関の空燃比制御装置。
3. The internal combustion engine according to claim 1, wherein the air-fuel ratio control means is configured to control the air-fuel ratio to a lean air-fuel ratio larger than the stoichiometric air-fuel ratio in a predetermined low load operation range. Air-fuel ratio control system for engines.
【請求項4】三元触媒はNOx吸蔵材を有することを特
徴とする請求項3記載の内燃機関の空燃比制御装置。
4. The air-fuel ratio control device for an internal combustion engine according to claim 3, wherein the three-way catalyst has a NOx storage material.
【請求項5】空燃比制御手段は、酸素ストレージ量の目
標値と演算値との差に基づき、演算値が目標値に対して
小であるほど空燃比を大に制御するように構成したこと
を特徴とする請求項1記載の内燃機関の空燃比制御装
置。
5. The air-fuel ratio control means is configured to control the air-fuel ratio to be larger as the calculated value is smaller than the target value, based on the difference between the target value and the calculated value of the oxygen storage amount. An air-fuel ratio control system for an internal combustion engine according to claim 1.
JP15140798A 1998-06-01 1998-06-01 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP3489441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15140798A JP3489441B2 (en) 1998-06-01 1998-06-01 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15140798A JP3489441B2 (en) 1998-06-01 1998-06-01 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11343902A JPH11343902A (en) 1999-12-14
JP3489441B2 true JP3489441B2 (en) 2004-01-19

Family

ID=15517931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15140798A Expired - Fee Related JP3489441B2 (en) 1998-06-01 1998-06-01 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3489441B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073817A (en) * 1998-08-28 2000-03-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
CN100348853C (en) * 2004-05-21 2007-11-14 上海工程技术大学 Air fuel ratio feedback control method based on exhaust temperature for electric control gasoline engine under large load operating condition
DE102016222418A1 (en) * 2016-11-15 2018-05-17 Robert Bosch Gmbh Method for controlling a filling of a storage of a catalyst for an exhaust gas component

Also Published As

Publication number Publication date
JPH11343902A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
JP3684934B2 (en) Exhaust gas purification device for internal combustion engine
US8001765B2 (en) System operable to control exhaust gas emission of engine
CN108457758B (en) Control device for internal combustion engine
KR100517040B1 (en) Exhaust gas purification system for internal combustion engine
JP2003166439A (en) Internal combustion engine
JP3402200B2 (en) Exhaust gas purification device for internal combustion engine
JPH08144814A (en) Fuel cutting-off controller for internal combustion engine
JP2004324538A (en) Engine control device
JP2009036117A (en) Air-fuel ratio controller of internal combustion engine
JP3489441B2 (en) Air-fuel ratio control device for internal combustion engine
JP3409696B2 (en) Exhaust gas purification device for internal combustion engine
JP3446812B2 (en) Internal combustion engine
JP2002180885A (en) Exhaust emission control device for internal combustion engine
US11028757B2 (en) Exhaust purification system of internal combustion engine
JP5392021B2 (en) Fuel injection control device for internal combustion engine
JP2000192811A (en) Exhaust emission control device for internal combustion engine
JP3843847B2 (en) Air-fuel ratio control device for internal combustion engine
JP4269279B2 (en) Control device for internal combustion engine
JP2000130221A (en) Fuel injection control device of internal combustion engine
JP3520731B2 (en) Engine exhaust purification device
JP2004346917A (en) Internal combustion engine control device
JP2005163590A (en) Exhaust emission control device for engine
JPH1054310A (en) Intake control device for internal combustion engine
JP2003020982A (en) Method of purifying emission of internal combustion engine
JP3482876B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees